1
|
Richman JA, Davis LR, Phelps MP. Gene Function is a Driver of Activin Signaling Pathway Evolution Following Whole-Genome Duplication in Rainbow Trout (Oncorhynchus mykiss). Genome Biol Evol 2024; 16:evae096. [PMID: 38701021 PMCID: PMC11110936 DOI: 10.1093/gbe/evae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The genomes of plant and animal species are influenced by ancestral whole-genome duplication (WGD) events, which have profound impacts on the regulation and function of gene networks. To gain insight into the consequences of WGD events, we characterized the sequence conservation and expression patterns of ohnologs in the highly duplicated activin receptor signaling pathway in rainbow trout (RBT). The RBT activin receptor signaling pathway is defined by tissue-specific expression of inhibitors and ligands and broad expression of receptors and Co-Smad signaling molecules. Signaling pathway ligands exhibited shared expression, while inhibitors and Smad signaling molecules primarily express a single dominant ohnolog. Our findings suggest that gene function influences ohnolog evolution following duplication of the activin signaling pathway in RBT.
Collapse
Affiliation(s)
- Jasmine A Richman
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Leah R Davis
- College of the Environment, University of Washington, Seattle, WA, USA
| | - Michael P Phelps
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Booker WW, Schrider DR. The genetic consequences of range expansion and its influence on diploidization in polyploids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562992. [PMID: 37905020 PMCID: PMC10614938 DOI: 10.1101/2023.10.18.562992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Despite newly formed polyploids being subjected to myriad fitness consequences, the relative prevalence of polyploidy both contemporarily and in ancestral branches of the tree of life suggests alternative advantages that outweigh these consequences. One proposed advantage is that polyploids may more easily colonize novel habitats such as deglaciated areas. However, previous research conducted in diploids suggests that range expansion comes with a fitness cost as deleterious mutations may fix rapidly on the expansion front. Here, we interrogate the potential consequences of expansion in polyploids by conducting spatially explicit forward-in-time simulations to investigate how ploidy and inheritance patterns impact the relative ability of polyploids to expand their range. We show that under realistic dominance models, autopolyploids suffer greater fitness reductions than diploids as a result of range expansion due to the fixation of increased mutational load that is masked in the range core. Alternatively, the disomic inheritance of allopolyploids provides a shield to this fixation resulting in minimal fitness consequences. In light of this advantage provided by disomy, we investigate how range expansion may influence cytogenetic diploidization through the reversion to disomy in autotetraploids. We show that under a wide range of parameters investigated for two models of diploidization, disomy frequently evolves more rapidly on the expansion front than in the range core, and that this dynamic inheritance model has additional effects on fitness. Together our results point to a complex interaction between dominance, ploidy, inheritance, and recombination on fitness as a population spreads across a geographic range.
Collapse
Affiliation(s)
- William W. Booker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514-2916, United States of America
| | - Daniel R. Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514-2916, United States of America
| |
Collapse
|
3
|
Assis R, Conant G, Holland B, Liberles DA, O'Reilly MM, Wilson AE. Models for the retention of duplicate genes and their biological underpinnings. F1000Res 2024; 12:1400. [PMID: 38173826 PMCID: PMC10762295 DOI: 10.12688/f1000research.141786.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 01/05/2024] Open
Abstract
Gene content in genomes changes through several different processes, with gene duplication being an important contributor to such changes. Gene duplication occurs over a range of scales from individual genes to whole genomes, and the dynamics of this process can be context dependent. Still, there are rules by which genes are retained or lost from genomes after duplication, and probabilistic modeling has enabled characterization of these rules, including their context-dependence. Here, we describe the biology and corresponding mathematical models that are used to understand duplicate gene retention and its contribution to the set of biochemical functions encoded in a genome.
Collapse
Affiliation(s)
- Raquel Assis
- Florida Atlantic University, Boca Raton, Florida, USA
| | - Gavin Conant
- North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
4
|
Wilson AE, Liberles DA. Expectations of duplicate gene retention under the gene duplicability hypothesis. BMC Ecol Evol 2023; 23:76. [PMID: 38097959 PMCID: PMC10720195 DOI: 10.1186/s12862-023-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Gene duplication is an important process in evolution. What causes some genes to be retained after duplication and others to be lost is a process not well understood. The most prevalent theory is the gene duplicability hypothesis, that something about the function and number of interacting partners (number of subunits of protein complex, etc.), determines whether copies have more opportunity to be retained for long evolutionary periods. Some genes are also more susceptible to dosage balance effects following WGD events, making them more likely to be retained for longer periods of time. One would expect these processes that affect the retention of duplicate copies to affect the conditional probability ratio after consecutive whole genome duplication events. The probability that a gene will be retained after a second whole genome duplication event (WGD2), given that it was retained after the first whole genome duplication event (WGD1) versus the probability a gene will be retained after WGD2, given it was lost after WGD1 defines the probability ratio that is calculated. RESULTS Since duplicate gene retention is a time heterogeneous process, the time between the events (t1) and the time since the most recent event (t2) are relevant factors in calculating the expectation for observation in any genome. Here, we use a survival analysis framework to predict the probability ratio for genomes with different values of t1 and t2 under the gene duplicability hypothesis, that some genes are more susceptible to selectable functional shifts, some more susceptible to dosage compensation, and others only drifting. We also predict the probability ratio with different values of t1 and t2 under the mutational opportunity hypothesis, that probability of retention for certain genes changes in subsequent events depending upon how they were previously retained. These models are nested such that the mutational opportunity model encompasses the gene duplicability model with shifting duplicability over time. Here we present a formalization of the gene duplicability and mutational opportunity hypotheses to characterize evolutionary dynamics and explanatory power in a recently developed statistical framework. CONCLUSIONS This work presents expectations of the gene duplicability and mutational opportunity hypotheses over time under different sets of assumptions. This expectation will enable formal testing of processes leading to duplicate gene retention.
Collapse
Affiliation(s)
- Amanda E Wilson
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
5
|
Martins FB, Aono AH, Moraes ADCL, Ferreira RCU, Vilela MDM, Pessoa-Filho M, Rodrigues-Motta M, Simeão RM, de Souza AP. Genome-wide family prediction unveils molecular mechanisms underlying the regulation of agronomic traits in Urochloa ruziziensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303417. [PMID: 38148869 PMCID: PMC10749977 DOI: 10.3389/fpls.2023.1303417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Marco Pessoa-Filho
- Embrapa Cerrados, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | | | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Mato Grosso, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Lallemand T, Leduc M, Desmazières A, Aubourg S, Rizzon C, Landès C, Celton JM. Insights into the Evolution of Ohnologous Sequences and Their Epigenetic Marks Post-WGD in Malus Domestica. Genome Biol Evol 2023; 15:evad178. [PMID: 37847638 PMCID: PMC10601995 DOI: 10.1093/gbe/evad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
A Whole Genome Duplication (WGD) event occurred several Ma in a Rosaceae ancestor, giving rise to the Maloideae subfamily which includes today many pome fruits such as pear (Pyrus communis) and apple (Malus domestica). This complete and well-conserved genome duplication makes the apple an organism of choice to study the early evolutionary events occurring to ohnologous chromosome fragments. In this study, we investigated gene sequence evolution and expression, transposable elements (TE) density, and DNA methylation level. Overall, we identified 16,779 ohnologous gene pairs in the apple genome, confirming the relatively recent WGD. We identified several imbalances in QTL localization among duplicated chromosomal fragments and characterized various biases in genome fractionation, gene transcription, TE densities, and DNA methylation. Our results suggest a particular chromosome dominance in this autopolyploid species, a phenomenon that displays similarities with subgenome dominance that has only been described so far in allopolyploids.
Collapse
Affiliation(s)
- Tanguy Lallemand
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Martin Leduc
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Adèle Desmazières
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Sébastien Aubourg
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d’Evry Val d’Essonne, Evry, France
| | - Claudine Landès
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Jean-Marc Celton
- Université d’Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
7
|
Booker WW, Lemmon EM, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Gerhardt HC. Biogeography and the evolution of acoustic communication in the polyploid North American grey treefrog complex. Mol Ecol 2023; 32:4863-4879. [PMID: 37401503 DOI: 10.1111/mec.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
After polyploid species are formed, interactions between diploid and polyploid lineages may generate additional diversity in novel cytotypes and phenotypes. In anurans, mate choice by acoustic communication is the primary method by which individuals identify their own species and assess suitable mates. As such, the evolution of acoustic signals is an important mechanism for contributing to reproductive isolation and diversification in this group. Here, we estimate the biogeographical history of the North American grey treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid Hyla versicolor, focusing specifically on the geographical origin of whole genome duplication and the expansion of lineages out of glacial refugia. We then test for lineage-specific differences in mating signals by applying comparative methods to a large acoustic data set collected over 52 years that includes >1500 individual frogs. Along with describing the overall biogeographical history and call diversity, we found evidence that the geographical origin of H. versicolor and the formation of the midwestern polyploid lineage are both associated with glacial limits, and that the southwestern polyploid lineage is associated with a shift in acoustic phenotype relative to the diploid lineage with which they share a mitochondrial lineage. In H. chrysoscelis, we see that acoustic signals are largely split by Eastern and Western lineages, but that northward expansion along either side of the Appalachian Mountains is associated with further acoustic diversification. Overall, results of this study provide substantial clarity on the evolution of grey treefrogs as it relates to their biogeography and acoustic communication.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Moriarty Lemmon
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Picolo F, Piégu B, Monget P. Genes encoding teleost orthologues of human signal transduction proteins remain duplicated or triplicated more frequently than the whole genome. Heliyon 2023; 9:e20217. [PMID: 37809565 PMCID: PMC10559978 DOI: 10.1016/j.heliyon.2023.e20217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Cell signalling involves a myriad of proteins, many of which belong to families of related proteins, and these proteins display a huge number of interactions. One of the events that has led to the creation of new genes is whole genome duplication (WGD), a phenomenon that has made some major innovations possible. In addition to the two WGDs that happened before gnathostome radiation, teleost genomes underwent one (the 3WGD group) or two (the 4WGD group) extra WGD after separation from the lineage leading to holostei. In the present work, we studied in 63 teleost species whether the orthologues of human genes involved in 47 signalling pathways (HGSP) remain more frequently duplicated, triplicated or in the singleton state compared with the whole genome. We found that these genes have remained duplicated and triplicated more frequently in teleost of the 3WGD and 4WGD groups, respectively. Moreover, by examining pairs of interacting gene products in terms of conserved copy numbers, we found a majority of the 1:1 and 1:2 proportions in the 3WGD group (between 54% and 60%) and of the 2:2 and 2:4 proportions in the 4WGD group (30%). In both groups, we observed the 0:n proportion at a mean of approximately 10%, and we found some pseudogenes in the concerned genomes. Finally, the proportions were very different between the studied pathways. The n:n (i.e. same) proportion concerned 20%-65% of the interactions, depending on the pathways, and the n:m (i.e. different) proportion concerned 34%-70% of the interactions. Among the n:n proportion, the 1:1 ratio is most represented (25.8%) and among the n:m ratios, the 1:2 is most represented (25.0%). We noted the absence of gene loss for the JAK-STAT, FoxO and glucagon pathways. Overall, these results show that the teleost gene orthologues of HGSP remain duplicated (3WGD) and triplicated (4WGD) more frequently than the whole genome, although some genes have been lost, and the proportions have not always been maintained.
Collapse
Affiliation(s)
- Floriane Picolo
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Benoît Piégu
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Philippe Monget
- PRC, UMR85, INRAE, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| |
Collapse
|
9
|
Cherubino Ribeiro TH, de Oliveira RR, das Neves TT, Santiago WD, Mansur BL, Saczk AA, Vilela de Resende ML, Chalfun-Junior A. Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA. Int J Mol Sci 2023; 24:12466. [PMID: 37569839 PMCID: PMC10419165 DOI: 10.3390/ijms241512466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Taís Teixeira das Neves
- Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Wilder Douglas Santiago
- National Institute of Coffee Science and Technology (INCT-CAFÉ), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Bethania Leite Mansur
- Multiuser Instrumental Analysis Laboratory (LabMAI), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Adelir Aparecida Saczk
- Analytical and Electroanalytical Laboratory (LAE), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| |
Collapse
|
10
|
Almeida-Silva F, Van de Peer Y. Whole-genome Duplications and the Long-term Evolution of Gene Regulatory Networks in Angiosperms. Mol Biol Evol 2023; 40:msad141. [PMID: 37405949 PMCID: PMC10321489 DOI: 10.1093/molbev/msad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Angiosperms have a complex history of whole-genome duplications (WGDs), with varying numbers and ages of WGD events across clades. These WGDs have greatly affected the composition of plant genomes due to the biased retention of genes belonging to certain functional categories following their duplication. In particular, regulatory genes and genes encoding proteins that act in multiprotein complexes have been retained in excess following WGD. Here, we inferred protein-protein interaction (PPI) networks and gene regulatory networks (GRNs) for seven well-characterized angiosperm species and explored the impact of both WGD and small-scale duplications (SSDs) in network topology by analyzing changes in frequency of network motifs. We found that PPI networks are enriched in WGD-derived genes associated with dosage-sensitive intricate systems, and strong selection pressures constrain the divergence of WGD-derived genes at the sequence and PPI levels. WGD-derived genes in network motifs are mostly associated with dosage-sensitive processes, such as regulation of transcription and cell cycle, translation, photosynthesis, and carbon metabolism, whereas SSD-derived genes in motifs are associated with response to biotic and abiotic stress. Recent polyploids have higher motif frequencies than ancient polyploids, whereas WGD-derived network motifs tend to be disrupted on the longer term. Our findings demonstrate that both WGD and SSD have contributed to the evolution of angiosperm GRNs, but in different ways, with WGD events likely having a more significant impact on the short-term evolution of polyploids.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Nikolaidis M, Hesketh A, Frangou N, Mossialos D, Van de Peer Y, Oliver SG, Amoutzias GD. A panoramic view of the genomic landscape of the genus Streptomyces. Microb Genom 2023; 9:mgen001028. [PMID: 37266990 PMCID: PMC10327506 DOI: 10.1099/mgen.0.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/05/2023] [Indexed: 06/03/2023] Open
Abstract
We delineate the evolutionary plasticity of the ecologically and biotechnologically important genus Streptomyces, by analysing the genomes of 213 species. Streptomycetes genomes demonstrate high levels of internal homology, whereas the genome of their last common ancestor was already complex. Importantly, we identify the species-specific fingerprint proteins that characterize each species. Even among closely related species, we observed high interspecies variability of chromosomal protein-coding genes, species-level core genes, accessory genes and fingerprints. Notably, secondary metabolite biosynthetic gene clusters (smBGCs), carbohydrate-active enzymes (CAZymes) and protein-coding genes bearing the rare TTA codon demonstrate high intraspecies and interspecies variability, which emphasizes the need for strain-specific genomic mining. Highly conserved genes, such as those specifying genus-level core proteins, tend to occur in the central region of the chromosome, whereas those encoding proteins with evolutionarily volatile species-level fingerprints, smBGCs, CAZymes and TTA-codon-bearing genes are often found towards the ends of the linear chromosome. Thus, the chromosomal arms emerge as the part of the genome that is mainly responsible for rapid adaptation at the species and strain level. Finally, we observed a moderate, but statistically significant, correlation between the total number of CAZymes and three categories of smBGCs (siderophores, e-Polylysin and type III lanthipeptides) that are related to competition among bacteria.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikoletta Frangou
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9054 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9054 Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
13
|
Bruno L, Ronchini M, Binelli G, Muto A, Chiappetta A, Bitonti MB, Gerola P. A Study of GUS Expression in Arabidopsis as a Tool for the Evaluation of Gene Evolution, Function and the Role of Expression Derived from Gene Duplication. PLANTS (BASEL, SWITZERLAND) 2023; 12:2051. [PMID: 37653968 PMCID: PMC10221982 DOI: 10.3390/plants12102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Gene duplication played a fundamental role in eukaryote evolution and different copies of a given gene can be present in extant species, often with expressions and functions differentiated during evolution. We assume that, when such differentiation occurs in a gene copy, this may be indicated by its maintenance in all the derived species. To verify this hypothesis, we compared the histological expression domains of the three β-glucuronidase genes (AtGUS) present in Arabidopsis thaliana with the GUS evolutionary tree in angiosperms. We found that AtGUS gene expression overlaps in the shoot apex, the floral bud and the root hairs. In the root apex, AtGUS3 expression differs completely from AtGUS1 and AtGUS2, whose transcripts are present in the root cap meristem and columella, in the staminal cell niche, in the epidermis and in the proximal cortex. Conversely, AtGUS3 transcripts are limited to the old border-like cells of calyptra and those found along the protodermal cell line. The GUS evolutionary tree reveals that the two main clusters (named GUS1 and GUS3) originate from a duplication event predating angiosperm radiation. AtGUS3 belongs to the GUS3 cluster, while AtGUS1 and AtGUS2, which originate from a duplication event that occurred in an ancestor of the Brassicaceae family, are found together in the GUS1 cluster. There is another, previously undescribed cluster, called GUS4, originating from a very ancient duplication event. While the copy of GUS4 has been lost in many species, copies of GUS3 and GUS1 have been conserved in all species examined.
Collapse
Affiliation(s)
- Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Matteo Ronchini
- Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, 21100 Varese, Italy; (M.R.); (P.G.)
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, 21100 Varese, Italy;
| | - Antonella Muto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Adriana Chiappetta
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Maria Beatrice Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (A.M.); (A.C.); (M.B.B.)
| | - Paolo Gerola
- Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, 21100 Varese, Italy; (M.R.); (P.G.)
| |
Collapse
|
14
|
Wilson AE, Liberles DA. Dosage balance acts as a time-dependent selective barrier to subfunctionalization. BMC Ecol Evol 2023; 23:14. [PMID: 37138246 PMCID: PMC10155369 DOI: 10.1186/s12862-023-02116-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Gene duplication is an important process for genome expansion, sometimes allowing for new gene functions to develop. Duplicate genes can be retained through multiple processes, either for intermediate periods of time through processes such as dosage balance, or over extended periods of time through processes such as subfunctionalization and neofunctionalization. RESULTS Here, we built upon an existing subfunctionalization Markov model by incorporating dosage balance to describe the interplay between subfunctionalization and dosage balance to explore selective pressures on duplicate copies. Our model incorporates dosage balance using a biophysical framework that penalizes the fitness of genetic states with stoichiometrically imbalanced proteins. These imbalanced states cause increased concentrations of exposed hydrophobic surface areas, which cause deleterious mis-interactions. We draw comparison between our Subfunctionalization + Dosage-Balance Model (Sub + Dos) and the previous Subfunctionalization-Only (Sub-Only) Model. This comparison includes how the retention probabilities change over time, dependent upon the effective population size and the selective cost associated with spurious interaction of dosage-imbalanced partners. We show comparison between Sub-Only and Sub + Dos models for both whole-genome duplication and small-scale duplication events. CONCLUSION These comparisons show that following whole-genome duplication, dosage balance serves as a time-dependent selective barrier to the subfunctionalization process, by causing an overall delay but ultimately leading to a larger portion of the genome retained through subfunctionalization. This higher percentage of the genome that is ultimately retained is caused by the alternative competing process, nonfunctionalization, being selectively blocked to a greater extent. In small-scale duplication, the reverse pattern is seen, where dosage balance drives faster rates of subfunctionalization, but ultimately leads to a smaller portion of the genome retained as duplicates. This faster rate of subfunctionalization is because the dosage balance of interacting gene products is negatively affected immediately after duplication and the loss of a duplicate restores the stoichiometric balance. Our findings provide support that the subfunctionalization of genes that are susceptible to dosage balance effects, such as proteins involved in complexes, is not a purely neutral process. With stronger selection against stoichiometrically imbalanced gene partners, the rates of subfunctionalization and nonfunctionalization slow; however, this ultimately leads to a greater proportion of subfunctionalized gene pairs.
Collapse
Affiliation(s)
- Amanda E Wilson
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
15
|
Segredo-Otero E, Sanjuán R. Genetic complementation fosters evolvability in complex fitness landscapes. Sci Rep 2023; 13:662. [PMID: 36635310 PMCID: PMC9837146 DOI: 10.1038/s41598-022-26588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
The ability of natural selection to optimize traits depends on the topology of the genotype-fitness map (fitness landscape). Epistatic interactions produce rugged fitness landscapes, where adaptation is constrained by the presence of low-fitness intermediates. Here, we used simulations to explore how evolvability in rugged fitness landscapes is influenced by genetic complementation, a process whereby different sequence variants mutually compensate for their deleterious mutations. We designed our model inspired by viral populations, in which genetic variants are known to interact frequently through coinfection. Our simulations indicate that genetic complementation enables a more efficient exploration of rugged fitness landscapes. Although this benefit may be undermined by genetic parasites, its overall effect on evolvability remains positive in populations that exhibit strong relatedness between interacting sequences. Similar processes could operate in contexts other than viral coinfection, such as in the evolution of ploidy.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- grid.4711.30000 0001 2183 4846Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980, Paterna, València, Spain.
| |
Collapse
|
16
|
Conant GC. POInT: Modeling Polyploidy in the Era of Ubiquitous Genomics. Methods Mol Biol 2023; 2545:77-90. [PMID: 36720808 DOI: 10.1007/978-1-0716-2561-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thirteen years ago, we described an evolutionary modeling tool that could resolve the orthology relationships among the homologous genomic regions created by a whole-genome duplication. This tool, which we subsequently named POInT (the Polyploid Orthology Inference Tool), was originally only useful for studying a genome duplication known from bakers' yeast and its relatives. Now, with hundreds of genome sequences that contain the relicts of ancient polyploidy available, POInT can be used to study dozens of different polyploidies, asking both questions about the history of individual events and about the commonalities and differences seen between those events. In this chapter, I give a brief history of the development of POInT as an illustration of the interconnected nature of computational biology research. I then further describe how POInT operates and some of the strengths and drawbacks of its structure. I close with a few examples of discoveries we have made using it.
Collapse
Affiliation(s)
- Gavin C Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
- Program in Genetics, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
17
|
Genome-wide identification of GRF gene family and their contribution to abiotic stress response in pitaya (Hylocereus polyrhizus). Int J Biol Macromol 2022; 223:618-635. [PMID: 36356872 DOI: 10.1016/j.ijbiomac.2022.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors identified in many land plants. Recently, their indispensable roles in stress response are highlighted. In present work, 11 HpGRFs were cloned in pitaya. Segmental duplication is considered essential for the expansion of HpGRFs. A phylogenetic tree suggested that GRFs could be divided into eight categories, among which G-I was a Caryophyllales-specific one. The categorization was further evidenced by differences in the gene structure, collinearity, protein domain of HpGRFs. Five miR396 hairpins giving rise to two types of matured miR396s were identified in pitaya via sRNA-Seq in combination with bioinformatic analysis. Parallel analysis of RNA ends proved that HpGRFs except HpGRF5 were degraded by miR396-directed cleavages at the regions which code the conserved WRC motifs of HpGRFs. Multiple cis-regulatory elements were discovered in the promoters of HpGRFs. Among the elements, most are involved in stress and phytohormone response as well as plant growth, indicating a crosstalk between them. Expression analysis showed the responsive patterns of the miR396-GRF module under abiotic stresses. To conclude, our work systematically identified the miR396-targeted HpGRFs in pitaya and confirmed their involvement in stress response, providing novel insights into the comprehensive understanding of the stress resistance of pitaya.
Collapse
|
18
|
Henry CN, Piper K, Wilson AE, Miraszek JL, Probst CS, Rong Y, Liberles DA. WGDTree: a phylogenetic software tool to examine conditional probabilities of retention following whole genome duplication events. BMC Bioinformatics 2022; 23:505. [PMID: 36434497 PMCID: PMC9701042 DOI: 10.1186/s12859-022-05042-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Multiple processes impact the probability of retention of individual genes following whole genome duplication (WGD) events. In analyzing two consecutive whole genome duplication events that occurred in the lineage leading to Atlantic salmon, a new phylogenetic statistical analysis was developed to examine the contingency of retention in one event based upon retention in a previous event. This analysis is intended to evaluate mechanisms of duplicate gene retention and to provide software to generate the test statistic for any genome with pairs of WGDs in its history. RESULTS Here a software package written in Python, 'WGDTree' for the analysis of duplicate gene retention following whole genome duplication events is presented. Using gene tree-species tree reconciliation to label gene duplicate nodes and differentiate between WGD and SSD duplicates, the tool calculates a statistic based upon the conditional probability of a gene duplicate being retained after a second whole genome duplication dependent upon the retention status after the first event. The package also contains methods for the simulation of gene trees with WGD events. After running simulations, the accuracy of the placement of events has been determined to be high. The conditional probability statistic has been calculated for Phalaenopsis equestris on a monocot species tree with a pair of consecutive WGD events on its lineage, showing the applicability of the method. CONCLUSIONS A new software tool has been created for the analysis of duplicate genes in examination of retention mechanisms. The software tool has been made available on the Python package index and the source code can be found on GitHub here: https://github.com/cnickh/wgdtree .
Collapse
Affiliation(s)
- C. Nicholas Henry
- grid.264727.20000 0001 2248 3398Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA 19122 USA
| | - Kathryn Piper
- grid.264727.20000 0001 2248 3398Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA 19122 USA ,grid.265850.c0000 0001 2151 7947Present Address: Department of Biological Sciences, University at Albany, Albany, NY 12222 USA
| | - Amanda E. Wilson
- grid.264727.20000 0001 2248 3398Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA 19122 USA
| | - John L. Miraszek
- grid.264727.20000 0001 2248 3398Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA 19122 USA ,grid.134936.a0000 0001 2162 3504Present Address: Genetics Area Program, University of Missouri, Columbia, MO 65211 USA
| | - Claire S. Probst
- grid.264727.20000 0001 2248 3398Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA 19122 USA
| | - Yuying Rong
- grid.264727.20000 0001 2248 3398Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA 19122 USA ,grid.256868.70000 0001 2215 7365Department of Biology, Haverford College, Haverford, PA 19041 USA ,grid.4830.f0000 0004 0407 1981Present Address: Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - David A. Liberles
- grid.264727.20000 0001 2248 3398Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
19
|
Duan Y, Zhang W, Chen X, Wang M, Zhong L, Liu J, Bian W, Zhang S. Genome-wide identification and expression analysis of mitogen-activated protein kinase (MAPK) genes in response to salinity stress in channel catfish (Ictalurus punctatus). JOURNAL OF FISH BIOLOGY 2022; 101:972-984. [PMID: 35818162 DOI: 10.1111/jfb.15158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) gene family has been systematically described in several fish species, but less so in channel catfish (Ictalurus punctatus), which is an important global aquaculture species. In this study, 16 MAPK genes were identified in the channel catfish genome and classified into three subfamilies based on phylogenetic analysis, including six extracellular signal regulated kinase (ERK) genes, six p38-MAPK genes and four C-Jun N-terminal kinase (JNK) genes. All MAPK genes were distributed unevenly across 10 chromosomes, of which three (IpMAPK8, IpMAPK12 and IpMAPK14) underwent teleost-specific whole genome duplication during evolution. Gene expression profiles in channel catfish during salinity stress were analysed using transcriptome sequencing and qRT-PCR (quantitative reverse transcription PCR). Results from reads per kilobase million (RPKM) analysis showed IpMAPK13, IpMAPK14a and IpMAPK14b genes were differentially expressed when compared with other genes between treatment and control groups. Furthermore, three of these genes were validated by qRT-PCR, of which IpMAPK14a expression levels were significantly upregulated in treatment groups (high and low salinity) when compared with the control group, with the highest expression levels in the low salinity group (P < 0.05). Therefore, IpMAPK14a may have important response roles to salinity stress in channel catfish.
Collapse
Affiliation(s)
- Yongqiang Duan
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenping Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Ju Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Wenji Bian
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
20
|
Yin L, Xu G, Yang J, Zhao M. The Heterogeneity in the Landscape of Gene Dominance in Maize is Accompanied by Unique Chromatin Environments. Mol Biol Evol 2022; 39:6709529. [PMID: 36130304 PMCID: PMC9547528 DOI: 10.1093/molbev/msac198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However, the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dominant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions, genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifications, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric regions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to maintain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together, our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the divergence and evolution of duplicated genes.
Collapse
Affiliation(s)
- Liangwei Yin
- Department of Biology, Miami University, Oxford, OH 45056
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | |
Collapse
|
21
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
22
|
Johri P, Gout JF, Doak TG, Lynch M. A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication. Mol Biol Evol 2022; 39:msac118. [PMID: 35639978 PMCID: PMC9206413 DOI: 10.1093/molbev/msac118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Whole-genome duplications (WGDs) have occurred in many eukaryotic lineages. However, the underlying evolutionary forces and molecular mechanisms responsible for the long-term retention of gene duplicates created by WGDs are not well understood. We employ a population-genomic approach to understand the selective forces acting on paralogs and investigate ongoing duplicate-gene loss in multiple species of Paramecium that share an ancient WGD. We show that mutations that abolish protein function are more likely to be segregating in retained WGD paralogs than in single-copy genes, most likely because of ongoing nonfunctionalization post-WGD. This relaxation of purifying selection occurs in only one WGD paralog, accompanied by the gradual fixation of nonsynonymous mutations and reduction in levels of expression, and occurs over a long period of evolutionary time, "marking" one locus for future loss. Concordantly, the fitness effects of new nonsynonymous mutations and frameshift-causing indels are significantly more deleterious in the highly expressed copy compared with their paralogs with lower expression. Our results provide a novel mechanistic model of gene duplicate loss following WGDs, wherein selection acts on the sum of functional activity of both duplicate genes, allowing the two to wander in expression and functional space, until one duplicate locus eventually degenerates enough in functional efficiency or expression that its contribution to total activity is too insignificant to be retained by purifying selection. Retention of duplicates by such mechanisms predicts long times to duplicate-gene loss, which should not be falsely attributed to retention due to gain/change in function.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
23
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nat Commun 2022; 13:3014. [PMID: 35641525 PMCID: PMC9156689 DOI: 10.1038/s41467-022-30704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
The genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis of maize (Zea mays) aneuploids revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). However, little is known regarding the role of microRNAs (miRNAs) under genomic imbalance. Here, we report the impact of aneuploidy and polyploidy on the expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. By contrast, polyploids show less differential miRNA expression than aneuploids. Significant correlations between expression levels of miRNAs and their targets are identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance.
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
24
|
Gera T, Jonas F, More R, Barkai N. Evolution of binding preferences among whole-genome duplicated transcription factors. eLife 2022; 11:73225. [PMID: 35404235 PMCID: PMC9000951 DOI: 10.7554/elife.73225] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/20/2022] [Indexed: 01/10/2023] Open
Abstract
Throughout evolution, new transcription factors (TFs) emerge by gene duplication, promoting growth and rewiring of transcriptional networks. How TF duplicates diverge was studied in a few cases only. To provide a genome-scale view, we considered the set of budding yeast TFs classified as whole-genome duplication (WGD)-retained paralogs (~35% of all specific TFs). Using high-resolution profiling, we find that ~60% of paralogs evolved differential binding preferences. We show that this divergence results primarily from variations outside the DNA-binding domains (DBDs), while DBD preferences remain largely conserved. Analysis of non-WGD orthologs revealed uneven splitting of ancestral preferences between duplicates, and the preferential acquiring of new targets by the least conserved paralog (biased neo/sub-functionalization). Interactions between paralogs were rare, and, when present, occurred through weak competition for DNA-binding or dependency between dimer-forming paralogs. We discuss the implications of our findings for the evolutionary design of transcriptional networks.
Collapse
Affiliation(s)
- Tamar Gera
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Roye More
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science
| |
Collapse
|
25
|
Lan T, Xiong W, Chen X, Mo B, Tang G. Plant cytoplasmic ribosomal proteins: an update on classification, nomenclature, evolution and resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:292-318. [PMID: 35000252 DOI: 10.1111/tpj.15667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Standardized naming systems are essential to integrate and unify distinct research fields, and to link multi-species data within and across kingdoms. We conducted a comprehensive survey of cytoplasmic ribosomal proteins (CRPs) in the dicot model Arabidopsis thaliana and the monocot model rice, noting that the standardized naming system has not been widely adopted in the plant community. We generated a database linking the old classical names to their updated and compliant names. We also explored the sequences, molecular evolution, and structural and functional characteristics of all plant CRP families, emphasizing evolutionarily conserved and plant-specific features through cross-kingdom comparisons. Unlike fungal CRP paralogs that were mainly created by whole-genome duplication (WGD) or retroposition under a concerted evolution mode, plant CRP genes evolved primarily through both WGD and tandem duplications in a rapid birth-and-death process. We also provide a web-based resource (http://www.plantcrp.cn/) with the aim of sharing the latest knowledge on plant CRPs and facilitating the continued development of a standardized framework across the entire community.
Collapse
Affiliation(s)
- Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, 49931, MI, USA
| |
Collapse
|
26
|
Peterson KJ, Beavan A, Chabot PJ, McPeek MA, Pisani D, Fromm B, Simakov O. MicroRNAs as Indicators into the Causes and Consequences of Whole-Genome Duplication Events. Mol Biol Evol 2022; 39:msab344. [PMID: 34865078 PMCID: PMC8789304 DOI: 10.1093/molbev/msab344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Whole-genome duplications (WGDs) have long been considered the causal mechanism underlying dramatic increases to morphological complexity due to the neo-functionalization of paralogs generated during these events. Nonetheless, an alternative hypothesis suggests that behind the retention of most paralogs is not neo-functionalization, but instead the degree of the inter-connectivity of the intended gene product, as well as the mode of the WGD itself. Here, we explore both the causes and consequences of WGD by examining the distribution, expression, and molecular evolution of microRNAs (miRNAs) in both gnathostome vertebrates as well as chelicerate arthropods. We find that although the number of miRNA paralogs tracks the number of WGDs experienced within the lineage, few of these paralogs experienced changes to the seed sequence, and thus are functionally equivalent relative to their mRNA targets. Nonetheless, in gnathostomes, although the retention of paralogs following the 1R autotetraploidization event is similar across the two subgenomes, the paralogs generated by the gnathostome 2R allotetraploidization event are retained in higher numbers on one subgenome relative to the second, with the miRNAs found on the preferred subgenome showing both higher expression of mature miRNA transcripts and slower molecular evolution of the precursor miRNA sequences. Importantly, WGDs do not result in the creation of miRNA novelty, nor do WGDs correlate to increases in complexity. Instead, it is the number of miRNA seed sequences in the genome itself that not only better correlate to instances in complexification, but also mechanistically explain why complexity increases when new miRNA families are established.
Collapse
Affiliation(s)
- Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Alan Beavan
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Peter J Chabot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Mark A McPeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Bastian Fromm
- Arctic University Museum of Norway, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Bonthala VS, Stich B. Genetic Divergence of Lineage-Specific Tandemly Duplicated Gene Clusters in Four Diploid Potato Genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:875202. [PMID: 35645998 PMCID: PMC9131075 DOI: 10.3389/fpls.2022.875202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/20/2022] [Indexed: 05/04/2023]
Abstract
Potato (Solanum tuberosum L.) is the most important non-grain food crop. Tandem duplication significantly contributes to genome evolution. The objectives of this study were to (i) identify tandemly duplicated genes and compare their genomic distributions across potato genotypes, (ii) investigate the bias in functional specificities, (iii) explore the relationships among coding sequence, promoter and expression divergences associated with tandemly duplicated genes, (iv) examine the role of tandem duplication in generating and expanding lineage-specific gene families, (v) investigate the evolutionary forces affecting tandemly duplicated genes, and (vi) assess the similarities and differences with respect to above mentioned aspects between cultivated genotypes and their wild-relative. In this study, we used well-annotated and chromosome-scale de novo genome assemblies of multiple potato genotypes. Our results showed that tandemly duplicated genes are abundant and dispersed through the genome. We found that several functional specificities, such as disease resistance, stress-tolerance, and biosynthetic pathways of tandemly duplicated genes were differentially enriched across multiple potato genomes. Our results indicated the existence of a significant correlation among expression, promoter, and protein divergences in tandemly duplicated genes. We found about one fourth of tandemly duplicated gene clusters as lineage-specific among multiple potato genomes, and these tended to localize toward centromeres and revealed distinct selection signatures and expression patterns. Furthermore, our results showed that a majority of duplicated genes were retained through sub-functionalization followed by genetic redundancy, while only a small fraction of duplicated genes was retained though neo-functionalization. The lineage-specific expansion of gene families by tandem duplication coupled with functional bias might have significantly contributed to potato's genotypic diversity, and, thus, to adaption to environmental stimuli.
Collapse
Affiliation(s)
- Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- *Correspondence: Venkata Suresh Bonthala,
| | - Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Cluster of Excellence on Plant Sciences, From Complex Traits Towards Synthetic Modules, Düsseldorf, Germany
| |
Collapse
|
28
|
Wong ELY, Hiscock SJ, Filatov DA. The Role of Interspecific Hybridisation in Adaptation and Speciation: Insights From Studies in Senecio. FRONTIERS IN PLANT SCIENCE 2022; 13:907363. [PMID: 35812981 PMCID: PMC9260247 DOI: 10.3389/fpls.2022.907363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 05/08/2023]
Abstract
Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Edgar L. Y. Wong,
| | - Simon J. Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Botanic Garden and Arboretum, Oxford, United Kingdom
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Mottes F, Villa C, Osella M, Caselle M. The impact of whole genome duplications on the human gene regulatory networks. PLoS Comput Biol 2021; 17:e1009638. [PMID: 34871317 PMCID: PMC8675932 DOI: 10.1371/journal.pcbi.1009638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/16/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
This work studies the effects of the two rounds of Whole Genome Duplication (WGD) at the origin of the vertebrate lineage on the architecture of the human gene regulatory networks. We integrate information on transcriptional regulation, miRNA regulation, and protein-protein interactions to comparatively analyse the role of WGD and Small Scale Duplications (SSD) in the structural properties of the resulting multilayer network. We show that complex network motifs, such as combinations of feed-forward loops and bifan arrays, deriving from WGD events are specifically enriched in the network. Pairs of WGD-derived proteins display a strong tendency to interact both with each other and with common partners and WGD-derived transcription factors play a prominent role in the retention of a strong regulatory redundancy. Combinatorial regulation and synergy between different regulatory layers are in general enhanced by duplication events, but the two types of duplications contribute in different ways. Overall, our findings suggest that the two WGD events played a substantial role in increasing the multi-layer complexity of the vertebrate regulatory network by enhancing its combinatorial organization, with potential consequences on its overall robustness and ability to perform high-level functions like signal integration and noise control. Lastly, we discuss in detail the RAR/RXR pathway as an illustrative example of the evolutionary impact of WGD duplications in human. Gene duplication is one of the main mechanisms driving genome evolution. The duplication of a genomic segment can be the result of a local event, involving only a small portion of the genome, or of a dramatic duplication of the whole genome, which is however only rarely retained. All vertebrates descend from two rounds of Whole-Genome Duplication (WGD) that occurred approximately 500 Mya. We show that these events influenced in unique ways the evolution of different human gene regulatory networks, with sizeable effects on their current structure. We find that WGDs statistically increased the presence of specific classes of simple genetic circuits, considered to be fundamental building blocks of more sophisticated circuitry and commonly associated to complex functions. Our findings support the hypothesis that these rare, large-scale events have played a substantial role in the emergence of complex traits in vertebrates.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Mathematics and Statistics, University of St Andrews, Mathematical Institute, North Haugh, St Andrews, United Kingdom
| | - Matteo Osella
- Department of Physics, University of Turin & INFN, Turin, Italy
| | - Michele Caselle
- Department of Physics, University of Turin & INFN, Turin, Italy
| |
Collapse
|
30
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|
31
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
32
|
Han F, Zhang X, Yang L, Zhuang M, Zhang Y, Liu Y, Li Z, Wang Y, Fang Z, Ji J, Lv H. Genome-wide characterization and analysis of the anthocyanin biosynthetic genes in Brassica oleracea. PLANTA 2021; 254:92. [PMID: 34633541 DOI: 10.1007/s00425-021-03746-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
From Brassica oleracea genome, 88 anthocyanin biosynthetic genes were identified. They expanded via whole-genome or tandem duplication and showed significant expression differentiation. Functional characterization revealed BoMYB113.1 as positive and BoMYBL2.1 as negative regulators responsible for anthocyanin accumulation. Brassica oleracea produces various health-promoting phytochemicals, including glucosinolates, carotenoids, and vitamins. Despite the anthocyanin biosynthetic pathways in the model plant Arabidopsis thaliana being well characterized, little is known about the genetic basis of anthocyanin biosynthesis in B. oleracea. In this study, we identified 88 B. oleracea anthocyanin biosynthetic genes (BoABGs) representing homologs of 46 Arabidopsis anthocyanin biosynthetic genes (AtABGs). Most anthocyanin biosynthetic genes, having expanded via whole-genome duplication and tandem duplication, retained more than one copy in B. oleracea. Expression analysis revealed diverse expression patterns of BoABGs in different tissues, and BoABG duplications showed significant expression differentiation. Additional expression analysis and functional characterization revealed that the positive regulator BoMYB113.1 and negative regulator BoMYBL2.1 may be key genes responsible for anthocyanin accumulation in red cabbage and ornamental kale by upregulating the expression of structural genes. This study paves the way for a better understanding of anthocyanin biosynthetic genes in B. oleracea and should promote breeding for anthocyanin content.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Xiaoli Zhang
- Tianjin Kernel Vegetable Research Institute, State Key Laboratory of Vegetable Germplasm Innovation, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
33
|
Miao Z, Zhang T, Xie B, Qi Y, Ma C. Evolutionary implications of the RNA N6-methyladenosine methylome in plants. Mol Biol Evol 2021; 39:6388042. [PMID: 34633447 PMCID: PMC8763109 DOI: 10.1093/molbev/msab299] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epigenetic modifications play important roles in genome evolution and innovation. However, most analyses have focused on the evolutionary role of DNA modifications, and little is understood about the influence of post-transcriptional RNA modifications on genome evolution. To explore the evolutionary significance of RNA modifications, we generated transcriptome-wide profiles of N6-methyladenosine (m6A), the most prevalent internal modification of mRNA, for 13 representative plant species spanning over half a billion years of evolution. These data reveal the evolutionary conservation and divergence of m6A methylomes in plants, uncover the preference of m6A modifications on ancient orthologous genes, and demonstrate less m6A divergence between orthologous gene pairs with earlier evolutionary origins. Further investigation revealed that the evolutionary divergence of m6A modifications is related to sequence variation between homologs from whole genome duplication and gene family expansion from local genome duplication. Unexpectedly, a significant negative correlation was found between the retention ratio of m6A modifications and the number of family members. Moreover, the divergence of m6A modifications is accompanied by variation in the expression level and translation efficiency of duplicated genes from whole and local genome duplication. Our work reveals new insights into evolutionary patterns of m6A methylomes in plant species and their implications, and provides a resource of plant m6A profiles for further studies of m6A regulation and function in an evolutionary context.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Bin Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Yuhong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, 712100, China
| |
Collapse
|
34
|
Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci U S A 2021; 118:2020838118. [PMID: 33504594 PMCID: PMC7896294 DOI: 10.1073/pnas.2020838118] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a unifying theory to explain cancer recurrence, therapeutic resistance, and lethality. The basis of this theory is the formation of simultaneously polyploid and aneuploid cancer cells, polyaneuploid cancer cells (PACCs), that avoid the toxic effects of systemic therapy by entering a state of cell cycle arrest. The theory is independent of which of the classically associated oncogenic mutations have already occurred. PACCs have been generally disregarded as senescent or dying cells. Our theory states that therapeutic resistance is driven by PACC formation that is enabled by accessing a polyploid program that allows an aneuploid cancer cell to double its genomic content, followed by entry into a nondividing cell state to protect DNA integrity and ensure cell survival. Upon removal of stress, e.g., chemotherapy, PACCs undergo depolyploidization and generate resistant progeny that make up the bulk of cancer cells within a tumor.
Collapse
|
35
|
Shi X, Yang H, Chen C, Hou J, Hanson KM, Albert PS, Ji T, Cheng J, Birchler JA. Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. THE PLANT CELL 2021; 33:917-939. [PMID: 33677584 PMCID: PMC8226301 DOI: 10.1093/plcell/koab030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Katherine M Hanson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
36
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. THE PLANT CELL 2021; 33:901-916. [PMID: 33656551 PMCID: PMC8226288 DOI: 10.1093/plcell/koab029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/23/2021] [Indexed: 05/12/2023]
Abstract
The phenotypic consequences of the addition or subtraction of part of a chromosome is more severe than changing the dosage of the whole genome. By crossing diploid trisomies to a haploid inducer, we identified 17 distal segmental haploid disomies that cover ∼80% of the maize genome. Disomic haploids provide a level of genomic imbalance that is not ordinarily achievable in multicellular eukaryotes, allowing the impact to be stronger and more easily studied. Transcriptome size estimates revealed that a few disomies inversely modulate most of the transcriptome. Based on RNA sequencing, the expression levels of genes located on the varied chromosome arms (cis) in disomies ranged from being proportional to chromosomal dosage (dosage effect) to showing dosage compensation with no expression change with dosage. For genes not located on the varied chromosome arm (trans), an obvious trans-acting effect can be observed, with the majority showing a decreased modulation (inverse effect). The extent of dosage compensation of varied cis genes correlates with the extent of trans inverse effects across the 17 genomic regions studied. The results also have implications for the role of stoichiometry in gene expression, the control of quantitative traits, and the evolution of dosage-sensitive genes.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
37
|
Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, Huang CH, Ma H. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. MOLECULAR PLANT 2021; 14:748-773. [PMID: 33631421 DOI: 10.1016/j.molp.2021.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Fabaceae are the third largest angiosperm family, with 765 genera and ∼19 500 species. They are important both economically and ecologically, and global Fabaceae crops are intensively studied in part for their nitrogen-fixing ability. However, resolution of the intrasubfamilial Fabaceae phylogeny and divergence times has remained elusive, precluding a reconstruction of the evolutionary history of symbiotic nitrogen fixation in Fabaceae. Here, we report a highly resolved phylogeny using >1500 nuclear genes from newly sequenced transcriptomes and genomes of 391 species, along with other datasets, for a total of 463 legumes spanning all 6 subfamilies and 333 of 765 genera. The subfamilies are maximally supported as monophyletic. The clade comprising subfamilies Cercidoideae and Detarioideae is sister to the remaining legumes, and Duparquetioideae and Dialioideae are successive sisters to the clade of Papilionoideae and Caesalpinioideae. Molecular clock estimation revealed an early radiation of subfamilies near the K/Pg boundary, marked by mass extinction, and subsequent divergence of most tribe-level clades within ∼15 million years. Phylogenomic analyses of thousands of gene families support 28 proposed putative whole-genome duplication/whole-genome triplication events across Fabaceae, including those at the ancestors of Fabaceae and five of the subfamilies, and further analyses supported the Fabaceae ancestral polyploidy. The evolution of rhizobial nitrogen-fixing nodulation in Fabaceae was probed by ancestral character reconstruction and phylogenetic analyses of related gene families and the results support the hypotheses of one or two switch(es) to rhizobial nodulation followed by multiple losses. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Fabaceae.
Collapse
Affiliation(s)
- Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Kai-Wen Jiang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, PR China; Ningbo Botanical Garden Herbarium, Ningbo 315201, PR China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yi Hu
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Renbin Zhu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, PR China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Ashley N Egan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
38
|
Zhang H, Xie J, Wang W, Wang J. Comparison of Brassica Genomes reveals asymmetrical gene retention between functional groups of genes in recurrent polyploidizations. PLANT MOLECULAR BIOLOGY 2021; 106:193-206. [PMID: 33742369 DOI: 10.1007/s11103-021-01137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
We provided a study on homeologous gene evolution of homeologous genes by comparing Brassica genomes. Polyploidy has played fundamental roles during the evolution of plants. Following polyploidization, many duplicated genes are diversified or lost in a process termed diploidization. Understanding the retention and diversification of homeologs after polyploidization will help elucidate the process of diploidization. Here, we investigated the evolution of homeologous genes in Brassica genomes and observed similarly asymmetrical gene retention among different functional groups and consistent retention after recurrent polyploidizations. In the comparative analysis of Brassica diploid genomes, we found that preferentially retained genes show different patterns on sequence and expression divergence: genes with the function of 'biosynthetic process' and 'transport' were under much stronger purifying selection, while transcriptional regulatory genes diverged much faster than other genes. Duplicate pairs of the former two functional groups show conserved high expression patterns, while most of transcriptional regulatory genes are simultaneously lowly expressed. Furthermore, homeologs in diploids and allotetraploids showed similar loss and retention patterns: duplicates in progenitor genomes were more likely to be retained and accumulated fewer substitutions. However, transcriptional regulation is also enriched in the genes that do not have any non-synonymous mutations in the Brassica allotetraploids, indicating that some of these genes were under strong purifying selection. Overall, our study provided insight into the evolution of homeologs genes during diploidization process.
Collapse
Affiliation(s)
- Haorui Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiandan Xie
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenliang Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jianbo Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
39
|
Cusack SA, Wang P, Lotreck SG, Moore BM, Meng F, Conner JK, Krysan PJ, Lehti-Shiu MD, Shiu SH. Predictive Models of Genetic Redundancy in Arabidopsis thaliana. Mol Biol Evol 2021; 38:3397-3414. [PMID: 33871641 PMCID: PMC8321531 DOI: 10.1093/molbev/msab111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genetic redundancy refers to a situation where an individual with a loss-of-function mutation in one gene (single mutant) does not show an apparent phenotype until one or more paralogs are also knocked out (double/higher-order mutant). Previous studies have identified some characteristics common among redundant gene pairs, but a predictive model of genetic redundancy incorporating a wide variety of features derived from accumulating omics and mutant phenotype data is yet to be established. In addition, the relative importance of these features for genetic redundancy remains largely unclear. Here, we establish machine learning models for predicting whether a gene pair is likely redundant or not in the model plant Arabidopsis thaliana based on six feature categories: functional annotations, evolutionary conservation including duplication patterns and mechanisms, epigenetic marks, protein properties including posttranslational modifications, gene expression, and gene network properties. The definition of redundancy, data transformations, feature subsets, and machine learning algorithms used significantly affected model performance based on holdout, testing phenotype data. Among the most important features in predicting gene pairs as redundant were having a paralog(s) from recent duplication events, annotation as a transcription factor, downregulation during stress conditions, and having similar expression patterns under stress conditions. We also explored the potential reasons underlying mispredictions and limitations of our studies. This genetic redundancy model sheds light on characteristics that may contribute to long-term maintenance of paralogs, and will ultimately allow for more targeted generation of functionally informative double mutants, advancing functional genomic studies.
Collapse
Affiliation(s)
- Siobhan A Cusack
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Serena G Lotreck
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Bethany M Moore
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Fanrui Meng
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jeffrey K Conner
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.,Kellogg Biological Station, Michigan State University, East Lansing, MI, USA
| | - Patrick J Krysan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Shin-Han Shiu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
40
|
Chang AYF, Liao BY. Reduced Translational Efficiency of Eukaryotic Genes after Duplication Events. Mol Biol Evol 2021; 37:1452-1461. [PMID: 31904835 DOI: 10.1093/molbev/msz309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Control of gene expression has been found to be predominantly determined at the level of protein translation. However, to date, reduced expression from duplicated genes in eukaryotes for dosage maintenance has only been linked to transcriptional control involving epigenetic mechanisms. Here, we hypothesize that dosage maintenance following gene duplication also involves regulation at the protein level. To test this hypothesis, we compared transcriptome and proteome data of yeast models, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and worm models, Caenorhabditis elegans and Caenorhabditis briggsae, to investigate lineage-specifically duplicated genes. Duplicated genes in both eukaryotic models exhibited a reduced protein-to-mRNA abundance ratio. Moreover, dosage sensitive genes, represented by genes encoding protein complex subunits, reduced their protein-to-mRNA abundance ratios more significantly than the other genes after duplication events. An analysis of ribosome profiling (Ribo-Seq) data further showed that reduced translational efficiency was more prominent for dosage sensitive genes than for the other genes. Meanwhile, no difference in protein degradation rate was associated with duplication events. Translationally repressed duplicated genes were also more likely to be inhibited at the level of transcription. Taken together, these results suggest that translation-mediated dosage control is partially contributed by natural selection and it enhances transcriptional control in maintaining gene dosage after gene duplication events during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Andrew Ying-Fei Chang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| |
Collapse
|
41
|
Zafar I, Iftikhar R, Ahmad SU, Rather MA. Genome wide identification, phylogeny, and synteny analysis of sox gene family in common carp ( Cyprinus carpio). ACTA ACUST UNITED AC 2021; 30:e00607. [PMID: 33936955 PMCID: PMC8076717 DOI: 10.1016/j.btre.2021.e00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
27 SOX (high-mobility group HMG-box) genes were identified in the C. carp genome. SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative protein series from 307 to 509 amino acids. Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %. Chromosomal location and synteny analysis display all SOX gene are located on different chromosomes.
Common carp (Cyprinus carpio) is a commercial fish species valuable for nutritious components and plays a vital role in human healthy nutrition. The SOX (SRY-related genes systematically characterized by a high-mobility group HMG-box) encoded important gene regulatory proteins, a family of transcription factors found in a broad range of animal taxa and extensively known for its contribution in multiple developmental processes including contribution in sex determination across phyla. In our current study, we initially accomplished a genome-wide analysis to report the SOX gene family in common carp fish based on available genomic sequences of zebrafish retrieved from gene repository databases, we focused on the global identification of the Sox gene family in Common carp among wide range of vertebrates and teleosts based on bioinformatics tools and techniques and explore the evolutionary relationships. In our results, a total of 27 SOX (high-mobility group HMG-box) domain genes were identified in the C. carp genome. The full length sequences of SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative proteins series from 307 to 509 amino acids and all gene having exon number expect SOX9 and SOX13. All the SOX proteins contained at least one conserved DNA-binding HMG-box domain and two (SOX7 and SOX18) were found C terminal. The Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %, average in biological regulation 45.188 %, biosynthetic process (19.992 %), regulation of cellular process 39.68, 45.508 % organic substance metabolic process, multicellular organismal process 23.23 %,developmental process 21.74 %, system development 16.59 %, gene expression 16.05 % and 14.337 % of RNA metabolic process. Chromosomal location and syntanic analysis show all SOX gene are located on different chromosomes and apparently does not fallow the unique pattern. The maximum linkage of chromosome is (2) on Unplaced Scaffold region. Finally, our results provide important genomic suggestion for upcoming studies of biochemical, physiological, and phylogenetic understanding on SOX genes among teleost.
Collapse
Affiliation(s)
- Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Rida Iftikhar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Fauclty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
- Corresponding author.
| |
Collapse
|
42
|
Xu X, Chen X, Shen X, Chen R, Zhu C, Zhang Z, Chen Y, Lin W, Xu X, Lin Y, Lai Z. Genome-wide identification and characterization of DEAD-box helicase family associated with early somatic embryogenesis in Dimocarpus longan Lour. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153364. [PMID: 33465637 DOI: 10.1016/j.jplph.2021.153364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
DEAD-box (DDX) proteins belong to the largest subfamily of RNA helicase SF2, which contributes to all biological processes of RNA metabolism in the plant kingdom. Till now, no significant data are available regarding studies on DDX in Somatic Embryogenesis (SE) of woody plants. It is important to investigate the biological function of the DlDDX family in longan SE. Thus, a comprehensive analysis of 58 longan DEAD-box (DlDDX) genes characterization was performed by genome-wide identification and transcript abundance validation analysis. Homologous evolution has revealed that some DlDDXs in longan had high sequence similarity with Mus musculus, Citrus and Saccharomyces cerevisiae, indicating that DlDDXs were highly conservative in the animal, plant, and microorganism. Remarkably, gene duplication, purifying selection, and alternative splicing events, and new auxiliary domains have likely contributed to the functional evolution of DlDDX, indicating that DlDDX appeared neofunctionalization in longan. Besides, DlDDX3, 15, 28, 36 might interact with protein complex (MAC3A, MAC3B, CDC5, CBP20) of miRNA biosynthesis. Notably, DlDDX28 contained a novel auxiliary domain (CAF-1 p150), which might contribute to DNA demethylation in longan early SE. 4 DlDDX genes significantly expressed not only in early SE and zygotic embryogenesis (ZE) but also up-regulated at high levels in 'Honghezi' and 'Quanlongbaihe' with abortive seeds, which are of great significance. Moreover, some DlDDXs presented abiotic stress-response dynamic expression patterns by ABA, SA, JA, and NaCl treatments during early SE. Hence, DEAD-box is essential to SE development and seed abortive in longan.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Shen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongzhu Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzhong Lin
- Quanzhou Agricultural Science Research Institute, Quanzhou, 362212, China
| | - Xuhan Xu
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
43
|
Shi X, Chen C, Yang H, Hou J, Ji T, Cheng J, Veitia RA, Birchler JA. The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods Mol Biol 2020; 2093:161-171. [PMID: 32088896 DOI: 10.1007/978-1-0716-0179-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dosage effects in plants are caused by changes in the copy number of chromosomes, segments of chromosomes, or multiples of individual genes. Genes often exhibit a dosage effect in which the amount of product is closely correlated with the number of copies present. However, when larger segments of chromosomes are varied, there are trans-acting effects across the genome that are unleashed that modulate gene expression in cascading effects. These appear to be mediated by the stoichiometric relationship of gene regulatory machineries. There are both positive and negative modulations of target gene expression, but the latter is the plurality effect. When this inverse effect is combined with a dosage effect, compensation for a gene can occur in which its expression is similar to the normal diploid regardless of the change in chromosomal dosage. In contrast, changing the whole genome in a polyploidy series has fewer relative effects as the stoichiometric relationship is not disrupted. Together, these observations suggest that the stoichiometry of gene regulation is important as a reflection of the mode of assembly of the individual subunits involved in the effective regulatory macromolecular complexes. This principle has implications for gene expression mechanisms, quantitative trait genetics, and the evolution of genes depending on the mode of duplication, either segmentally or via whole-genome duplication.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France
- Universite Paris-Diderot/Paris 7, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
44
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
45
|
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020; 11:5875. [PMID: 33208749 PMCID: PMC7674472 DOI: 10.1038/s41467-020-19681-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jin-Tae Jeong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 55365, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Myunghee Jung
- Department of Forest Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
- DNACARE Co. Ltd, Seoul, 06730, Republic of Korea
| | - Nam-Hoon Kim
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Puspalata Bashyal
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Byoung Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
46
|
Greenham K, Sartor RC, Zorich S, Lou P, Mockler TC, McClung CR. Expansion of the circadian transcriptome in Brassica rapa and genome-wide diversification of paralog expression patterns. eLife 2020; 9:e58993. [PMID: 32996462 PMCID: PMC7655105 DOI: 10.7554/elife.58993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 02/02/2023] Open
Abstract
An important challenge of crop improvement strategies is assigning function to paralogs in polyploid crops. Here we describe the circadian transcriptome in the polyploid crop Brassica rapa. Strikingly, almost three-quarters of the expressed genes exhibited circadian rhythmicity. Genetic redundancy resulting from whole genome duplication is thought to facilitate evolutionary change through sub- and neo-functionalization among paralogous gene pairs. We observed genome-wide expansion of the circadian expression phase among retained paralogous pairs. Using gene regulatory network models, we compared transcription factor targets between B. rapa and Arabidopsis circadian networks to reveal evidence for divergence between B. rapa paralogs that may be driven in part by variation in conserved non-coding sequences (CNS). Additionally, differential drought response among retained paralogous pairs suggests further functional diversification. These findings support the rapid expansion and divergence of the transcriptional network in a polyploid crop and offer a new approach for assessing paralog activity at the transcript level.
Collapse
Affiliation(s)
- Kathleen Greenham
- Department of Plant and Microbial Biology, University of MinnesotaSaint PaulUnited States
| | - Ryan C Sartor
- Crop and Soil Sciences, North Carolina State UniversityRaleighUnited States
| | - Stevan Zorich
- Department of Plant and Microbial Biology, University of MinnesotaSaint PaulUnited States
| | - Ping Lou
- Department of Biological Sciences, Dartmouth CollegeHanoverUnited States
| | - Todd C Mockler
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | | |
Collapse
|
47
|
Recurrent sequence evolution after independent gene duplication. BMC Evol Biol 2020; 20:98. [PMID: 32770961 PMCID: PMC7414715 DOI: 10.1186/s12862-020-01660-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Convergent and parallel evolution provide unique insights into the mechanisms of natural selection. Some of the most striking convergent and parallel (collectively recurrent) amino acid substitutions in proteins are adaptive, but there are also many that are selectively neutral. Accordingly, genome-wide assessment has shown that recurrent sequence evolution in orthologs is chiefly explained by nearly neutral evolution. For paralogs, more frequent functional change is expected because additional copies are generally not retained if they do not acquire their own niche. Yet, it is unknown to what extent recurrent sequence differentiation is discernible after independent gene duplications in different eukaryotic taxa. Results We develop a framework that detects patterns of recurrent sequence evolution in duplicated genes. This is used to analyze the genomes of 90 diverse eukaryotes. We find a remarkable number of families with a potentially predictable functional differentiation following gene duplication. In some protein families, more than ten independent duplications show a similar sequence-level differentiation between paralogs. Based on further analysis, the sequence divergence is found to be generally asymmetric. Moreover, about 6% of the recurrent sequence evolution between paralog pairs can be attributed to recurrent differentiation of subcellular localization. Finally, we reveal the specific recurrent patterns for the gene families Hint1/Hint2, Sco1/Sco2 and vma11/vma3. Conclusions The presented methodology provides a means to study the biochemical underpinning of functional differentiation between paralogs. For instance, two abundantly repeated substitutions are identified between independently derived Sco1 and Sco2 paralogs. Such identified substitutions allow direct experimental testing of the biological role of these residues for the repeated functional differentiation. We also uncover a diverse set of families with recurrent sequence evolution and reveal trends in the functional and evolutionary trajectories of this hitherto understudied phenomenon.
Collapse
|
48
|
Shi T, Rahmani RS, Gugger PF, Wang M, Li H, Zhang Y, Li Z, Wang Q, Van de Peer Y, Marchal K, Chen J. Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Mol Biol Evol 2020; 37:2394-2413. [PMID: 32343808 PMCID: PMC7403625 DOI: 10.1093/molbev/msaa105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found. Duplicated genes following WGD often have different fates that can quickly disappear again, be retained for long(er) periods, or subsequently undergo small-scale duplications. However, how different expression, epigenetic regulation, and functional constraints are associated with these different gene fates following a WGD still requires further investigation due to successive WGDs in angiosperms complicating the gene trajectories. In this study, we investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K-pg boundary. Based on improved intraspecific-synteny identification by a chromosome-level assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental distinctions in genomic features, expression, and methylation patterns of genes with different fates after a WGD but also the factors that shape post-WGD expression divergence and expression bias between duplicates. We found that after a WGD genes that returned to single copies show the highest levels and breadth of expression, gene body methylation, and intron numbers, whereas the long-retained duplicates exhibit the highest degrees of protein-protein interactions and protein lengths and the lowest methylation in gene flanking regions. For those long-retained duplicate pairs, the degree of expression divergence correlates with their sequence divergence, degree in protein-protein interactions, and expression level, whereas their biases in expression level reflecting subgenome dominance are associated with the bias of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights the impact of different functional constraints on gene fate and duplicate divergence following a single WGD in plant.
Collapse
Affiliation(s)
- Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD
| | - Muhua Wang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Information Technology, IDLab, IMEC, Ghent University, Ghent, Belgium
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. THE NEW PHYTOLOGIST 2020; 226:1506-1516. [PMID: 31967665 DOI: 10.1111/nph.16445] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Genes encoding interacting proteins tend to be co-retained after whole-genome duplication (WGD). The preferential retention after WGD has been explained by the gene balance hypothesis (GBH). However, small-scale duplications could independently occur in the connected gene families. Certain evolutionary strategies might keep the dosage balanced. Here, we examined the gene duplication, interaction and expression patterns of calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) gene families to understand the underlying principles. The ratio of the CBL and CIPK gene numbers evolved from 5 : 7 in Physcomitrella to 10 : 26 in Arabidopsis, and retrotransposition, tandem duplication, and WGDs contributed to the expansion. Two pairs of CBLs and six pairs of CIPKs were retained after the α WGD in Arabidopsis, in which specific interaction patterns were identified. In some cases, two retained CBLs (CIPKs) might compete to interact with a sole CIPK (CBL). Results of gene expression analyses indicated that the relatively over-retained duplicates tend to show asymmetric expression, thus avoiding competition. In conclusion, our results suggested that the highly specific interaction, together with the differential gene expression pattern, jointly maintained the balanced dosage for the interacting CBL and CIPK proteins.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Song MJ, Potter BI, Doyle JJ, Coate JE. Gene Balance Predicts Transcriptional Responses Immediately Following Ploidy Change in Arabidopsis thaliana. THE PLANT CELL 2020; 32:1434-1448. [PMID: 32184347 PMCID: PMC7203931 DOI: 10.1105/tpc.19.00832] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/14/2020] [Indexed: 05/22/2023]
Abstract
The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable. We sequenced the transcriptomes of two synthetic autopolyploid accessions of Arabidopsis (Arabidopsis thaliana) and their diploid progenitors, as well as one natural tetraploid and its synthetic diploid produced via haploid induction, to estimate transcriptome size and dosage responses immediately following ploidy change. Similar to what has been observed in previous studies, overall transcriptome size does not exhibit a simple doubling in response to genome doubling, and individual gene dosage responses are highly variable in all three accessions, indicating that expression is not strictly coupled with gene dosage. Nonetheless, putatively dosage balance-sensitive gene groups (Gene Ontology terms, metabolic networks, gene families, and predicted interacting proteins) exhibit smaller and more coordinated dosage responses than do putatively dosage-insensitive gene groups, suggesting that constraints on dosage balance operate immediately following whole-genome duplication and that duplicate gene retention patterns are shaped by selection to preserve dosage balance.
Collapse
Affiliation(s)
- Michael J Song
- University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, California 94720
| | - Barney I Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jeff J Doyle
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202
| |
Collapse
|