1
|
Berrino C, Omar A. Unravelling the Mysteries of the Sonic Hedgehog Pathway in Cancer Stem Cells: Activity, Crosstalk and Regulation. Curr Issues Mol Biol 2024; 46:5397-5419. [PMID: 38920995 PMCID: PMC11202538 DOI: 10.3390/cimb46060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays a critical role in normal development and tissue homeostasis, guiding cell differentiation, proliferation, and survival. Aberrant activation of this pathway, however, has been implicated in the pathogenesis of various cancers, largely due to its role in regulating cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells with the ability to self-renew, differentiate, and initiate tumour growth, contributing significantly to tumorigenesis, recurrence, and resistance to therapy. This review focuses on the intricate activity of the Shh pathway within the context of CSCs, detailing the molecular mechanisms through which Shh signalling influences CSC properties, including self-renewal, differentiation, and survival. It further explores the regulatory crosstalk between the Shh pathway and other signalling pathways in CSCs, highlighting the complexity of this regulatory network. Here, we delve into the upstream regulators and downstream effectors that modulate Shh pathway activity in CSCs. This review aims to cast a specific focus on the role of the Shh pathway in CSCs, provide a detailed exploration of molecular mechanisms and regulatory crosstalk, and discuss current and developing inhibitors. By summarising key findings and insights gained, we wish to emphasise the importance of further elucidating the interplay between the Shh pathway and CSCs to develop more effective cancer therapies.
Collapse
|
2
|
Ding J, Yang YY, Li PT, Ma Y, Zhang L, Zhou Y, Jin C, Li HY, Zhu YF, Liu XP, Liu ZJ, Jia HL, Liu PG, Wu J. TGF-β1/SMAD3-driven GLI2 isoform expression contributes to aggressive phenotypes of hepatocellular carcinoma. Cancer Lett 2024; 588:216768. [PMID: 38453045 DOI: 10.1016/j.canlet.2024.216768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Hedgehog signaling is activated in response to liver injury, and modulates organogenesis. However, the role of non-canonical hedgehog activation via TGF-β1/SMAD3 in hepatic carcinogenesis is poorly understood. TGF-β1/SMAD3-mediated non-canonical activation was found in approximately half of GLI2-positive hepatocellular carcinoma (HCC), and two new GLI2 isoforms with transactivating activity were identified. Phospho-SMAD3 interacted with active GLI2 isoforms to transactivate downstream genes in modulation of stemness, epithelial-mesenchymal transition, chemo-resistance and metastasis in poorly-differentiated hepatoma cells. Non-canonical activation of hedgehog signaling was confirmed in a transgenic HBV-associated HCC mouse model. Inhibition of TGF-β/SMAD3 signaling reduced lung metastasis in a mouse in situ hepatic xenograft model. In another cohort of 55 HCC patients, subjects with high GLI2 expression had a shorter disease-free survival than those with low expression. Moreover, co-positivity of GLI2 with SMAD3 was observed in 87.5% of relapsed HCC patients with high GLI2 expression, indicating an increased risk of post-resection recurrence of HCC. The findings underscore that suppressing the non-canonical hedgehog signaling pathway may confer a potential strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, 200040, China.
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Peng-Tao Li
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui-Yan Li
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan-Fei Zhu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xiu-Ping Liu
- Department of Pathology and Laboratory Medicine, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Zheng-Jin Liu
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200041, China
| | - Ping-Guo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
3
|
Zeng LH, Tang C, Yao M, He Q, Qv M, Ren Q, Xu Y, Shen T, Gu W, Xu C, Zou C, Ji X, Wu X, Wang J. Phosphorylation of human glioma-associated oncogene 1 on Ser937 regulates Sonic Hedgehog signaling in medulloblastoma. Nat Commun 2024; 15:987. [PMID: 38307877 PMCID: PMC10837140 DOI: 10.1038/s41467-024-45315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China.
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Minli Yao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Meiyu Qv
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qianlei Ren
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weizhong Gu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chengyun Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chaochun Zou
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jirong Wang
- Department of Geriatrics, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
4
|
Lospinoso Severini L, Loricchio E, Navacci S, Basili I, Alfonsi R, Bernardi F, Moretti M, Conenna M, Cucinotta A, Coni S, Petroni M, De Smaele E, Giannini G, Maroder M, Canettieri G, Mastronuzzi A, Guardavaccaro D, Ayrault O, Infante P, Bufalieri F, Di Marcotullio L. SALL4 is a CRL3 REN/KCTD11 substrate that drives Sonic Hedgehog-dependent medulloblastoma. Cell Death Differ 2024; 31:170-187. [PMID: 38062245 PMCID: PMC10850099 DOI: 10.1038/s41418-023-01246-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/09/2024] Open
Abstract
The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.
Collapse
Affiliation(s)
| | - Elena Loricchio
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Shirin Navacci
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Irene Basili
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91401, Orsay, France
| | - Romina Alfonsi
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91401, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, 91401, Orsay, France
| | - Marta Moretti
- Department of Experimental Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Marilisa Conenna
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Antonino Cucinotta
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, 00161, Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, 00161, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | | | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91401, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR, INSERM U, 91401, Orsay, France
| | - Paola Infante
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy.
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome La Sapienza, 00161, Rome, Italy.
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, 00161, Rome, Italy.
| |
Collapse
|
5
|
Li K, Sun S, Lu Y, Liang W, Xu X, Zhang H, Chang Z, Wang C, Gao Y, Chen L. MT1M regulates gastric cancer progression and stemness by modulating the Hedgehog pathway protein GLI1. Biochem Biophys Res Commun 2023; 670:63-72. [PMID: 37276792 DOI: 10.1016/j.bbrc.2023.05.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Gastric cancer (GC) is a highly prevalent and aggressive malignancy with a poor prognosis. Recent evidence suggested that metallothionein 1 M (MT1M) may play a critical role in cancer development, progression, and drug resistance; however, its role in GC remains largely unknown. In this study, we investigated the expression and function of MT1M in GC both in vitro and in vivo. We found that MT1M expression was significantly downregulated in GC tissues and cell lines. Decreased expression of MT1M was associated with worse clinical prognosis, particularly in patients treated with 5-fluorouracil. Low expression of MT1M was indicative of poor overall survival (OS, HR 0.56 [95% CI 0.37-0.84], P < 0.005), first progression survival (FP, HR 0.54 [95% CI 0.36-0.79], P < 0.005), and post-progression survival (PPS, HR 0.65 [95% CI 0.45-0.94], P < 0.05). We also demonstrated that overexpression of MT1M inhibited cell proliferation and induced apoptosis in GC cells and in tumor xenografts, and it improved chemosensitivity to 5-fluorouracil. Furthermore, we found that MT1M overexpression could inhibit stem cell characteristics by targeting GLI1 and affecting GLI1 ubiquitination. Collectively, these findings indicated that MT1M may act as a tumor suppressor in GC and could serve as a potential therapeutic target to attenuate stemness and chemotherapy resistance of GC.
Collapse
Affiliation(s)
- Kai Li
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuyang Sun
- Department of Gastroenterology, Affiliated Beijing Chest Hospital of Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yixun Lu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenquan Liang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinxin Xu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhengyao Chang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chuang Wang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunhe Gao
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Cheng LH, Hsu CC, Tsai HW, Liao WY, Yang PM, Liao TY, Hsieh HY, Chan TS, Tsai KK. ASPM Activates Hedgehog and Wnt Signaling to Promote Small Cell Lung Cancer Stemness and Progression. Cancer Res 2023; 83:830-844. [PMID: 36638332 DOI: 10.1158/0008-5472.can-22-2496] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Small cell lung cancer (SCLC) is among the most aggressive and lethal human malignancies. Most patients with SCLC who initially respond to chemotherapy develop disease relapse. Therefore, there is a pressing need to identify novel driver mechanisms of SCLC progression to unlock treatment strategies to improve patient prognosis. SCLC cells comprise subsets of cells possessing progenitor or stem cell properties, while the underlying regulatory pathways remain elusive. Here, we identified the isoform 1 of the neurogenesis-associated protein ASPM (ASPM-I1) as a prominently upregulated stemness-associated gene during the self-renewal of SCLC cells. The expression of ASPM-I1 was found to be upregulated in SCLC cells and tissues, correlated with poor patient prognosis, and indispensable for SCLC stemness and tumorigenesis. A reporter array screening identified multiple developmental signaling pathways, including Hedgehog (Hh) and Wnt pathways, whose activity in SCLC cells depended upon ASPM-I1 expression. Mechanistically, ASPM-I1 stabilized the Hh transcriptional factor GLI1 at the protein level through a unique exon-18-encoded region by competing with the E3 ligases β-TrCP and CUL3. In parallel, ASPM-I1 sustains the transcription of the Hh pathway transmembrane regulator SMO through the Wnt-DVL3-β-catenin signaling axis. Functional studies verified that the ASPM-I1-regulated Hh and Wnt activities significantly contributed to SCLC aggressiveness in vivo. Consistently, the expression of ASPM-I1 positively correlated with GLI1 and stemness markers in SCLC tissues. This study illuminates an ASPM-I1-mediated regulatory module that drives tumor stemness and progression in SCLC, providing an exploitable diagnostic and therapeutic target. SIGNIFICANCE ASPM promotes SCLC stemness and aggressiveness by stabilizing the expression of GLI1, DVL3, and SMO, representing a novel regulatory hub of Hh and Wnt signaling and targetable vulnerability.
Collapse
Affiliation(s)
- Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Ying Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Tai-Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hsiao-Yen Hsieh
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
7
|
Wu C, Yuan L, Cao W, Ye X, Ma X, Qin C, Li B, Yu F, Fu X. Regulation of secondary hair follicle cycle in cashmere goats by miR-877-3p targeting IGFBP5 gene. J Anim Sci 2023; 101:skad314. [PMID: 37777862 PMCID: PMC10583983 DOI: 10.1093/jas/skad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Cashmere, a highly valuable animal product derived from cashmere goats, holds significant economic importance. MiRNAs serve as crucial regulators in the developmental processes of mammalian hair follicles. Understanding the regulation of miRNAs during the hair follicle cycle is essential for enhancing cashmere quality. In this investigation, we employed high-throughput sequencing technology to analyze the expression profiles of miRNAs in the secondary hair follicles of Jiangnan cashmere goats at different stages. Through bioinformatics analysis, we identified differentially expressed miRNAs (DE miRNAs). The regulatory relationships between miRNAs and their target genes were verified using multiple techniques, including RT-qPCR, western blot, Dual-Luciferase Reporter, and CKK-8 assays. Our findings revealed the presence of 193 DE miRNAs during various stages of the hair follicle cycle in Jiangnan cashmere goats. Based on the previously obtained mRNA data, the target genes of DE miRNA were predicted, and 1,472 negative regulatory relationships between DE miRNAs and target genes were obtained. Notably, the expression of chi-miR-877-3p was down-regulated during the telogen (Tn) phase compared to the anagen (An) and catagen (Cn) phases, while the IGFBP5 gene exhibited up-regulation. Further validation experiments confirmed that overexpression of chi-miR-877-3p in dermal papilla cells suppressed IGFBP5 gene expression and facilitated cell proliferation. The results of this study provide novel insights for analyzing the hair follicle cycle.
Collapse
Affiliation(s)
- Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Liang Yuan
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Wenzhi Cao
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xiaofang Ye
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xiaolin Ma
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, China
| | - Bin Li
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, China
| | - Fei Yu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang Urumqi, China
| |
Collapse
|
8
|
Bardwell AJ, Wu B, Sarin KY, Waterman ML, Atwood SX, Bardwell L. ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Sci Alliance 2022; 5:e202101353. [PMID: 35831023 PMCID: PMC9279676 DOI: 10.26508/lsa.202101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between the Hedgehog and MAPK signaling pathways occurs in several types of cancer and contributes to clinical resistance to Hedgehog pathway inhibitors. Here we show that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. ERK2 phosphorylates GLI1 on three evolutionarily conserved target sites (S102, S116, and S130) located near the high-affinity binding site for SUFU; these phosphorylations cooperate to weaken the affinity of GLI1-SUFU binding by over 25-fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily conserved SUFU affinity-modulating region. In cultured mammalian cells, GLI1 variants containing phosphomimetic substitutions of S102, S116, and S130 displayed an increased ability to drive transcription. We conclude that multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Beibei Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Mao W, Zhang L, Rong Y, Kuang T, Wang D, Xu X, Lou W, Li J. NEDD8-Activating Enzyme Inhibitor MLN4924 Inhibits Both the Tumor Stroma and Angiogenesis in Pancreatic Cancer via Gli1 and REDD1. Dig Dis Sci 2022; 68:1351-1363. [PMID: 36098876 DOI: 10.1007/s10620-022-07671-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/12/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Pancreatic cancer is characterized by a dense desmoplasia stroma, which hinders efficient drug delivery and plays a critical role in tumor progression and metastasis. MLN4924 is a first-in-class NEDD8-activating enzyme inhibitor that exhibits anti-tumor activities toward pancreatic cancer, and given the comprehensive effects that MLN4924 could have, we ask what impact MLN4924 would have on the stroma of pancreatic cancer and its underlying mechanisms. METHODS Primary pancreatic stellate cells (PSCs) and human HMEC-1 cells were treated with MLN4924 in vitro. The proliferation and extracellular matrix protein levels of PSCs were tested, and their relationship with transcription factor Gli1 in PSCs was investigated. The angiogenic phenotypes of HMEC-1 cells were evaluated using capillary-like tube formation assay, and their relationship with REDD1 in HMEC-1 cells was investigated. RESULTS In this study, we found that MLN4924 inhibited the proliferation of pancreatic stellate cells and their secretion of collagen and CXCL-1, and the collagen secretion inhibiting effect of MLN4924 was related with transcription factor Gli1. MLN4924 inhibited multiple angiogenic phenotypes of HMEC-1 cells, and mTOR agonist partially relieved the inhibition of MLN4924 on HEMCs. MLN4924 increased the expression of REDD1 and REDD1 knockdown promoted the angiogenic phenotypes of HMEC-1 cells. CONCLUSIONS Our study suggests that MLN4924 inhibits both the tumor stroma and angiogenesis in pancreatic cancer, and the inhibition effect is related with Gli1 in pancreatic stellate cells and REDD1 in vascular endothelial cells, respectively.
Collapse
Affiliation(s)
- Weilin Mao
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yefei Rong
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tiantao Kuang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dansong Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuefeng Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jianang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
11
|
Fukutani T, Toratani S, Kanda T, Matsui K, Yamasaki S, Sumi K, Ogawa I, Yanamoto S. Two Cases of Temporomandibular Synovial Chondromatosis Associated with Gli1 Gene Mutation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084702. [PMID: 35457572 PMCID: PMC9030668 DOI: 10.3390/ijerph19084702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Synovial chondromatosis (SC) is a rare benign disease involving multifocal generation of ectopic cartilage in the synovial tissue. Herein, we report two cases of SC in the temporomandibular joint: a 38-year-old woman (patient 1) and 39-year-old woman (patient 2). Both patients had trismus, jaw joint noises, and jaw-opening pain in the temporomandibular joint. Cone-beam computed tomography (CT) and magnetic resonance imaging (MRI) in patient 1 showed multiple calcified loose bodies around the right mandibular condyle. In addition, CT and MRI in patient 2 showed multiple calcified loose bodies around the left mandibular condyle and temporal bone perforation. Following establishing a diagnosis of SC, both patients underwent tumor resection via open surgery. In immunohistochemical examinations of the resected tissues, tumor cells showed intense nuclear staining with labeled anti-Gli1 antibody. Gene sequencing revealed that both patients had a homozygous mutation in the Gli1 gene (rs2228226 G>C). In conclusion, we suggest that the Gli1 gene (rs2228226 G>C) may be involved in the etiology of SC.
Collapse
Affiliation(s)
- Taeko Fukutani
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.T.); (S.Y.); (K.S.); (S.Y.)
- Correspondence: ; Tel.: +81-(0)-82-257-5667
| | - Shigeaki Toratani
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.T.); (S.Y.); (K.S.); (S.Y.)
| | - Taku Kanda
- Department of Oral and Maxillofacial Surgery, Hiroshima Prefectural Hospital, Hiroshima 734-8530, Japan; (T.K.); (K.M.)
| | - Kensaku Matsui
- Department of Oral and Maxillofacial Surgery, Hiroshima Prefectural Hospital, Hiroshima 734-8530, Japan; (T.K.); (K.M.)
| | - Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.T.); (S.Y.); (K.S.); (S.Y.)
| | - Kensaku Sumi
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.T.); (S.Y.); (K.S.); (S.Y.)
| | - Ikuko Ogawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8553, Japan;
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.T.); (S.Y.); (K.S.); (S.Y.)
| |
Collapse
|
12
|
Zhou Y, Huang J, Jin B, He S, Dang Y, Zhao T, Jin Z. The Emerging Role of Hedgehog Signaling in Viral Infections. Front Microbiol 2022; 13:870316. [PMID: 35464958 PMCID: PMC9023792 DOI: 10.3389/fmicb.2022.870316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The hedgehog (HH) signaling pathway is one of the key pathways that is indispensable for many developmental processes and postnatal tissue homeostasis. Dysregulated HH signaling could lead to developmental disorders and tumorigenesis in a variety of tissues via inherited or sporadic mutation, gene overexpression, and crosstalk with other signaling pathways. Recently, accumulating evidence has shown that HH signaling is targeted by viruses to facilitate viral transcription, immune evasion, and uncontrolled growth, leading to effective viral replication and pathogenesis. In this study, we will summarize recent advances in functional interaction between HH signaling and different types of viruses, particularly focusing on the pathological role of HH signaling in viral infections and related diseases.
Collapse
|
13
|
GLI-1 polymorphisms of Hedgehog pathway as novel risk and prognostic biomarkers in melanoma patients. Melanoma Res 2022; 32:11-17. [PMID: 34939981 DOI: 10.1097/cmr.0000000000000789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In adult organisms, deregulation of the sonic hedgehog (SHH) signaling pathway is significantly correlated with different malignancies. Currently, data associating genetic polymorphisms in the SHH pathway with melanoma are scarce and largely unknown. The objective of our study was to elucidate an association between gene polymorphisms in the SHH pathway and prognosis of melanoma skin cancer patients. The current study investigated the association of PTCH1 (rs357564), SMO (rs2228617) and GLI1 (rs2228224, rs2228226), polymorphisms with melanoma predisposition and prognosis. Single-nucleotide polymorphisms were assessed by TaqMan SNP Genotyping Assays. The study involved 93 melanoma patients and 97 individuals in the control group. Melanoma patients with the variant mutant genotype GG of GLI1 rs2228226 polymorphism had poorer overall survival and recurrence-free survival (P = 0.0001 and P = 0.037, respectively). The multivariate analysis revealed that disease progression [hazard ratio (HR) = 14.434, P = 0.0001] and the GLI1 rs2228226 polymorphism (HR = 4.161, P = 0.006) persisted as independent prognostic factors. Mutated allele carriers (combined heterozygous and mutated genotypes) for GLI1 rs2228224 G and GLI1 rs2228226 G allele significantly increased melanoma risk [odds ratio (OR) = 2.261, P = 0.007; OR = 2.176, P = 0.010]. Our study demonstrated that genetic variants in GLI1, downstream member of the HH signaling pathway, are the risk factors for melanoma susceptibility and it can be a novel marker for melanoma prognosis. As a crucial SHH signaling member, GLI1 can also be regarded as a novel drug target for anti-cancer treatment in melanoma.
Collapse
|
14
|
Zhang Q, Jiang J. Regulation of Hedgehog Signal Transduction by Ubiquitination and Deubiquitination. Int J Mol Sci 2021; 22:ijms222413338. [PMID: 34948134 PMCID: PMC8703657 DOI: 10.3390/ijms222413338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis in species ranging from insects to mammals. Deregulation of Hh pathway activity has been implicated in a wide range of human disorders, including congenital diseases and cancer. Hh exerts its biological influence through a conserved signaling pathway. Binding of Hh to its receptor Patched (Ptc), a twelve-span transmembrane protein, leads to activation of an atypical GPCR family protein and Hh signal transducer Smoothened (Smo), which then signals downstream to activate the latent Cubitus interruptus (Ci)/Gli family of transcription factors. Hh signal transduction is regulated by ubiquitination and deubiquitination at multiple steps along the pathway including regulation of Ptc, Smo and Ci/Gli proteins. Here we review the effect of ubiquitination and deubiquitination on the function of individual Hh pathway components, the E3 ubiquitin ligases and deubiquitinases involved, how ubiquitination and deubiquitination are regulated, and whether the underlying mechanisms are conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (Q.Z.); (J.J.)
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (Q.Z.); (J.J.)
| |
Collapse
|
15
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Lin HP, Wang Z, Yang C. LncRNA DUXAP10 Upregulation and the Hedgehog Pathway Activation Are Critically Involved in Chronic Cadmium Exposure-Induced Cancer Stem Cell-Like Property. Toxicol Sci 2021; 184:33-45. [PMID: 34373904 PMCID: PMC8677432 DOI: 10.1093/toxsci/kfab099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) is a well-known lung carcinogen. However, the mechanism of Cd carcinogenesis remains to be clearly defined. Cd has been shown to act as a weak mutagen, suggesting that it may exert tumorigenic effect through nongenotoxic ways, such as epigenetic mechanisms. Long noncoding RNAs (lncRNAs) refer to RNA molecules that are longer than 200 nucleotides in length but lack protein-coding capacities. Regulation of gene expressions by lncRNAs is considered as one of important epigenetic mechanisms. The goal of this study is to investigate the mechanism of Cd carcinogenesis focusing on the role of lncRNA dysregulations. Cd-induced malignant transformation of human bronchial epithelia BEAS-2B cells was accomplished by a 9-month low-dose Cd (CdCl2, 2.5 µM) exposure. The Cd-exposed cells formed significantly more colonies in soft agar, displayed cancer stem cell (CSC)-like property, and formed tumors in nude mice. Mechanistically, chronic low-dose Cd exposure did not cause significant genotoxic effects but dysregulated lncRNA expressions. Further Q-PCR analysis confirmed the significant upregulation of the oncogenic lncRNA DUXAP10 in Cd-transformed cells. DUXAP10 knockdown in Cd-transformed cells significantly reduced their CSC-like property. Further mechanistic studies showed that the Hedgehog pathway is activated in Cd-transformed cells and inhibition of this pathway reduces Cd-induced CSC-like property. DUXAP10 knockdown caused the Hedgehog pathway inactivation in Cd-transformed cells. Furthermore, Pax6 expression was upregulated in Cd-transformed cells and Pax6 knockdown significantly reduced their DUXAP10 levels and CSC-like property. In summary, these findings suggest that the lncRNA DUXAP10 upregulation may play an important role in Cd carcinogenesis.
Collapse
Affiliation(s)
- Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| |
Collapse
|
17
|
The Role of the Hedgehog Pathway in Cholangiocarcinoma. Cancers (Basel) 2021; 13:cancers13194774. [PMID: 34638259 PMCID: PMC8507550 DOI: 10.3390/cancers13194774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cholangiocarcinoma (CCA) is one of the most refractory malignancies with a high mortality rate. Among all the pathways involved in CCA development, emerging evidence highlights Hedgehog (HH) signaling as a substantial player in CCA-genesis and development. The pro-tumoral function of HH provides potential therapeutic implications, and recently the use of HH inhibitors has paved the way for clinical application in various solid tumors. Targeting HH members, namely Hedgehog ligands, SMO transmembrane protein and GLI transcription factors may thus confer therapeutic options for the improvement of CCA treatment outcome. Abstract Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and, along with hepatocellular carcinoma (HCC), is the predominant type of primitive liver cancer in adults. The lack of understanding of CCA biology has slowed down the identification of novel targets and the development of effective treatments. While tumors share some general characteristics, detailed knowledge of specific features is essential for the development of effectively tailored therapeutic approaches. The Hedgehog (HH) signaling cascade regulates stemness biology, embryonal development, tissue homeostasis, and cell proliferation and differentiation. Its aberrant activation has been associated with a variety of solid and hematological human malignancies. Several HH-inhibiting compounds have been indeed developed as potential anticancer agents in different types of tumors, with Smoothened and GLI inhibitors showing the most promising results. Beside its well-established function in other tumors, findings regarding the HH signaling in CCA are still controversial. Here we will give an overview of the most important clinical and molecular features of cholangiocarcinoma, and we will discuss the available evidence of the crosstalk between the HH signaling pathway and the cholangiocarcinoma cell biology.
Collapse
|
18
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
19
|
Cyclic AMP-Dependent Protein Kinase Exhibits Antagonistic Effects on the Replication Efficiency of Different Human Papillomavirus Types. J Virol 2021; 95:e0025121. [PMID: 33853963 DOI: 10.1128/jvi.00251-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Several types of widespread human papillomaviruses (HPVs) may induce the transformation of infected cells, provoking the development of neoplasms. Two main genera of HPVs are classified as mucosatropic alphapapillomaviruses and cutaneotropic betapapillomaviruses (α- and β-HPVs, respectively), and they both include high-risk cancer-associated species. The absence of antiviral drugs has driven investigations into the details of the molecular mechanisms of the HPV life cycle. HPV replication depends on the viral helicase E1 and the transcription factor E2. Their biological activities are controlled by numerous cellular proteins, including protein kinases. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of α-HPV11, α-HPV18, and β-HPV5. PKA stimulates the replication of both α-HPVs studied but has a more profound effect on the replication of high-risk α-HPV18. However, the replication of β-HPV5 is inhibited by activated PKA in human primary keratinocytes and U2OS cells. We show that the activation of PKA signaling by different pharmacological agents induces the rapid proteasomal degradation of the HPV5 E2 protein, which in turn leads to the downregulation of E2-dependent transcription. In contrast, PKA-stimulated induction of HPV18 replication is the result of the downregulation of the E8^E2 transcript encoding a potent viral transcriptional inhibitor together with the rapid upregulation of E1 and E2 protein levels. IMPORTANCE Several types of human papillomaviruses (HPVs) are causative agents of various types of epithelial cancers. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of various types of HPVs during the initial amplification and maintenance phases of the viral life cycle. The replication of the skin cancer-related pathogen HPV5 is suppressed, whereas the replication of the cervical cancer-associated pathogen HPV18 is activated, in response to elevated PKA activity. To inhibit HPV5 replication, PKA targets the viral transcriptional activator E2, inducing its rapid proteasomal degradation. PKA-dependent stimulation of HPV18 replication relies on the downregulation of another E2 gene product, E8^E2, which encodes a potent transcriptional repressor. Our findings highlight, for the first time, protein kinase-related mechanistic differences in the regulation of the replication of mucosal and cutaneous HPV types.
Collapse
|
20
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
21
|
Ding J, Li HY, Zhang L, Zhou Y, Wu J. Hedgehog Signaling, a Critical Pathway Governing the Development and Progression of Hepatocellular Carcinoma. Cells 2021; 10:cells10010123. [PMID: 33440657 PMCID: PMC7826706 DOI: 10.3390/cells10010123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hedgehog (Hh) signaling is a classic morphogen in controlling embryonic development and tissue repairing. Aberrant activation of Hh signaling has been well documented in liver cancer, including hepatoblastoma, hepatocellular carcinoma (HCC) and cholangiocarcinoma. The present review aims to update the current understanding on how abnormal Hh signaling molecules modulate initiation, progression, drug resistance and metastasis of HCC. The latest relevant literature was reviewed with our recent findings to provide an overview regarding the molecular interplay and clinical relevance of the Hh signaling in HCC management. Hh signaling molecules are involved in the transformation of pre-carcinogenic lesions to malignant features in chronic liver injury, such as nonalcoholic steatohepatitis. Activation of GLI target genes, such as ABCC1 and TAP1, is responsible for drug resistance in hepatoma cells, with a CD133−/EpCAM− surface molecular profile, and GLI1 and truncated GLI1 account for the metastatic feature of the hepatoma cells, with upregulation of matrix metalloproteinases. A novel bioassay for the Sonic Hh ligand in tissue specimens may assist HCC diagnosis with negative α-fetoprotein and predict early microvascular invasion. In-depth exploration of the Hh signaling deepens our understanding of its molecular modulation in HCC initiation, drug sensitivity and metastasis, and guides precise management of HCC on an individual basis.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Hui-Yan Li
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Yuan Zhou
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-215-423-7705; Fax: +86-216-422-7201
| |
Collapse
|
22
|
Zema S, Pelullo M, Nardozza F, Felli MP, Screpanti I, Bellavia D. A Dynamic Role of Mastermind-Like 1: A Journey Through the Main (Path)ways Between Development and Cancer. Front Cell Dev Biol 2020; 8:613557. [PMID: 33425921 PMCID: PMC7787167 DOI: 10.3389/fcell.2020.613557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Major signaling pathways, such as Notch, Hedgehog (Hh), Wnt/β-catenin and Hippo, are targeted by a plethora of physiological and pathological stimuli, ultimately resulting in the modulation of genes that act coordinately to establish specific biological processes. Many biological programs are strictly controlled by the assembly of multiprotein complexes into the nucleus, where a regulated recruitment of specific transcription factors and coactivators on gene promoter region leads to different transcriptional outcomes. MAML1 results to be a versatile coactivator, able to set up synergistic interlinking with pivotal signaling cascades and able to coordinate the network of cross-talking pathways. Accordingly, despite its original identification as a component of the Notch signaling pathway, several recent reports suggest a more articulated role for MAML1 protein, showing that it is able to sustain/empower Wnt/β-catenin, Hh and Hippo pathways, in a Notch-independent manner. For this reason, MAML1 may be associated to a molecular “switch”, with the function to control the activation of major signaling pathways, triggering in this way critical biological processes during embryonic and post-natal life. In this review, we summarize the current knowledge about the pleiotropic role played by MAML proteins, in particular MAML1, and we recapitulate how it takes part actively in physiological and pathological signaling networks. On this point, we also discuss the contribution of MAML proteins to malignant transformation. Accordingly, genetic alterations or impaired expression of MAML proteins may lead to a deregulated crosstalk among the pathways, culminating in a series of pathological disorders, including cancer development. Given their central role, a better knowledge of the molecular mechanisms that regulate the interplay of MAML proteins with several signaling pathways involved in tumorigenesis may open up novel opportunities for an attractive molecular targeted anticancer therapy.
Collapse
Affiliation(s)
- Sabrina Zema
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
23
|
Yamashita M, Owa T, Shiraishi R, Adachi T, Ichijo K, Taya S, Miyashita S, Hoshino M. The role of SCF Skp2 and SCF β-TrCP1/2 in the cerebellar granule cell precursors. Genes Cells 2020; 25:796-810. [PMID: 33020978 DOI: 10.1111/gtc.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/01/2022]
Abstract
A proper balance between proliferation and differentiation of cerebellar granule cell precursors (GCPs) is required for appropriate cerebellar morphogenesis. The Skp1-Cullin1-F-box (SCF) complex, an E3 ubiquitin ligase complex, is involved in polyubiquitination and subsequent degradation of various cell cycle regulators and transcription factors. However, it remains unknown how the SCF complex affects proliferation and differentiation of GCPs. In this study, we found that the scaffold protein Cullin1, and F-box proteins Skp2, β-TrCP1 and β-TrCP2 are expressed in the external granule layer (EGL). Knockdown of these molecules in the EGL showed that Cullin1, Skp2 and β-TrCP2 enhanced differentiation of GCPs. We also observed accumulation of cyclin-dependent kinase inhibitor p27 in GCPs when treated with a Cullin1 inhibitor or proteasome inhibitor. Furthermore, knockdown of p27 rescued enhancement of differentiation by Cullin1 knockdown. These results suggest that the SCF complex is involved in the maintenance of the proliferative state of GCPs through p27 degradation. In addition, inhibition of Cullin1 activity also prevented cell proliferation and enhanced accumulation of p27 in Daoy cells, a cell line derived from the sonic hedgehog subtype of medulloblastoma. This suggested that excess degradation of p27 through the SCF complex causes overproliferation of medulloblastoma cells.
Collapse
Affiliation(s)
- Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, TMDU, Tokyo, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advance Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kentaro Ichijo
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
24
|
Larsen LJ, Møller LB. Crosstalk of Hedgehog and mTORC1 Pathways. Cells 2020; 9:cells9102316. [PMID: 33081032 PMCID: PMC7603200 DOI: 10.3390/cells9102316] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling and mTOR signaling, essential for embryonic development and cellular metabolism, are both coordinated by the primary cilium. Observations from cancer cells strongly indicate crosstalk between Hh and mTOR signaling. This hypothesis is supported by several studies: Evidence points to a TGFβ-mediated crosstalk; Increased PI3K/AKT/mTOR activity leads to increased Hh signaling through regulation of the GLI transcription factors; increased Hh signaling regulates mTORC1 activity positively by upregulating NKX2.2, leading to downregulation of negative mTOR regulators; GSK3 and AMPK are, as members of both signaling pathways, potentially important links between Hh and mTORC1 signaling; The kinase DYRK2 regulates Hh positively and mTORC1 signaling negatively. In contrast, both positive and negative regulation of Hh has been observed for DYRK1A and DYRK1B, which both regulate mTORC1 signaling positively. Based on crosstalk observed between cilia, Hh, and mTORC1, we suggest that the interaction between Hh and mTORC1 is more widespread than it appears from our current knowledge. Although many studies focusing on crosstalk have been carried out, contradictory observations appear and the interplay involving multiple partners is far from solved.
Collapse
|
25
|
Vriend J, Rastegar M. Ubiquitin ligases and medulloblastoma: genetic markers of the four consensus subgroups identified through transcriptome datasets. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165839. [PMID: 32445667 DOI: 10.1016/j.bbadis.2020.165839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 01/05/2023]
Abstract
The ubiquitin proteasome system regulates key cellular processes in normal and in cancer cells. Herein, we review published data on the role of ubiquitin ligases in the four major subgroups of medulloblastoma (MB). While conventional literature serves as an initial source of information on cellular pathways in MB, large publicly available datasets of gene expression can be used to add information not previously identified in the literature. By analysing the publicly available Cavalli dataset, we show that increased expression of ZNRF3 characterizes the WNT subgroup of MB. The ZNRF3 gene codes for an E3 ligase associated with WNT receptors. Loss of a copy of chromosome 6 in a subtype of the WNT group was associated with decreased expression of the gene encoding the E3 ligase RNF146. While the E3 ligase SMURF regulates SHH receptors, increased expression of the gene encoding the Cullin Ring E3 adaptor PPP2R2C was statistically a better genetic marker of the SHH group. Genes whose expression was statistically strongly related to Group 3 included the E3 ligase gene TRIM58, and the gene for the E3 ligase adaptor, PPP2R2B. Group 4 MB was associated with expression of genes encoding several E3 ligases and E3 ligase adaptors involved in ribosome biogenesis. Increased expression of the genes encoding the E3 ligase adaptors and transcription repressors ZBTB18 and ZBTB38 were also noted in subgroup 4. These data suggest that several E3 ligases and their adaptors should be investigated as therapeutic targets for subgroup specific MB brain tumors.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics and Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
26
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
27
|
DUBs Activating the Hedgehog Signaling Pathway: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2020; 12:cancers12061518. [PMID: 32531973 PMCID: PMC7352588 DOI: 10.3390/cancers12061518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 12/29/2022] Open
Abstract
The Hedgehog (HH) pathway governs cell proliferation and patterning during embryonic development and is involved in regeneration, homeostasis and stem cell maintenance in adult tissues. The activity of this signaling is finely modulated at multiple levels and its dysregulation contributes to the onset of several human cancers. Ubiquitylation is a coordinated post-translational modification that controls a wide range of cellular functions and signaling transduction pathways. It is mediated by a sequential enzymatic network, in which ubiquitin ligases (E3) and deubiquitylase (DUBs) proteins are the main actors. The dynamic balance of the activity of these enzymes dictates the abundance and the fate of cellular proteins, thus affecting both physiological and pathological processes. Several E3 ligases regulating the stability and activity of the key components of the HH pathway have been identified. Further, DUBs have emerged as novel players in HH signaling transduction, resulting as attractive and promising drug targets. Here, we review the HH-associated DUBs, discussing the consequences of deubiquitylation on the maintenance of the HH pathway activity and its implication in tumorigenesis. We also report the recent progress in the development of selective inhibitors for the DUBs here reviewed, with potential applications for the treatment of HH-related tumors.
Collapse
|
28
|
Park SH, Jeong S, Kim BR, Jeong YA, Kim JL, Na YJ, Jo MJ, Yun HK, Kim DY, Kim BG, Lee DH, Oh SC. Activating CCT2 triggers Gli-1 activation during hypoxic condition in colorectal cancer. Oncogene 2019; 39:136-150. [PMID: 31462707 DOI: 10.1038/s41388-019-0972-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Hypoxia, or the deficiency of oxygen, in solid tumors is majorly responsible for the progression of cancer and remains unaffected by chemotherapy, but still requires definitive definition of the hypoxia signaling. Hypoxia disrupts the complete folding of mitochondrial proteins, leading to several diseases. The present study confirms that hypoxia activates the Hedgehog pathway in colorectal cancer (CRC), considering its role in cancer epithelial to mesenchymal transition, migration, and invasion. The activity of hypoxia-mediated Gli-1, a Hedgehog signaling factor in hypoxia, was confirmed by in vitro western blotting, immunofluorescence staining, wound-healing assay, and matrigel invasion assay, as well as by in vivo xenograft models (n = 5 per group). The Gli-1 mechanism in hypoxia was analyzed via mass spectrometry. Hypoxia enhanced the interaction of Gli-1 and T-complex protein 1 subunit beta (CCT2), as observed in the mass spectrometric analysis. We observed that reduction in CCT2 inhibits tumor induction by Gli-1. Ubiquitination-mediated Gli-1 degradation by β-TrCP occurs during incomplete folding of Gli-1 in hypoxia. The human CRC tissues revealed greater CCT2 expression than did the normal colon tissues, indicating that higher CCT2 expression in tumor tissues from CRC patients reduced their survival rate. Moreover, we suggest that CCT2 correlates with Gli-1 expression and is an important determinant of survival in the CRC patients. The results reveal that CCT2 can regulate the folding of Gli-1 in relation to hypoxia in CRC.
Collapse
Affiliation(s)
- Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Yoon A Jeong
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Yoo Jin Na
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Jee Jo
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Kyeong Yun
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae Yeong Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bu Gyeom Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae-Hee Lee
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| | - Sang Cheul Oh
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| |
Collapse
|
29
|
ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Nat Commun 2019; 10:3304. [PMID: 31341163 PMCID: PMC6656771 DOI: 10.1038/s41467-019-11093-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated βTrCP, the substrate-receptor subunit of the SCFβTrCP ubiquitin ligase, and promotes βTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors. ERAP1 is an endoplasmic reticulum aminopeptidase that trims MHC Class-I peptides for antigen presentation. Here, the authors show that ERAP1 enhances Hedgehog signalling by sequestering USP47 from βTrCP and promoting tumorigenesis through βTrCP degradation and increased Gli protein stability.
Collapse
|
30
|
Pietrobono S, Gagliardi S, Stecca B. Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened. Front Genet 2019; 10:556. [PMID: 31244888 PMCID: PMC6581679 DOI: 10.3389/fgene.2019.00556] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog-GLI (HH-GLI) pathway is a highly conserved signaling that plays a critical role in controlling cell specification, cell–cell interaction and tissue patterning during embryonic development. Canonical activation of HH-GLI signaling occurs through binding of HH ligands to the twelve-pass transmembrane receptor Patched 1 (PTCH1), which derepresses the seven-pass transmembrane G protein-coupled receptor Smoothened (SMO). Thus, active SMO initiates a complex intracellular cascade that leads to the activation of the three GLI transcription factors, the final effectors of the HH-GLI pathway. Aberrant activation of this signaling has been implicated in a wide variety of tumors, such as those of the brain, skin, breast, gastrointestinal, lung, pancreas, prostate and ovary. In several of these cases, activation of HH-GLI signaling is mediated by overproduction of HH ligands (e.g., prostate cancer), loss-of-function mutations in PTCH1 or gain-of-function mutations in SMO, which occur in the majority of basal cell carcinoma (BCC), SHH-subtype medulloblastoma and rhabdomyosarcoma. Besides the classical canonical ligand-PTCH1-SMO route, mounting evidence points toward additional, non-canonical ways of GLI activation in cancer. By non-canonical we refer to all those mechanisms of activation of the GLI transcription factors occurring independently of SMO. Often, in a given cancer type canonical and non-canonical activation of HH-GLI signaling co-exist, and in some cancer types, more than one mechanism of non-canonical activation may occur. Tumors harboring non-canonical HH-GLI signaling are less sensitive to SMO inhibition, posing a threat for therapeutic efficacy of these antagonists. Here we will review the most recent findings on the involvement of alternative signaling pathways in inducing GLI activity in cancer and stem cells. We will also discuss the rationale of targeting these oncogenic pathways in combination with HH-GLI inhibitors as a promising anti-cancer therapies.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sinforosa Gagliardi
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Barbara Stecca
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| |
Collapse
|
31
|
Abstract
Signaling pathways that mediate cell-cell communication are essential for collective cell behaviors in multicellular systems. The hedgehog (HH) pathway, first discovered and elucidated in Drosophila, is one of these iconic signaling systems that plays many roles during embryogenesis and in adults; abnormal HH signaling can lead to birth defects and cancer. We review recent structural and biochemical studies that have advanced our understanding of the vertebrate HH pathway, focusing on the mechanisms by which the HH signal is received by patched on target cells, transduced across the cell membrane by smoothened, and transmitted to the nucleus by GLI proteins to influence gene-expression programs.
Collapse
Affiliation(s)
- Jennifer H Kong
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Abstract
Controlled ubiquitin-mediated protein degradation is essential for various cellular processes. GLI family regulates the transcriptional events of the sonic hedgehog pathway genes that are implicated in almost one fourth of human tumors. GLI3 phosphorylation by Ser/Thr kinases is a primary factor for their transcriptional activity that incurs the formation of both GLI3 repressor and activator forms. GLI3 processing is triggered in an ubiquitin-dependent manner via SCFβTrCP1 complex; however, structural characterization, mode of action based on sequence of phosphorylation signatures and induced conformational readjustments remain elusive. Here, through structural analysis and molecular dynamics simulation assays, we explored comparative binding pattern of GLI3 phosphopeptides against βTrCP1. A comprehensive and thorough analysis demarcated GLI3 presence in the binding cleft shared by inter-bladed binding grooves of β-propeller. Our results revealed the involvement of all seven WD40 repeats of βTrCP1 in GLI3 interaction. Conversely, GLI3 phosphorylation pattern at primary protein kinase A (PKA) sites and secondary casein kinase 1 (CK1) or glycogen synthase kinase 3 (GSK3) sites was carefully evaluated. Our results indicated that GLI3 processing depends on the 19 phosphorylation sites (849, 852, 855, 856, 860, 861, 864, 865, 868, 872, 873, 876, 877, 880, 899, 903, 906, 907 and 910 positions) by a cascade of PKA, GSK3β and CSKI kinases. The presence of a sequential phosphorylation in the binding induction of GLI3 and βTrCP1 may be a hallmark to authenticate GLI3 processing. We speculate that mechanistic information of the individual residual contributions through structure-guided approaches may be pivotal for the rational design of specific and more potent inhibitors against activated GLI3 with a special emphasis on the anticancer activity.
Collapse
|
33
|
Peer E, Tesanovic S, Aberger F. Next-Generation Hedgehog/GLI Pathway Inhibitors for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040538. [PMID: 30991683 PMCID: PMC6520835 DOI: 10.3390/cancers11040538] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells (CSC), which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. Efficacious therapeutic approaches targeting CSC pathways, such as HH/GLI signaling in combination with chemo, radiation or immunotherapy are, therefore, of high medical need. Pharmacological inhibition of HH/GLI pathway activity represents a promising approach to eliminate malignant CSC. Clinically approved HH/GLI pathway inhibitors target the essential pathway effector Smoothened (SMO) with striking therapeutic efficacy in skin and brain cancer patients. However, multiple genetic and molecular mechanisms resulting in de novo and acquired resistance to SMO inhibitors pose major limitations to anti-HH/GLI therapies and, thus, the eradication of CSC. In this review, we summarize reasons for clinical failure of SMO inhibitors, including mechanisms caused by genetic alterations in HH pathway effectors or triggered by additional oncogenic signals activating GLI transcription factors in a noncanonical manner. We then discuss emerging novel and rationale-based approaches to overcome SMO-inhibitor resistance, focusing on pharmacological perturbations of enzymatic modifiers of GLI activity and on compounds either directly targeting oncogenic GLI factors or interfering with synergistic crosstalk signals known to boost the oncogenicity of HH/GLI signaling.
Collapse
Affiliation(s)
- Elisabeth Peer
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Suzana Tesanovic
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Fritz Aberger
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
34
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
35
|
Magic M, Zeljic K, Jovandic S, Stepic J, Pejovic M, Colic S, Magic Z, Supic G. Hedgehog signaling pathway and vitamin D receptor gene variants as potential risk factors in odontogenic cystic lesions. Clin Oral Investig 2018; 23:2675-2684. [DOI: 10.1007/s00784-018-2686-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/01/2018] [Indexed: 01/10/2023]
|
36
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:E2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
37
|
Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J, Day ES. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget 2018; 9:27000-27015. [PMID: 29930746 PMCID: PMC6007474 DOI: 10.18632/oncotarget.25467] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Resistance to chemotherapy substantially hinders successful glioblastoma (GBM) treatment, contributing to an almost 100% mortality rate. Resistance to the frontline chemotherapy, temozolomide (TMZ), arises from numerous signaling pathways that are deregulated in GBM, including Hedgehog (Hh) signaling. Here, we investigate suppression of Hh signaling as an adjuvant to TMZ using U87-MG and T98G cell lines as in vitro models of GBM. We found that silencing GLI1 with siRNA reduces cell metabolic activity by up to 30% in combination with TMZ and reduces multidrug efflux activity by 2.5-fold. Additionally, pharmacological GLI inhibition modulates nuclear p53 levels and decreases MGMT expression in combination with TMZ. While we surprisingly found that silencing GLI1 does not induce apoptosis in the absence of TMZ co-treatment, we discovered silencing GLI1 without TMZ co-treatment induces senescence as evidenced by a significant 2.3-fold increase in senescence associated β-galactosidase staining, and this occurs in a loss of PTEN-dependent manner. Finally, we show that GLI inhibition increases apoptosis in glioma stem-like cells by up to 6.8-fold in combination with TMZ, and this reduces the size and number of neurospheres grown from glioma stem-like cells. In aggregate, our data warrant the continued investigation of Hh pathway inhibitors as adjuvants to TMZ chemotherapy and highlight the importance of identifying signaling pathways that determine whether co-treatment will be successful.
Collapse
Affiliation(s)
| | - Joshua T Morgan
- Bioengineering, University of California, Riverside, CA, USA
| | - Stephen A Ioele
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Biomedical Engineering, University of Delaware, Newark, DE, USA.,Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Emily S Day
- Biomedical Engineering, University of Delaware, Newark, DE, USA.,Helen F. Graham Cancer Center and Research Institute, Newark, DE, USA.,Materials Science and Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
38
|
Zhang R, Huang SY, Ka-Wai Li K, Li YH, Hsu WH, Zhang GJ, Chang CJ, Yang JY. Dual degradation signals destruct GLI1: AMPK inhibits GLI1 through β-TrCP-mediated proteasome degradation. Oncotarget 2018; 8:49869-49881. [PMID: 28562331 PMCID: PMC5564814 DOI: 10.18632/oncotarget.17769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Overexpression of the GLI1 gene has frequently been found in various cancer types, particularly in brain tumors, in which aberrant GLI1 induction promotes cancer cell growth. Therefore, identifying the molecular players controlling GLI1 expression is of clinical importance. Previously, we reported that AMPK directly phosphorylated and destabilized GLI1, resulting in the suppression of the Hedgehog signaling pathway. The current study not only demonstrates that AMPK inhibits GLI1 nuclear localization, but further reveals that β-TrCP plays an essential role in AMPK-induced GLI1 degradation. We found that activation of AMPK promotes the interaction between β-TrCP and GLI1, and induces β-TrCP-mediated GLI1-ubiquitination and degradation. Inhibiting AMPK activity results in the dissociation of the β-TrCP and GLI1 interaction, and diminishes β-TrCP-mediated-GLI1 ubiquitination and degradation. On GLI1, substitution of AMPK phosphorylation sites to aspartic acid (GLI13E) results in stronger binding affinity of GLI1 with β-TrCP, accompanied by enhanced GLI1 ubiquitination and later degradation. In contrast, the GLI1 alanine mutant (GLI13A) shows weaker binding with β-TrCP, which is accompanied by reduced β-TrCP-mediated ubiquitination and degradation. Together, these results demonstrate that AMPK regulates GLI1 interaction with β-TrCP by phosphorylating GLI1 and thus both post-translational modifications by AMPK and β-TrCP ultimately impact GLI1 degradation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Sherri Y Huang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Kay Ka-Wai Li
- /F of Cancer Centre, Prince of Wales Hospital, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yen-Hsing Li
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Wei-Hsuan Hsu
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA
| | - Guang Jun Zhang
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Chun-Ju Chang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
39
|
MEKK2 and MEKK3 suppress Hedgehog pathway-dependent medulloblastoma by inhibiting GLI1 function. Oncogene 2018; 37:3864-3878. [PMID: 29662197 PMCID: PMC6041257 DOI: 10.1038/s41388-018-0249-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
Abstract
Hedgehog (Hh) pathway plays a pivotal role in diverse aspects of development and postnatal physiology. Perturbation of Hh signaling and activation of GLI1 (glioma-associated oncogene 1), a dedicated transcription factor for Hh pathway, are highly associated with several cancers, such as medulloblastoma and basal cell carcinoma. Dynamic and precise control of GLI1 activity is thus important to ensure proper homeostasis and tumorigenesis. Here we show that MEKK2 (MAP3K2) and MEKK3 (MAP3K3) inhibit GLI1 transcriptional activity and oncogenic function through phosphorylation on multiple Ser/Thr sites of GLI1, which reduces GLI1 protein stability, DNA-binding ability, and increases the association of GLI1 with SUFU. Interestingly, MEKK2 and MEKK3 are responsible for FGF2-mediated inhibition on Hh signaling. Moreover, expression of MEKK2 and MEKK3 inhibits medulloblastoma cell proliferation and negatively correlates with Hh pathway activity in medulloblastoma clinical samples. Together, these findings reveal a novel noncanonical GLI1 regulation and provide a potential therapeutic target for the treatment of cancers with aberrant Hh pathway activation, such as medulloblastoma.
Collapse
|
40
|
Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis. Nat Commun 2018. [PMID: 29515120 PMCID: PMC5841288 DOI: 10.1038/s41467-018-03339-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis. SuFu is a tumour suppressor in medulloblastoma and regulates Gli proteins in the Sonic Hedgehog pathway; however, the molecular mechanisms behind this regulation are unclear. Here, the authors show that the Itch/β-arrestin2 complex binds and ubiquitylates SuFu, facilitating the interaction with Gli3 and its conversion into the repressive form, thus counteracting medulloblastoma formation.
Collapse
|
41
|
Ozretić P, Trnski D, Musani V, Maurac I, Kalafatić D, Orešković S, Levanat S, Sabol M. Non-canonical Hedgehog signaling activation in ovarian borderline tumors and ovarian carcinomas. Int J Oncol 2017; 51:1869-1877. [PMID: 29039491 DOI: 10.3892/ijo.2017.4156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Hedgehog signaling pathway has been implicated in the pathology of ovarian cancer, and Survivin (BIRC5) has been suggested as a novel target of this pathway. Herein we investigated the role of Hedgehog signaling pathway and Survivin in ovarian carcinoma and borderline tumor samples. We aimed to determine possible ways of pathway modulation on primary ovarian cancer cells and an established cell line. RNA was extracted from fresh tumors and control tissues and gene expression was examined using qRT-PCR. Pathway activity in cell lines was examined after treatment with cyclopamine, SHH protein, GANT-61 or lithium chloride using qRT-PCR, western blot and confocal microscopy. The difference between control tissue, borderline tumors and carcinomas can be seen in GLI1 and SUFU gene expression, which is significantly higher in borderline tumors compared to carcinomas. SUFU also shows lower expression levels in higher FIGO stages relative to lower stages. BIRC5 is expressed in all tumors and in healthy ovarian tissues compared to our control tissue, healthy fallopian tube samples. Primary cells developed from ovarian carcinoma tissue respond to cyclopamine treatment with a short-term decrease in cell proliferation, downregulation of Hedgehog pathway genes, including BIRC5, and changes in protein dynamics. Stimulation with SHH protein results in increased cell migration, while GLI1 transfection or PTCH1 silencing demonstrate pathway upregulation. The pathway activity can be modulated by LiCl at the GSK3β-SUFU-GLI level, suggesting at least partial non-canonical activation. Downregulation of the pathway with GANT-61 has proved to be more effective than cyclopamine. GLI inhibitors may be a superior treatment option in ovarian cancer compared to SMO inhibitors.
Collapse
Affiliation(s)
- Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivana Maurac
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Držislav Kalafatić
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavko Orešković
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
42
|
Wang X, Fang Z, Wang A, Luo C, Cheng X, Lu M. Lithium Suppresses Hedgehog Signaling via Promoting ITCH E3 Ligase Activity and Gli1-SUFU Interaction in PDA Cells. Front Pharmacol 2017; 8:820. [PMID: 29249966 PMCID: PMC5715333 DOI: 10.3389/fphar.2017.00820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/30/2017] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of Hedgehog (Hh) signaling pathway is one of the hallmarks of pancreatic ductal adenocarcinoma (PDA). Lithium, a clinical mood stabilizer for the treatment of mental disorders, is known to suppress tumorigenic potential of PDA cells by targeting the Hh/Gli signaling pathway. In this study, we investigated the molecular mechanism of lithium induced down-regulation of Hh/Gli1. Our data show that lithium promotes the poly-ubiquitination and proteasome-mediated degradation of Gli1 through activating E3 ligase ITCH. Additionally, lithium enhances interaction between Gli1 and SUFU via suppressing GSK3β, which phosphorylates SUFU and destabilizes the SUFU-Gli1 inhibitory complex. Our studies illustrate a novel mechanism by which lithium suppresses Hh signaling via simultaneously promoting ITCH-dependent Gli1 ubiquitination/degradation and SUFU-mediated Gli1 inhibition.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijian Fang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Anlin Wang
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Cheng Luo
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Meiling Lu
- State Key Laboratory of Natural Medicines, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Monkkonen T, Lewis MT. New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:315-332. [PMID: 28624497 PMCID: PMC5567999 DOI: 10.1016/j.bbcan.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The Hedgehog signaling network regulates organogenesis, cell fate, proliferation, survival, and stem cell self-renewal in many mammalian tissues. Aberrant activation of the Hedgehog signaling network is present in ~25% of all cancers, including breast. Altered expression of Hedgehog network genes in the mammary gland can elicit phenotypes at many stages of development. However, synthesizing a cohesive mechanistic model of signaling at different stages of development has been difficult. Emerging data suggest that this difficulty is due, in part, to non-canonical and tissue compartment-specific (i.e., epithelial, versus stromal, versus systemic) functions of Hedgehog network components. With respect to systemic functions, Hedgehog network genes regulate development of endocrine organs that impinge on mammary gland development extrinsically. These new observations offer insight into previously conflicting data, and have bearing on the potential for anti-Hedgehog therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; University of California, San Francisco, Dept. of Pathology, 513 Parnassus Ave., San Francisco, CA 94118, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Zhou A, Lin K, Zhang S, Ma L, Xue J, Morris SA, Aldape KD, Huang S. Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep 2017. [PMID: 28623188 DOI: 10.15252/embr.201643124] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway drives the tumorigenesis of multiple cancers. In this study, we screened a panel of deubiquitinases that may regulate the Hh pathway. We find that deubiquitinase USP48 activates Gli-dependent transcription by stabilizing Gli1 protein. Mechanistically, USP48 interacts with Gli1 and cleaves its ubiquitin off directly. In glioblastoma cells, knockdown of USP48 inhibits cell proliferation and the expression of Gli1's downstream targets, which leads to repressed glioblastoma tumorigenesis. Importantly, USP48's effect on cell proliferation and tumorigenesis depends to some extent on Gli1. In addition, we find that the Sonic Hedgehog (SHH) pathway induces USP48 expression through Gli1-mediated transcriptional activation, which forms thus a positive feedback loop to regulate Hh signaling. In human glioblastoma specimens, the expression levels of USP48 and Gli1 proteins are clinically relevant, and high expression of USP48 correlates with glioma malignancy. In summary, our study reveals that the USP48-Gli1 regulatory axis is critical for glioma cell proliferation and glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kangyu Lin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sicong Zhang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Li Ma
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Neuro-oncology and Neurosurgery, National Clinical Research Center for Cancer, Tianjin Medical University Institute and Hospital, Tianjin, China
| | - Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saint-Aaron Morris
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth D Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
45
|
Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer - the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal 2017; 15:15. [PMID: 28427431 PMCID: PMC5397778 DOI: 10.1186/s12964-017-0171-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu involve a complex network of H. pylori-regulated signal transduction pathways leading to the release of proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation, differentiation, and regeneration of the gastric physiology, but also in the induction and progression of inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H. pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of the gastric tumor microenvironment.
Collapse
Affiliation(s)
- Silja Wessler
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria.
| | - Linda M Krisch
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria
| | - Dominik P Elmer
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| | - Fritz Aberger
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.
| |
Collapse
|
46
|
|
47
|
Vriend J, Marzban H. The ubiquitin-proteasome system and chromosome 17 in cerebellar granule cells and medulloblastoma subgroups. Cell Mol Life Sci 2017; 74:449-467. [PMID: 27592301 PMCID: PMC11107675 DOI: 10.1007/s00018-016-2354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (β1, β4, β5, β7). One of these genes (PSMB6, the gene for the β1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, β6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
48
|
Yao PJ, Petralia RS, Mattson MP. Sonic Hedgehog Signaling and Hippocampal Neuroplasticity. Trends Neurosci 2016; 39:840-850. [PMID: 27865563 PMCID: PMC5148655 DOI: 10.1016/j.tins.2016.10.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
Abstract
Sonic hedgehog (Shh) is a secreted protein that controls the patterning of neural progenitor cells, and their neuronal and glial progeny, during development. Emerging findings suggest that Shh also has important roles in the formation and plasticity of neuronal circuits in the hippocampus, a brain region of fundamental importance in learning and memory. Shh mediates activity-dependent and injury-induced hippocampal neurogenesis. Activation of Shh receptors in the dendrites of hippocampal neurons engages a trans-neuronal signaling pathway that accelerates axon outgrowth and enhances glutamate release from presynaptic terminals. Impaired Shh signaling may contribute to the pathogenesis of several developmental and adult-onset neurological disorders that affect the hippocampus, suggesting a potential for therapeutic interventions that target Shh pathways.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA.
| | - Ronald S Petralia
- Advanced Imaging Core, NIDCD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Vishnoi K, Mahata S, Tyagi A, Pandey A, Verma G, Jadli M, Singh T, Singh SM, Bharti AC. Cross-talk between Human Papillomavirus Oncoproteins and Hedgehog Signaling Synergistically Promotes Stemness in Cervical Cancer Cells. Sci Rep 2016; 6:34377. [PMID: 27678330 PMCID: PMC5039669 DOI: 10.1038/srep34377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Viral oncoproteins E6/E7 play key oncogenic role in human papillomavirus (HPV)-mediated cervical carcinogenesis in conjunction with aberrant activation of cellular signaling events. GLI-signaling has been implicated in metastasis and tumor recurrence of cervical cancer. However, the interaction of GLI-signaling with HPV oncogenes is unknown. We examined this relationship in established HPV-positive and HPV-negative cervical cancer cell lines using specific GLI inhibitor, cyclopamine and HPVE6/E7 siRNAs. Cervical cancer cell lines showed variable expression of GLI-signaling components. HPV16-positive SiHa cells, overexpressed GLI1, Smo and Patch. Inhibition by cyclopamine resulted in dose-dependent reduction of Smo and GLI1 and loss of cell viability with a higher magnitude in HPV-positive cells. Cyclopamine selectively downregulated HPVE6 expression and resulted in p53 accumulation, whereas HPVE7 and pRb level remained unaffected. siRNA-mediated silencing of HPV16E6 demonstrated reduced GLI1 transcripts in SiHa cells. Cervical cancer stem-like cells isolated by side population analysis, displayed retention of E6 and GLI1 expression. Fraction of SP cells was reduced in cyclopamine-treated cultures. When combined with E6-silencing cyclopamine resulted in loss of SP cell’s sphere-forming ability. Co-inhibition of GLI1 and E6 in cervical cancer cells showed additive anti-cancer effects. Overall, our data show existence of a cooperative interaction between GLI signaling and HPVE6.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Abhishek Tyagi
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India
| | - Arvind Pandey
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Gaurav Verma
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| |
Collapse
|
50
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|