1
|
Schindler D, Walker RSK, Jiang S, Brooks AN, Wang Y, Müller CA, Cockram C, Luo Y, García A, Schraivogel D, Mozziconacci J, Pena N, Assari M, Sánchez Olmos MDC, Zhao Y, Ballerini A, Blount BA, Cai J, Ogunlana L, Liu W, Jönsson K, Abramczyk D, Garcia-Ruiz E, Turowski TW, Swidah R, Ellis T, Pan T, Antequera F, Shen Y, Nieduszynski CA, Koszul R, Dai J, Steinmetz LM, Boeke JD, Cai Y. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell 2023; 186:5237-5253.e22. [PMID: 37944512 DOI: 10.1016/j.cell.2023.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.
Collapse
Affiliation(s)
- Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35032 Marburg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, Scotland; School of Natural Sciences and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yun Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Carolin A Müller
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Charlotte Cockram
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Yisha Luo
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Alicia García
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Daniel Schraivogel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Julien Mozziconacci
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Noah Pena
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Mahdi Assari
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Alba Ballerini
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Benjamin A Blount
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lois Ogunlana
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Wei Liu
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Katarina Jönsson
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Dariusz Abramczyk
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Eva Garcia-Ruiz
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Reem Swidah
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Yue Shen
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Conrad A Nieduszynski
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
2
|
Foo JL, Kitano S, Susanto AV, Jin Z, Lin Y, Luo Z, Huang L, Liang Z, Mitchell LA, Yang K, Wong A, Cai Y, Cai J, Stracquadanio G, Bader JS, Boeke JD, Dai J, Chang MW. Establishing chromosomal design-build-test-learn through a synthetic chromosome and its combinatorial reconfiguration. CELL GENOMICS 2023; 3:100435. [PMID: 38020970 PMCID: PMC10667554 DOI: 10.1016/j.xgen.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.
Collapse
Affiliation(s)
- Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Shohei Kitano
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Adelia Vicanatalita Susanto
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Zhu Jin
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Yicong Lin
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Leslie A. Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Kun Yang
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Adison Wong
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jitong Cai
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Giovanni Stracquadanio
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joel S. Bader
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
3
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
4
|
Boutet I, Alves Monteiro HJ, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales‐Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot J, Guiglielmoni N, Guo X, Li C, Allam B, Pales‐Espinosa E, Hemmer‐Hansen J, Moreau P, Marbouty M, Koszul R, Tanguy A. Chromosomal assembly of the flat oyster ( Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl 2022; 15:1730-1748. [PMID: 36426129 PMCID: PMC9679248 DOI: 10.1111/eva.13462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.
Collapse
Affiliation(s)
- Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Lyam Baudry
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Bernard Billoud
- Sorbonne Université, CNRSUMR 8227, Station Biologique de RoscoffRoscoffFrance
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | | | - Benoit Salaun
- Centre Régional de la Conchyliculture Bretagne NordMorlaixFrance
| | - Ann C. Andersen
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐Yves Toullec
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - François H. Lallier
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐François Flot
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Nadège Guiglielmoni
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal SciencesRutgers UniversityPort NorrisNew JerseyUSA
| | - Cui Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Emmanuelle Pales‐Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Pierrick Moreau
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Martial Marbouty
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Romain Koszul
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| |
Collapse
|
5
|
Gorkovskiy A, Verstrepen KJ. The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi. Genes (Basel) 2021; 12:699. [PMID: 34066718 PMCID: PMC8150848 DOI: 10.3390/genes12050699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
Collapse
Affiliation(s)
- Anton Gorkovskiy
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Luo Z, Hoffmann SA, Jiang S, Cai Y, Dai J. Probing eukaryotic genome functions with synthetic chromosomes. Exp Cell Res 2020; 390:111936. [PMID: 32165165 DOI: 10.1016/j.yexcr.2020.111936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
The ability to redesign and reconstruct a cell at whole-genome level provides new platforms for biological study. The international synthetic yeast genome project-Sc2.0, designed by interrogating knowledge amassed by the yeast community to date, exemplifies how a classical synthetic biology "design-build-test-learn" engineering cycle can effectively test hypotheses about various genome fundamentals. The genome reshuffling SCRaMbLE system implemented in synthetic yeast strains also provides unprecedented diversified resources for genotype-phenotype study and yeast metabolic engineering. Further development of genome synthesis technology will shed new lights on complex biological processes in higher eukaryotes.
Collapse
Affiliation(s)
- Zhouqing Luo
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Shuangying Jiang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yizhi Cai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK.
| | - Junbiao Dai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
8
|
Langston RE, Palazzola D, Bonnell E, Wellinger RJ, Weinert T. Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 2020; 16:e1008733. [PMID: 32287268 PMCID: PMC7205313 DOI: 10.1371/journal.pgen.1008733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/07/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes. Eukaryotic chromosomes are linear molecules with specialized end structures called telomeres. Telomeres contain both unique repetitive DNA sequences and specialized proteins that solve several biological problems by differentiating chromosomal ends from internal breaks, thus preventing chromosome instability. When telomeres are defective, the entire chromosome can become unstable and change, causing mutations and pathology (cancer, aging, etc.). Here we study how a defect in specific telomere proteins causes chromosomal rearrangements, using the model organism Saccharomyces cerevisiae (budding or brewer’s yeast). We find that when specific telomere proteins are defective, errors in DNA replication generate a type of damage that likely involves extensive single-stranded DNA that forms inherently unstable chromosomes, subject to many subsequent instances of instability (e.g. allelic recombinants, chromosome loss, truncations, dicentrics). The telomere protein Cdc13 is part of a protein complex called CST that is conserved in most organisms including mammalian cells. The technical capacity of studies in budding yeast allow a detailed, real-time examination of how telomere defects compromise chromosome stability in a single cell cycle, generating lessons likely relevant to how human telomeres keep human chromosomes stable.
Collapse
Affiliation(s)
- Rachel E. Langston
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominic Palazzola
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
9
|
tRNA Genes Affect Chromosome Structure and Function via Local Effects. Mol Cell Biol 2019; 39:MCB.00432-18. [PMID: 30718362 DOI: 10.1128/mcb.00432-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.
Collapse
|
10
|
Gaboriaud J, Wu PYJ. Insights into the Link between the Organization of DNA Replication and the Mutational Landscape. Genes (Basel) 2019; 10:genes10040252. [PMID: 30934791 PMCID: PMC6523204 DOI: 10.3390/genes10040252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
The generation of a complete and accurate copy of the genetic material during each cell cycle is integral to cell growth and proliferation. However, genetic diversity is essential for adaptation and evolution, and the process of DNA replication is a fundamental source of mutations. Genome alterations do not accumulate randomly, with variations in the types and frequencies of mutations that arise in different genomic regions. Intriguingly, recent studies revealed a striking link between the mutational landscape of a genome and the spatial and temporal organization of DNA replication, referred to as the replication program. In our review, we discuss how this program may contribute to shaping the profile and spectrum of genetic alterations, with implications for genome dynamics and organismal evolution in natural and pathological contexts.
Collapse
Affiliation(s)
- Julia Gaboriaud
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France.
| | - Pei-Yun Jenny Wu
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France.
| |
Collapse
|
11
|
Genome-wide Identification of Structure-Forming Repeats as Principal Sites of Fork Collapse upon ATR Inhibition. Mol Cell 2018; 72:222-238.e11. [PMID: 30293786 DOI: 10.1016/j.molcel.2018.08.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 07/11/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023]
Abstract
DNA polymerase stalling activates the ATR checkpoint kinase, which in turn suppresses fork collapse and breakage. Herein, we describe use of ATR inhibition (ATRi) as a means to identify genomic sites of problematic DNA replication in murine and human cells. Over 500 high-resolution ATR-dependent sites were ascertained using two distinct methods: replication protein A (RPA)-chromatin immunoprecipitation (ChIP) and breaks identified by TdT labeling (BrITL). The genomic feature most strongly associated with ATR dependence was repetitive DNA that exhibited high structure-forming potential. Repeats most reliant on ATR for stability included structure-forming microsatellites, inverted retroelement repeats, and quasi-palindromic AT-rich repeats. Notably, these distinct categories of repeats differed in the structures they formed and their ability to stimulate RPA accumulation and breakage, implying that the causes and character of replication fork collapse under ATR inhibition can vary in a DNA-structure-specific manner. Collectively, these studies identify key sources of endogenous replication stress that rely on ATR for stability.
Collapse
|
12
|
Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS, DiCarlo JE, Lee D, Huang CLV, Chandrasegaran S, Cai Y, Boeke JD, Bader JS. Design of a synthetic yeast genome. Science 2017; 355:1040-1044. [PMID: 28280199 DOI: 10.1126/science.aaf4557] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/26/2017] [Indexed: 01/25/2023]
Abstract
We describe complete design of a synthetic eukaryotic genome, Sc2.0, a highly modified Saccharomyces cerevisiae genome reduced in size by nearly 8%, with 1.1 megabases of the synthetic genome deleted, inserted, or altered. Sc2.0 chromosome design was implemented with BioStudio, an open-source framework developed for eukaryotic genome design, which coordinates design modifications from nucleotide to genome scales and enforces version control to systematically track edits. To achieve complete Sc2.0 genome synthesis, individual synthetic chromosomes built by Sc2.0 Consortium teams around the world will be consolidated into a single strain by "endoreduplication intercross." Chemically synthesized genomes like Sc2.0 are fully customizable and allow experimentalists to ask otherwise intractable questions about chromosome structure, function, and evolution with a bottom-up design strategy.
Collapse
Affiliation(s)
- Sarah M Richardson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie A Mitchell
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Giovanni Stracquadanio
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Kun Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica S Dymond
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James E DiCarlo
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dongwon Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cheng Lai Victor Huang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srinivasan Chandrasegaran
- Department of Environmental Health Science, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yizhi Cai
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,University of Edinburgh, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jef D Boeke
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA. .,High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
14
|
Blumenfeld B, Ben-Zimra M, Simon I. Perturbations in the Replication Program Contribute to Genomic Instability in Cancer. Int J Mol Sci 2017; 18:E1138. [PMID: 28587102 PMCID: PMC5485962 DOI: 10.3390/ijms18061138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer and genomic instability are highly impacted by the deoxyribonucleic acid (DNA) replication program. Inaccuracies in DNA replication lead to the increased acquisition of mutations and structural variations. These inaccuracies mainly stem from loss of DNA fidelity due to replication stress or due to aberrations in the temporal organization of the replication process. Here we review the mechanisms and impact of these major sources of error to the replication program.
Collapse
Affiliation(s)
- Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Micha Ben-Zimra
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
15
|
A Slowed Cell Cycle Stabilizes the Budding Yeast Genome. Genetics 2017; 206:811-828. [PMID: 28468908 DOI: 10.1534/genetics.116.197590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/07/2017] [Indexed: 12/29/2022] Open
Abstract
During cell division, aberrant DNA structures are detected by regulators called checkpoints that slow division to allow error correction. In addition to checkpoint-induced delay, it is widely assumed, though rarely shown, that merely slowing the cell cycle might allow more time for error detection and correction, thus resulting in a more stable genome. Fidelity by a slowed cell cycle might be independent of checkpoints. Here we tested the hypothesis that a slowed cell cycle stabilizes the genome, independent of checkpoints, in the budding yeast Saccharomyces cerevisiae We were led to this hypothesis when we identified a gene (ERV14, an ER cargo membrane protein) that when mutated, unexpectedly stabilized the genome, as measured by three different chromosome assays. After extensive studies of pathways rendered dysfunctional in erv14 mutant cells, we are led to the inference that no particular pathway is involved in stabilization, but rather the slowed cell cycle induced by erv14 stabilized the genome. We then demonstrated that, in genetic mutations and chemical treatments unrelated to ERV14, a slowed cell cycle indeed correlates with a more stable genome, even in checkpoint-proficient cells. Data suggest a delay in G2/M may commonly stabilize the genome. We conclude that chromosome errors are more rarely made or are more readily corrected when the cell cycle is slowed (even ∼15 min longer in an ∼100-min cell cycle). And, some chromosome errors may not signal checkpoint-mediated responses, or do not sufficiently signal to allow correction, and their correction benefits from this "time checkpoint."
Collapse
|
16
|
Gadaleta MC, Noguchi E. Regulation of DNA Replication through Natural Impediments in the Eukaryotic Genome. Genes (Basel) 2017; 8:genes8030098. [PMID: 28272375 PMCID: PMC5368702 DOI: 10.3390/genes8030098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
All living organisms need to duplicate their genetic information while protecting it from unwanted mutations, which can lead to genetic disorders and cancer development. Inaccuracies during DNA replication are the major cause of genomic instability, as replication forks are prone to stalling and collapse, resulting in DNA damage. The presence of exogenous DNA damaging agents as well as endogenous difficult-to-replicate DNA regions containing DNA–protein complexes, repetitive DNA, secondary DNA structures, or transcribing RNA polymerases, increases the risk of genomic instability and thus threatens cell survival. Therefore, understanding the cellular mechanisms required to preserve the genetic information during S phase is of paramount importance. In this review, we will discuss our current understanding of how cells cope with these natural impediments in order to prevent DNA damage and genomic instability during DNA replication.
Collapse
Affiliation(s)
- Mariana C Gadaleta
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
17
|
Beyer T, Weinert T. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast. PLoS Genet 2016; 12:e1006345. [PMID: 27716774 PMCID: PMC5065131 DOI: 10.1371/journal.pgen.1006345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
DNA replication errors at certain sites in the genome initiate chromosome instability that ultimately leads to stable genomic rearrangements. Where instability begins is often unclear. And, early instability may form unstable chromosome intermediates whose transient nature also hinders mechanistic understanding. We report here a budding yeast model that reveals the genetic ontogeny of genome rearrangements, from initial replication error to unstable chromosome formation to their resolution. Remarkably, the initial error often arises in or near the telomere, and frequently forms unstable chromosomes. Early unstable chromosomes may then resolve to an internal "collection site" where a dicentric forms and resolves to an isochromosome (other outcomes are possible at each step). The initial telomere-proximal unstable chromosome is increased in mutants in telomerase subunits, Tel1, and even Rad9, with no known telomere-specific function. Defects in Tel1 and in Rrm3, a checkpoint protein kinase with a role in telomere maintenance and a DNA helicase, respectively, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. Collectively, our results suggest telomeric replication errors may be a common cause of seemingly unrelated genomic rearrangements located hundreds of kilobases away.
Collapse
Affiliation(s)
- Tracey Beyer
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sarni D, Kerem B. The complex nature of fragile site plasticity and its importance in cancer. Curr Opin Cell Biol 2016; 40:131-136. [PMID: 27062332 DOI: 10.1016/j.ceb.2016.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 01/12/2023]
Abstract
Common fragile sites (CFSs) are chromosomal regions characterized as hotspots for breakage and chromosomal rearrangements following DNA replication stress. They are preferentially unstable in pre-cancerous lesions and during cancer development. Recently CFSs were found to be tissue- and even oncogene-induced specific, thus indicating an unforeseen complexity. Here we review recent developments in CFS research that shed new light on the molecular basis of their instability and their importance in cancer development.
Collapse
Affiliation(s)
- Dan Sarni
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
19
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
20
|
Ozeri-Galai E, Tur-Sinai M, Bester AC, Kerem B. Interplay between genetic and epigenetic factors governs common fragile site instability in cancer. Cell Mol Life Sci 2014; 71:4495-506. [PMID: 25297918 PMCID: PMC11113459 DOI: 10.1007/s00018-014-1719-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Common fragile sites (CFSs) are regions within the normal chromosomal structure that were characterized as hotspots for genomic instability in cancer almost 30 years ago. In recent years, many efforts have been made to understand the basis of CFS fragility and their involvement in the genomic signature of instability found in malignant tumors. CFSs are among the first regions to undergo genomic instability during cancer development because of their intrinsic sensitivity to replication stress conditions, which result from oncogene expression. The preferred sensitivity of CFSs to replication stress stems from various mechanisms including: replication fork arrest at AT-rich repeats, origin paucity along large genomic regions, failure in activation of dormant origins, late replication timing, collision between replication and transcription along large genes, all leading to incomplete replication of the CFS region and resulting in chromosomal instability. Here we review shared and unique characteristics of CFSs, their underlying causes and implications, particularly for the development of cancer.
Collapse
Affiliation(s)
- Efrat Ozeri-Galai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Michal Tur-Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Assaf C. Bester
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
21
|
Singh J. Role of DNA replication in establishment and propagation of epigenetic states of chromatin. Semin Cell Dev Biol 2014; 30:131-43. [PMID: 24794003 DOI: 10.1016/j.semcdb.2014.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
DNA replication is the fundamental process of duplication of the genetic information that is vital for survival of all living cells. The basic mechanistic steps of replication initiation, elongation and termination are conserved among bacteria, lower eukaryotes, like yeast and metazoans. However, the details of the mechanisms are different. Furthermore, there is a close coordination between chromatin assembly pathways and various components of replication machinery whereby DNA replication is coupled to "chromatin replication" during cell cycle. Thereby, various epigenetic modifications associated with different states of gene expression in differentiated cells and the related chromatin structures are faithfully propagated during the cell division through tight coupling with the DNA replication machinery. Several examples are found in lower eukaryotes like budding yeast and fission yeast with close parallels in metazoans.
Collapse
Affiliation(s)
- Jagmohan Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
| |
Collapse
|
22
|
Blaikley EJ, Tinline-Purvis H, Kasparek TR, Marguerat S, Sarkar S, Hulme L, Hussey S, Wee BY, Deegan RS, Walker CA, Pai CC, Bähler J, Nakagawa T, Humphrey TC. The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast. Nucleic Acids Res 2014; 42:5644-56. [PMID: 24623809 PMCID: PMC4027169 DOI: 10.1093/nar/gku190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3ATR, Rad26ATRIP, Crb253BP1 or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.
Collapse
Affiliation(s)
- Elizabeth J Blaikley
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Helen Tinline-Purvis
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Torben R Kasparek
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Samuel Marguerat
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Sovan Sarkar
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Lydia Hulme
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Sharon Hussey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Boon-Yu Wee
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Rachel S Deegan
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Carol A Walker
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Chen-Chun Pai
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, and UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Timothy C Humphrey
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7DQ, UK
| |
Collapse
|
23
|
Hermetz KE, Newman S, Conneely KN, Martin CL, Ballif BC, Shaffer LG, Cody JD, Rudd MK. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet 2014; 10:e1004139. [PMID: 24497845 PMCID: PMC3907307 DOI: 10.1371/journal.pgen.1004139] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/09/2013] [Indexed: 11/27/2022] Open
Abstract
Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a “fold-back” intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes. Chromosomes with large inverted duplications and terminal deletions cause neurodevelopmental disorders in children. These chromosome rearrangements typically involve hundreds of genes, leading to significant changes in gene dosage. Though inverted duplications adjacent to terminal deletions are a relatively common type of chromosomal imbalance, the DNA repair mechanism responsible for their formation is not known. In this study, we analyze the genomic organization of the largest collection of human inverted duplications. We find a common inverted duplication structure, consistent with a model that requires DNA to fold back and form a dicentric chromosome intermediate. These data provide insight into the formation of nonrecurrent inverted duplications in the human genome.
Collapse
Affiliation(s)
- Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Scott Newman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America ; Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Christa L Martin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Blake C Ballif
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington, United States of America
| | - Jannine D Cody
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America ; The Chromosome 18 Registry and Research Society, San Antonio, Texas, United States of America
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Abstract
DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.
Collapse
Affiliation(s)
- Nimrat Chatterjee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
25
|
Cauwood JD, Johnson AL, Widger A, Cha RS. Recombinogenic conditions influence partner choice in spontaneous mitotic recombination. PLoS Genet 2013; 9:e1003931. [PMID: 24244194 PMCID: PMC3820797 DOI: 10.1371/journal.pgen.1003931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Mammalian common fragile sites are loci of frequent chromosome breakage and putative recombination hotspots. Here, we utilized Replication Slow Zones (RSZs), a budding yeast homolog of the mammalian common fragile sites, to examine recombination activities at these loci. We found that rates of URA3 inactivation of a hisG-URA3-hisG reporter at RSZ and non-RSZ loci were comparable under all conditions tested, including those that specifically promote chromosome breakage at RSZs (hydroxyurea [HU], mec1Δ sml1Δ, and high temperature), and those that suppress it (sml1Δ and rrm3Δ). These observations indicate that RSZs are not recombination hotspots and that chromosome fragility and recombination activity can be uncoupled. Results confirmed recombinogenic effects of HU, mec1Δ sml1Δ, and rrm3Δ and identified temperature as a regulator of mitotic recombination. We also found that these conditions altered the nature of recombination outcomes, leading to a significant increase in the frequency of URA3 inactivation via loss of heterozygosity (LOH), the type of genetic alteration involved in cancer development. Further analyses revealed that the increase was likely due to down regulation of intrachromatid and intersister (IC/IS) bias in mitotic recombination, and that RSZs exhibited greater sensitivity to HU dependent loss of IC/IS bias than non RSZ loci. These observations suggest that recombinogenic conditions contribute to genome rearrangements not only by increasing the overall recombination activity, but also by altering the nature of recombination outcomes by their effects on recombination partner choice. Similarly, fragile sites may contribute to cancer more frequently than non-fragile loci due their enhanced sensitivity to certain conditions that down-regulate the IC/IS bias rather than intrinsically higher rates of recombination. Chromosome rearrangements are frequently associated with human cancers. Such rearrangement can result from a DNA break followed by an erroneous repair. Mammalian common fragile sites are one of the most extensively studied naturally occurring breakage prone regions of the genome. It has been proposed that fragile sites are recombination hotspots and that increased recombination activity at these loci contribute to cancer. We examined this hypothesis using a model organism, budding yeast Saccharomyces cerevisiae, where a homolog of the mammalian common fragile sites has been identified. Unexpectedly, our results showed that the rate of recombination at the fragile sites was not any higher than non fragile sites, even under the conditions that promoted chromosome breakage at the fragile sites. However, we found that the frequency of loss of heterozygosity (LOH) and translocation, the type of recombination outcomes known to contribute to cancer, to be significantly elevated at fragile sites under certain conditions. These findings suggest that the fragile sites might indeed contribute to cancer more frequently than non-fragile loci, but the reason for this is likely to be due the nature of the recombination outcome(s) rather than higher rates of recombination.
Collapse
Affiliation(s)
- James D. Cauwood
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
| | - Anthony L. Johnson
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
| | - Alexander Widger
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
| | - Rita S. Cha
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Coggins GE, Maddukuri L, Penthala NR, Hartman JH, Eddy S, Ketkar A, Crooks PA, Eoff RL. N-Aroyl indole thiobarbituric acids as inhibitors of DNA repair and replication stress response polymerases. ACS Chem Biol 2013; 8:1722-9. [PMID: 23679919 DOI: 10.1021/cb400305r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Using a robust and quantitative assay, we have identified a novel class of DNA polymerase inhibitors that exhibits some specificity against an enzyme involved in resistance to anti-cancer drugs, namely, human DNA polymerase eta (hpol η). In our initial screen, we identified the indole thiobarbituric acid (ITBA) derivative 5-((1-(2-bromobenzoyl)-5-chloro-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (ITBA-12) as an inhibitor of the Y-family DNA member hpol η, an enzyme that has been associated with increased resistance to cisplatin and doxorubicin treatments. An additional seven DNA polymerases from different subfamilies were tested for inhibition by ITBA-12. Hpol η was the most potently inhibited enzyme (30 ± 3 μM), with hpol β, hpol γ, and hpol κ exhibiting comparable but higher IC50 values of 41 ± 24, 49 ± 6, and 59 ± 11 μM, respectively. The other polymerases tested had IC50 values closer to 80 μM. Steady-state kinetic analysis was used to investigate the mechanism of polymerase inhibition by ITBA-12. Based on changes in the Michaelis constant, it was determined that ITBA-12 acts as an allosteric (or partial) competitive inhibitor of dNTP binding. The parent ITBA scaffold was modified to produce 20 derivatives and establish structure-activity relationships by testing for inhibition of hpol η. Two compounds with N-naphthoyl Ar-substituents, ITBA-16 and ITBA-19, were both found to have improved potency against hpol η with IC50 values of 16 ± 3 μM and 17 ± 3 μM, respectively. Moreover, the specificity of ITBA-16 was improved relative to that of ITBA-12. The presence of a chloro substituent at position 5 on the indole ring appears to be crucial for effective inhibition of hpol η, with the indole N-1-naphthoyl and N-2-naphthoyl analogues being the most potent inhibitors of hpol η. These results provide a framework from which second-generation ITBA derivatives may be developed against specialized polymerases that are involved in mechanisms of radio- and chemo-resistance.
Collapse
Affiliation(s)
- Grace E. Coggins
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232-0146,
United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
28
|
Kirkland JG, Kamakaka RT. Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins. ACTA ACUST UNITED AC 2013; 201:809-26. [PMID: 23733345 PMCID: PMC3678155 DOI: 10.1083/jcb.201211105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In yeast, the localization of homologous recombination–associated proteins to heterochromatic regions of the genome is necessary for proper nuclear organization. The eukaryotic genome is highly organized in the nucleus, and this organization affects various nuclear processes. However, the molecular details of higher-order organization of chromatin remain obscure. In the present study, we show that the Saccharomyces cerevisiae silenced loci HML and HMR cluster in three-dimensional space throughout the cell cycle and independently of the telomeres. Long-range HML–HMR interactions require the homologous recombination (HR) repair pathway and phosphorylated H2A (γ-H2A). γ-H2A is constitutively present at silenced loci in unperturbed cells, its localization requires heterochromatin, and it is restricted to the silenced domain by the transfer DNA boundary element. SMC proteins and Scc2 localize to the silenced domain, and Scc2 binding requires the presence of γ-H2A. These findings illustrate a novel pathway for heterochromatin organization and suggest a role for HR repair proteins in genomic organization.
Collapse
Affiliation(s)
- Jacob G Kirkland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
29
|
Jossen R, Bermejo R. The DNA damage checkpoint response to replication stress: A Game of Forks. Front Genet 2013; 4:26. [PMID: 23493417 PMCID: PMC3595514 DOI: 10.3389/fgene.2013.00026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 12/23/2022] Open
Abstract
Conditions challenging replication fork progression, collectively referred to as replication stress, represent a major source of genomic instability and are associated to cancer onset. The replication checkpoint, a specialized branch of the DNA damage checkpoint, monitors fork problems, and triggers a cellular response aimed at preserving genome integrity. Here, we review the mechanisms by which the replication checkpoint monitors and responds to replication stress, focusing on the checkpoint-mediated pathways contributing to protect replication fork integrity. We discuss how cells achieve checkpoint signaling inactivation once replication stress is overcome and how a failure to timely revert checkpoint-mediated changes in cellular physiology might impact on replication dynamics and genome integrity. We also highlight the checkpoint function as an anti-cancer barrier preventing cells malignant transformation following oncogene-induced replication stress.
Collapse
Affiliation(s)
- Rachel Jossen
- Instituto de Biología Funcional y Genómica, CSIC/USAL Salamanca, Spain
| | | |
Collapse
|
30
|
Nonrandom distribution of interhomolog recombination events induced by breakage of a dicentric chromosome in Saccharomyces cerevisiae. Genetics 2013; 194:69-80. [PMID: 23410835 PMCID: PMC3632482 DOI: 10.1534/genetics.113.150144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of ∼4 kb. This analysis shows that dicentric chromosomes have recombination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere.
Collapse
|
31
|
Bentsen IB, Nielsen I, Lisby M, Nielsen HB, Gupta SS, Mundbjerg K, Andersen AH, Bjergbaek L. MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context. Nucleic Acids Res 2013; 41:3173-89. [PMID: 23376930 PMCID: PMC3597703 DOI: 10.1093/nar/gkt051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein-DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein-DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling.
Collapse
Affiliation(s)
- Iben B Bentsen
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Indiani C, O'Donnell M. A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 2013; 18:312-23. [PMID: 23276924 DOI: 10.2741/4102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome replication is performed by numerous proteins that function together as a "replisome". The replisome machinery duplicates both strands of the parental DNA simultaneously. Upon DNA damage to the cell, replisome action produces single-strand DNA to which RecA binds, enabling its activity in cleaving the LexA repressor and thus inducing the SOS response. How single-strand DNA is produced by a replisome acting on damaged DNA is not clear. For many years it has been assumed the single-strand DNA is generated by the replicative helicase, which continues unwinding DNA even after DNA polymerase stalls at a template lesion. Recent studies indicate another source of the single-strand DNA, resulting from an inherently dynamic replisome that may hop over template lesions on both leading and lagging strands, thereby leaving single-strand gaps in the wake of the replication fork. These single-strand gaps are proposed to be the origin of the single-strand DNA that triggers the SOS response after DNA damage.
Collapse
Affiliation(s)
- Chiara Indiani
- Manhattan College 4513 Manhattan College Pkwy, Riverdale, NY 10471, USA.
| | | |
Collapse
|
33
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
34
|
Topoisomerase II- and condensin-dependent breakage of MEC1ATR-sensitive fragile sites occurs independently of spindle tension, anaphase, or cytokinesis. PLoS Genet 2012; 8:e1002978. [PMID: 23133392 PMCID: PMC3486896 DOI: 10.1371/journal.pgen.1002978] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022] Open
Abstract
Fragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of mammalian ATR, leads to chromosome breakage at fragile sites referred to as replication slow zones (RSZs). RSZs are proposed to be homologous to mammalian common fragile sites (CFSs) whose stability is regulated by ATR. Perturbation during S phase, leading to elevated levels of stalled replication forks, is necessary but not sufficient for chromosome breakage at RSZs or CFSs. To address the nature of additional event(s) required for the break formation, we examined involvement of the currently known or implicated mechanisms of endogenous chromosome breakage, including errors in replication fork restart, premature mitotic chromosome condensation, spindle tension, anaphase, and cytokinesis. Results revealed that chromosome breakage at RSZs is independent of the RAD52 epistasis group genes and of TOP3, SGS1, SRS2, MMS4, or MUS81, indicating that homologous recombination and other recombination-related processes associated with replication fork restart are unlikely to be involved. We also found spindle force, anaphase, or cytokinesis to be dispensable. RSZ breakage, however, required genes encoding condensin subunits (YCG1, YSC4) and topoisomerase II (TOP2). We propose that chromosome break formation at RSZs following Mec1 inactivation, a model for mammalian fragile site breakage, is mediated by internal chromosomal stress generated during mitotic chromosome condensation. Chromosome breakage can occur during normal cell division. When it occurs, the breaks do not arise randomly throughout the genome, but at preferred locations referred to as fragile sites. Chromosome breakage at fragile sites is an evolutionarily conserved phenomenon, implicated in evolution and speciation. In humans, fragile site instability is also implicated in mental retardation and cancer. Despite its biological and clinical relevance, the mechanism(s) by which breaks are introduced at mammalian fragile sites remains unresolved. Although several plausible models have been proposed, it has not been possible to ascertain their contribution, largely due to the lack of a suitable experimental system. Here, we study a yeast model system that closely recapitulates the phenomenon of chromosome breakage at mammalian fragile sites. We eliminate all but one of the currently considered models—premature compaction of the incompletely replicated genome in preparation for their segregation during cell division. We also find that the breakage required functions of three proteins involved in the genome compaction, an essential process that is evolutionarily conserved from bacteria to humans. Our findings suggest that a fundamental chromosomal process required for normal cell division can paradoxically cause genome instability and/or cell death, by triggering chromosome breakage at fragile sites.
Collapse
|
35
|
Genome rearrangements caused by depletion of essential DNA replication proteins in Saccharomyces cerevisiae. Genetics 2012; 192:147-60. [PMID: 22673806 DOI: 10.1534/genetics.112.141051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic screens of the collection of ~4500 deletion mutants in Saccharomyces cerevisiae have identified the cohort of nonessential genes that promote maintenance of genome integrity. Here we probe the role of essential genes needed for genome stability. To this end, we screened 217 tetracycline-regulated promoter alleles of essential genes and identified 47 genes whose depletion results in spontaneous DNA damage. We further showed that 92 of these 217 essential genes have a role in suppressing chromosome rearrangements. We identified a core set of 15 genes involved in DNA replication that are critical in preventing both spontaneous DNA damage and genome rearrangements. Mapping, classification, and analysis of rearrangement breakpoints indicated that yeast fragile sites, Ty retrotransposons, tRNA genes, early origins of replication, and replication termination sites are common features at breakpoints when essential replication genes that suppress chromosome rearrangements are downregulated. We propose mechanisms by which depletion of essential replication proteins can lead to double-stranded DNA breaks near these features, which are subsequently repaired by homologous recombination at repeated elements.
Collapse
|
36
|
Steinacher R, Osman F, Dalgaard JZ, Lorenz A, Whitby MC. The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability. Genes Dev 2012; 26:594-602. [PMID: 22426535 DOI: 10.1101/gad.184663.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bidirectionally moving DNA replication forks merge at termination sites composed of accidental or programmed DNA-protein barriers. If merging fails, then regions of unreplicated DNA can result in the breakage of DNA during mitosis, which in turn can give rise to genome instability. Despite its importance, little is known about the mechanisms that promote the final stages of fork merging in eukaryotes. Here we show that the Pif1 family DNA helicase Pfh1 plays a dual role in promoting replication fork termination. First, it facilitates replication past DNA-protein barriers, and second, it promotes the merging of replication forks. A failure of these processes in Pfh1-deficient cells results in aberrant chromosome segregation and heightened genome instability.
Collapse
Affiliation(s)
- Roland Steinacher
- Department of Biochemistry, University of Oxford, Oxford OX13QU, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Brueckner LM, Sagulenko E, Hess EM, Zheglo D, Blumrich A, Schwab M, Savelyeva L. Genomic rearrangements at the FRA2H common fragile site frequently involve non-homologous recombination events across LTR and L1(LINE) repeats. Hum Genet 2012; 131:1345-59. [PMID: 22476624 DOI: 10.1007/s00439-012-1165-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/24/2012] [Indexed: 01/11/2023]
Abstract
Common fragile sites (cFSs) are non-random chromosomal regions that are prone to breakage under conditions of replication stress. DNA damage and chromosomal alterations at cFSs appear to be critical events in the development of various human diseases, especially carcinogenesis. Despite the growing interest in understanding the nature of cFS instability, only a few cFSs have been molecularly characterised. In this study, we fine-mapped the location of FRA2H using six-colour fluorescence in situ hybridisation and showed that it is one of the most active cFSs in the human genome. FRA2H encompasses approximately 530 kb of a gene-poor region containing a novel large intergenic non-coding RNA gene (AC097500.2). Using custom-designed array comparative genomic hybridisation, we detected gross and submicroscopic chromosomal rearrangements involving FRA2H in a panel of 54 neuroblastoma, colon and breast cancer cell lines. The genomic alterations frequently involved different classes of long terminal repeats and long interspersed nuclear elements. An analysis of breakpoint junction sequence motifs predominantly revealed signatures of microhomology-mediated non-homologous recombination events. Our data provide insight into the molecular structure of cFSs and sequence motifs affected by their activation in cancer. Identifying cFS sequences will accelerate the search for DNA biomarkers and targets for individualised therapies.
Collapse
Affiliation(s)
- Lena M Brueckner
- Division of Tumor Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Ozeri-Galai E, Bester AC, Kerem B. The complex basis underlying common fragile site instability in cancer. Trends Genet 2012; 28:295-302. [PMID: 22465609 DOI: 10.1016/j.tig.2012.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Common fragile sites (CFSs) were characterized almost 30 years ago as sites undergoing genomic instability in cancer. Recently, in vitro studies have found that oncogene-induced replication stress leads to CFS instability. In vivo, CFSs were found to be preferentially unstable during early stages of cancer development and to leave a unique signature of instability. It is now increasingly clear that, along the spectrum of replication features characterizing CFSs, failure of origin activation is a common feature. This and other features of CFSs, together with the replication stress characterizing early stages of cancer development, lead to incomplete replication that results in genomic instability preferentially at CFSs. Here, we review the shared and unique characteristics of CFSs, their underlying causes and their implications, particularly with respect to the development of cancer.
Collapse
Affiliation(s)
- Efrat Ozeri-Galai
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
39
|
|
40
|
Carr AM, Paek AL, Weinert T. DNA replication: failures and inverted fusions. Semin Cell Dev Biol 2011; 22:866-74. [PMID: 22020070 DOI: 10.1016/j.semcdb.2011.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 11/16/2022]
Abstract
DNA replication normally follows the rules passed down from Watson and Crick: the chromosome duplicates as dictated by its antiparallel strands, base-pairing and leading and lagging strand differences. Real-life replication is more complicated, fraught with perils posed by chromosome damage for one, and by transcription of genes and by other perils that disrupt progress of the DNA replication machinery. Understanding the replication fork, including DNA structures, associated replisome and its regulators, is key to understanding how cells overcome perils and minimize error. Replication fork error leads to genome rearrangements and, potentially, cell death. Interest in the replication fork and its errors has recently gained added interest by the results of deep sequencing studies of human genomes. Several pathologies are associated with sometimes-bizarre genome rearrangements suggestive of elaborate replication fork failures. To try and understand the links between the replication fork, its failure and genome rearrangements, we discuss here phases of fork behavior (stall, collapse, restart and fork failures leading to rearrangements) and analyze two examples of instability from our own studies; one in fission yeast and the other in budding yeast.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, Sussex, UK.
| | | | | |
Collapse
|
41
|
Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation. G3-GENES GENOMES GENETICS 2011; 1:327-35. [PMID: 22384343 PMCID: PMC3276152 DOI: 10.1534/g3.111.000554] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/09/2011] [Indexed: 11/30/2022]
Abstract
Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or “collapsed” replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.
Collapse
|
42
|
Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 2011; 477:471-6. [PMID: 21918511 DOI: 10.1038/nature10403] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/28/2011] [Indexed: 11/09/2022]
Abstract
Recent advances in DNA synthesis technology have enabled the construction of novel genetic pathways and genomic elements, furthering our understanding of system-level phenomena. The ability to synthesize large segments of DNA allows the engineering of pathways and genomes according to arbitrary sets of design principles. Here we describe a synthetic yeast genome project, Sc2.0, and the first partially synthetic eukaryotic chromosomes, Saccharomyces cerevisiae chromosome synIXR, and semi-synVIL. We defined three design principles for a synthetic genome as follows: first, it should result in a (near) wild-type phenotype and fitness; second, it should lack destabilizing elements such as tRNA genes or transposons; and third, it should have genetic flexibility to facilitate future studies. The synthetic genome features several systemic modifications complying with the design principles, including an inducible evolution system, SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution). We show the utility of SCRaMbLE as a novel method of combinatorial mutagenesis, capable of generating complex genotypes and a broad variety of phenotypes. When complete, the fully synthetic genome will allow massive restructuring of the yeast genome, and may open the door to a new type of combinatorial genetics based entirely on variations in gene content and copy number.
Collapse
Affiliation(s)
- Jessica S Dymond
- High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, Dobke M, Rosenfeld MG, Jordan IK, Lunyak VV. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10:3016-30. [PMID: 21862875 PMCID: PMC3218602 DOI: 10.4161/cc.10.17.17543] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023] Open
Abstract
Cellular aging is linked to deficiencies in efficient repair of DNA double strand breaks and authentic genome maintenance at the chromatin level. Aging poses a significant threat to adult stem cell function by triggering persistent DNA damage and ultimately cellular senescence. Senescence is often considered to be an irreversible process. Moreover, critical genomic regions engaged in persistent DNA damage accumulation are unknown. Here we report that 65% of naturally occurring repairable DNA damage in self-renewing adult stem cells occurs within transposable elements. Upregulation of Alu retrotransposon transcription upon ex vivo aging causes nuclear cytotoxicity associated with the formation of persistent DNA damage foci and loss of efficient DNA repair in pericentric chromatin. This occurs due to a failure to recruit of condensin I and cohesin complexes. Our results demonstrate that the cytotoxicity of induced Alu repeats is functionally relevant for the human adult stem cell aging. Stable suppression of Alu transcription can reverse the senescent phenotype, reinstating the cells' self-renewing properties and increasing their plasticity by altering so-called "master" pluripotency regulators.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Failure of Origin Activation in Response to Fork Stalling Leads to Chromosomal Instability at Fragile Sites. Mol Cell 2011; 43:122-31. [DOI: 10.1016/j.molcel.2011.05.019] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 03/07/2011] [Accepted: 05/20/2011] [Indexed: 12/27/2022]
|
45
|
Hashash N, Johnson AL, Cha RS. Regulation of fragile sites expression in budding yeast by MEC1, RRM3 and hydroxyurea. J Cell Sci 2010; 124:181-5. [PMID: 21172804 DOI: 10.1242/jcs.077313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fragile sites are specific loci within the genome that exhibit increased tendencies for chromosome breakage. They are conserved among mammals and are also found in lower eukaryotes including yeast and fly. Many conditions, including mutations and exogenous factors, contribute to fragile site expression, but the nature of interaction among them remains elusive. Here, we investigated this by examining the combined effects of rrm3Δ, mec1 and hydroxyurea (HU), three conditions that induce fragile sites, on expression of the replication slow zone (RSZ), a type of fragile site in budding yeast. Contrary to the expectation that each factor would contribute to fragile site expression in an independent manner, we show that rrm3Δ and high concentrations of HU suppressed RSZ expression in mec1-4ts cells. Further analyses revealed that rrm3Δ suppression occurs via promotion of Sml1 degradation, whereas HU suppresses RSZ via a premature commitment to inviability. Taken together, these observations demonstrate that: (1) the yeast genome contains different types of fragile site with regard to regulation of their expression, and (2) each fragile-site-inducing condition does not act independently, but can elicit a cellular response(s) that can paradoxically prevent the expression of a specific type(s) of fragile sites.
Collapse
Affiliation(s)
- Nadia Hashash
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London NW7 1AA, UK
| | | | | |
Collapse
|
46
|
Checkpoint genes and Exo1 regulate nearby inverted repeat fusions that form dicentric chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2010; 107:21605-10. [PMID: 21098663 DOI: 10.1073/pnas.1001938107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genomic rearrangements are common, occur by largely unknown mechanisms, and can lead to human diseases. We previously demonstrated that some genome rearrangements occur in budding yeast through the fusion of two DNA sequences that contain limited sequence homology, lie in inverted orientation, and are within 5 kb of one another. This inverted repeat fusion reaction forms dicentric chromosomes, which are well-known intermediates to additional rearrangements. We have previously provided evidence indicating that an error of stalled or disrupted DNA replication forks can cause inverted repeat fusion. Here we analyze how checkpoint protein regulatory pathways known to stabilize stalled forks affect this form of instability. We find that two checkpoint pathways suppress inverted repeat fusion, and that their activities are distinguishable by their interactions with exonuclease 1 (Exo1). The checkpoint kinase Rad53 (Chk2) and recombination protein complex MRX(MRN) inhibit Exo1 in one pathway, whereas in a second pathway the ATR-like kinases Mec1 and Tel1, adaptor protein Rad9, and effector kinases Chk1 and Dun1 act independently of Exo1 to prevent inverted repeat fusion. We provide a model that indicates how in Rad53 or MRX mutants, an inappropriately active Exo1 may facilitate faulty template switching between nearby inverted repeats to form dicentric chromosomes. We further investigate the role of Rad53, using hypomorphic alleles of Rad53 and null mutations in Rad9 and Mrc1, and provide evidence that only local, as opposed to global, activity of Rad53 is sufficient to prevent inverted repeat fusion.
Collapse
|
47
|
Clelland BW, Schultz MC. Genome stability control by checkpoint regulation of tRNA gene transcription. Transcription 2010; 1:115-125. [PMID: 21326884 DOI: 10.4161/trns.1.3.13735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 08/31/2010] [Accepted: 09/23/2010] [Indexed: 12/21/2022] Open
Abstract
The RNA polymerase III pre-initiation complex (PIC) assembled on yeast tRNA genes naturally causes replication fork pausing that contributes to genome instability. Mechanistic coupling of the fork pausing activity of tRNA genes to replication has long been considered likely, but only recently demonstrated. In contrast to the expectation that this coupling might occur by a passive mechanism such as direct disruption of transcription factor-DNA complexes by a component of the replisome, it turns out that disassembly of the RNA polymerase III PIC is actively controlled by the replication stress checkpoint signal transduction pathway. This advance supports a new model in which checkpoint-dependent disassembly of the transcription machinery at tRNA genes is a vital component of an overall system of genome stability control that also targets replication and DNA repair proteins.
Collapse
Affiliation(s)
- Brett W Clelland
- Department of Biochemistry; School of Molecular and Systems Medicine; University of Alberta; Edmonton, AB Canada
| | | |
Collapse
|
48
|
Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, Kanoh Y, Shirahige K, Azvolinsky A, Zakian VA, Foiani M. Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 2010; 39:595-605. [PMID: 20797631 DOI: 10.1016/j.molcel.2010.07.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/05/2010] [Accepted: 06/08/2010] [Indexed: 01/19/2023]
Abstract
Chromosome replication initiates at multiple replicons and terminates when forks converge. In E. coli, the Tus-TER complex mediates polar fork converging at the terminator region, and aberrant termination events challenge chromosome integrity and segregation. Since in eukaryotes, termination is less characterized, we used budding yeast to identify the factors assisting fork fusion at replicating chromosomes. Using genomic and mechanistic studies, we have identified and characterized 71 chromosomal termination regions (TERs). TERs contain fork pausing elements that influence fork progression and merging. The Rrm3 DNA helicase assists fork progression across TERs, counteracting the accumulation of X-shaped structures. The Top2 DNA topoisomerase associates at TERs in S phase, and G2/M facilitates fork fusion and prevents DNA breaks and genome rearrangements at TERs. We propose that in eukaryotes, replication fork barriers, Rrm3, and Top2 coordinate replication fork progression and fusion at TERs, thus counteracting abnormal genomic transitions.
Collapse
Affiliation(s)
- Daniele Fachinetti
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare (IFOM-IEO Campus), Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The role of replication bypass pathways in dicentric chromosome formation in budding yeast. Genetics 2010; 186:1161-73. [PMID: 20837992 DOI: 10.1534/genetics.110.122663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs) are large scale changes to chromosome structure and can lead to human disease. We previously showed in Saccharomyces cerevisiae that nearby inverted repeat sequences (∼20-200 bp of homology, separated by ∼1-5 kb) frequently fuse to form unstable dicentric and acentric chromosomes. Here we analyzed inverted repeat fusion in mutants of three sets of genes. First, we show that genes in the error-free postreplication repair (PRR) pathway prevent fusion of inverted repeats, while genes in the translesion branch have no detectable role. Second, we found that siz1 mutants, which are defective for Srs2 recruitment to replication forks, and srs2 mutants had opposite effects on instability. This may reflect separate roles for Srs2 in different phases of the cell cycle. Third, we provide evidence for a faulty template switch model by studying mutants of DNA polymerases; defects in DNA pol delta (lagging strand polymerase) and Mgs1 (a pol delta interacting protein) lead to a defect in fusion events as well as allelic recombination. Pol delta and Mgs1 may collaborate either in strand annealing and/or DNA replication involved in fusion and allelic recombination events. Fourth, by studying genes implicated in suppression of GCRs in other studies, we found that inverted repeat fusion has a profile of genetic regulation distinct from these other major forms of GCR formation.
Collapse
|
50
|
Chen W, He F, Zhang X, Chen Z, Wen Y, Li J. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome. BMC Microbiol 2010; 10:198. [PMID: 20653985 PMCID: PMC2920896 DOI: 10.1186/1471-2180-10-198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. RESULTS Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs), and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb) was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. CONCLUSIONS Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously reported, to the two chromosomal ends.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | |
Collapse
|