1
|
Bray C, Balcells C, McNeish IA, Keun HC. The potential and challenges of targeting MTAP-negative cancers beyond synthetic lethality. Front Oncol 2023; 13:1264785. [PMID: 37795443 PMCID: PMC10546069 DOI: 10.3389/fonc.2023.1264785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.
Collapse
Affiliation(s)
- Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Cristina Balcells
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023; 15:nu15020373. [PMID: 36678244 PMCID: PMC9865409 DOI: 10.3390/nu15020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.
Collapse
|
3
|
Genetic Predisposition to Hepatocellular Carcinoma. Metabolites 2022; 13:metabo13010035. [PMID: 36676960 PMCID: PMC9864136 DOI: 10.3390/metabo13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Liver preneoplastic and neoplastic lesions of the genetically susceptible F344 and resistant BN rats cluster, respectively, with human HCC with better (HCCB) and poorer prognosis (HCCP); therefore, they represent a valid model to study the molecular alterations determining the genetic predisposition to HCC and the response to therapy. The ubiquitin-mediated proteolysis of ERK-inhibitor DUSP1, which characterizes HCC progression, favors the unrestrained ERK activity. DUSP1 represents a valuable prognostic marker, and ERK, CKS1, or SKP2 are potential therapeutic targets for human HCC. In DN (dysplastic nodule) and HCC of F344 rats and human HCCP, DUSP1 downregulation and ERK1/2 overexpression sustain SKP2-CKS1 activity through FOXM1, the expression of which is associated with a susceptible phenotype. SAM-methyl-transferase reactions and SAM/SAH ratio are regulated by GNMT. In addition, GNMT binds to CYP1A, PARP1, and NFKB and PREX2 gene promoters. MYBL2 upregulation deregulates cell cycle and induces the progression of premalignant and malignant liver. During HCC progression, the MYBL2 transcription factor positively correlates with cells proliferation and microvessel density, while it is negatively correlated to apoptosis. Hierarchical supervised analysis, regarding 6132 genes common to human and rat liver, showed a gene expression pattern common to normal liver of both strains and BN nodules, and a second pattern is observed in F344 nodules and HCC of both strains. Comparative genetics studies showed that DNs of BN rats cluster with human HCCB, while F344 DNs and HCCs cluster with HCCP.
Collapse
|
4
|
Yang PW, Jiao JY, Chen Z, Zhu XY, Cheng CS. Keep a watchful eye on methionine adenosyltransferases, novel therapeutic opportunities for hepatobiliary and pancreatic tumours. Biochim Biophys Acta Rev Cancer 2022; 1877:188793. [PMID: 36089205 DOI: 10.1016/j.bbcan.2022.188793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Methionine adenosyltransferases (MATs) synthesize S-adenosylmethionine (SAM) from methionine, which provides methyl groups for DNA, RNA, protein, and lipid methylation. MATs play a critical role in cellular processes, including growth, proliferation, and differentiation, and have been implicated in tumour development and progression. The expression of MATs is altered in hepatobiliary and pancreatic (HBP) cancers, which serves as a rare biomarker for early diagnosis and prognosis prediction of HBP cancers. Independent of SAM depletion in cells, MATs are often dysregulated at the transcriptional, post-transcriptional, and post-translational levels. Dysregulation of MATs is involved in carcinogenesis, chemotherapy resistance, T cell exhaustion, activation of tumour-associated macrophages, cancer stemness, and activation of tumourigenic pathways. Targeting MATs both directly and indirectly is a potential therapeutic strategy. This review summarizes the dysregulations of MATs, their proposed mechanism, diagnostic and prognostic roles, and potential therapeutic effects in context of HBP cancers.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Zhu
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Li C, Gui G, Zhang L, Qin A, Zhou C, Zha X. Overview of Methionine Adenosyltransferase 2A (MAT2A) as an Anticancer Target: Structure, Function, and Inhibitors. J Med Chem 2022; 65:9531-9547. [PMID: 35796517 DOI: 10.1021/acs.jmedchem.2c00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is a rate-limiting enzyme in the methionine cycle that primarily catalyzes the synthesis of S-adenosylmethionine (SAM) from methionine and adenosine triphosphate (ATP). MAT2A has been recognized as a therapeutic target for the treatment of cancers. Recently, a few MAT2A inhibitors have been reported, and three entered clinical trials to treat solid tumorsor lymphoma with MTAP loss. This review aims to summarize the current understanding of the roles of MAT2A in cancer and the discovery of MAT2A inhibitors. Furthermore, a perspective on the use of MAT2A inhibitors for the treatment of cancer is also discussed. We hope to provide guidance for future drug design and optimization via analysis of the binding modes of known MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
6
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
7
|
Chang YS, Lee YT, Yen JC, Chang YC, Lin LL, Chan WL, Chang WC, Lin SY, Chang JG. Long Noncoding RNA NTT Context-Dependently Regulates MYB by Interacting With Activated Complex in Hepatocellular Carcinoma Cells. Front Oncol 2021; 11:592045. [PMID: 34616668 PMCID: PMC8488295 DOI: 10.3389/fonc.2021.592045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background Long noncoding RNA (lncRNA) mediates the pathogenesis of various diseases, including cancer and cardiovascular, infectious, and metabolic diseases. This study examined the role of lncRNA NTT in the development and progression of cancer. Methods The expression of NTT was determined using tissues containing complementary DNA (cDNA) from patients with liver, lung, kidney, oral, and colon cancers. The expression of cis-acting genes adjacent to the NTT locus (CTGF, STX7, MYB, BCLAF1, IFNGR1, TNFAIP3, and HIVEP2) was also assessed. We used knockdown and chromatin immunoprecipitation (ChIP) assays to identify the cis-acting genes that interact with NTT. Results NTT was most significantly downregulated in hepatocellular carcinoma (HCC), while a higher NTT level correlated with a shorter survival time of patients with HCC. Multivariate analysis indicated NTT was not an independent predictor for overall survival. MYB was significantly upregulated, and its increased expression was associated with dismal survival in HCC patients, similar to the results for NTT. NTT knockdown significantly decreased cellular migration. ChIP of HCC cell lines revealed that NTT is regulated by the transcription factor ATF3 and binds to the MYB promoter via the activated complex. Additionally, when NTT was knocked down, the expression of MYB target genes such as Bcl-xL, cyclinD1, and VEGF was also downregulated. NTT could play a positive or negative regulator for MYB with a context-dependent manner in both HCC tissues and animal model. Conclusion Our study suggests that NTT plays a key role in HCC progression via MYB-regulated target genes and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Ting Lee
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Chen Yen
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Yuli C Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Li-Li Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Ling Chan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Wang X, Liang F, Fan H, Wang Z, Gou X, Ning Y. Proteinase-activated receptor 2 promotes 3T3-L1 preadipocyte differentiation through activation of the PI3K/AKT signalling pathway and MAT2A gene expression. Arch Physiol Biochem 2020; 126:468-475. [PMID: 32990471 DOI: 10.1080/13813455.2020.1817094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aimed to investigate the function and mechanisms of PAR2 in preadipocyte differentiation. This study found that the expression level of PAR2 was increased during 3T3-L1 mouse preadipocyte differentiation towards adipocytes. In addition, PAR2 overexpression significantly stimulated the expression of adipogenic proteins including ACC1, PPARγ, and SREBF1. Moreover, PAR2 overexpression increased the content of triglyceride (TG) in 3T3-L1 preadipocytes. Knockdown of PAR2 suppressed 3T3-L1 preadipocyte differentiation and adipogenesis. Mechanistically, PAR2 promoted 3T3-L1 preadipocyte differentiation and TG production through activation of the PI3K/AKT signalling pathway and MAT2A gene expression. The research sheds light on the adipogenic effects of PAR2 and its underlying mechanisms. Thus, PAR2 may have therapeutic significance for obesity.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Nursing Department, Xianyang Central Hospital, Xianyang, China
| | - Fang Liang
- CPC Committee, The First People's Hospital of Xianyang, Xianyang, China
| | - Hui Fan
- Nursing Department, Xianyang Central Hospital, Xianyang, China
| | - Zhijie Wang
- The First People's Hospital of Xianyang, Xianyang, China
| | - Xiaolin Gou
- Department of Endocrinology, The First People's Hospital of Xianyang, Xianyang, China
| | - Yu Ning
- Department of Endocrinology, The First People's Hospital of Xianyang, Xianyang, China
| |
Collapse
|
9
|
HP1s modulate the S-Adenosyl Methionine synthesis pathway in liver cancer cells. Biochem J 2020; 477:1033-1047. [PMID: 32091571 DOI: 10.1042/bcj20190621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer in adults. Among the altered pathways leading to HCC, an increasing role is attributed to abnormal epigenetic regulation. Members of the Heterochromatin Protein (HP1) 1 family are key players in chromatin organisation, acting as docking sites for chromatin modifiers. Here, we inactivated HP1α in HepG2 human liver carcinoma cells and showed that HP1α participated in cell proliferation. HP1α-depleted cells have a global decrease in DNA methylation and consequently a perturbed chromatin organisation, as exemplified by the reactivation of transcription at centromeric and pericentromeric regions, eventhough the protein levels of chromatin writers depositing methylation marks, such as EZH2, SETDB1, SUV39H1, G9A and DNMT3A remained unaltered. This decrease was attributed mainly to a low S-Adenosyl Methionine (SAM) level, a cofactor involved in methylation processes. Furthermore, we showed that this decrease was due to a modification in the Methionine adenosyl transferase 2A RNA (MAT2A) level, which modifies the ratio of MAT1A/MAT2A, two enzymes that generate SAM. Importantly, HP1α reintroduction into HP1α-depleted cells restored the MAT2A protein to its initial level. Finally, we demonstrated that this transcriptional deregulation of MAT2A in HP1α-depleted cells relied on a lack of recruitment of HP1β and HP1γ to MAT2A promoter where an improper non-CpG methylation site was promoted in the vicinity of the transcription start site where HP1β and HP1γ bound. Altogether, these results highlight an unanticipated link between HP1 and the SAM synthesis pathway, and emphasise emerging functions of HP1s as sensors of some aspects of liver cell metabolism.
Collapse
|
10
|
Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie 2020; 173:33-47. [DOI: 10.1016/j.biochi.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
11
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
12
|
Zhao C, Wu H, Chen P, Yi B, Ma Y, Deng K. MAT2A/2B promote porcine intramuscular preadipocyte proliferation through ERK signaling pathway. Anim Sci J 2019; 90:1278-1286. [PMID: 31293025 DOI: 10.1111/asj.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/12/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
Abstract
Intramuscular fat (IMF) content has been identified as a crucial factor of porcine meat quality. MAT2A and MAT2B coordinately catalyzes the synthesis of the major biological methyl donor S-adenosylmethionine (SAMe). However, the regulatory effect of MAT2A and MAT2B on porcine intramuscular preadipocyte proliferation has not been clarified. In this study, we investigated the effect of MAT2A and MAT2B and its potential mechanism during porcine intramuscular proliferation. We demonstrated that overexpression of MAT2A and MAT2B promoted the cell cycle progression of porcine preadipocyte by flow cytometry and EdU-labeling assay, as well as promoted the expression of cell cycle marker genes including Cyclin B, Cyclin D, and Cyclin-dependent kinase 4, but reduced the expression of cell cycle inhibitor P27. Consistently, knockdown of MAT2A and MAT2B inhibited cell cycle progression and downregulated the mRNA and protein levels of the above genes. Furthermore, overexpression of MAT2A and MAT2B activated the phosphorylation of ERK1/2. Moreover, the inhibitory effect of U0126 (a specific ERK1/2 inhibitor) on the ERK1/2 activities was partially recovered by overexpression of MAT2A and MAT2B in porcine intramuscular preadipocytes. Taken together, our findings suggested that MAT2A and MAT2B promote porcine preadipocyte proliferation by ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Cunzhen Zhao
- Laboratory of Animal Biotechnology and Breeding, College of Animal Science and Veterinary Medicine, Xinyang College of Agriculture and Forestry, Xinyang, Henan, China
| | - Haigang Wu
- Laboratory of Animal Biotechnology and Breeding, College of Animal Science and Veterinary Medicine, Xinyang College of Agriculture and Forestry, Xinyang, Henan, China
| | - Peirong Chen
- Laboratory of Animal Biotechnology and Breeding, College of Animal Science and Veterinary Medicine, Xinyang College of Agriculture and Forestry, Xinyang, Henan, China
| | - Benchi Yi
- Laboratory of Animal Biotechnology and Breeding, College of Animal Science and Veterinary Medicine, Xinyang College of Agriculture and Forestry, Xinyang, Henan, China
| | - Yun Ma
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Kaiwei Deng
- Laboratory of Animal Biotechnology and Breeding, College of Animal Science and Veterinary Medicine, Xinyang College of Agriculture and Forestry, Xinyang, Henan, China
| |
Collapse
|
13
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
14
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
15
|
Yang X, Wang HL, Liang HW, Liang L, Wen DY, Zhang R, Chen G, Wei DM. Clinical significance of microRNA-449a in hepatocellular carcinoma with microarray data mining together with initial bioinformatics analysis. Exp Ther Med 2018; 15:3247-3258. [PMID: 29545842 PMCID: PMC5841030 DOI: 10.3892/etm.2018.5836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has demonstrated that microRNA (miR)-449a expression is reduced in various types of tumors and that it serves as a tumor suppressor. However, the molecular mechanism of miR-449a in hepatocellular carcinoma (HCC) has not been thoroughly elucidated and is disputed. Therefore, the aim of the present work was to systematically review the current literature and to utilize the public Gene Expression Omnibus database to determine the role of miR-449a and its significance in HCC. A total of eight original papers and seven microarrays were included in the present study. Based on the evidence, miR-449a was reduced in HCC. miR-449a is likely involved in various signaling pathways and is targeted to multiple mRNA as part of its function in HCC. In addition, a preliminary bioinformatic analysis was conducted for miR-449a to investigate the novel potential pathways that miR-449a may participate in regarding HCC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Han-Lin Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Dong-Yue Wen
- Department of Ultrasonography, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
16
|
Bonassi S, Prinzi G, Lamonaca P, Russo P, Paximadas I, Rasoni G, Rossi R, Ruggi M, Malandrino S, Sánchez-Flores M, Valdiglesias V, Benassi B, Pacchierotti F, Villani P, Panatta M, Cordelli E. Clinical and genomic safety of treatment with Ginkgo biloba L. leaf extract (IDN 5933/Ginkgoselect®Plus) in elderly: a randomised placebo-controlled clinical trial [GiBiEx]. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:22. [PMID: 29357859 PMCID: PMC5778811 DOI: 10.1186/s12906-018-2080-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Numerous health benefits have been attributed to the Ginkgo biloba leaf extract (GBLE), one of the most extensively used phytopharmaceutical drugs worldwide. Recently, concerns of the safety of the extract have been raised after a report from US National Toxicology Program (NTP) claimed high doses of GBLE increased liver and thyroid cancer incidence in mice and rats. A safety study has been designed to assess, in a population of elderly residents in nursing homes, clinical and genomic risks associated to GBLE treatment. METHODS GiBiEx is a multicentre randomized clinical trial, placebo controlled, double blinded, which compared subjects randomized to twice-daily doses of either 120-mg of IDN 5933 (also known as Ginkgoselect®Plus) or to placebo for a 6-months period. IDN 5933 is extracted from dried leaves and contains 24.3% flavone glycosides and 6.1% of terpene lactones (2.9% bilobalide, 1.38% ginkgolide A, 0.66% ginkgolide B, 1.12% ginkgolide C) as determined by HPLC. The study was completed by 47 subjects, 20 in the placebo group and 27 in the treatment group. Clinical (adverse clinical effect and liver injury) and genomic (micronucleus frequency, comet assay, c-myc, p53, and ctnnb1 expression profile in lymphocytes) endpoints were assessed at the start and at the end of the study. RESULTS No adverse clinical effects or increase of liver injury markers were reported in the treatment group. The frequency of micronuclei [Mean Ratio (MR) = 1.01, 95% Confidence Intervals (95% CI) 0.86-1.18), and DNA breaks (comet assay) (MR = 0.91; 95% CI 0.58-1.43), did not differ in the two study groups. No significant difference was found in the expression profile of the three genes investigated. CONCLUSIONS None of the markers investigated revealed a higher risk in the treatment group, supporting the safety of IDN 5933 at doses prescribed and for duration of six months. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03004508 , December 20, 2016. Trial retrospectively registered.
Collapse
Affiliation(s)
- Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Palma Lamonaca
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Irene Paximadas
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Giuseppe Rasoni
- RSA San Raffaele Rocca di Papa, Via Ariccia, 16, 00040 Rocca di Papa (RM), Italy
| | - Raffaella Rossi
- RSA San Raffaele Sabaudia, via Borgo Nuovo, 04010 Sabaudia (LT), Italy
| | - Marzia Ruggi
- RSA San Raffaele Montecompatri, Via San Silvestro, 67, 00077 Montecompatri (RM), Italy
| | | | - Maria Sánchez-Flores
- DICOMOSA Group, Department of Psychology, Universidade de A Coruña, A Coruña, Spain
| | - Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Universidade de A Coruña, A Coruña, Spain
| | - Barbara Benassi
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Francesca Pacchierotti
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Paola Villani
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Martina Panatta
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Eugenia Cordelli
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| |
Collapse
|
17
|
Maldonado LY, Arsene D, Mato JM, Lu SC. Methionine adenosyltransferases in cancers: Mechanisms of dysregulation and implications for therapy. Exp Biol Med (Maywood) 2017; 243:107-117. [PMID: 29141455 DOI: 10.1177/1535370217740860] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methionine adenosyltransferase genes encode enzymes responsible for the biosynthesis of S-adenosylmethionine, the principal biological methyl donor and precursor of polyamines and glutathione. Mammalian cells express three genes - MAT1A, MAT2A, and MAT2B - with distinct expression and functions. MAT1A is mainly expressed in the liver and maintains the differentiated states of both hepatocytes and bile duct epithelial cells. Conversely, MAT2A and MAT2B are widely distributed in non-parenchymal cells of the liver and extrahepatic tissues. Increasing evidence suggests that methionine adenosyltransferases play significant roles in the development of cancers. Liver cancers, namely hepatocellular carcinoma and cholangiocarcinoma, involve dysregulation of all three methionine adenosyltransferase genes. MAT1A reduction is associated with increased oxidative stress, progenitor cell expansion, genomic instability, and other mechanisms implicated in tumorigenesis. MAT2A/MAT2B induction confers growth and survival advantage to cancerous cells, enhancing tumor migration. Highlighted examples from colon, gastric, breast, pancreas and prostate cancer studies further underscore methionine adenosyltransferase genes' role beyond the liver in cancer development. In this subset of extra-hepatic cancers, MAT2A and MAT2B are induced via different regulatory mechanisms. Understanding the role of methionine adenosyltransferase genes in tumorigenesis helps identify attributes of these genes that may serve as valuable targets for therapy. While S-adenosylmethionine, and its metabolite, methylthioadenosine, have been largely explored as therapeutic interventions, targets aimed at regulation of MAT gene expression and methionine adenosyltransferase protein-protein interactions are now surfacing as potential effective strategies for treatment and chemoprevention of cancers. Impact statement This review examines the role of methionine adenosyltransferases (MATs) in human cancer development, with a particular focus on liver cancers in which all three MAT genes are implicated in tumorigenesis. An overview of MAT genes, isoenzymes and their regulation provide context for understanding consequences of dysregulation. Highlighting examples from liver, colon, gastric, breast, pancreas and prostate cancers underscore the importance of understanding MAT's tumorigenic role in identifying future targets for cancer therapy.
Collapse
Affiliation(s)
- Lauren Y Maldonado
- 1 Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Diana Arsene
- 2 Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - José M Mato
- 3 CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Derio, Bizkaia 48160, Spain
| | - Shelly C Lu
- 4 Division of Digestive and Liver Diseases, 22494 Cedars-Sinai Medical Center , Cedars-Sinai Medical Center, LA, CA 90048, USA
| |
Collapse
|
18
|
MAT2A promotes porcine adipogenesis by mediating H3K27me3 at Wnt10b locus and repressing Wnt/β-catenin signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:132-142. [PMID: 29133280 DOI: 10.1016/j.bbalip.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 11/20/2022]
Abstract
Methionine adenosyltransferase (MAT) is a critical biological enzyme and that can catalyze L-met and ATP to form S-adenosylmethionine (SAM), which is acted as a biological methyl donor in transmethylation reactions involving histone methylation. However, the regulatory effect of methionine adenosyltransferase2A (MAT2A) and its associated methyltransferase activity on adipogenesis is still unclear. In this study, we investigate the effect of MAT2A on adipogenesis and its potential mechanism on histone methylation during porcine preadipocyte differentiation. We demonstrated that overexpression of MAT2A promoted lipid accumulation and significantly up-regulated the levels of adipogenic marker genes including PPARγ, SREBP-1c, and aP2. Whereas, knockdown of MAT2A or inhibition MATII enzyme activity inhibited lipid accumulation and down-regulated the expression of the above-mentioned genes. Mechanistic studies revealed that MAT2A interacted with histone-lysine N-methyltransferase Ezh2 and was recruited to Wnt10b promoter to repress its expression by promoting H3K27 methylation. Additionally, MAT2A interacted with MafK protein and was recruited to MARE element at Wnt10b gene. The catalytic activity of MAT2A as well as its interacting factor-MAT2B, was required for Wnt10b repression and supplying SAM for methyltransferases. Moreover, MAT2A suppressed Wnt10b expression and further inhibited Wnt/β-catenin signaling to promote adipogenesis.
Collapse
|
19
|
Abstract
Methionine adenosyltransferases (MATs) are essential for cell survival because they catalyze the biosynthesis of the biological methyl donor S-adenosylmethionine (SAMe) from methionine and adenosine triphosphate (ATP). Mammalian cells express two genes, MAT1A and MAT2A, which encode two MAT catalytic subunits, α1 and α2, respectively. The α1 subunit organizes into dimers (MATIII) or tetramers (MATI). The α2 subunit is found in the MATII isoform. A third gene MAT2B, encodes a regulatory subunit β, that regulates the activity of MATII by lowering the inhibition constant (Ki) for SAMe and the Michaelis constant (Km) for methionine. MAT1A expressed mainly in hepatocytes maintains the differentiated state of these cells whereas MAT2A and MAT2B are expressed in non-parenchymal cells of the liver (hepatic stellate cells [HSCs] and Kupffer cells) and extrahepatic tissues. A switch from the liver-specific MAT1A to MAT2A has been observed during conditions of active liver growth and de-differentiation. Liver injury, fibrosis, and cancer are associated with MAT1A silencing and MAT2A/MAT2B induction. Even though both MAT1A and MAT2A are involved in SAMe biosynthesis, they exhibit distinct molecular interactions in liver cells. This review provides an update on MAT genes and their roles in liver pathologies.
Collapse
Affiliation(s)
- Komal Ramani
- Corresponding authors: Division of Digestive and Liver
Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA,
USA (K.Ramani)
| | | |
Collapse
|
20
|
Wang J, Zhu ZH, Yang HB, Zhang Y, Zhao XN, Zhang M, Liu YB, Xu YY, Lei QY. Cullin 3 targets methionine adenosyltransferase IIα for ubiquitylation-mediated degradation and regulates colorectal cancer cell proliferation. FEBS J 2016; 283:2390-402. [PMID: 27213918 DOI: 10.1111/febs.13759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Cullin 3 (CUL3) serves as a scaffold protein and assembles a large number of ubiquitin ligase complexes. It is involved in multiple cellular processes and plays a potential role in tumor development and progression. In this study, we demonstrate that CUL3 targets methionine adenosyltransferase IIα (MAT IIα) and promotes its proteasomal degradation through the ubiquitylation-mediated pathway. MAT IIα is a key enzyme in methionine metabolism and is associated with uncontrolled cell proliferation in cancer. We presently found that CUL3 down-regulation could rescue folate deprivation-induced MAT IIα exhaustion and growth arrest in colorectal cancer (CRC) cells. Further results from human CRC samples display an inverse correlation between CUL3 and MAT IIα protein levels. Our observations reveal a novel role of CUL3 in regulating cell proliferation by controlling the stability of MAT IIα.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zi-Hua Zhu
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong-Bin Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ye Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang-Ning Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Bin Liu
- Institute of Biliary Tract Disease, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| | - Ying-Ying Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Wu R, Su Y, Wu H, Dai Y, Zhao M, Lu Q. Characters, functions and clinical perspectives of long non-coding RNAs. Mol Genet Genomics 2016; 291:1013-33. [PMID: 26885843 DOI: 10.1007/s00438-016-1179-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
It is well established that most of the human genome and those of other mammals and plants are transcribed into RNA without protein-coding capacity, which we define as non-coding RNA. From siRNA to microRNA, whose functions and features have been well characterized, non-coding RNAs have been a popular topic in life science research over the last decade. Long non-coding RNAs (lncRNAs), however, as a novel class of transcripts, are distinguished from these other small RNAs. Recent studies have revealed a diverse population of lncRNAs with different sizes and functions across different species. These populations are expressed dynamically and act as important regulators in a variety of biological processes, especially in gene expression. Nevertheless, the functions and mechanisms of most lncRNAs remain unclear. In this review, we present recent progress in the identification of lncRNAs, their functions and molecular mechanisms, their roles in human diseases, their potential diagnostic and therapeutic applications as well as newer technologies for identifying deregulated lncRNAs in disease tissues.
Collapse
Affiliation(s)
- Ruifang Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yuwen Su
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
22
|
O'Leary VB, Ovsepian SV, Carrascosa LG, Buske FA, Radulovic V, Niyazi M, Moertl S, Trau M, Atkinson MJ, Anastasov N. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation. Cell Rep 2016; 11:474-85. [PMID: 25900080 DOI: 10.1016/j.celrep.2015.03.043] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/31/2015] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Exposure to low-dose irradiation causes transiently elevated expression of the long ncRNA PARTICLE (gene PARTICLE, promoter of MAT2A-antisense radiation-induced circulating lncRNA). PARTICLE affords both a cytosolic scaffold for the tumor suppressor methionine adenosyltransferase (MAT2A) and a nuclear genetic platform for transcriptional repression. In situ hybridization discloses that PARTICLE and MAT2A associate together following irradiation. Bromouridine tracing and presence in exosomes indicate intercellular transport, and this is supported by ex vivo data from radiotherapy-treated patients. Surface plasmon resonance indicates that PARTICLE forms a DNA-lncRNA triplex upstream of a MAT2A promoter CpG island. We show that PARTICLE represses MAT2A via methylation and demonstrate that the radiation-induced PARTICLE interacts with the transcription-repressive complex proteins G9a and SUZ12 (subunit of PRC2). The interplay of PARTICLE with MAT2A implicates this lncRNA in intercellular communication and as a recruitment platform for gene-silencing machineries through triplex formation in response to irradiation.
Collapse
|
23
|
Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer. Nat Commun 2015; 6:6973. [PMID: 25925782 PMCID: PMC4421817 DOI: 10.1038/ncomms7973] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
Metabolic alteration is a hallmark of cancer. Dysregulation of methionine metabolism is implicated in human liver cancer. Methionine adenosyltransferase IIα (MAT IIα) is a key enzyme in the methionine cycle, catalysing the production of S-adenosylmethionine (SAM), a key methyl donor in cellular processes, and is associated with uncontrolled cell proliferation in cancer. Here we show that P300 acetylates MAT IIα at lysine residue 81 and destabilizes MAT IIα by promoting its ubiquitylation and subsequent proteasomal degradation. Conversely, histone deacetylase-3 deacetylates and stabilizes MAT IIα by preventing its proteasomal degradation. Folate deprivation upregulates K81 acetylation and destabilizes MAT IIα to moderate cell proliferation, whereas a single mutation at K81 reverses the proliferative disadvantage of cancer cells upon folate deprivation. Moreover, MAT IIα K81 acetylation is decreased in human hepatocellular cancer. Collectively, our study reveals a novel mechanism of MAT IIα regulation by acetylation and ubiquitylation, and a direct functional link of this regulation to cancer development. Folate plays an essential role in dividing cells and is regulated by methionine adenosyltransferase (MAT), where a switch from MAT Iα to MAT IIα expression seems to promote liver cancer progression. Here the authors demonstrate that MAT IIα stability is regulated by acetylation and this regulation is important for tumour growth.
Collapse
|
24
|
Cui W, Huang Z, He H, Gu N, Qin G, Lv J, Zheng T, Sugimoto K, Wu Q. MiR-1188 at the imprinted Dlk1-Dio3 domain acts as a tumor suppressor in hepatoma cells. Mol Biol Cell 2015; 26:1416-27. [PMID: 25694452 PMCID: PMC4395123 DOI: 10.1091/mbc.e14-11-1576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022] Open
Abstract
MiR-1188 at the imprinted Dlk1-Dio3 domain is a novel player in hepatocellular carcinoma. MiR-1188 expression was found to be decreased in hepatoma cells, and, when overexpressed, miR-1188 inhibited Bcl2 and Sp1 expression, suppressed cell proliferation and migration, promoted apoptosis in vitro, and inhibited tumor growth in vivo. The aberrant expression of microRNAs (miRNAs) has frequently been reported in cancer studies; miRNAs play roles in development, progression, metastasis, and prognosis. Recent studies indicate that the miRNAs within the Dlk1-Dio3 genomic region are involved in the development of liver cancer, but the role of miR-1188 in hepatocellular carcinoma (HCC) and the pathway by which it exerts its function remain largely unknown. Here we demonstrate that miR-1188 is significantly down-regulated in mouse hepatoma cells compared with normal liver tissues. Enhanced miR-1188 suppresses cell proliferation, migration, and invasion in vitro and inhibits the tumor growth of HCC cells in vivo. Moreover, overexpressed miR-1188 promotes apoptosis, enhances caspase-3 activity, and also up-regulates the expression of Bax and p53. MiR-1188 directly targets and negatively regulates Bcl-2 and Sp1. Silencing of Bcl-2 and Sp1 exactly copies the proapoptotic and anti-invasive effects of miR-1188, respectively. The expression of apoptosis- and invasion-related genes, such as Vegfa, Fgfr1, and Rprd1b, decreases after enhancement of miR-1188, as determined by gene expression profiling analysis. Taken together, our results highlight an important role for miR-1188 as a tumor suppressor in hepatoma cells and imply its potential role in cancer therapy.
Collapse
Affiliation(s)
- Wei Cui
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zhijun Huang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ning Gu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Geng Qin
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jie Lv
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Tao Zheng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
25
|
Liang J, Liu X, Xue H, Qiu B, Wei B, Sun K. MicroRNA-103a inhibits gastric cancer cell proliferation, migration and invasion by targeting c-Myb. Cell Prolif 2014; 48:78-85. [PMID: 25530421 DOI: 10.1111/cpr.12159] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES There have been no previous reports concerning functions of miR-103a in gastric cancer (GC) cells. Thus the aim of the study was to investigate its expression and role in development of this tumour. MATERIALS AND METHODS Real-time RT-PCR was performed to detect expression of miR-103a in GC cell lines and clinical cancer specimens. To further understand its role, we restored expression of miR-103a in MGC-803 cell line by transfection with miR-103a mimics or inhibitors. Effects of miR-103a on cell proliferation, migration and invasion on targets were also determined. RESULTS miR-103a was down-regulated in both GC cell lines and clinical cancer specimens. Meanwhile, its level was closely associated with pM or pTNM stage of GC. Overexpression of miR-103a markedly suppressed proliferation, migration, and invasion of GC cells, while its inhibition significantly accelerated cell proliferation, migration and invasion. Moreover, c-Myb was identified to be a functional downstream target of miR-103a, ectopic expression of which partially reversed suppression of cell proliferation and invasion. CONCLUSIONS Thus our observations suggest that miR-103a functioned as a tumour suppressor by targeting c-Myb. These findings indicate that miR-103a might play a significant role in pathogenesis of GC.
Collapse
Affiliation(s)
- Jinlong Liang
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, Heilongjiang, 150000, China
| | | | | | | | | | | |
Collapse
|
26
|
Singh S, Zhang J, Huber TD, Sunkara M, Hurley K, Goff RD, Wang G, Zhang W, Liu C, Rohr J, Van Lanen SG, Morris AJ, Thorson JS. Facile chemoenzymatic strategies for the synthesis and utilization of S-adenosyl-(L)-methionine analogues. Angew Chem Int Ed Engl 2014; 53:3965-9. [PMID: 24616228 PMCID: PMC4076696 DOI: 10.1002/anie.201308272] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/16/2013] [Indexed: 01/22/2023]
Abstract
A chemoenzymatic platform for the synthesis of S-adenosyl-L-methionine (SAM) analogues compatible with downstream SAM-utilizing enzymes is reported. Forty-four non-native S/Se-alkylated Met analogues were synthesized and applied to probing the substrate specificity of five diverse methionine adenosyltransferases (MATs). Human MAT II was among the most permissive of the MATs analyzed and enabled the chemoenzymatic synthesis of 29 non-native SAM analogues. As a proof of concept for the feasibility of natural product "alkylrandomization", a small set of differentially-alkylated indolocarbazole analogues was generated by using a coupled hMAT2-RebM system (RebM is the sugar C4'-O-methyltransferase that is involved in rebeccamycin biosynthesis). The ability to couple SAM synthesis and utilization in a single vessel circumvents issues associated with the rapid decomposition of SAM analogues and thereby opens the door for the further interrogation of a wide range of SAM utilizing enzymes.
Collapse
Affiliation(s)
- Shanteri Singh
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Tyler D. Huber
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY 40536 (USA)
| | - Katherine Hurley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53705 (USA)
| | - Randal D. Goff
- Western Wyoming Community College, 2500 College Dr. Rock Springs, WY 82902-0428
| | - Guojun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Wen Zhang
- Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, University of Kentucky, Lexington, KY 40536 (USA)
| | - Chunming Liu
- Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, University of Kentucky, Lexington, KY 40536 (USA)
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY 40536 (USA)
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536 (USA). Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 (USA)
| |
Collapse
|
27
|
Yu L, Ding GF, He C, Sun L, Jiang Y, Zhu L. MicroRNA-424 is down-regulated in hepatocellular carcinoma and suppresses cell migration and invasion through c-Myb. PLoS One 2014; 9:e91661. [PMID: 24675898 PMCID: PMC3968007 DOI: 10.1371/journal.pone.0091661] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are important regulators of multiple cellular processes, and the aberrant miRNAs expressions have been observed in different types of cancer including HCC. Their pathysiologic role and their relevance to tumorigenesis are still largely unknown. In this study, we demonstrated the down-regulation of miR-424 in HCC cell lines and tissues by quantitative RT-PCR analyses. Overexpression of miR-424 reduced the HCC cell prolifetation, migration, and invasion. Conversely, inhibiton of miR-424 expression significantly accelerated the cell proliferation, migration, and invasion. In addition, we further identified c-Myb as a functional downstream target of miR-424 by directly targeting the 3'UTR of c-Myb. Furthermore, overexpression of c-Myb impaired miR-424-induced inhibition of proliferation and invasion in HCC cells. Our results demonstrated that miR-424 was involved in tumorigenesis of HCC at least in part by suppression of c-Myb.
Collapse
Affiliation(s)
- Lei Yu
- Department of Infectious Disease, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guo-feng Ding
- Department of Infectious Disease, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Changzhi He
- The Graduate School of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Sun
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - YanFang Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, Jilin, China; Department of Central Laboratory, the Second Part of First Hospital, Jilin University, Changchun, Jilin, China
- * E-mail: (YJ); (LZ)
| | - Liying Zhu
- Department of Infectious Disease, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (YJ); (LZ)
| |
Collapse
|
28
|
Singh S, Zhang J, Huber TD, Sunkara M, Hurley K, Goff RD, Wang G, Zhang W, Liu C, Rohr J, Van Lanen SG, Morris AJ, Thorson JS. Facile Chemoenzymatic Strategies for the Synthesis and Utilization ofS-Adenosyl-L-Methionine Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308272] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Lo TF, Tsai WC, Chen ST. MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One 2013; 8:e75628. [PMID: 24098708 PMCID: PMC3787033 DOI: 10.1371/journal.pone.0075628] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023] Open
Abstract
Methionine adenosyltransferase (MAT) is the cellular enzyme that catalyzes the synthesis of S-adenosylmethionine (SAM), the principal biological methyl donor and a key regulator of hepatocyte proliferation, death and differentiation. Two genes, MAT1A and MAT2A, encode 2 distinct catalytic MAT isoforms. A third gene, MAT2B, encodes a MAT2A regulatory subunit. In hepatocellular carcinoma (HCC), MAT1A downregulation and MAT2A upregulation occur, known as the MAT1A:MAT2A switch. The switch is accompanied with an increasing expression of MAT2B, which results in decreased SAM levels and facilitates cancer cell growth. Berberine, an isoquinoline alkaloid isolated from many medicinal herbs such as Coptis chinensis, has a wide range of pharmacological effects including anti-cancer effects. Because drug-induced microRNAs have recently emerged as key regulators in guiding their pharmacological effects, we examined whether microRNA expression is differentially altered by berberine treatment in HCC. In this study, we used microRNA microarrays to find that the expression level of miR-21-3p (previously named miR-21*) increased after berberine treatment in the HepG2 human hepatoma cell line. To predict the putative targets of miR-21-3p, we integrated the gene expression profiles of HepG2 cells after berberine treatment by comparing with a gene list generated from sequence-based microRNA target prediction software. We then confirmed these predictions through transfection of microRNA mimics and a 3' UTR reporter assay. Our findings provide the first evidence that miR-21-3p directly reduces the expression of MAT2A and MAT2B by targeting their 3' UTRs. In addition, an overexpression of miR-21-3p increased intracellular SAM contents, which have been proven to be a growth disadvantage for hepatoma cells. The overexpression of miR-21-3p suppresses growth and induces apoptosis in HepG2 cells. Overall, our results demonstrate that miR-21-3p functions as a tumor suppressor by directly targeting both MAT2A and MAT2B, indicating its therapeutic potential in HCC.
Collapse
Affiliation(s)
- Ting-Fang Lo
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Chung Tsai
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shui-Tein Chen
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Tomasi ML, Ryoo M, Skay A, Tomasi I, Giordano P, Mato JM, Lu SC. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer. Exp Cell Res 2013; 319:1902-1911. [PMID: 23588207 DOI: 10.1016/j.yexcr.2013.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 01/24/2023]
Abstract
Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70-75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell.
Collapse
Affiliation(s)
- Maria Lauda Tomasi
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Minjung Ryoo
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Anna Skay
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Ivan Tomasi
- Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR, UK
| | - Pasquale Giordano
- Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR, UK
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
31
|
Cai W, Li Q, Yang Z, Miao X, Wen Y, Huang S, Ouyang J. Expression of p53 upregulated modulator of apoptosis (PUMA) and C-myb in gallbladder adenocarcinoma and their pathological significance. Clin Transl Oncol 2013; 15:818-24. [PMID: 23475628 DOI: 10.1007/s12094-013-1010-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/13/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE An increasing number of studies have shown that PUMA and C-myb signaling pathways are involved in various human cancers including colon carcinomas. However, few studies have examined gallbladder cancer specimens, and little is known about the clinical and pathological significance signaling changes may have in gallbladder adenocarcinoma. This study has investigated the expression of PUMA and C-myb in benign and malignant lesions of gallbladder and its pathological significance. METHODS Tissue specimens from 108 gallbladder adenocarcinoma patients, 46 adjacent tissues, 15 cases of adenomatous polyps, and 35 surgical specimens from chronic cholecystitis patients were routinely paraffin embedded and sectioned. PUMA and C-myb expressions were detected with EnVision immunohistochemistry. RESULTS Positive rates of PUMA and C-myb are significantly higher in gallbladder adenocarcinoma tissues than that in the other three (P < 0.01). Gallbladder epithelial cells in PUMA and/or C-myb positive benign cases manifest moderate to severe atypical dysplasia. Positive rates of PUMA and C-myb in well-differentiated tumors with maximum diameter of <2 cm and with no lymph node metastasis and invasion of the surrounding tissues are significantly lower than that in those poorly differentiated cases with maximum diameter of ≥ 2 cm, lymph node metastasis, and invasion of the surrounding tissues (P < 0.05 or P < 0.01). The postoperative survival of patients whose tumor specimens are positive for PUMA and C-myb is significantly shorter than that of those who are negative for both markers (P < 0.05 or P < 0.01). CONCLUSIONS Our results have demonstrated that PUMA and C-myb positive gallbladder tumors progress rapidly, are prone to metastasis, possess strong invasive ability, and have poor prognosis.
Collapse
Affiliation(s)
- W Cai
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, 410011, Hunan, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
32
|
Overexpression of methionine adenosyltransferase II alpha (MAT2A) in gastric cancer and induction of cell cycle arrest and apoptosis in SGC-7901 cells by shRNA-mediated silencing of MAT2A gene. Acta Histochem 2013; 115:48-55. [PMID: 22542325 DOI: 10.1016/j.acthis.2012.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/18/2022]
Abstract
The aim of this study was to clarify the methionine adenosyltransferase II alpha (MAT2A) expression pattern and to explore its potential role in gastric cancer. Quantitative real-time PCR was performed to examine MAT2A mRNA expression in 20 cases of gastric cancer tissues and corresponding non-tumor tissue samples. Immunohistochemistry was conducted to detect MAT2A protein expression in 91 gastric cancer tissues. Moreover, the stable cell lines transfected with the small hairpin RNA (shRNA) targeting MAT2A mRNA plasmids were established and the biological characteristics of these cells were examined. The expression levels of MAT2A mRNA in gastric cancer tissues were significantly higher than those in corresponding non-tumor tissues. High-level MAT2A expression was observed in 40.7% (37 of 91 cases), and correlated with tumor classification (P=0.012), lymph node metastasis (P=0.001) and poor tumor differentiation (P=0.011) of gastric cancer patients. Additionally, the MAT2A expression level was significantly decreased in the transfected cells with MAT2A specific shRNA expression plasmid pGCsi-H1-792. The stable transfected cancer cells exhibited a decrease in growth ability and an increase in the incidence of spontaneous apoptosis and the percentage of the G1 phase. Our data suggest that MAT2A plays an important role in gastric cancer development and progression.
Collapse
|
33
|
Yang H, Cho ME, Li TWH, Peng H, Ko KS, Mato JM, Lu SC. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J Clin Invest 2012; 123:285-98. [PMID: 23241961 DOI: 10.1172/jci63861] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/18/2012] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) and methionine adenosyltransferase 1A (MAT1A) are dysregulated in hepatocellular carcinoma (HCC), and reduced MAT1A expression correlates with worse HCC prognosis. Expression of miR-664, miR-485-3p, and miR-495, potential regulatory miRNAs of MAT1A, is increased in HCC. Knockdown of these miRNAs individually in Hep3B and HepG2 cells induced MAT1A expression, reduced growth, and increased apoptosis, while combined knockdown exerted additional effects on all parameters. Subcutaneous and intraparenchymal injection of Hep3B cells stably overexpressing each of this trio of miRNAs promoted tumorigenesis and metastasis in mice. Treatment with miRNA-664 (miR-664), miR-485-3p, and miR-495 siRNAs reduced tumor growth, invasion, and metastasis in an orthotopic liver cancer model. Blocking MAT1A induction significantly reduced the antitumorigenic effect of miR-495 siRNA, whereas maintaining MAT1A expression prevented miRNA-mediated enhancement of growth and metastasis. Knockdown of these miRNAs increased total and nuclear level of MAT1A protein, global CpG methylation, lin-28 homolog B (Caenorhabditis elegans) (LIN28B) promoter methylation, and reduced LIN28B expression. The opposite occurred with forced expression of these miRNAs. In conclusion, upregulation of miR-664, miR-485-3p, and miR-495 contributes to lower MAT1A expression in HCC, and enhanced tumorigenesis may provide potential targets for HCC therapy.
Collapse
Affiliation(s)
- Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
S-adenosylmethionine (AdoMet, also known as SAM and SAMe) is the principal biological methyl donor synthesized in all mammalian cells but most abundantly in the liver. Biosynthesis of AdoMet requires the enzyme methionine adenosyltransferase (MAT). In mammals, two genes, MAT1A that is largely expressed by normal liver and MAT2A that is expressed by all extrahepatic tissues, encode MAT. Patients with chronic liver disease have reduced MAT activity and AdoMet levels. Mice lacking Mat1a have reduced hepatic AdoMet levels and develop oxidative stress, steatohepatitis, and hepatocellular carcinoma (HCC). In these mice, several signaling pathways are abnormal that can contribute to HCC formation. However, injury and HCC also occur if hepatic AdoMet level is excessive chronically. This can result from inactive mutation of the enzyme glycine N-methyltransferase (GNMT). Children with GNMT mutation have elevated liver transaminases, and Gnmt knockout mice develop liver injury, fibrosis, and HCC. Thus a normal hepatic AdoMet level is necessary to maintain liver health and prevent injury and HCC. AdoMet is effective in cholestasis of pregnancy, and its role in other human liver diseases remains to be better defined. In experimental models, it is effective as a chemopreventive agent in HCC and perhaps other forms of cancer as well.
Collapse
Affiliation(s)
- Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, Los Angeles, California 90033, USA.
| | | |
Collapse
|
35
|
Shu GS, Lv F, Yang ZL, Miao XY. Immunohistochemical study of PUMA, c-Myb and p53 expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Int J Clin Oncol 2012; 18:641-50. [PMID: 22714709 DOI: 10.1007/s10147-012-0431-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/21/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Gallbladder cancers have a very poor prognosis without specific molecular marker being identified. In this study we studied PUMA, c-Myb and p53 expression in benign and malignant lesions of gallbladder and analyzed their clinicopathological significance. METHOD Immunohistochemical staining of PUMA, c-Myb and p53 protein was performed in 108 gallbladder adenocarcinomas, 46 peritumoral tissues, 15 polyps, and 35 chronic cholecystitis. RESULTS We demonstrated that the percent of positive PUMA, c-Myb and p53 expression was significantly higher in gallbladder adenocarcinomas than in peritumoral tissues, polyps and chronic cholecystitis (p < 0.05 or 0.01). Benign gallbladder epithelium with positive PUMA, c-Myb or p53 expression showed moderately or severely atypical hyperplasia. The percent of positive PUMA, c-Myb and p53 expression was significantly higher in the cases having poorly differentiated adenocarcinoma with large tumor mass, lymph node metastasis and high invasiveness than cases with well-differentiated adenocarcinoma with small tumor mass and without metastasis and invasiveness (p < 0.05 or p < 0.01). The percent of positive PUMA, c-Myb and p53 expression was significantly higher in cases with radical resection than without resection (p < 0.05). Univariate Kaplan-Meier analysis showed that PUMA, c-Myb and p53 expression was associated with decreased overall survival (p < 0.05 or p < 0.01). Multivariate Cox regression analysis showed that PUMA, c-Myb or p53 expression was a poor-prognostic predictor in gallbladder adenocarcinoma. CONCLUSION PUMA, c-Myb and p53 expression closely relates to the carcinogenesis, fast-progression, easy-metastasis, high-invasion, and poor-prognosis in gallbladder adenocarcinoma.
Collapse
Affiliation(s)
- Guo-shun Shu
- Department of Geriatric Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | | | | | | |
Collapse
|
36
|
Phuong NTT, Kim SK, Lim SC, Kim HS, Kim TH, Lee KY, Ahn SG, Yoon JH, Kang KW. Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat 2011; 130:73-83. [PMID: 21170675 DOI: 10.1007/s10549-010-1304-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023]
Abstract
Tamoxifen (TAM) resistance is a serious clinical problem in the treatment of breast cancer. Here, we found that S-adenosylmethionine (SAM) and DNA methyltransferase1 (DNMT1) expression are up-regulated in TAM-resistant breast cancer (TAMR-MCF-7) cells. We further focused on whether increased SAM with DNMT1 overexpression in TAMR-MCF-7 cells lead to aberrant methylation of the PTEN gene promoter and its therapeutic potential. Methylation-specific PCR analyses revealed that two sites within the PTEN promoters were methylated in TAMR-MCF-7 cells, which resulted in down-regulation of PTEN expression and increase in Akt phosphorylation. Both the loss of PTEN expression and the increased Akt phosphorylation in TAMR-MCF-7 cells were completely reversed by 5-aza-2'-deoxycytidine (5-Aza), a DNMT inhibitor. 5-Aza inhibited the basal cell proliferation rate of TAMR-MCF-7 cells and intraperitoneal injection of 5-Aza significantly suppressed TAMR-MCF-7 tumor growth in a xenograft study. Immunohistochemistry showed that PTEN expression in TAM-resistant human breast cancer tissues was lower than in TAM-responsive cases. These results suggest that methylation of the PTEN promoter related to both SAM increase and DNMT1 activation contributes to persistent Akt activation and are potential therapeutic targets for reversing TAM resistance in breast cancer.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Phuong
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju, 501-759, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
38
|
Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. Biochem J 2011; 436:507-16. [PMID: 21406062 DOI: 10.1042/bj20101754] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously reported that the expression of MAT2A (methionine adenosyltransferase 2A) is increased in human colon cancer and in colon cancer cells treated with IGF-1 (insulin-like growth factor-1), which was required for its mitogenic effect. The aim of the present study was to elucidate the molecular mechanisms of IGF-1-mediated MAT2A induction. Nuclear run-on analysis confirmed that the increase in MAT2A expression lies at the transcriptional level. DNase I footprinting of the MAT2A promoter region revealed a similar protein-binding pattern in colon cancer and IGF-1-treated RKO cells. IGF-1 induced MAT2A promoter activity and increased nuclear protein binding to USF (upstream stimulatory factor)/c-Myb, YY1 (Yin and Yang 1), E2F, AP-1 (activator protein 1) and NF-κB (nuclear factor κB) consensus elements. IGF-1 increased the expression of c-Jun, FosB, MafG, p65, c-Myb, E2F-1 and YY1 at the pre-translational level. Knockdown of p65, MafG, c-Myb or E2F-1 lowered basal MAT2A expression and blunted the inductive effect of IGF-1 on MAT2A, whereas knockdown of YY1 increased basal MAT2A expression and had no effect on IGF-1-mediated MAT2A induction. Consistently, mutation of AP-1, NF-κB, E2F and USF/c-Myb elements individually blunted the IGF-1-mediated increase in MAT2A promoter activity, and combined mutations completely prevented the increase. In conclusion, IGF-1 activates MAT2A transcription by both known and novel pathways. YY1 represses MAT2A expression.
Collapse
|
39
|
Liu Q, Liu L, Zhao Y, Zhang J, Wang D, Chen J, He Y, Wu J, Zhang Z, Liu Z. Hypoxia induces genomic DNA demethylation through the activation of HIF-1α and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther 2011; 10:1113-23. [PMID: 21460102 DOI: 10.1158/1535-7163.mct-10-1010] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) emerges as a crucial player in tumor progression. However, its role in hepatocellular carcinoma (HCC), especially its relation with global DNA methylation patterns in HCC under hypoxic tumor microenvironment is not completely understood. Methionine adenosyltransferase 2A (MAT2A) maintains the homeostasis of S-adenosylmethionine (SAM), a critical marker of genomic methylation status. In this study, we investigated the link between HIF-1α and MAT2A as a mechanism responsible for the change in genomic DNA methylation patterns in liver cancer under hypoxia conditions. Our results showed that hypoxia induces genomic DNA demethylation in CpG islands by reducing the steady-state SAM level both in vitro and in vivo. In addition, HIF-1α and MAT2A expression is correlated with tumor size and TNM stage of liver cancer tissues. We further showed that hypoxia-induced MAT2A expression is HIF-1α dependent and requires the recruitment of p300 and HDAC1. We also identified an authentic consensus HIF-1α binding site in MAT2A promoter by site-directed mutagenesis, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay. Taken together, we show for the first time that hypoxia induces genomic DNA demethylation through the activation of HIF-1α and transcriptional upregulation of MAT2A in hepatoma cells. These findings provide new insights into our understanding of the molecular link between genomic DNA methylation and tumor hypoxia in HCC.
Collapse
Affiliation(s)
- Quanyan Liu
- Department of General Surgery, Zhongnan Hospital, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Role of methionine adenosyltransferase genes in hepatocarcinogenesis. Cancers (Basel) 2011; 3:1480-97. [PMID: 24212770 PMCID: PMC3757373 DOI: 10.3390/cancers3021480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/27/2011] [Accepted: 01/30/2011] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Detection of HCC can be difficult, as most of the patients who develop this tumor have no symptoms other than those related to their longstanding liver disease. There is an urgent need to understand the molecular mechanisms that are responsible for the development of this disease so that appropriate therapies can be designed. Methionine adenosyltransferase (MAT) is an essential enzyme required for the biosynthesis of S-adenosylmethionine (AdoMet), an important methyl donor in the cell. Alterations in the expression of MAT genes and a decline in AdoMet biosynthesis are known to be associated with liver injury, cirrhosis and HCC. This review focuses on the role of MAT genes in HCC development and the scope for therapeutic strategies using these genes.
Collapse
|
41
|
Liu Q, Chen J, Liu L, Zhang J, Wang D, Ma L, He Y, Liu Y, Liu Z, Wu J. The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. J Biol Chem 2011; 286:17168-80. [PMID: 21247894 PMCID: PMC3089560 DOI: 10.1074/jbc.m110.167783] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The X protein (HBx) of hepatitis B virus (HBV) is involved in the development of hepatocellular carcinoma (HCC), and methionine adenosyltransferase 2A (MAT2A) promotes the growth of liver cancer cells through altering S-adenosylmethionine homeostasis. Thus, we speculated that a link between HBx and MAT2A may contribute to HCC development. In this study, the effects of HBx on MAT2A expression and cell apoptosis were investigated, and the molecular mechanism by which HBx and MAT2A regulate tumorigenesis was evaluated. Results from immunohistochemistry analyses of 37 pairs of HBV-associated liver cancer tissues/corresponding peritumor tissues showed that HBx and MAT2A are highly expressed in most liver tumor tissues. Our in vitro results revealed that HBx activates MAT2A expression in a dose-dependent manner in hepatoma cells, and such regulation requires the cis-regulatory elements NF-κB and CREB on the MAT2A gene promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) further demonstrated that HBx facilitates the binding of NF-κB and CREB to MAT2A gene promoter. In addition, overexpression of HBx or MAT2A inhibits cell apoptosis, whereas knockdown of MAT2A expression stimulates apoptosis in hepatoma cells. Furthermore, we demonstrated that HBx reduces MAT1A expression and AdoMet production but enhances MAT2β expression. Thus, we proposed that HBx activates MAT2A expression through NF-κB and CREB signaling pathways to reduce AdoMet production, inhibit hepatoma cell apoptosis, and perhaps enhance HCC development. These findings should provide new insights into our understanding how the molecular mechanisms underline the effects of HBV infection on the production of MAT2A and the development of HCC.
Collapse
Affiliation(s)
- Quanyan Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen RX, Xia YH, Xue TC, Ye SL. Transcription factor c-Myb promotes the invasion of hepatocellular carcinoma cells via increasing osteopontin expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:172. [PMID: 21190594 PMCID: PMC3023683 DOI: 10.1186/1756-9966-29-172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 12/30/2010] [Indexed: 01/04/2023]
Abstract
Background Specific gene expression is tightly regulated by various transcription factors. Osteopontin (OPN) is a phosphoprotein that mediates hepatocellular carcinoma (HCC) progression and metastasis. However, the mechanism of OPN up-regulation in HCC metastasis remains to be clarified. Methods Oligonucleotide array-based transcription factor assays were applied to compare different activities of transcription factors in two human HCC cell lines with different OPN expression levels. The effects of one selected transcription factor on OPN expression were further evaluated. Results Eleven transcription factors were over-expressed in metastatic HCC cell line HCCLM6 cells whereas twelve transcription factors were down-regulated. Electrophoretic mobility shift assays (EMSA) and reporter gene assays showed that one of up-regulated transcription factors c-Myb could bind the OPN promoter and increase its transcription activity. In addition, small interfering RNA targeting c-Myb could inhibit OPN expression and significantly decrease migration and invasion of HCCLM6 cells in vitro. Conclusion Our data first demonstrate that c-Myb has a functionally important role in the regulation of OPN expression in HCC cells, suggesting that c-Myb might be a new target to control HCC metastasis.
Collapse
Affiliation(s)
- Rong-Xin Chen
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
43
|
Unfolded protein response activation contributes to chemoresistance in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2010; 22:1099-105. [PMID: 20177386 DOI: 10.1097/meg.0b013e3283378405] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) has an annual worldwide incidence of 626 000 cases and causes 550 000 deaths per year. Although the mainstay of treatment is surgical resection, for inoperable or metastatic disease, chemotherapy may be offered. The primary agent used is doxorubicin, but response rates are poor (<20%). The unfolded protein response (UPR) is a cytoprotective cellular stress response that enables cells to survive periods of hypoxia and nutrient deprivation. The UPR may confer resistance to anticancer agents and contribute to treatment failure. This study has investigated whether the UPR is activated in HCC and whether this may contribute to doxorubicin resistance. METHODS Eighty-six human HCCs were immunohistochemically stained for glucose regulated protein 78, the key marker of UPR activation. An in-vitro model of UPR activation in HepG2 HCC cells was developed by glucose deprived culture. UPR activation was confirmed with western blotting and PCR to show overexpression of glucose regulated protein 78. The relative efficacy of doxorubicin chemotherapy on UPR-activated HepG2 cells was compared with normal HepG2 cells by use of an thiazolyl blue tetrazolium bromide colorimetric assay. RESULTS Expression of glucose regulated protein 78 was shown in 100% of the HCC samples with 66% showing strong staining. In-vitro UPR activation was achieved with glucose deprivation. UPR activation induced significant resistance to doxorubicin: 34% survival under standard culture conditions versus 58% and 63% for UPR-activated cells in 0.5 and 1 mmol glucose respectively (P=0.00928). CONCLUSION The UPR is activated in HCCs and confers resistance to chemotherapy in vitro. UPR activation may contribute to HCC chemoresistance.
Collapse
|
44
|
Vázquez-Chantada M, Fernández-Ramos D, Embade N, Martínez-Lopez N, Varela-Rey M, Woodhoo A, Luka Z, Wagner C, Anglim PP, Finnell RH, Caballería J, Laird-Offringa IA, Gorospe M, Lu SC, Mato JM, Martínez-Chantar ML. HuR/methyl-HuR and AUF1 regulate the MAT expressed during liver proliferation, differentiation, and carcinogenesis. Gastroenterology 2010; 138:1943-53. [PMID: 20102719 PMCID: PMC2860011 DOI: 10.1053/j.gastro.2010.01.032] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/18/2009] [Accepted: 01/14/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Hepatic de-differentiation, liver development, and malignant transformation are processes in which the levels of hepatic S-adenosylmethionine are tightly regulated by 2 genes: methionine adenosyltransferase 1A (MAT1A) and methionine adenosyltransferase 2A (MAT2A). MAT1A is expressed in the adult liver, whereas MAT2A expression primarily is extrahepatic and is associated strongly with liver proliferation. The mechanisms that regulate these expression patterns are not completely understood. METHODS In silico analysis of the 3' untranslated region of MAT1A and MAT2A revealed putative binding sites for the RNA-binding proteins AU-rich RNA binding factor 1 (AUF1) and HuR, respectively. We investigated the posttranscriptional regulation of MAT1A and MAT2A by AUF1, HuR, and methyl-HuR in the aforementioned biological processes. RESULTS During hepatic de-differentiation, the switch between MAT1A and MAT2A coincided with an increase in HuR and AUF1 expression. S-adenosylmethionine treatment altered this homeostasis by shifting the balance of AUF1 and methyl-HuR/HuR, which was identified as an inhibitor of MAT2A messenger RNA (mRNA) stability. We also observed a similar temporal distribution and a functional link between HuR, methyl-HuR, AUF1, and MAT1A and MAT2A during fetal liver development. Immunofluorescent analysis revealed increased levels of HuR and AUF1, and a decrease in methyl-HuR levels in human livers with hepatocellular carcinoma (HCC). CONCLUSIONS Our data strongly support a role for AUF1 and HuR/methyl-HuR in liver de-differentiation, development, and human HCC progression through the posttranslational regulation of MAT1A and MAT2A mRNAs.
Collapse
Affiliation(s)
- Mercedes Vázquez-Chantada
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Nieves Embade
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Nuria Martínez-Lopez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Ashwin Woodhoo
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA, Tennessee Valley Department of Medical Affairs Medical Center, Nashville, TN, USA
| | - Paul P. Anglim
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9176, USA
| | - Richard H. Finnell
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA
| | | | - Ite A. Laird-Offringa
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9176, USA
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University Southern California, Los Angeles, CA 90033, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - M Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| |
Collapse
|
45
|
Oliva J, Bardag-Gorce F, Li J, French BA, Nguyen SK, Lu SC, French SW. Betaine prevents Mallory-Denk body formation in drug-primed mice by epigenetic mechanisms. Exp Mol Pathol 2009; 86:77-86. [PMID: 19073172 PMCID: PMC3319154 DOI: 10.1016/j.yexmp.2008.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
Previous studies showed that S-Adenosylmethionine (SAMe) prevented MDB formation and the hypomethylation of histones induced by DDC feeding. These results suggest that formation of MDBs is an epigenetic phenomenon. To further test this theory, drug-primed mice were fed the methyl donor, betaine, together with DDC, which was refed for 7 days. Betaine significantly reduced MDB formation, decreased the liver/body weight ratio and decreased the number of FAT10 positive liver cells when they proliferate in response to DDC refeeding. Betaine also significantly prevented the decreased expression of BHMT, AHCY, MAT1a and GNMT and the increased expression of MTHFR, caused by DDC refeeding. S-Adenosylhomocysteine (SAH) levels were reduced by DDC refeeding and this was prevented by betaine. The results support the concept that betaine donates methyl groups, increasing methionine available in the cell. SAMe metabolism was reduced by the decrease in GNMT expression, which prevented the conversion of SAMe to SAH. As a consequence, betaine prevented MDB formation and FAT10 positive cell proliferation by blocking the epigenetic memory expressed by hepatocytes. The results further support the concept that MDB formation is the result of an epigenetic phenomenon, where a change in methionine metabolism causes global gene expression changes in hepatocytes.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509
| | | | - Jun Li
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Barbara A French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Sheila K. Nguyen
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Shelly C. Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine USC, Los Angeles, California 90033, USA
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509
| |
Collapse
|
46
|
Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 2008; 20:247-56. [PMID: 18585056 DOI: 10.1016/j.smim.2008.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 05/14/2008] [Indexed: 11/16/2022]
Abstract
While it has long been known that the transcription factor c-Myb is an essential regulator of hematopoiesis, its precise molecular targets have remained elusive. Cell line studies suggest that c-Myb promotes proliferation and at the same time inhibits differentiation, however the early lethality of c-Myb deficient embryos precluded analysis of its role in adult hematopoiesis. Here we review insights derived from recently developed mouse models of c-Myb deficiency that are viable as adults. These studies reveal a complex array of functions for c-Myb in multiple hematopoietic cell types that will redefine our understanding of this crucial transcription factor.
Collapse
Affiliation(s)
- Kylie T Greig
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
47
|
YANG HEPING, ARA AINHOAIGLESIAS, MAGILNICK NATHANIEL, XIA MENG, RAMANI KOMAL, CHEN HUI, LEE TAUNIAD, MATO JOSÉM, LU SHELLYC. Expression pattern, regulation, and functions of methionine adenosyltransferase 2beta splicing variants in hepatoma cells. Gastroenterology 2008; 134:281-91. [PMID: 18045590 PMCID: PMC2409110 DOI: 10.1053/j.gastro.2007.10.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 10/05/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Methionine adenosyltransferase (MAT) catalyzes S-adenosylmethionine biosynthesis. Two genes (MAT1A and MAT2A) encode for the catalytic subunit of MAT, while a third gene (MAT2beta) encodes for a regulatory subunit that modulates the activity of MAT2A-encoded isoenzyme. We uncovered multiple splicing variants while characterizing its 5'-flanking region. The aims of our current study are to examine the expression pattern, regulation, and functions of the 2 major variants: V1 and V2. METHODS Studies were conducted using RNA from normal human tissues, resected hepatocellular carcinoma specimens, and cell lines. Gene expression, promoter and nuclear binding activities, growth, and apoptosis were measured by routine assays. RESULTS MAT2beta is expressed in most but not all tissues, and the 2 variants are differentially expressed. The messenger RNA levels of both variants are markedly increased in hepatocellular carcinoma. Tumor necrosis factor (TNF)-alpha, which induces MAT2A in HepG2 cells, also induced V1 (but not V2) expression. TNF-alpha induced the promoter activity of MAT2beta V1, likely via nuclear factor kappaB and activator protein 1. Both variants regulate growth, but only V1 regulates apoptosis. Reduced expression of V1 led to c-Jun-N-terminal kinase (JNK) activation, apoptosis, and sensitized HepG2 cells to TNF-alpha-induced apoptosis, while overexpression of V1 was protective. However, blocking JNK1 or JNK2 activation did not prevent apoptosis induced by V1 knockdown. V1 (but not V2) knockdown also leads to apoptosis in a colon cancer cell line, suggesting these variants play similar roles in many cell types. CONCLUSIONS Different variants of MAT2beta regulate growth and death, which broadens their importance in biology.
Collapse
Affiliation(s)
- HEPING YANG
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - AINHOA IGLESIAS ARA
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - NATHANIEL MAGILNICK
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - MENG XIA
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - KOMAL RAMANI
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - HUI CHEN
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - TAUNIA D. LEE
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - JOSÉ M. MATO
- Centro de Investigación Cooperativa en Biosciences, Derio, CIBERehd, Technology Park of Biz Kaia, Bizkaia, Spain
| | - SHELLY C. LU
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
48
|
Chen H, Xia M, Lin M, Yang H, Kuhlenkamp J, Li T, Sodir NM, Chen YH, Josef-Lenz H, Laird PW, Clarke S, Mato JM, Lu SC. Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. Gastroenterology 2007; 133:207-18. [PMID: 17631143 DOI: 10.1053/j.gastro.2007.03.114] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 03/22/2007] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Two genes (MAT1A and MAT2A) encode for methionine adenosyltransferase, an essential enzyme responsible for S-adenosylmethionine (SAMe) biosynthesis. MAT1A is expressed in liver, whereas MAT2A is widely distributed. In liver, increased MAT2A expression is associated with growth, while SAMe inhibits MAT2A expression and growth. The role of MAT2A in colon cancer in unknown. The aims of this study were to examine whether MAT2A expression and SAMe and its metabolite methylthioadenosine (MTA) can modulate growth of colon cancer cells. METHODS Studies were conducted using resected colon cancer specimens, polyps from Min mice, and human colon cancer cell lines RKO and HT-29. MAT2A expression was measured by real-time polymerase chain reaction and cell growth by the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS In 12 of 13 patients and all 9 polyps from Min mice, the MAT2A messenger RNA levels were 200%-340% of levels in adjacent normal tissues, respectively. Epidermal growth factor, insulin-like growth factor 1, and leptin increased growth and up-regulated MAT2A expression and MAT2A promoter activity in RKO and HT-29 cells. SAMe and MTA lowered the baseline expression of MAT2A and blocked the growth factor-mediated increase in MAT2A expression and growth in colon cancer cell lines. Importantly, the mitogenic effect of these growth factors was inhibited if MAT2A induction was prevented by RNA interference. SAMe and MTA supplementation in drinking water increased intestinal SAMe levels and lowered MAT2A expression. CONCLUSIONS Similar to the liver, up-regulation of MAT2A also provides a growth advantage and SAMe and MTA can block mitogenic signaling in colon cancer cells.
Collapse
Affiliation(s)
- Hui Chen
- Division of Gastroenterology and Liver Diseases, University of Southern California Research Center for Liver Diseases, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Berge T, Matre V, Brendeford EM, Saether T, Lüscher B, Gabrielsen OS. Revisiting a selection of target genes for the hematopoietic transcription factor c-Myb using chromatin immunoprecipitation and c-Myb knockdown. Blood Cells Mol Dis 2007; 39:278-86. [PMID: 17587615 DOI: 10.1016/j.bcmd.2007.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 12/24/2022]
Abstract
The transcription factor c-Myb is an important regulator of hematopoiesis required for proper development of most blood cell lineages in vertebrates. An increasing number of target genes for c-Myb are being published, although with little or no overlap between the lists of genes reported. This raises the question of which criteria a bona fide c-Myb-target gene should satisfy. In the present paper, we have analyzed a set of previously reported target genes using chromatin immunoprecipitation (ChIP) and siRNA-mediated knockdown. Among the seven well-studied c-Myb target genes that we analyzed by ChIP, only ADA, c-MYC and MAT2A seemed to be occupied by c-Myb under our experimental settings in the Myb-positive cell lines Jurkat and HL60. After siRNA-mediated knockdown of c-Myb expression, the expression levels of two out of three ChIP positive Myb target genes, ADA and c-MYC, were strongly affected. These results clearly demonstrate the importance of combining different methods for target gene validation and suggest that a combination of ChIP and c-Myb knockdown may represent a powerful approach to identify a core collection of c-Myb target genes.
Collapse
Affiliation(s)
- Tone Berge
- Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
50
|
Liu Q, Wu K, Zhu Y, He Y, Wu J, Liu Z. Silencing MAT2A gene by RNA interference inhibited cell growth and induced apoptosis in human hepatoma cells. Hepatol Res 2007; 37:376-88. [PMID: 17441811 DOI: 10.1111/j.1872-034x.2007.00041.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS A switch in gene expression from MAT1A to MAT2A was found in liver cancer, suggesting that MAT2A plays an important role in facilitating cancer growth. MAT2A is an interesting target for antineoplastic therapy. The molecular mechanisms of silencing MAT2A by RNA interference inhibited cell growth and induced apoptosis in hepatoma cells was studied. METHODS We investigated the effects of MAT2A on S-adenosyl-methionine (SAM) production, cell growth and apoptotic cell death in hepatoma cell lines (Bel-7402, HepG2, and Hep3B) using an RNA interference approach. RESULTS The treatment of three hepatoma cell lines with small interfering RNA (siRNA) targeting to the MAT2A gene resulted in reducing the MAT II activity, facilitating SAM production, increasing SAM : SAH ratio, inhibiting cell growth and inducing cell apoptosis in hepatoma cells. In addition, silencing MAT2A gene resulted in the stimulation of MAT1A mRNA production, which was blocked by 3-deazaadenosine and l-ethionine, but not d-ethionine, suggesting that such effect was specific and mediated by upregulation of SAM level and SAM : S-adenosylethionine (SAH) ratio. CONCLUSION Silencing MAT2A by sequence-specific small interfering RNA caused a switch of MAT gene expression from MAT2A to MAT1A, which led the content of SAM to change to a higher steady-state level that resulted in the inhibition of cell growth and the induction of apoptotic cell death in human hepatoma cells. These results also suggested that MAT2A may hold potential as a new target for liver cancer gene therapy.
Collapse
Affiliation(s)
- Quanyan Liu
- Department of General Surgery, Research Center of Digestive Diseases, ZhongNan Hospital, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|