1
|
Haratipour Z, Foutch D, Blind RD. A novel heuristic of rigid docking scores positively correlates with full-length nuclear receptor LRH-1 regulation. Comput Struct Biotechnol J 2024; 23:3065-3080. [PMID: 39185441 PMCID: PMC11342790 DOI: 10.1016/j.csbj.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nuclear receptor Liver Receptor Homolog-1 (LRH-1, NR5A2) is a ligand-regulated transcription factor and validated drug target for several human diseases. LRH-1 activation is regulated by small molecule ligands, which bind to the ligand binding domain (LBD) within the full-length LRH-1. We recently identified 57 compounds that bind LRH-1, and unexpectedly found these compounds regulated either the isolated LBD, or the full-length LRH-1 in cells, with little overlap. Here, we correlated compound binding energy from a single rigid-body scoring function with full-length LRH-1 activity in cells. Although docking scores of the 57 hit compounds did not correlate with LRH-1 regulation in wet lab assays, a subset of the compounds had large differences in binding energy docked to the isolated LBD vs. full-length LRH-1, which we used to empirically derive a new metric of the docking scores we call "ΔΔG". Initial regressions, correlations and contingency analyses all suggest compounds with high ΔΔG values more frequently regulated LRH-1 in wet lab assays. We then docked all 57 compounds to 18 separate crystal structures of LRH-1 to obtain averaged ΔΔG values for each compound, which robustly and reproducibly associated with full-length LRH-1 activity in cells. Network analyses on the 18 crystal structures of LRH-1 suggest unique communication paths exist between the subsets of LRH-1 crystal structures that produced high vs. low ΔΔG values, identifying a structural relationship between ΔΔG and the position of Helix 6, a previously established regulatory helix important for LRH-1 regulation. Together, these data suggest rigid-body computational docking can be used to quickly calculate ΔΔG, which positively correlated with the ability of these 57 hit compounds to regulate full-length LRH-1 in cell-based assays. We propose ΔΔG as a novel computational tool that can be applied to LRH-1 drug screens to prioritize compounds for resource-intense secondary screening.
Collapse
Affiliation(s)
- Zeinab Haratipour
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232, USA
- Austin Peay State University, Department of Chemistry
| | - David Foutch
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232, USA
| | - Raymond D. Blind
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232, USA
- Vanderbilt University School of Medicine, Departments of Biochemistry and Pharmacology, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Joshi P, Garg S, Mani S, Shoaib R, Jakhar K, Almuqdadi HTA, Sonar S, Marothia M, Behl A, Biswas S, Singhal J, Kahlon AK, Shevtsov M, Abid M, Garg P, Ranganathan A, Singh S. Targeting host inducible-heat shock protein 70 with PES-Cl is a promising antiviral strategy against SARS-CoV-2 infection and pathogenesis. Int J Biol Macromol 2024; 279:135069. [PMID: 39187102 DOI: 10.1016/j.ijbiomac.2024.135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
One of the fundamental mechanisms developed by the host to contain the highly infectious and rapidly proliferating SARS-coronavirus is elevation of body temperature, a natural fallout of which is heat shock proteins over-expression. Here, for the first time, we demonstrate that the SARS-CoV-2 exploits the host Heat shock protein 70 (Hsp70) chaperone for its entry and propagation, and blocking it can combat the infection. SARS-CoV-2 infection as well as febrile temperature enhanced Hsp70 expression in host Vero E6 cells. Furthermore, heat shock or viral infection elevated the host cell autophagic response which is a prerequisite for viral propagation. In addition, Hsp70 protein demonstrated strong interaction with host Angiotensin-converting enzyme 2 (ACE2) as well as the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein, indicating that interaction of Hsp70 with ACE2 and Spike protein may serve to protect them during febrile conditions. Suppressive and prophylactic treatment of Vero E6 cells with Hsp70 inhibitor PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), abrogated viral infection more potently than the currently used drug Remdesivir. In conclusion, our study not only provides a fundamental insight into the role of host Hsp70 in SARS-CoV-2 pathogenesis, it paves the way for development of potent and irresistible anti-viral therapeutics.
Collapse
Affiliation(s)
- Prerna Joshi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India; Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of LifeSciences, Jamia Millia Islamia, New Delhi, India
| | - Kamini Jakhar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of LifeSciences, Jamia Millia Islamia, New Delhi, India; Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Sudipta Sonar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Maxim Shevtsov
- Klinikum rechts der Isar, Technische Universität München, Department of Radiation Oncology, Ismaninger Str. 22, Munich 81675, Germany; Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg 194064, Russia; Personalized Medicine Centre, Almazov National Medical Research Centre, str. 2, St. Petersburg 19, Russia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Faculty of LifeSciences, Jamia Millia Islamia, New Delhi, India
| | - Pramod Garg
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Madasu PK, Chandran T. Structural insights into the toxicity of type II ribosome inactivating proteins (RIPs): a molecular dynamics study. J Biomol Struct Dyn 2024:1-12. [PMID: 39466135 DOI: 10.1080/07391102.2024.2419855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/17/2024] [Indexed: 10/29/2024]
Abstract
Ribosome Inactivating Proteins (RIPs) act by irreversibly depurinating the 28S rRNA ricin-sarcin loop (SRL) of the eukaryotic ribosome resulting in protein synthesis inhibition. In general, they consist of two variants: Type I which is single chained (∼30 kDa), and Type II, a more toxic variant which is a Type I N-glycosidase chain covalently linked to a lectin chain. These proteins are believed to play a pivotal role in defence mechanisms. Intriguingly, non-toxic variants of such toxic proteins do exist in nature. To explore their mode of action, in the present study we have selected three toxic (Ricin, Ebulin and HmRIP) as well as two non-toxic (BGSL and SGSL) RIPs and performed molecular docking and molecular dynamic simulations with the SRL loop. This study throws light on the structural stability and plasticity of the toxic and non-toxic RIP complexes. Furthermore, analysis of the active site cavity volume and binding free energy calculations reveal that the SRL, particularly the specific adenine (A4605), is relatively unstable in the case of non-toxic RIPs which is also supported by the free binding energy calculations, and the pocket size analysis indicates the abnormal increase in active site cavity volume of non-toxic RIPs with time. This first-of-its-kind comprehensive study of toxic and non-toxic RIPs gives insights about the mode of action and the dynamic nature of their interaction with the SRL loop. These observations will be helpful in the development of toxoids against RIPs and also in designing novel therapeutic approaches against human diseases.
Collapse
Affiliation(s)
- Pavan K Madasu
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Thyageshwar Chandran
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
4
|
Sladek V, Artiushenko PV, Fedorov DG. Effect of Direct and Water-Mediated Interactions on the Identification of Hotspots in Biomolecular Complexes with Multiple Subsystems. J Chem Inf Model 2024; 64:7602-7615. [PMID: 39283296 DOI: 10.1021/acs.jcim.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Identification of important residues in biochemical complexes is often a crucial step for many problems in molecular biology and biochemistry. A method is proposed to identify hotspots in biomolecular complexes based on a new metric, derived from networks representing molecular subunits (residues, bridging solvent molecules, ligands etc.) connected by interactions. A singular value decomposition of the weighted adjacency matrix is used to construct a scalar rank for each subunit that reflects its importance in the residue interaction network. This metric is called the singular value centrality. In addition, a new formalism is proposed to account for water-mediated interactions in the ranking of residues. Interactions for a residue network can be provided by various computational methods. In this work interactions are obtained from full quantum-mechanical calculations of protein-protein complexes using the fragment molecular orbital method. The ranking results are shown to be in good agreement with earlier computational and experimental studies. The developed method can be used to gain a deeper insight into the role of subunits in complex biomolecular systems.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Polina V Artiushenko
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) National Institute of Advanced Industrial Science and Technology (AIST), Central 2 Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
5
|
Zhang L, Han H, Xu A, Sathe A, Fu S, Zhao J, Cai W, Yang Y, Liu J, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z, Gu Y, Xing C, Schiattarella GG, Cheng SY, Zhang H, Chen Q. Lysozyme 1 Inflamed CCR2 + Macrophages Promote Obesity-Induced Cardiac Dysfunction. Circ Res 2024; 135:596-613. [PMID: 39056179 DOI: 10.1161/circresaha.124.324106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.
Collapse
Affiliation(s)
- Lai Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, China (L.Z.)
| | - Huian Han
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Andi Xu
- Department of Pathology, Nanjing Drum Tower Hospital, China (A.X.)
| | - Adwait Sathe
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Siying Fu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jiaqi Zhao
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Wenhan Cai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Yaqing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jinting Liu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hui Bai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jingjing Ben
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xudong Zhu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xiaoyu Li
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Zidun Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China (Z.W.)
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine (Y.G.), Nanjing Medical University, Jiangsu, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Bioinformatics (C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Population and Data Sciences (C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité - Universitätsmedizin Berlin, Germany (G.G.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (G.G.S.)
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (G.G.S.)
| | - Steven Yan Cheng
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hanwen Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
6
|
Del Conte A, Camagni GF, Clementel D, Minervini G, Monzon AM, Ferrari C, Piovesan D, Tosatto SE. RING 4.0: faster residue interaction networks with novel interaction types across over 35,000 different chemical structures. Nucleic Acids Res 2024; 52:W306-W312. [PMID: 38686797 PMCID: PMC11223866 DOI: 10.1093/nar/gkae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Residue interaction networks (RINs) are a valuable approach for representing contacts in protein structures. RINs have been widely used in various research areas, including the analysis of mutation effects, domain-domain communication, catalytic activity, and molecular dynamics simulations. The RING server is a powerful tool to calculate non-covalent molecular interactions based on geometrical parameters, providing high-quality and reliable results. Here, we introduce RING 4.0, which includes significant enhancements for identifying both covalent and non-covalent bonds in protein structures. It now encompasses seven different interaction types, with the addition of π-hydrogen, halogen bonds and metal ion coordination sites. The definitions of all available bond types have also been refined and RING can now process the complete PDB chemical component dictionary (over 35000 different molecules) which provides atom names and covalent connectivity information for all known ligands. Optimization of the software has improved execution time by an order of magnitude. The RING web server has been redesigned to provide a more engaging and interactive user experience, incorporating new visualization tools. Users can now visualize all types of interactions simultaneously in the structure viewer and network component. The web server, including extensive help and tutorials, is available from URL: https://ring.biocomputingup.it/.
Collapse
Affiliation(s)
- Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giorgia F Camagni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Damiano Clementel
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | - Carlo Ferrari
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
7
|
Szwabowski GL, Griffing M, Mugabe EJ, O’Malley D, Baker LN, Baker DL, Parrill AL. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Int J Mol Sci 2024; 25:6876. [PMID: 38999982 PMCID: PMC11241240 DOI: 10.3390/ijms25136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| |
Collapse
|
8
|
Wojciechowska A, Janczak J, Rojek T, Ashfaq M, Malik M, Trzęsowska N, Wysokiński R, Jezierska J. Unique Use of Dibromo-L-Tyrosine Ligand in Building of Cu(II) Coordination Polymer-Experimental and Theoretical Investigations. Molecules 2024; 29:2709. [PMID: 38893582 PMCID: PMC11173859 DOI: 10.3390/molecules29112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Although the crystals of coordination polymer {[CuCl(μ-O,O'-L-Br2Tyr)]}n (1) (L-Br2Tyr = 3,5-dibromo-L-tyrosine) were formed under basic conditions, crystallographic studies revealed that the OH group of the ligand remained protonated. Two adjacent [CuCl(L-Br2Tyr)] monomers, bridged by the carboxylate group of the ligand in the syn-anti bidentate bridging mode, are differently oriented to form a polymeric chain; this specific bridging was detected also by FT-IR and EPR spectroscopy. Each Cu(II) ion in polymeric compound 1 is coordinated in the xy plane by the amino nitrogen and carboxyl oxygen of the parent ligand and the oxygen of the carboxyl group from the symmetry related ligand of the adjacent [Cu(L-Br2Tyr)Cl] monomer, as well as an independent chlorine ion. In addition, the Cu(II) ion in the polymer chain participates in long-distance intermolecular contacts with the oxygen and bromine atoms of the ligands located in the adjacent chains; these intramolecular contacts were also supported by NCI and NBO quantum chemical calculations and Hirshfeld surface analysis. The resulting elongated octahedral geometry based on the [CuCl(L-Br2Tyr)] monomer has a lower than axial symmetry, which is also reflected in the symmetry of the calculated molecular EPR g tensor. Consequently, the components of the d-d band obtained by analysis of the NIR-VIS-UV spectrum were assigned to the corresponding electronic transitions.
Collapse
Affiliation(s)
- Agnieszka Wojciechowska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (T.R.); (M.M.); (N.T.); (R.W.)
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
| | - Tomasz Rojek
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (T.R.); (M.M.); (N.T.); (R.W.)
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan;
| | - Magdalena Malik
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (T.R.); (M.M.); (N.T.); (R.W.)
| | - Natasza Trzęsowska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (T.R.); (M.M.); (N.T.); (R.W.)
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; (T.R.); (M.M.); (N.T.); (R.W.)
| | - Julia Jezierska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland;
| |
Collapse
|
9
|
Yamamoto K, Nagatoishi S, Nakakido M, Kuroda D, Tsumoto K. Functional insights of Tyr37 in framework region 2 directly contributing to the binding affinities and dissociation kinetics in single-domain V HH antibodies. Biochem Biophys Res Commun 2024; 709:149839. [PMID: 38564943 DOI: 10.1016/j.bbrc.2024.149839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.
Collapse
Affiliation(s)
- Koichi Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
10
|
Nazir A, Shad M, Rehman HM, Azim N, Sajjad M. Application of SUMO fusion technology for the enhancement of stability and activity of lysophospholipase from Pyrococcus abyssi. World J Microbiol Biotechnol 2024; 40:183. [PMID: 38722449 DOI: 10.1007/s11274-024-03998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.
Collapse
Affiliation(s)
- Arshia Nazir
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsin Shad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
11
|
Zhang L, Zhou R, Liu D, Zhu M, Zhang G, Zhang L, Zhou SF, Jiang W. Multi-strategy orthogonal enhancement and analysis of aldo-keto reductase thermal stability. Int J Biol Macromol 2024; 264:130691. [PMID: 38458293 DOI: 10.1016/j.ijbiomac.2024.130691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Given their outstanding efficiency and selectivity, enzymes are integral in various domains such as drug synthesis, the food industry, and environmental management. However, the inherent instability of natural enzymes limits their widespread industrial application. In this study, we underscore the efficacy of enhancing protein thermal stability through comprehensive protein design strategies, encompassing elements such as the free energy of protein folding, internal forces within proteins, and the overall structural design. We also demonstrate the efficiency and precision of combinatorial screening in the thermal stability design of aldo-keto reductase (AKR7-2-1). In our research, three single-point mutations and five combinatorial mutations were strategically introduced into AKR7-2-1, using multiple computational techniques. Notably, the E12I/S235I mutant showed a significant increase of 25.4 °C in its melting temperature (Tm). Furthermore, the optimal mutant, E12V/S235I, maintained 80 % of its activity while realizing a 16.8 °C elevation in Tm. Remarkably, its half-life at 50 °C was increased to twenty times that of the wild type. Structural analysis indicates that this enhanced thermal stability primarily arises from reduced oscillation in the loop region and increased internal hydrogen bonding. The promising results achieved with AKR7-2-1 demonstrate that our strategy could serve as a valuable reference for enhancing the thermal stability of other industrial enzymes.
Collapse
Affiliation(s)
- Lingzhi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Rui Zhou
- Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, PR China
| | - Dekai Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Meinan Zhu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lijuan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
12
|
Pushan SS, Samantaray M, Rajagopalan M, Ramaswamy A. Structural dynamics of influenza A (H1N1) hemagglutinin protein: a comparative study of Indian (2018) isolate with its evolutionary neighbor, Californian (2009) strain. J Biomol Struct Dyn 2024:1-14. [PMID: 38379377 DOI: 10.1080/07391102.2024.2317985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This work highlights the structure and dynamics of two trimeric HA proteins of the H1N1 virus from different origins, the pandemic Californian (HACal) and its closest Indian neighbor (HAInd), reported in 2009 and 2018, respectively. Because of mutation, HAInd acquires new N-glycosylation and epitope binding sites along with mutations at RBD, which might trigger an altered viral-host interaction mechanism. Molecular dynamics simulations performed on HA trimers for a period of 250 ns reveal the highly dynamic nature of HACal trimers inherited by the flexibility of HA monomers. In the trimer, the dynamics of one monomer are more pronounced compared to others, and the enhanced dynamics of RBD especially gain attention as they plays a key role during fusion. Conversely, the mutant HAInd trimer effectively establishes more H-bond interactions, and accordingly, the trimer undergoes more stabilized dynamics with a relatively lower amplitude of RBD dynamics, as endorsed by the reduced RMSD, Rg, and SASA variations. The cooperative and anti-cooperative motions dissected for the subdomains of both strains also reveal a prominent anticorrelative motion of RBD against other subdomains. In agreement, the free energy landscape of stable HAInd is also characterized by a single lowest wide energy basin instead of the two minimum energy basins of the HACal trimer. In essence, the mutant HAInd acquires a highly stable conformation with novel functional features, which calls for (i) further investigation on the emerging mutation-mediated variation in viral-host binding mechanism and (ii) the need for further design of site-specific potential inhibitors to face future challenges.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shilpa Sri Pushan
- Department of Bioinformatics, Pondicherry University (A Central University), Kalapet, Puducherry, India
| | - Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University (A Central University), Kalapet, Puducherry, India
| | - Muthukumaran Rajagopalan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University (A Central University), Kalapet, Puducherry, India
| |
Collapse
|
13
|
Wang Y, Pang C, Mohammad-Beigi H, Li X, Wu Y, Lin MKTH, Bai Y, Møller MS, Svensson B. Sequential starch modification by branching enzyme and 4-α-glucanotransferase improves retention of curcumin in starch-alginate beads. Carbohydr Polym 2024; 323:121387. [PMID: 37940281 DOI: 10.1016/j.carbpol.2023.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
A new super-branched amylopectin with longer exterior chains was produced from normal maize starch by modification with branching enzyme followed by 4-α-glucanotransferase, and applied for co-entrapment of a curcumin-loaded emulsion in alginate beads. The network structure of the gel beads was obtained with Ca2+-cross-linked alginate and a modest load of retrograded starch. The dual enzyme modified starch contained more and longer α-1,6-linked branch chains than single enzyme modified and unmodified starches and showed superior resistance to digestive enzymes. Alginate beads with or without starch were of similar size (1.69-1.74 mm), but curcumin retention was improved 1.4-2.8-fold in the presence of different starches. Thus, subjecting the curcumin-loaded beads to in vitro simulated gastrointestinal digestion resulted in retention of 70, 43 and 22 % of the curcumin entrapped in the presence of modified, unmodified, or no starch, respectively. Molecular docking provided support for curcumin interacting with starch via hydrogen bonding, hydrophobic contacts and π-π stacking. The study highlights the potential of utilizing low concentration of dual-enzyme modified starch with alginate to create a versatile vehicle for controlled release and targeted delivery of bioactive compounds.
Collapse
Affiliation(s)
- Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Chengfang Pang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Hossein Mohammad-Beigi
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiaoxiao Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yazhen Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Yuxiang Bai
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Paul M, Banerjee A, Maiti S, Mitra D, DasMohapatra PK, Thatoi H. Evaluation of substrate specificity and catalytic promiscuity of Bacillus albus cellulase: an insight into in silico proteomic study aiming at enhanced production of renewable energy. J Biomol Struct Dyn 2023:1-23. [PMID: 38126200 DOI: 10.1080/07391102.2023.2295971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Cellulases are enzymes that aid in the hydrolysis of cellulosic fibers and have a wide range of industrial uses. In the present in silico study, sequence alignment between cellulases from different Bacillus species revealed that most of the residues are conserved in those aligned enzymes. Three dimensional structures of cellulase enzymes from 23 different Bacillus species have been predicted and based on the alignment between the modeled structures, those enzymes have been categorized into 7 different groups according to the homology in their conformational folds. There are two structural contents in Gr-I cellulase namely β1-α2 and β3-α5 loops which varies greatly according to their static position. Molecular docking study between the B. albus cellulase and its various cellulosic substrates including xylanoglucan oligosaccharides revealed that residues viz. Phe154, Tyr258, Tyr282, Tyr285, and Tyr376 of B. albus cellulase are significantly involved in formation stacking interaction during enzyme-substrate binding. Residue interaction network and binding energy analysis for the B. albus cellulase with different cellulosic substrates depicted the strong affinity of XylGlc3 substrate with the receptor enzyme. Molecular interaction and molecular dynamics simulation studies exhibited structural stability of enzyme-substrate complexes which are greatly influenced by the presence of catalytic promiscuity in their substrate binding sites. Screening of B. albus in carboxymethylcellulose (CMC) and xylan supplemented agar media revealed the capability of the bacterium in degrading both cellulose and xylan. Overall, the study demonstrated B. albus cellulase as an effective biocatalyst candidate with the potential role of catalytic promiscuity for possible applications in biofuel industries.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
- Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Amrita Banerjee
- Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Oriental Institute of Science and Technology, Midnapore, India
| | - Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, India
| | - Pradeep K DasMohapatra
- Department of Microbiology, Raiganj University, Raiganj, India
- PAKB Environment Conservation Centre, Raiganj University, Raiganj, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| |
Collapse
|
15
|
Côco LZ, Aires R, Carvalho GR, Belisário EDS, Yap MKK, Amorim FG, Conde-Aranda J, Nogueira BV, Vasquez EC, Pereira TDMC, Campagnaro BP. Unravelling the Gastroprotective Potential of Kefir: Exploring Antioxidant Effects in Preventing Gastric Ulcers. Cells 2023; 12:2799. [PMID: 38132119 PMCID: PMC10742242 DOI: 10.3390/cells12242799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.
Collapse
Affiliation(s)
- Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Rafaela Aires
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Glaucimeire Rocha Carvalho
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Eduarda de Souza Belisário
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | | | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil;
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Thiago de Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| |
Collapse
|
16
|
Yamamoto K, Nagatoishi S, Matsunaga R, Nakakido M, Kuroda D, Tsumoto K. Conformational features and interaction mechanisms of V H H antibodies with β-hairpin CDR3: A case of Nb8-HigB2 interaction. Protein Sci 2023; 32:e4827. [PMID: 37916305 PMCID: PMC10661080 DOI: 10.1002/pro.4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
The β-hairpin conformation is regarded as an important basic motif to form and regulate protein-protein interactions. Single-domain VH H antibodies are potential therapeutic and diagnostic tools, and the third complementarity-determining regions of the heavy chains (CDR3s) of these antibodies are critical for antigen recognition. Although the sequences and conformations of the CDR3s are diverse, CDR3s sometimes adopt β-hairpin conformations. However, characteristic features and interaction mechanisms of β-hairpin CDR3s remain to be fully elucidated. In this study, we investigated the molecular recognition of the anti-HigB2 VH H antibody Nb8, which has a CDR3 that forms a β-hairpin conformation. The interaction was analyzed by evaluation of alanine-scanning mutants, molecular dynamics simulations, and hydrogen/deuterium exchange mass spectrometry. These experiments demonstrated that positions 93 and 94 (Chothia numbering) in framework region 3, which is right outside CDR3 by definition, play pivotal roles in maintaining structural stability and binding properties of Nb8. These findings will facilitate the design and optimization of single-domain antibodies.
Collapse
Affiliation(s)
- Koichi Yamamoto
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Medical Device Development and Regulation Research Center, School of EngineeringThe University of TokyoTokyoJapan
| | - Ryo Matsunaga
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Kuroda
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Drug and Vaccine DevelopmentNational Institute of Infectious DiseasesTokyoJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Medical Device Development and Regulation Research Center, School of EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Huang A, Lu F, Liu F. Exploring the molecular mechanism of cold-adaption of an alkaline protease mutant by molecular dynamics simulations and residue interaction network. Protein Sci 2023; 32:e4837. [PMID: 37984374 PMCID: PMC10682693 DOI: 10.1002/pro.4837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Psychrophilic proteases have attracted enormous attention in past decades, due to their high catalytic activity at low temperatures in a wide range of industrial processes, especially in the detergent and leather industries. Among them, H5 is an alkaline protease mutant, which featuring psychrophilic-like behavior, but the reasons that H5 with higher activity at low temperatures are still poorly understood. Herein, the molecular dynamics (MD) simulations combined with residue interaction network (RIN) were utilized to investigate the mechanisms of the cold-adaption of mutant H5. The results demonstrated that two loops involved in the substrate binding G100-S104 and S125-S129 in H5 had higher mobility, and the distance enlargement between the two loops modulated the substrate's accessibility compared with wild type counterpart. Besides, H5 enhanced conformational flexibility by weakening salt bridges and increasing interaction with the solvent. In particular, the absence of Lys251-Asp197-Arg247 salt bridge network may contribute to the structural mobility. Based on the free energy landscape and molecular mechanics Poisson-Boltzmann surface area of the wild type and H5, it was elucidated that H5 possessed a large population of interconvertible conformations, resulting in the weaker substrate binding free energy. The calculated RIN topology parameters such as the average degree, average cluster coefficient, and average path length further verified that the mutant H5 attenuated residue-to-residue interactions. The investigation of the mechanisms by which how the residue mutation affects the stability and activity of enzymes provides a theoretical basis for the development of cold-adapted protease.
Collapse
Affiliation(s)
- Ailan Huang
- College of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Fuping Lu
- College of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyTianjinChina
| | - Fufeng Liu
- College of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyTianjinChina
| |
Collapse
|
18
|
Toumi A, Abdella FI, Boudriga S, Alanazi TYA, Alshamari AK, Alrashdi AA, Dbeibia A, Hamden K, Daoud I, Knorr M, Kirchhoff JL, Strohmann C. Synthesis of Tetracyclic Spirooxindolepyrrolidine-Engrafted Hydantoin Scaffolds: Crystallographic Analysis, Molecular Docking Studies and Evaluation of Their Antimicrobial, Anti-Inflammatory and Analgesic Activities. Molecules 2023; 28:7443. [PMID: 37959862 PMCID: PMC10650415 DOI: 10.3390/molecules28217443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
In a sustained search for novel potential drug candidates with multispectrum therapeutic application, a series of novel spirooxindoles was designed and synthesized via regioselective three-component reaction between isatin derivatives, 2-phenylglycine and diverse arylidene-imidazolidine-2,4-diones (Hydantoins). The suggested stereochemistry was ascertained by an X-ray diffraction study and NMR spectroscopy. The resulting tetracyclic heterocycles were screened for their in vitro and in vivo anti-inflammatory and analgesic activity and for their in vitro antimicrobial potency. In vitro antibacterial screening revealed that several derivatives exhibited remarkable growth inhibition against different targeted microorganisms. All tested compounds showed excellent activity against the Micrococccus luteus strain (93.75 µg/mL ≤ MIC ≤ 375 µg/mL) as compared to the reference drug tetracycline (MIC = 500 µg/mL). Compound 4e bearing a p-chlorophenyl group on the pyrrolidine ring exhibited the greatest antifungal potential toward Candida albicans and Candida krusei (MIC values of 23.43 µg/mL and 46.87 µg/mL, respectively) as compared to Amphotericin B (MIC = 31.25 and 62.50 µg/mL, respectively). The target compounds were also tested in vitro against the lipoxygenase-5 (LOX-5) enzyme. Compounds 4i and 4l showed significant inhibitory activity with IC50 = 1.09 mg/mL and IC50 = 1.01 mg/mL, respectively, more potent than the parent drug, diclofenac sodium (IC50 = 1.19 mg/mL). In addition, in vivo evaluation of anti-inflammatory and analgesic activity of these spirooxindoles were assessed through carrageenan-induced paw edema and acetic acid-induced writhing assays, respectively, revealing promising results. In silico molecular docking and predictive ADMET studies for the more active spirocompounds were also carried out.
Collapse
Affiliation(s)
- Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
| | - Faiza I.A. Abdella
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia (T.Y.A.A.)
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
| | - Tahani Y. A. Alanazi
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia (T.Y.A.A.)
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia (T.Y.A.A.)
| | | | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia;
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | - Ismail Daoud
- Department of Matter Sciences, University of Mohamed Khider, BP 145 RP, Biskra 07000, Algeria;
- Laboratory of Natural and Bio-Actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen 13000, Algeria
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Jan-Lukas Kirchhoff
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (J.-L.K.); (C.S.)
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (J.-L.K.); (C.S.)
| |
Collapse
|
19
|
Cheng Q, DeYonker NJ. The Glycine N-Methyltransferase Case Study: Another Challenge for QM-Cluster Models? J Phys Chem B 2023; 127:9282-9294. [PMID: 37870315 PMCID: PMC11018112 DOI: 10.1021/acs.jpcb.3c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The methyl transfer reaction between SAM and glycine catalyzed by glycine N-methyltransferase (GNMT) was examined using QM-cluster models generated by Residue Interaction Network ResidUe Selector (RINRUS). RINRUS is a Python-based tool that can build QM-cluster models with rules-based processing of the active site residue interaction network. This way of enzyme model-building allows quantitative analysis of residue and fragment contributions to kinetic and thermodynamic properties of the enzyme. Many residue fragments are important for the GNMT catalytic reaction, such as Gly137, Asn138, and Arg175, which interact with the glycine substrate, and Trp30, Asp85, and Tyr242, which interact with the SAM cofactor. Our study shows that active site fragments that interact with the glycine substrate and the SAM cofactor must both be included in the QM-cluster models. Even though the proposed mechanism is a simple one-step reaction, GNMT may be a rather challenging case study for QM-cluster models because convergence in energetics requires models with >350 atoms. "Maximal" QM-cluster models built with either qualitative contact count ranking or quantitative interaction energies from functional group symmetry adapted perturbation theory provide acceptable results. Hence, important residue fragments that contribute to the energetics of the methyl-transfer reaction in GNMT are correctly identified in the RIN. Observations from this work suggest new directions to better establish an effective approach for constructing atomic-level enzyme models.
Collapse
Affiliation(s)
- Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, TN 38152, U.S.A
| | - Nathan J. DeYonker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, U.S.A
| |
Collapse
|
20
|
Mansoor Hussain UH, Basheer Ahamed SI. Structural impact of pathogenic SNPs on β-tubulin using molecular dynamics study. J Biomol Struct Dyn 2023; 41:8230-8240. [PMID: 36218086 DOI: 10.1080/07391102.2022.2130986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 10/17/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the TUBB1 (β-tubulin) gene have been implicated as the primary cause of macro thrombocytopenia. Therefore it is essential to identify the potential SNPs which are harmful to cause diseases such as macro thrombocytopenia. The impact caused by these variants on β-tubulin is twofold, both structural and functional. Multiple in-silico tools were used to scrutinise the most deleterious nsSNPs (non-synonymous SNPs) via sequence and structure-based approaches. Further, the β-tubulin protein model incorporating identified mutants was subjected to MD (molecular dynamic) simulations to analyse the impact on protein structure. A total of 2974 SNPs of TUBB1 were retrieved from various sources, and 32 nsSNPs were identified. By screening through sequence-based technique, 13 variants were detected as deleterious and further structure-based filtration was carried out to find thermally destabilising variants. Finally, three variants have been detected as highly destabilising by the mCSM server and chosen for the MD study. All three variants are present in the N-terminal, Intermediate, and C-terminal regions, breaking the spatial arrangement required for microtubule assembly. The spatial arrangement of these variants is in deviation with respect to WT (wild type) β-tubulin. The protein model was subjected to a simulation period of 100 ns. The FEL analysis revealed multiple clusters with minor populations indicating the unstable conformation adapted by the β-tubulin. The normal mode vector analysis exhibited high-intensity flexible motions at the C-terminal end, responsible for binding with MAPs (microtubule-associated proteins), an essential region in microtubule assembly. All these results reveal that the SNP's predicted eventually influence the spatial arrangement of β-tubulin, which would disturb the stacking arrangement of αβ tubulin dimer in microtubule assembly. The present study may set a path to cure the diseases like macro thrombocytopenia.Communicated by Ramaswamy H. Sarma.
Collapse
|
21
|
Samantaray M, Pushan SS, Rajagopalan M, Ramaswamy A. Structural dynamics of the RNA dependent RNA polymerase of H1N1 strain affecting humans: a bioinformatics approach. J Biomol Struct Dyn 2023; 42:10876-10889. [PMID: 37728538 DOI: 10.1080/07391102.2023.2259481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
The Influenza flu is a pandemic disease that renders the highest risk factor to the society due to its efficient ability of airborne transmission. Studies on the H1N1 strain gained significant focus, since its pandemic outbreak in 2009 and particularly the computational studies on its structural elements significantly aided in revealing their functional uniqueness. Among the 10 structural proteins of H1N1, the RNA-dependent RNA polymerase (RdRp) heterotrimeric protein complex, which is responsible for the synthesis of viral RNA (vRNA) from the negative-sense RNA genome of the virus, is the focus of the present study. This study aimed to investigate the structural dynamics of the RdRp complex with particular emphasis on the reported 17 mutations. The mutant strain is more stabilized by strong concerted residue-residue interactions at both intra- and inter- monomeric levels. In comparison, the mutant strain is structurally flexible with enhanced stabilizing interactions. The structural dynamics of RdRp are significantly governed by the dynamics of the (i) endonuclease domain of PA, (ii) RNA-entry region of PB1 and (iii) cap-binding region of PB2. Explicitly, the cap binding region of PB2 expresses (i) a concerted motion with the RNA-entry region, along with (ii) an anti-correlated motion with the endonuclease domain of the PA subunit, which further supports the stable dynamics of cap-binding towards RNA binding. These findings contribute to the understanding of the structural dynamics associated with the pandemic and mutant structures of RdRp and render a basic knowledge for further development of novel inhibitors towards influenza flu affected humans.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahesh Samantaray
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R. V. Nagar, Puducherry, India
| | - Shilpa Sri Pushan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R. V. Nagar, Puducherry, India
| | - Muthukumaran Rajagopalan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Amutha Ramaswamy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R. V. Nagar, Puducherry, India
| |
Collapse
|
22
|
Spanò A, Fanton L, Pizzolato D, Moi J, Vinci F, Pesce A, Dongmo Foumthuim CJ, Giacometti A, Simeoni M. Rinmaker: a fast, versatile and reliable tool to determine residue interaction networks in proteins. BMC Bioinformatics 2023; 24:336. [PMID: 37697267 PMCID: PMC10496328 DOI: 10.1186/s12859-023-05466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Residue Interaction Networks (RINs) map the crystallographic description of a protein into a graph, where amino acids are represented as nodes and non-covalent bonds as edges. Determination and visualization of a protein as a RIN provides insights on the topological properties (and hence their related biological functions) of large proteins without dealing with the full complexity of the three-dimensional description, and hence it represents an invaluable tool of modern bioinformatics. RESULTS We present RINmaker, a fast, flexible, and powerful tool for determining and visualizing RINs that include all standard non-covalent interactions. RINmaker is offered as a cross-platform and open source software that can be used either as a command-line tool or through a web application or a web API service. We benchmark its efficiency against the main alternatives and provide explicit tests to show its performance and its correctness. CONCLUSIONS RINmaker is designed to be fully customizable, from a simple and handy support for experimental research to a sophisticated computational tool that can be embedded into a large computational pipeline. Hence, it paves the way to bridge the gap between data-driven/machine learning approaches and numerical simulations of simple, physically motivated, models.
Collapse
Affiliation(s)
- Alvise Spanò
- Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
| | - Lorenzo Fanton
- Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
| | - Davide Pizzolato
- Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
| | - Jacopo Moi
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
| | - Francesco Vinci
- Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
| | - Alberto Pesce
- Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
| | - Cedrix J Dongmo Foumthuim
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
| | - Achille Giacometti
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy
- European Centre for Living Technology (ECLT), Dorsoduro 3246, 30123, Venice, Italy
| | - Marta Simeoni
- Department of Environmental Science, Computer Science and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice, Italy.
- European Centre for Living Technology (ECLT), Dorsoduro 3246, 30123, Venice, Italy.
| |
Collapse
|
23
|
Mazumder M, Kumar S, Kumar D, Bhattacharya A, Gourinath S. Machine learning-based modulation of Ca 2+-binding affinity in EF-hand proteins and comparative structural insights into site-specific cooperative binding. Int J Biol Macromol 2023; 248:125866. [PMID: 37473887 DOI: 10.1016/j.ijbiomac.2023.125866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Ca2+-binding proteins are present in almost all living organisms and different types display different levels of binding affinities for the cation. Here, we report two new scoring schemes enabling the user to estimate and manipulate the calcium binding affinities in EF hand containing proteins. To validate this, we designed a unique EF-hand loop capable of binding calcium with high affinity by altering five residues. The N-terminal domain of Entamoeba histolytica calcium-binding protein1 (NtEhCaBP1) is used for site-directed mutagenesis to incorporate the designed loop sequence into the second EF-hand motif of this protein, referred as Nt-EhCaBP1-EF2 mutant. The binding isotherms calculated using ITC calorimetry showed that Nt-EhCaBP1-EF2 mutant site binds Ca2+ with higher affinity than Wt-Nt-EhCaBP1, by ∼600 times. The crystal structure of the mutant displayed more compact Ca2+-coordination spheres in both of its EF loops than the structure of the wildtype protein. The compact coordination sphere of EF-2 causes the bend in the helix-3, which leads to the formation of unexpected hexamer of NtEhCaBP1-EF2 mutant structure. Further dynamic correlation analysis revealed that the mutation in the second EF loop changed the entire residue network of the monomer, resulting in stronger coordination of Ca2+ even in another EF-hand loop.
Collapse
Affiliation(s)
- Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Pine Biotech, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232-0146, USA
| | - Devbrat Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
24
|
Suderman RJ, Gibson SD, Strecker M, Bonner AM, Chao DM. Protein engineering of a nanoCLAMP antibody mimetic scaffold as a platform for producing bioprocess-compatible affinity capture ligands. J Biol Chem 2023; 299:104910. [PMID: 37315789 PMCID: PMC10404686 DOI: 10.1016/j.jbc.2023.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Protein A affinity chromatography is widely used for the large-scale purification of antibodies because of its high yield, selectivity, and compatibility with NaOH sanitation. A general platform to produce robust affinity capture ligands for proteins beyond antibodies would improve bioprocessing efficiency. We previously developed nanoCLAMPs (nano Clostridial Antibody Mimetic Proteins), a class of antibody mimetic proteins useful as lab-scale affinity capture reagents. This work describes a protein engineering campaign to develop a more robust nanoCLAMP scaffold compatible with harsh bioprocessing conditions. The campaign generated an improved scaffold with dramatically improved resistance to heat, proteases, and NaOH. To isolate additional nanoCLAMPs based on this scaffold, we constructed a randomized library of 1 × 1010 clones and isolated binders to several targets. We then performed an in-depth characterization of nanoCLAMPs recognizing yeast SUMO, a fusion partner used for the purification of recombinant proteins. These second-generation nanoCLAMPs typically had a Kd of <80 nM, a Tm of >70 °C, and a t1/2 in 0.1 mg/ml trypsin of >20 h. Affinity chromatography resins bearing these next-generation nanoCLAMPs enabled single-step purifications of SUMO fusions. Bound target proteins could be eluted at neutral or acidic pH. These affinity resins maintained binding capacity and selectivity over 20 purification cycles, each including 10 min of cleaning-in-place with 0.1 M NaOH, and remained functional after exposure to 100% DMF and autoclaving. The improved nanoCLAMP scaffold will enable the development of robust, high-performance affinity chromatography resins against a wide range of protein targets.
Collapse
Affiliation(s)
| | - Shane D Gibson
- Nectagen, Inc, Kansas City, Kansas, USA; University of Washington, Seattle, Washington, USA
| | - Mary Strecker
- Nectagen, Inc, Kansas City, Kansas, USA; Two Dot Consulting, Arvada, Colorado, USA
| | | | | |
Collapse
|
25
|
Kaur P, Sethi D, Hade MD, Kaur J, Dikshit KL. C-terminal lysine residues enhance plasminogen activation by inducing conformational flexibility and stabilization of activator complex of staphylokinase with plasmin. Arch Biochem Biophys 2023:109671. [PMID: 37336343 DOI: 10.1016/j.abb.2023.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Staphylokinase (SAK), a potent fibrin-specific plasminogen activator secreted by Staphylococcus aureus, carries a pair of lysine at the carboxy-terminus that play a key role in plasminogen activation. The underlaying mechanism by which C-terminal lysins of SAK modulate its function remains unknown. This study has been undertaken to unravel role of C-terminal lysins of SAK in plasminogen activation. While deletion of C-terminal lysins (Lys135, Lys136) drastically impaired plasminogen activation by SAK, addition of lysins enhanced its catalytic activity 2-2.5-fold. Circular dichroism analysis revealed that C-terminally modified mutants of SAK carry significant changes in their beta sheets and secondary structure. Structure models and RING (residue interaction network generation) studies indicated that the deletion of lysins has conferred extensive topological alterations in SAK, disrupting vital interactions at the interface of SAK.plasmin complex, thereby leading significant impairment in its functional activity. In contrast, addition of lysins at the C-terminus enhanced its conformational flexibility, creating a stronger coupling at the interface of SAK.plasmin complex and making it more efficient for plasminogen activation. Taken together, these studies provided new insights on the role of C-terminal lysins in establishment of precise intermolecular interactions of SAK with the plasmin for the optimal function of activator complex.
Collapse
Affiliation(s)
- Puneet Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Deepti Sethi
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Mangesh Dattu Hade
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Kanak L Dikshit
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
26
|
Ravindran F, Jain A, Desai S, Menon N, Srivastava K, Bawa PS, Sateesh K, Srivatsa N, Raghunath SK, Srinivasan S, Choudhary B. Whole-exome sequencing of Indian prostate cancer reveals a novel therapeutic target: POLQ. J Cancer Res Clin Oncol 2023; 149:2451-2462. [PMID: 35737091 DOI: 10.1007/s00432-022-04111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Prostate cancer is the second most common cancer diagnosed worldwide and the third most common cancer among men in India. This study's objective was to characterise the mutational landscape of Indian prostate cancer using whole-exome sequencing to identify population-specific polymorphisms. METHODS Whole-exome sequencing was performed of 58 treatment-naive primary prostate tumors of Indian origin. Multiple computational and statistical analyses were used to profile the known common mutations, other deleterious mutations, driver genes, prognostic biomarkers, and gene signatures unique to each clinical parameter. Cox analysis was performed to validate survival-associated genes. McNemar test identified genes significant to recurrence and receiver-operating characteristic (ROC) analysis was conducted to determine its accuracy. OncodriveCLUSTL algorithm was used to deduce driver genes. The druggable target identified was modeled with its known inhibitor using Autodock. RESULTS TP53 was the most commonly mutated gene in our cohort. Three novel deleterious variants unique to the Indian prostate cancer subtype were identified: POLQ, FTHL17, and OR8G1. COX regression analysis identified ACSM5, a mitochondrial gene responsible for survival. CYLC1 gene, which encodes for sperm head cytoskeletal protein, was identified as an unfavorable prognostic biomarker indicative of recurrence. The novel POLQ mutant, also identified as a driver gene, was evaluated as the druggable target in this study. POLQ, a DNA repair enzyme implicated in various cancer types, is overexpressed and is associated with a poor prognosis. The mutant POLQ was subjected to structural analysis and modeled with its known inhibitor novobiocin resulting in decreased binding efficiency necessitating the development of a better drug. CONCLUSION In this pilot study, the molecular profiling using multiple computational and statistical analyses revealed distinct polymorphisms in the Indian prostate cancer cohort. The mutational signatures identified provide a valuable resource for prognostic stratification and targeted treatment strategies for Indian prostate cancer patients. The DNA repair enzyme, POLQ, was identified as the druggable target in this study.
Collapse
Affiliation(s)
- Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Anika Jain
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, India
| | - Navjoth Menon
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Kriti Srivastava
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Pushpinder Singh Bawa
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - K Sateesh
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - N Srivatsa
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - S K Raghunath
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore, Karnataka, India.
| |
Collapse
|
27
|
Selvam R, Lim IHY, Lewis JC, Lim CH, Yap MKK, Tan HS. Selecting antibacterial aptamers against the BamA protein in Pseudomonas aeruginosa by incorporating genetic algorithm to optimise computational screening method. Sci Rep 2023; 13:7582. [PMID: 37164985 PMCID: PMC10170454 DOI: 10.1038/s41598-023-34643-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Antibiotic resistance is one of the biggest threats to global health resulting in an increasing number of people suffering from severe illnesses or dying due to infections that were once easily curable with antibiotics. Pseudomonas aeruginosa is a major pathogen that has rapidly developed antibiotic resistance and WHO has categorised this pathogen under the critical list. DNA aptamers can act as a potential candidate for novel antimicrobial agents. In this study, we demonstrated that an existing aptamer is able to affect the growth of P. aeruginosa. A computational screen for aptamers that could bind to a well-conserved and essential outer membrane protein, BamA in Gram-negative bacteria was conducted. Molecular docking of about 100 functional DNA aptamers with BamA protein was performed via both local and global docking approaches. Additionally, genetic algorithm analysis was carried out to rank the aptamers based on their binding affinity. The top hits of aptamers with good binding to BamA protein were synthesised to investigate their in vitro antibacterial activity. Among all aptamers, Apt31, which is known to bind to an antitumor, Daunomycin, exhibited the highest HADDOCK score and resulted in a significant (p < 0.05) reduction in P. aeruginosa growth. Apt31 also induced membrane disruption that resulted in DNA leakage. Hence, computational screening may result in the identification of aptamers that bind to the desired active site with high affinity.
Collapse
Affiliation(s)
- Rupany Selvam
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ian Han Yan Lim
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Chern Hong Lim
- School of Information Technology, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
28
|
Moosavi-Movahedi Z, Salehi N, Habibi-Rezaei M, Qassemi F, Karimi-Jafari MH. Intermediate-aided allostery mechanism for α-glucosidase by Xanthene-11v as an inhibitor using residue interaction network analysis. J Mol Graph Model 2023; 122:108495. [PMID: 37116337 DOI: 10.1016/j.jmgm.2023.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Exploring allosteric inhibition and the discovery of new inhibitor binding sites are important studies in protein regulation mechanisms and drug discovery. Structural and network-based analyses of trajectories resulting from molecular dynamics (MD) simulations have been developed to discover protein dynamics, landscape, functions, and allosteric regions. Here, an experimentally suggested non-competitive inhibitor, xanthene-11v, was considered to explore its allosteric inhibition mechanism in α-glucosidase MAL12. Comparative structural and network analyses were applied to eight 250 ns independent MD simulations, four of which were performed in the free state and four of which were performed in ligand-bound forms. Projected two-dimensional free energy landscapes (FEL) were constructed from the probabilistic distribution of conformations along the first two principal components. The post-simulation analyses of the coordinates, side-chain torsion angles, non-covalent interaction networks, network communities, and their centralities were performed on α-glucosidase conformations and the intermediate sub-states. Important communities of residues have been found that connect the allosteric site to the active site. Some of these residues like Thr307, Arg312, TYR344, ILE345, Phe357, Asp406, Val407, Asp408, and Leu436 are the key messengers in the transition pathway between allosteric and active sites. Evaluating the probability distribution of distances between gate residues including Val407 in one community and Phe158, and Pro65 in another community depicted the closure of this gate due to the inhibitor binding. Six macro states of protein were deduced from the topology of FEL and analysis of conformational preference of free and ligand-bound systems to these macro states shows a combination of lock-and-key, conformational selection, and induced fit mechanisms are effective in ligand binding. All these results reveal structural states, allosteric mechanisms, and key players in the inhibition pathway of α-glucosidase by xanthene-11v.
Collapse
Affiliation(s)
- Zahra Moosavi-Movahedi
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | | | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
29
|
Verkhivker G, Alshahrani M, Gupta G. Coarse-Grained Molecular Simulations and Ensemble-Based Mutational Profiling of Protein Stability in the Different Functional Forms of the SARS-CoV-2 Spike Trimers: Balancing Stability and Adaptability in BA.1, BA.2 and BA.2.75 Variants. Int J Mol Sci 2023; 24:ijms24076642. [PMID: 37047615 PMCID: PMC10094791 DOI: 10.3390/ijms24076642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable among these variants. A systematic mutational scanning of the inter-protomer interfaces in the spike trimers revealed a group of conserved structural stability hotspots that play a key role in the modulation of functional dynamics and are also involved in the inter-protomer couplings through local contacts and interaction networks with the Omicron mutational sites. The results of mutational scanning provided evidence that BA.2.75 trimers are more stable than BA.2 and comparable in stability to the BA.1 variant. Using dynamic network modeling of the S Omicron BA.1, BA.2, and BA.2.75 trimers, we showed that the key network mediators of allosteric interactions are associated with the major stability hotspots that are interconnected along potential communication pathways. The network analysis of the BA.1, BA.2, and BA.2.75 trimers suggested that the increased thermodynamic stability of the BA.2.75 variant may be linked with the organization and modularity of the residue interaction network that allows for allosteric communications between structural stability hotspots and Omicron mutational sites. This study provided a plausible rationale for a mechanism in which Omicron mutations may evolve by targeting vulnerable sites of conformational adaptability to elicit immune escape while maintaining their control on balancing protein stability and functional fitness through robust allosteric communications with the stability hotspots.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
30
|
Pereira GRC, Abrahim-Vieira BDA, de Mesquita JF. In Silico Analyses of a Promising Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis Targeting Superoxide Dismutase I Protein. Pharmaceutics 2023; 15:pharmaceutics15041095. [PMID: 37111580 PMCID: PMC10143751 DOI: 10.3390/pharmaceutics15041095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V (NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics (MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts within a close distance during the simulations. This analysis also suggests that the mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising strategy to treat ALS based on an unprecedented mechanism, including for patients with these frequent mutations.
Collapse
|
31
|
Misuan N, Mohamad S, Tubiana T, Yap MKK. Ensemble-based molecular docking and spectrofluorometric analysis of interaction between cytotoxin and tumor necrosis factor receptor 1. J Biomol Struct Dyn 2023; 41:15339-15353. [PMID: 36927291 DOI: 10.1080/07391102.2023.2188945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cytotoxin (CTX) is a three-finger toxin presents predominantly in cobra venom. The functional site of the toxin is located at its three hydrophobic loop tips. Its actual mechanism of cytotoxicity remains inconclusive as few conflicting hypotheses have been proposed in addition to direct cytolytic effects. The present work investigated the interaction between CTX and death receptor families via ensemble-based molecular docking and fluorescence titration analysis. Multiple sequence alignments of different CTX isoforms obtained a conserved CTX sequence. The three-dimensional structure of the conserved CTX was later determined using homology modelling, and its quality was validated. Ensemble-based molecular docking of CTX was performed with different death receptors, such as Fas-ligand and tumor necrosis factor receptor families. Our results showed that tumor necrosis factor receptor 1 (TNFR1) was the best receptor interacting with CTX attributed to the interaction of all three functional loops and evinced with low HADDOCK, Z-score and RMSD value. The interaction between CTX and TNFR1 was also supported by a concentration-dependent reduction of fluorescence intensity with increasing binding affinity. The possible intermolecular interactions between CTX and TNFR1 were Van der Waals forces and hydrogen bonding. Our findings suggest a possibility that CTX triggers apoptosis cell death through non-covalent interactions with TNFR1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nurhamimah Misuan
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Saharuddin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, Kuala Lumpur, Malaysia
| | - Thibault Tubiana
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Bandar Sunway, Malaysia
| |
Collapse
|
32
|
Sheppard SE, Bryant L, Wickramasekara RN, Vaccaro C, Robertson B, Hallgren J, Hulen J, Watson CJ, Faundes V, Duffourd Y, Lee P, Simon MC, de la Cruz X, Padilla N, Flores-Mendez M, Akizu N, Smiler J, Pellegrino Da Silva R, Li D, March M, Diaz-Rosado A, Peixoto de Barcelos I, Choa ZX, Lim CY, Dubourg C, Journel H, Demurger F, Mulhern M, Akman C, Lippa N, Andrews M, Baldridge D, Constantino J, van Haeringen A, Snoeck-Streef I, Chow P, Hing A, Graham JM, Au M, Faivre L, Shen W, Mao R, Palumbos J, Viskochil D, Gahl W, Tifft C, Macnamara E, Hauser N, Miller R, Maffeo J, Afenjar A, Doummar D, Keren B, Arn P, Macklin-Mantia S, Meerschaut I, Callewaert B, Reis A, Zweier C, Brewer C, Saggar A, Smeland MF, Kumar A, Elmslie F, Deshpande C, Nizon M, Cogne B, van Ierland Y, Wilke M, van Slegtenhorst M, Koudijs S, Chen JY, Dredge D, Pier D, Wortmann S, Kamsteeg EJ, Koch J, Haynes D, Pollack L, Titheradge H, Ranguin K, Denommé-Pichon AS, Weber S, Pérez de la Fuente R, Sánchez del Pozo J, Lezana Rosales JM, Joset P, Steindl K, Rauch A, Mei D, Mari F, Guerrini R, Lespinasse J, Tran Mau-Them F, Philippe C, Dauriat B, Raymond L, Moutton S, Cueto-González AM, Tan TY, Mignot C, Grotto S, Renaldo F, Drivas TG, Hennessy L, Raper A, Parenti I, Kaiser FJ, Kuechler A, Busk ØL, Islam L, Siedlik JA, Henderson LB, Juusola J, Person R, Schnur RE, Vitobello A, Banka S, Bhoj EJ, Stessman HA. Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice. SCIENCE ADVANCES 2023; 9:eade1463. [PMID: 36897941 PMCID: PMC10005179 DOI: 10.1126/sciadv.ade1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.
Collapse
Affiliation(s)
- Sarah E. Sheppard
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Laura Bryant
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rochelle N. Wickramasekara
- Stessman Laboratory, Department of Pharmacology and Neuroscience, Creighton University Medical School, Omaha, NE, USA
- Molecular Diagnostic Laboratory, Boys Town National Research Hospital, Omaha, NE, USA
| | - Courtney Vaccaro
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brynn Robertson
- Stessman Laboratory, Department of Pharmacology and Neuroscience, Creighton University Medical School, Omaha, NE, USA
| | - Jodi Hallgren
- Stessman Laboratory, Department of Pharmacology and Neuroscience, Creighton University Medical School, Omaha, NE, USA
| | - Jason Hulen
- Stessman Laboratory, Department of Pharmacology and Neuroscience, Creighton University Medical School, Omaha, NE, USA
| | - Cynthia J. Watson
- Stessman Laboratory, Department of Pharmacology and Neuroscience, Creighton University Medical School, Omaha, NE, USA
| | - Victor Faundes
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Yannis Duffourd
- Unité Fonctionnelle d’Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Pearl Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xavier de la Cruz
- Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Natália Padilla
- Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco Flores-Mendez
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Smiler
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- 10x Genomics, Pleasanton, CA, USA
| | | | - Dong Li
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael March
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abdias Diaz-Rosado
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Zhao Xiang Choa
- Epithelial Epigenetics and Development Laboratory, A*STAR Skin Research Labs, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chin Yan Lim
- Epithelial Epigenetics and Development Laboratory, A*STAR Skin Research Labs, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christèle Dubourg
- Laboratoire de Génétique Moléculaire et Génomique, Centre Hospitalier Universitaire de Rennes, Rennes 35033, France
| | - Hubert Journel
- Service de Génétique Médicale, Hopital Chubert, Vannes, Bretagne, France
| | - Florence Demurger
- Department of Clinical Genetics, Service de Génétique Clinique, Centre de Référence Maladies Rares Centre Labellisé Anomalies du Développement-Ouest, Centre Hospitalier Universitaire de Rennes, Rennes 35033, France
| | - Maureen Mulhern
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Cigdem Akman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Marisa Andrews
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Dustin Baldridge
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - John Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Irina Snoeck-Streef
- Department of Child Neurology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Penny Chow
- Department of Pediatrics, Division of Craniofacial Medicine, University of Washington, Seattle, WA, USA
| | - Anne Hing
- Department of Pediatrics, Division of Craniofacial Medicine, University of Washington, Seattle, WA, USA
| | - John M. Graham
- Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA
| | - Margaret Au
- Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM–Université de Bourgogne UMR1231 GAD “Génétique des Anomalies du Développement,” FHU-TRANSLAD, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, Bourgogne, France
| | - Wei Shen
- University of Utah, Salt Lake City, UT, USA
- Mayo Clinic, Rochester, MN, USA
| | - Rong Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | - William Gahl
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia Tifft
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Macnamara
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Natalie Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Rebecca Miller
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Jessica Maffeo
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Alexandra Afenjar
- AP-HP, Sorbonne Université, Département de neuropediatrie, Hospital Armand Trousseau, Paris, France
| | - Diane Doummar
- AP-HP, Sorbonne Université, Département de neuropediatrie, Hospital Armand Trousseau, Paris, France
| | - Boris Keren
- Genetic Department, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Pamela Arn
- Department of Pediatrics, Nemours Children’s Specialty Care, Jacksonville, FL, USA
| | | | - Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Carole Brewer
- Clinical Genetics Department, Royal Devon and Exeter Hospital (Heavitree), Exeter EX1 2ED, UK
| | - Anand Saggar
- Clinical Genetics Department, St George’s Hospital, St George’s Healthcare NHS Trust, London SW17 0QT, UK
| | - Marie F. Smeland
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
- Department of Pediatric Rehabilitation, University Hospital of North Norway, Norway
| | - Ajith Kumar
- Northeast Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Frances Elmslie
- South West Thames Centre for Genomics, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Charu Deshpande
- Department of Medical Genetics, Guy’s Hospital, London SE1 9RT, UK
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
| | - Benjamin Cogne
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes CEDEX 1, France
- Nantes Université, CNRS, INSERM, L’institut du thorax, F-44000 Nantes, France
| | - Yvette van Ierland
- Department of Clinical Genetics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Suzanne Koudijs
- Department of Neurology, Erasmus University Medical Center–Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jin Yun Chen
- Neurology Department, Massachusetts General Hospital, Boston, MA, USA
| | - David Dredge
- University Children’s Hospital Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Danielle Pier
- Neurology Department, Massachusetts General Hospital, Boston, MA, USA
| | - Saskia Wortmann
- University Children’s Hospital Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
- Amalia Children’s Hospital, RadboudUMC Nijmegen, Nijmegen, Netherlands
| | - Erik-Jan Kamsteeg
- University Children’s Hospital Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes Koch
- University Children’s Hospital Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children–Orlando Health, Orlando, FL, USA
| | - Lynda Pollack
- Division of Genetics, Arnold Palmer Hospital for Children–Orlando Health, Orlando, FL, USA
| | - Hannah Titheradge
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s NHS Trust, Birmingham B15 2TG, UK
| | - Kara Ranguin
- Department of Genetics, Reference Centre for Rare Diseases and Developmental Anomalies, Caen Hospital, Caen, France
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle d’Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UFR Des Sciences de Santé, INSERM–Université de Bourgogne UMR1231 GAD “Génétique des Anomalies du Développement,” FHU-TRANSLAD, Dijon, France
| | - Sacha Weber
- Department of Genetics, Reference Centre for Rare Diseases and Developmental Anomalies, Caen Hospital, Caen, France
| | | | - Jaime Sánchez del Pozo
- UDISGEN (Unidad de Dismorfología y Genética) 12 de Octubre University Hospital, Madrid, Spain
| | | | - Pascal Joset
- University of Zurich, Institute of Medical Genetics, 8952 Schlieren-Zurich, Switzerland
| | - Katharina Steindl
- University of Zurich, Institute of Medical Genetics, 8952 Schlieren-Zurich, Switzerland
| | - Anita Rauch
- University of Zurich, Institute of Medical Genetics, 8952 Schlieren-Zurich, Switzerland
- University of Zurich, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich, URPP Adaptive Brain Circuits in Development and Learning (AdaBD), Zurich, Switzerland
- University of Zurich Research Priority Program (URPP) AdaBD: Adaptive Brain Circuits in Development and Learning, Zurich 8006, Switzerland
- University of Zurich Research Priority Program (URPP) ITINERARE: Innovative Therapies in Rare Diseases, Zurich 8006, Switzerland
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Francesco Mari
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, Member of ERN Epicare, University of Florence, Florence, Italy
| | - James Lespinasse
- UF de Génétique Chromosomique, Centre Hospitalier de Chambéry, Hôtel-dieu, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle d’Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UFR Des Sciences de Santé, INSERM–Université de Bourgogne UMR1231 GAD “Génétique des Anomalies du Développement,” FHU-TRANSLAD, Dijon, France
| | - Christophe Philippe
- Unité Fonctionnelle d’Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UFR Des Sciences de Santé, INSERM–Université de Bourgogne UMR1231 GAD “Génétique des Anomalies du Développement,” FHU-TRANSLAD, Dijon, France
| | - Benjamin Dauriat
- Service de cytogénétique et génétique médicale, Centre Hospitalier Universitaire de Limoges, France
| | - Laure Raymond
- Service de génétique, Laboratoire Eurofins Biomnis, Lyon, France
| | | | - Anna M. Cueto-González
- Hospital Vall d'Hebron, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Mignot
- AP-HP, Sorbonne Université, Département de Génétique, Paris, France
| | - Sarah Grotto
- AP-HP, Sorbonne Université, Département de Génétique, Paris, France
| | - Florence Renaldo
- AP-HP, Sorbonne Université, Département de neuropediatrie, Centre de référence neurogénétique, Hôpital Armand Trousseau, Paris, France
| | - Theodore G. Drivas
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Hennessy
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Raper
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ilaria Parenti
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Frank J. Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsklinikum Essen, Essen, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Øyvind L. Busk
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Lily Islam
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s NHS Trust, Birmingham B15 2TG, UK
| | - Jacob A. Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE, USA
| | | | | | | | - Rhonda E. Schnur
- GeneDx, Gaithersburg, MD, USA
- Department of Pediatrics, Division of Genetics Cooper Medical School of Rowan University Cooper University Health Care 3, Cooper Plaza, Camden, NJ, USA
| | - Antonio Vitobello
- Unité Fonctionnelle d’Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UFR Des Sciences de Santé, INSERM–Université de Bourgogne UMR1231 GAD “Génétique des Anomalies du Développement,” FHU-TRANSLAD, Dijon, France
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth J. Bhoj
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Holly A. F. Stessman
- Stessman Laboratory, Department of Pharmacology and Neuroscience, Creighton University Medical School, Omaha, NE, USA
| |
Collapse
|
33
|
Yang JF, Wang F, Wang MY, Wang D, Zhou ZS, Hao GF, Li QX, Yang GF. CIPDB: A biological structure databank for studying cation and π interactions. Drug Discov Today 2023; 28:103546. [PMID: 36871844 DOI: 10.1016/j.drudis.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
As major forces for modulating protein folding and molecular recognition, cation and π interactions are extensively identified in protein structures. They are even more competitive than hydrogen bonds in molecular recognition, thus, are vital in numerous biological processes. In this review, we introduce the methods for the identification and quantification of cation and π interactions, provide insights into the characteristics of cation and π interactions in the natural state, and reveal their biological function together with our developed database (Cation and π Interaction in Protein Data Bank; CIPDB; http://chemyang.ccnu.edu.cn/ccb/database/CIPDB). This review lays the foundation for the in-depth study of cation and π interactions and will guide the use of molecular design for drug discovery.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Zhong-Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| |
Collapse
|
34
|
Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog 2023; 19:e1011097. [PMID: 36867659 PMCID: PMC10016701 DOI: 10.1371/journal.ppat.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/15/2023] [Accepted: 01/03/2023] [Indexed: 03/04/2023] Open
Abstract
HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.
Collapse
Affiliation(s)
- Grant Eilers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Audrey Allen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hemma Murali
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
35
|
Mondal A, Hazra A, Chattopadhyay MK, Kundu D, Tarai SK, Biswas P, Bhattacharjee A, Mandal S, Banerjee P. Explicating the recognition phenomenon of hazardous nitro-aromatic compound from contaminated environmental and cellular matrices by rationally designed pyridine-functionalized molecular probes. Heliyon 2023; 9:e13620. [PMID: 36873140 PMCID: PMC9975245 DOI: 10.1016/j.heliyon.2023.e13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
In the quest of recognizing hazardous nitro-aromatic compounds in water, two pyridine-functionalized Schiff-base chemosensors, DMP ((E)-N-(3,4-dimethoxybenzylidene)(pyridin-2-yl)methanamine)) and MP (4-((E)-((pyridin-2-yl)methylimino)methyl)-2-ethoxyphenol) have been synthesized to detect mutagenic 2,4,6-Trinitrophenol (TNP) in soil, water as well as cellular matrices by producing turn-off emission responses as a combined consequence of PET and RET processes. Several experimental analyses including ESI-MS, FT-IR, photoluminescence, 1H NMR titration, and the theoretical calculations ascertained the formation and sensing efficacies of the chemosensors. The analytical substantiations revealed that structural variation of the chemosensors played a significant role in improving the sensing efficiency, which would certainly be worthwhile in developing small molecular TNP sensors. The present work depicted that the electron density within the MP framework was more than that of DMP due to the intentional incorporation of -OEt and -OH groups. As a result, MP represented a strong interaction mode towards the electron-deficient TNP with a detection limit of 39 μM.
Collapse
Affiliation(s)
- Amita Mondal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Department of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Abhijit Hazra
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | | | - Debojyoti Kundu
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Swarup Kumar Tarai
- Department of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, M. G. Avenue, Durgapur 713209, India
| | - Sukdeb Mandal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
36
|
Smith IN, Dawson JE, Eng C. Comparative Protein Structural Network Analysis Reveals C-Terminal Tail Phosphorylation Structural Communication Fingerprint in PTEN-Associated Mutations in Autism and Cancer. J Phys Chem B 2023; 127:634-647. [PMID: 36626331 PMCID: PMC9885960 DOI: 10.1021/acs.jpcb.2c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Indexed: 01/11/2023]
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tightly regulated dual-specificity phosphatase and key regulator of the PI3K/AKT/mTOR signaling pathway. PTEN phosphorylation at its carboxy-terminal tail (CTT) serine/threonine cluster negatively regulates its tumor suppressor function by inducing a stable, closed, and inactive conformation. Germline PTEN mutations predispose individuals to PTEN hamartoma tumor syndrome (PHTS), a rare inherited cancer syndrome and, intriguingly, one of the most common causes of autism spectrum disorder (ASD). However, the mechanistic details that govern phosphorylated CTT catalytic conformational dynamics in the context of PHTS-associated mutations are unknown. Here, we utilized a comparative protein structure network (PSN)-based approach to investigate PTEN CTT phosphorylation-induced conformational dynamics specific to PTEN-ASD compared to PTEN-cancer phenotypes. Results from our study show differences in structural flexibility, inter-residue contacts, and allosteric communication patterns mediated by CTT phosphorylation, differentiating PTEN-ASD and PTEN-cancer phenotypes. Further, we identified perturbations among global metapaths and community network connections within the active site and inter-domain regions, indicating the significance of these regions in transmitting information across the PSN. Together, our studies provide a mechanistic underpinning of allosteric regulation through the coupled interplay of CTT phosphorylation conformational dynamics in PTEN-ASD and PTEN-cancer mutations. Importantly, the detailed atomistic interactions and structural consequences of PTEN variants reveal potential allosteric druggable target sites as a viable and currently unexplored treatment approach for individuals with different PHTS-associated mutations.
Collapse
Affiliation(s)
- Iris N. Smith
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
| | - Jennifer E. Dawson
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
| | - Charis Eng
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio44195, United
States
- Case
Comprehensive Cancer Center, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio44106, United States
- Taussig
Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio44195, United States
- Department
of Genetics and Genome Sciences, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio44106, United States
| |
Collapse
|
37
|
Mettai M, Daoud I, Mesli F, Kenouche S, Melkemi N, Kherachi R, Belkadi A. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson's disease with novel scaffold. In Silico Pharmacol 2023; 11:3. [PMID: 36687301 PMCID: PMC9852416 DOI: 10.1007/s40203-023-00139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Monoamine oxidase B and Adenosine A2A receptors are used as key targets for Parkinson's disease. Recently, hMAO-B and hA2AR Dual-targets inhibitory potential of a novel series of Phenylxanthine derivatives has been established in experimental findings. Hence, the current study examines the interactions between 38 compounds of this series with hMAO-B and hA2AR targets using different molecular modeling techniques to investigate the binding mode and stability of the formed complexes. A molecular docking study revealed that the compounds L24 ((E)-3-(3-Chlorophenyl)-N-(4-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl) phenyl) acrylamide and L32 ((E)-3-(3-Chlorophenyl)-N-(3-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)phenyl)acrylamide) had a high affinity (S-score: -10.160 and -7.344 kcal/mol) with the pocket of hMAO-B and hA2AR targets respectively, and the stability of the studied complexes was confirmed during MD simulations. Also, the MEP maps of compounds 24 and 32 were used to identify the nucleophilic and electrophilic attack regions. Moreover, the bioisosteric replacement approach was successfully applied to design two new analogs of each compound with similar biological activities and low energy scores. Furthermore, ADME-T and Drug-likeness results revealed the promising pharmacokinetic properties and oral bioavailability of these compounds. Thus, compounds L24, L32, and their analogs can undergo further analysis and optimization in order to design new lead compounds with higher efficacy toward Parkinson's disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00139-3.
Collapse
Affiliation(s)
- Merzaka Mettai
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ismail Daoud
- Department of Matter Sciences, University Mohamed Khider, BP 145 RP, 07000 Biskra, Algeria
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Fouzia Mesli
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Samir Kenouche
- Group of Modeling of Chemical Systems using Quantum Calculations, Applied Chemistry Laboratory, University of Mohamed Khider, 07000 Biskra, Algeria
| | - Nadjib Melkemi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Rania Kherachi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ahlem Belkadi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| |
Collapse
|
38
|
Forlano N, Bucci R, Contini A, Venanzi M, Placidi E, Gelmi ML, Lettieri R, Gatto E. Non-Conventional Peptide Self-Assembly into a Conductive Supramolecular Rope. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020333. [PMID: 36678086 PMCID: PMC9867255 DOI: 10.3390/nano13020333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Structures composed of alternating α and β amino acids can give rise to peculiar secondary structural motifs, which could self-assemble into complex structures of controlled geometries. This work describes the self-assembly properties of an α,β-peptide, containing three units of syn H2-(2-F-Phe)-h-PheGly-OH, able to self-organize on surfaces into a fascinating supramolecular rope. This material was characterized by AFM, electronic conduction and fluorescence measurements. Molecular dynamics simulations showed that this hexapeptide can self-assemble into an antiparallel β-sheet layer, stabilized by intermolecular H-bonds, which, in turn, can self-assemble into many side-by-side layers, due to π-π interactions. As a matter of fact, we demonstrated that in this system, the presence of aromatic residues at the intramolecular interface promoted by the alternation of α,β-amino-acids in the primary sequence, endorses the formation of a super-secondary structure where the aromatic groups are close to each other, conferring to the system good electron conduction properties. This work demonstrates the capability and future potential of designing and fabricating distinctive nanostructures and efficient bioelectronic interfaces based on an α,β-peptide, by controlling structure and interaction processes beyond those obtained with α- or β-peptides alone.
Collapse
Affiliation(s)
- Nicola Forlano
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Raffaella Lettieri
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Emanuela Gatto
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
39
|
Fiore M, Mosconi M, Bonì F, Parodi A, Salis A, Tasso B, Mastrangelo E, Millo E, Cossu F. New Class of Benzodiazepinone Derivatives as Pro-Death Agents Targeting BIR Domains in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010446. [PMID: 36615638 PMCID: PMC9823934 DOI: 10.3390/molecules28010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.
Collapse
Affiliation(s)
- Michele Fiore
- National Research Council (IBF-CNR) Genoa Unit, Institute of Biophysics, Via De Marini 6, 16149 Genova, Italy
| | - Michele Mosconi
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Francesco Bonì
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Eloise Mastrangelo
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
- Correspondence: (E.M.); (F.C.); Tel.: +39-010-335-3032 (E.M.); +39-0250314890 (F.C.)
| | - Federica Cossu
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
- Correspondence: (E.M.); (F.C.); Tel.: +39-010-335-3032 (E.M.); +39-0250314890 (F.C.)
| |
Collapse
|
40
|
Silva-Becerril A, Quintero-Martínez A, Hernández-Santoyo A. Structural and functional analysis of a tandem repeat galacturonic acid-binding lectin from the sea hare Aplysia californica. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108513. [PMID: 36584757 DOI: 10.1016/j.fsi.2022.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
A d-galacturonic acid-specific lectin, named AcL, was purified from the sea hare Aplysia californica by galactose-agarose affinity chromatography. AcL has a molecular mass of 27.5 kDa determined by MALDI-TOF mass spectrometry. This lectin shows a good affinity for d-galacturonic acid and a lower affinity for galactosides: raffinose, melibiose, α and β-lactose, and d-galactose. We determined the amino acid sequence of AcL by trypsin digestion and subsequent peptide analysis by mass spectrometry, resulting in a 238 amino acid protein with a theoretical molecular mass of 26.4 kDa. The difference between the theoretical and experimental values can be attributed to post-translational modifications. Thiol-disulfide quantification discerned five disulfide bonds and three free cysteines. The structure of Acl is mainly comprised of beta sheets, determined by circular dichroism, and predicted with AlphaFold. Theoretical models depict three nearly identical tandem domains consisting of two beta sheets each. From docking analysis, we identified AcL glycan-binding sites as multiple conserved motifs in each domain. Furthermore, phylogenetic analysis based on its structure and sequence showed that AcL and its closest homologues (GalULs) form a clear monophyletic group, distinct from other glycan-binding proteins with a jelly-roll fold: lectins of types F and H. GalULs possess four conserved sequence regions that distinguish them and are either ligand-binding motifs or stabilizing network hubs. We suggest that this new family should be referred to as GalUL or D-type, following the traditional naming of lectins; D standing for depilans, the epithet for the species (Aplysia depilans) from which a lectin of this family was first isolated and described.
Collapse
Affiliation(s)
- Areli Silva-Becerril
- Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, Mexico
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, Mexico
| | | |
Collapse
|
41
|
Jebamani P, Sriramulu DK, Lee SG. Residue interaction network and molecular dynamics simulation study on the binding of S239D/I332E Fc variant with enhanced affinity to FcγRIIIa receptor. J Mol Graph Model 2023; 118:108327. [PMID: 36155127 DOI: 10.1016/j.jmgm.2022.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Engineering of Fc has been adapted as an efficient method for enhanced or reduced affinity towards Fc receptors in the development of therapeutic antibodies. S239D/I332E mutation of Fc induces approximately two logs greater affinity to the FcγRIIIa receptor and has been extensively employed in various Fc engineering studies. It is known that the mutation gives rise to the formation of salt bridges between the mutated residues of Fc and FcγRIIIa, but the overall effect of the mutation in the binding interface of the Fc-FcγRIIIa complex is still unclear. In this study, the molecular interactions in the binding interface of mutant Fc and FcγRIIIa were analyzed and compared with those of wild-type Fc binding through residue interaction network (RIN) analysis and molecular dynamics (MD) simulation. RIN analysis identified specific molecular interactions and Hub residues in the interfaces, and their numbers were increased by introducing the mutation, with maintaining most of the molecular interactions in the wild-type complex. MD simulation study revealed that the numbers of stable electrostatic interactions and stable Hub residues in the mutant complex were higher than those in the wild-type complex. The introduced mutations were shown to form further charge-charge attractive interactions in addition to the identified salt bridges without generating any repulsive interactions. These results are expected to provide further structural insight into Fc variants' design based on the S239D/I332E mutation.
Collapse
Affiliation(s)
- Petrina Jebamani
- Department of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | | | - Sun-Gu Lee
- Department of Chemical Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
42
|
Nagarajan H, Vetrivel U. Deciphering the structural and functional impact of missense mutations in Egr1-DNA interacting interface: an integrative computational approach. J Biomol Struct Dyn 2022; 40:11758-11770. [PMID: 34402752 DOI: 10.1080/07391102.2021.1965030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Early growth response-1 (Egr1) is a zinc-finger transcription factor that plays a critical role in controlling cell growth, proliferation, differentiation, angiogenesis, and apoptosis. Egr1 is induced by many growth factors, cytokines, and stress signals and is also known to be involved in several pathological conditions like cancer, neurological and ocular disorders. The DNA binding domain of Egr1 is a highly conserved Cys2His2 (C2H2) zinc finger (ZNF) domain which specifically binds to GC-rich consensus sequence GcG (G/T) GGGCG and activates transcription. As the C2H2 domain specifically recognizes its DNA target, the mutations spanning this region shall perturb DNA recognition and may hinder transcription of target genes. Therefore, in this study, the missense mutations occurring specifically at the DNA binding domain (DBD) of Egr1 were probed by computational approaches involving in silico screening of pathogenic and functional mutants coupled with extensive molecular dynamics simulations, to determine the mutants that affect its structural stability and interactions with DNA. From the pathogenicity analysis of 38 missense mutations spanning Egr1-DBD, 17 were predicted as pathogenic, and 7 amongst these were found to have functional impact on Egr1. On combined analysis of molecular dynamics simulation, Residue interaction analysis and Egr1-DNA interaction analysis results, the mutants R371C and R375C showed least impact, whilst, H382R tend to increase the structural stability, whereas R360H, H390R, E393V, and H414Y conferred greater impact by altering the structural stability and DNA interactions. Hence, this study exposes the prospects of considering these 4 deleterious mutations for clinical significance, but needs further experimental validation.HighlightsEgr1's DNA binding domain is a highly conserved Cys2His2 (C2H2) zinc finger domain that specifically recognizes its DNA target.Mutations spanning in the DNA binding domain shall perturb DNA recognition and may hinder transcription.Among the missense mutations, mutants R360H, H390R, E393V, and H414Y were inferred to have a greater impact on Egr1 by altering the structural stability and DNA interactions.
Collapse
Affiliation(s)
- Hemavathy Nagarajan
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India.,National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Govt. of India), Belagavi, Karnataka, India
| |
Collapse
|
43
|
Shojapour M, Farahmand S. Point mutation consideration in CcO protein of the electron transfer chain by MD simulation. J Mol Graph Model 2022; 117:108309. [PMID: 36037732 DOI: 10.1016/j.jmgm.2022.108309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023]
Abstract
In Acidithiobacillus ferrooxidans, proteins such as CcO are present in the electron transport pathway. They cause ferrous iron oxidation to ferric leading to the electron release. CcO has two copper atoms (CuA, CuB). CuA plays an important role in electron transfer. According to previous studies, the conversion of histidine to methionine in a similar protein increased the redox potential and was directly related to the number of electrons received. Also, the binding of methionine 233 to CuA and CuB in the wild protein structure is the reason for the selection of the H230 M mutation in the CuA site. Then, wild-type and H230 M mutant were simulated in the presence of a bilayer membrane POPC using the gromacs version 5.1.4. The changes performed in the H230 M mutant were evaluated by MD simulations analyzes. CcO and CoxA proteins are the last two proteins in the chain and were docked by the PatchDock server. By H230 M mutation, the connection between CuA and M230 weakens. The M230 moves further away from CuA, resulting become more flexible. Therefore, the Methionine gets closer to E149 of the CoxA leading to the higher stability of the CcO/CoxA complex. The results of RMSF analysis at the mutation point showed a significant increase. This indicates more flexibility in the active site. And leads to an increase in E0 in the mutation point, an increase in the rate of electron reception, and an improved bioleaching process.
Collapse
Affiliation(s)
- Mahnaz Shojapour
- Department of Biology, Payame Noor University (PNU), P.O.Box, 19395-4697, Tehran, Iran.
| | - Somayeh Farahmand
- Department of Biology, Payame Noor University (PNU), P.O.Box, 19395-4697, Tehran, Iran.
| |
Collapse
|
44
|
Rocca MS, Minervini G, Vinanzi C, Bottacin A, Lia F, Foresta C, Pennuto M, Ferlin A. Mutational screening of androgen receptor gene in 8224 men of infertile couples. J Clin Endocrinol Metab 2022; 108:1181-1191. [PMID: 36394509 DOI: 10.1210/clinem/dgac671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations in Androgen receptor (AR) gene might be associated with infertility mainly because they cause various degree of androgen insensitivity. OBJECTIVE The aim of the study was to evaluate the frequency and type of AR variants in a large cohort of infertile males. PATIENTS AND SETTING 8224 males of Italian idiopathic infertile couples referred University Hospital of Padova. MAIN OUTCOME MEASURES Mutational screening of AR, computational and functional analyses. RESULTS We found 131 patients (1.6%) harboring 45 variants in AR gene, of which 18 were novel missense AR variants. Patients with AR gene variants had lower sperm count (p = 0.048), higher testosterone concentration (p < 0.0001) and higher androgen sensitivity index (ASI) [LH x testosterone (T), p < 0.001] compared to patients without variants. Statistical analyses found T ≥ 15.38 nmol/l and ASI ≥180 IU × nmol/l2 as threshold values to discriminate with good accuracy patients with AR variants. Patients with oligozoospermia and T ≥ 15.38 nmol/l have a 9-fold increased risk of harboring mutations compared to patients with normal sperm count and T < 15.38 nmol/l (OR 9.29, 95% CI 5.07-17.02). Using computational and functional approaches, we identified two novel variants, L595P and L791I, as potentially pathogenic. CONCLUSION This is the largest study screening AR gene variants in men of idiopathic infertile couples. We found that the prevalence of variants increased to 3.4% in oligozoospermic subjects with T ≥ 15.38 nmol/l. Conversely, more than 80% of men with AR gene variants had low sperm count and high T levels. Based on our findings, we suggest AR sequencing as a routine genetic test in cases of idiopathic oligozoospermia with T ≥ 15.38 nmol/L.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | | | - Cinzia Vinanzi
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Alberto Bottacin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Federica Lia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, University of Padova, Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
45
|
Wang D, Cui F, Ren L, Tan X, Li Q, Li J, Li T. Enhancing the Inhibition Potential of AHL Acylase PF2571 against Food Spoilage by Remodeling Its Substrate Scope via a Computationally Driven Protein Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14510-14521. [PMID: 36331356 DOI: 10.1021/acs.jafc.2c05753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Heilongjiang, Harbin150076, China
| | - Xiqian Tan
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Qiuying Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Liaoning, Dalian116029, China
| |
Collapse
|
46
|
Valcárcel-Hernández V, Guillén-Yunta M, Bueno-Arribas M, Montero-Pedrazuela A, Grijota-Martínez C, Markossian S, García-Aldea Á, Flamant F, Bárez-López S, Guadaño-Ferraz A. A CRISPR/Cas9-engineered avatar mouse model of monocarboxylate transporter 8 deficiency displays distinct neurological alterations. Neurobiol Dis 2022; 174:105896. [DOI: 10.1016/j.nbd.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
47
|
Kumari J, Kumar V, Behl A, Kumar Sah R, Kumari G, Garg S, Gupta A, Nazar Mohomed Mohaideen. S, Shafi S, Pati S, Samby K, Burrows J, Mohandas N, Singh S. ‘Erythritol’, a safe natural sweetener exhibits multi-stage anti-malarial activity by permeating into Plasmodium falciparum through aquaglyceroporin channel. Biochem Pharmacol 2022; 205:115287. [DOI: 10.1016/j.bcp.2022.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
|
48
|
Petrizzelli F, Biagini T, Bianco SD, Liorni N, Napoli A, Castellana S, Mazza T. Connecting the dots: A practical evaluation of web-tools for describing protein dynamics as networks. FRONTIERS IN BIOINFORMATICS 2022; 2:1045368. [PMID: 36438625 PMCID: PMC9689706 DOI: 10.3389/fbinf.2022.1045368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Protein Structure Networks (PSNs) are a well-known mathematical model for estimation and analysis of the three-dimensional protein structure. Investigating the topological architecture of PSNs may help identify the crucial amino acid residues for protein stability and protein-protein interactions, as well as deduce any possible mutational effects. But because proteins go through conformational changes to give rise to essential biological functions, this has to be done dynamically over time. The most effective method to describe protein dynamics is molecular dynamics simulation, with the most popular software programs for manipulating simulations to infer interaction networks being RING, MD-TASK, and NAPS. Here, we compare the computational approaches used by these three tools-all of which are accessible as web servers-to understand the pathogenicity of missense mutations and talk about their potential applications as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Francesco Petrizzelli
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Biagini
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Salvatore Daniele Bianco
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Niccolò Liorni
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Napoli
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Tommaso Mazza,
| |
Collapse
|
49
|
Fagnen C, Giovannini J, Catto M, Voisin-Chiret AS, Sopkova-de Oliveira Santos J. On the Tracks of the Aggregation Mechanism of the PHF6 Peptide from Tau Protein: Molecular Dynamics, Energy, and Interaction Network Investigations. ACS Chem Neurosci 2022; 13:2874-2887. [PMID: 36153969 DOI: 10.1021/acschemneuro.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The formation of neurofibrillary tangles (NFTs), composed of tau protein aggregates, is a hallmark of some neurodegenerative diseases called tauopathies. NFTs are composed of paired helical filaments (PHFs) of tau protein with a dominant β-sheet secondary structuration. The NFT formation mechanism is not known yet. This study focuses on PHF6, a crucial hexapeptide responsible for tau aggregation. A 2 μs molecular dynamics simulation was launched to determine the keys of the PHF6 aggregation mechanism. Hydrogen bonding, van der Waals, and other non-covalent interactions as π-stacking were investigated. Parallel aggregation was slightly preferred due to its adaptability, but antiparallel aggregation remained widely present during the PHF6 aggregation. The analysis highlighted the leading role of hydrogen bonds identified at the atomic level for each aggregation process. The aggregation study emphasized the importance of Tyr310 during the β-sheets' complexation through π-stacking.
Collapse
Affiliation(s)
- Charline Fagnen
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France
| | - Johanna Giovannini
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France.,Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125Bari (I), Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125Bari (I), Italy
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France
| | - Jana Sopkova-de Oliveira Santos
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France
| |
Collapse
|
50
|
Wang Q, Chen C, Xu X, Shu C, Cao C, Wang Z, Fu Y, Xu L, Xu K, Xu J, Xia A, Wang B, Xu G, Zou X, Su R, Kang W, Xue Y, Mo R, Sun B, Wang S. APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201889. [PMID: 35975461 PMCID: PMC9534967 DOI: 10.1002/advs.202201889] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Indexed: 05/29/2023]
Abstract
Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Xiao Xu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Chuanjun Shu
- Department of BioinformaticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing210000China
| | - Changchang Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhangding Wang
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Yao Fu
- Department of PathologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Lei Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Kaiyue Xu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Jiawen Xu
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Anliang Xia
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Bo Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Guifang Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Xiaoping Zou
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Wei Kang
- Department of Anatomical and Cellular PathologyInstitute of Digestive DiseaseState Key Laboratory of Digestive DiseaseState Key Laboratory of Translational OncologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongSAR999077China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Ran Mo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Beicheng Sun
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Shouyu Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
- Center for Public Health ResearchMedical School of Nanjing UniversityNanjing210000China
| |
Collapse
|