1
|
Fan JJ, Ou ZY, Zhang Z. Entangled photons enabled ultrafast stimulated Raman spectroscopy for molecular dynamics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:163. [PMID: 39004616 PMCID: PMC11247098 DOI: 10.1038/s41377-024-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024]
Abstract
Quantum entanglement has emerged as a great resource for studying the interactions between molecules and radiation. We propose a new scheme of stimulated Raman scattering with entangled photons. A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences. Analytic results are obtained, showing an entanglement-enabled time-frequency scale not attainable by classical light. The Raman signal presents an unprecedented selectivity of molecular correlation functions, as a result of the Hong-Ou-Mandel interference. Our work suggests a new paradigm of using an unconventional interferometer as part of spectroscopy, with the potential to unveil advanced information about complex materials.
Collapse
Affiliation(s)
- Jiahao Joel Fan
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhe-Yu Ou
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Triggiani D, Tamma V. Estimation with Ultimate Quantum Precision of the Transverse Displacement between Two Photons via Two-Photon Interference Sampling Measurements. PHYSICAL REVIEW LETTERS 2024; 132:180802. [PMID: 38759164 DOI: 10.1103/physrevlett.132.180802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
We present a quantum sensing scheme achieving the ultimate quantum sensitivity in the estimation of the transverse displacement between two photons interfering at a balanced beam splitter, based on transverse-momentum sampling measurements at the output. This scheme can possibly lead to enhanced high-precision nanoscopic techniques, such as superresolved single-molecule localization microscopy with quantum dots, by circumventing the requirements in standard direct imaging of camera resolution at the diffraction limit, and of highly magnifying objectives. Interestingly, we show that our interferometric technique achieves the ultimate spatial precision in nature irrespectively of the overlap of the two displaced photonic wave packets, while its precision is only reduced of a constant factor for photons differing in any nonspatial degrees of freedom. This opens a new research paradigm based on the interface between spatially resolved quantum interference and quantum-enhanced spatial sensitivity.
Collapse
Affiliation(s)
- Danilo Triggiani
- School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| | - Vincenzo Tamma
- School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
- Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
| |
Collapse
|
3
|
Ochiai T. Degenerate spontaneous parametric down-conversion in nonlinear metasurfaces. OPTICS EXPRESS 2024; 32:11065-11078. [PMID: 38570964 DOI: 10.1364/oe.514969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
We propose a simple scheme of degenerate spontaneous parametric down-conversion (SPDC) in nonlinear metasurfaces or photonic crystal slabs with quasi-guided modes. It employs a band crossing between even- and odd-parity quasi-guided mode bands inside the light cone (above the light line) and a selection rule in the conversion efficiency of the SPDC. The efficiency can be evaluated fully classically via the inverse process of noncollinear second-harmonic generation (SHG). As a toy model, we study the SPDC and SHG in a monolayer of noncentrosymmetric spheres and confirm that the scenario works well to enhance the SPDC.
Collapse
|
4
|
Chen P, Xu X, Wang T, Zhou C, Wei D, Ma J, Guo J, Cui X, Cheng X, Xie C, Zhang S, Zhu S, Xiao M, Zhang Y. Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing. Nat Commun 2023; 14:5523. [PMID: 37684225 PMCID: PMC10491822 DOI: 10.1038/s41467-023-41350-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Nonlinear optics provides a means to bridge between different electromagnetic frequencies, enabling communication between visible, infrared, and terahertz bands through χ(2) and higher-order nonlinear optical processes. However, precisely modulating nonlinear optical waves in 3D space remains a significant challenge, severely limiting the ability to directly manipulate optical information across different wavelength bands. Here, we propose and experimentally demonstrate a three-dimensional (3D) χ(2)-super-pixel hologram with nanometer resolution in lithium niobate crystals, capable of performing advanced processing tasks. In our design, each pixel consists of properly arranged nanodomain structures capable of completely and dynamically manipulating the complex-amplitude of nonlinear waves. Fabricated by femtosecond laser writing, the nonlinear hologram features a pixel diameter of 500 nm and a pixel density of approximately 25000 pixels-per-inch (PPI), reaching far beyond the state of the art. In our experiments, we successfully demonstrate the novel functions of the hologram to process near-infrared (NIR) information at visible wavelengths, including dynamic 3D nonlinear holographic imaging and frequency-up-converted image recognition. Our scheme provides a promising nano-optic platform for high-capacity optical storage and multi-functional information processing across different wavelength ranges.
Collapse
Affiliation(s)
- Pengcheng Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiaoyi Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Tianxin Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chao Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Dunzhao Wei
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianan Ma
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Junjie Guo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xuejing Cui
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiaoyan Cheng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chenzhu Xie
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, China
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Physics, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yong Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
5
|
A promising van der Waals two-dimensional nonlinear optical crystal NbOCl₂ for ultrathin quantum light source. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
6
|
Mardari GN. Experimental Counterexample to Bell's Locality Criterion. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1742. [PMID: 36554147 PMCID: PMC9778082 DOI: 10.3390/e24121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The EPR paradox was caused by the provision that quantum variables must have pre-existing values. This type of "hidden property realism" was later falsified by Bell's Theorem. Accordingly, the physical basis for action-at-a-distance between entangled quanta was removed. Yet, modern interpretations present Bell's inequality as a Locality Criterion, as if Bell violations can only happen at the quantum level, and only with remote interactions. This is a questionable practice, considering that classical joint measurements also violate such inequalities for mutually exclusive wave properties. In particular, consecutive measurements of polarization produce the same coefficients of correlation as parallel measurements with entangled quanta, yet they are explicitly local. Furthermore, it is possible to combine parallel and consecutive measurements of Type I polarization-entangled photons in a single experiment, conclusively showing that quantum Bell violations can be local. Surprisingly, classical phenomena also require nonlocal interpretations if pre-existing properties are taken for granted. Hence, the solution is to reject the models with pre-existing properties for both classical and quantum wave-like phenomena.
Collapse
|
7
|
Zhang Z, Peng T, Nie X, Agarwal GS, Scully MO. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. LIGHT, SCIENCE & APPLICATIONS 2022; 11:274. [PMID: 36104344 PMCID: PMC9474554 DOI: 10.1038/s41377-022-00953-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.
Collapse
Affiliation(s)
- Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China.
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Tao Peng
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoyu Nie
- School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Girish S Agarwal
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Baylor University, Waco, TX, 76704, USA
| |
Collapse
|
8
|
Manipulating Orbital Angular Momentum Entanglement in Three-Dimensional Spiral Nonlinear Photonic Crystals. PHOTONICS 2022. [DOI: 10.3390/photonics9070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We propose and theoretically investigate two-photon orbital angular momentum (OAM) correlation through spontaneous parameter down-conversion (SPDC) processes in three-dimensional (3D) spiral nonlinear photonic crystals (NPCs). By properly designing the NPC structure, one can feasibly modulate the OAM-correlated photon pair, which provides a potential platform to realize high-dimensional entanglement for quantum information processing and quantum communications.
Collapse
|
9
|
Ham BS. Randomness-based macroscopic Franson-type nonlocal correlation. Sci Rep 2022; 12:3759. [PMID: 35260682 PMCID: PMC8904538 DOI: 10.1038/s41598-022-07740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Franson-type nonlocal correlation is related to Bell inequality violation tests and has been applied for quantum key distributions based on time bin methods. Using unbalanced Mach–Zehnder interferometers, Franson correlation measurements result in an interference fringe, while local measurements do not. Here, randomness-based macroscopic Franson-type correlation is presented using polarization-based two-mode coherent photons, where the quantum correlation is tested by a Hong-Ou-Mandel scheme. Coherent photons are used to investigate the wave properties of this correlation. Without contradicting the wave-particle duality of quantum mechanics, the proposed method provides fundamental understanding of the quantum nature and opens the door to deterministic quantum information science.
Collapse
Affiliation(s)
- Byoung S Ham
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Chumdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
10
|
Eshun A, Gu B, Varnavski O, Asban S, Dorfman KE, Mukamel S, Goodson T. Investigations of Molecular Optical Properties Using Quantum Light and Hong-Ou-Mandel Interferometry. J Am Chem Soc 2021; 143:9070-9081. [PMID: 34124903 DOI: 10.1021/jacs.1c02514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Entangled photon pairs have been used for molecular spectroscopy in the form of entangled two-photon absorption and in quantum interferometry for precise measurements of light source properties and time delays. We present an experiment that combines molecular spectroscopy and quantum interferometry by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer to study molecular properties. We find that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer, and the resulting signal contains information pertaining to the light-matter interaction. We can extract the dephasing time of the coherent response induced by the excitation on a femtosecond time scale. A dephasing time of 102 fs is obtained, which is relatively short compared to times found with similar methods and considering line width broadening and the instrument entanglement time As the measurement is done with coincidence counts as opposed to simply intensity, it is unaffected by even-order dispersion effects, and because interactions with the molecular state affect the photon correlation, the observed measurement contains only these effects and no other classical losses. The experiments are accompanied by theory that predicts the observed temporal shift and captures the entangled photon joint spectral amplitude and the molecule's transmission in the coincidence counting rate. Thus, we present a proof-of-concept experimental method based of entangled photon interferometry that can be used to characterize optical properties in organic molecules and can in the future be expanded on for more complex spectroscopic studies of nonlinear optical properties.
Collapse
Affiliation(s)
- Audrey Eshun
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, United States
| | - Bing Gu
- Department of Chemistry & Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, United States
| | - Shahaf Asban
- Department of Chemistry & Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Konstantin E Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Shaul Mukamel
- Department of Chemistry & Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Ginés L, Pepe C, Gonzales J, Gregersen N, Höfling S, Schneider C, Predojević A. Time-bin entangled photon pairs from quantum dots embedded in a self-aligned cavity. OPTICS EXPRESS 2021; 29:4174-4180. [PMID: 33771002 DOI: 10.1364/oe.411021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
We introduce a scalable photonic platform that enables efficient generation of entangled photon pairs from a semiconductor quantum dot. Our system, which is based on a self-aligned quantum dot- micro-cavity structure, erases the need for complex steps of lithography and nanofabrication. We experimentally show collection efficiency of 0.17 combined with a Purcell enhancement of up to 1.7. We harness the potential of our device to generate photon pairs entangled in time bin, reaching a fidelity of 0.84(5) with the maximally entangled state. The achieved pair collection efficiency is 4 times larger than the state-of-the art for this application. The device, which theoretically supports pair extraction efficiencies of nearly 0.5 is a promising candidate for the implementation of bright sources of time-bin, polarization- and hyper entangled photon pairs in a straightforward manner.
Collapse
|
12
|
Bouchard F, Sit A, Zhang Y, Fickler R, Miatto FM, Yao Y, Sciarrino F, Karimi E. Two-photon interference: the Hong-Ou-Mandel effect. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:012402. [PMID: 33232945 DOI: 10.1088/1361-6633/abcd7a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Collapse
Affiliation(s)
- Frédéric Bouchard
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Alicia Sit
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Yingwen Zhang
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Robert Fickler
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Filippo M Miatto
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Yuan Yao
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Fabio Sciarrino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ebrahim Karimi
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
13
|
Lee GH, Im DG, Kim Y, Kim US, Kim YH. Observation of second-order interference beyond the coherence time with true thermal photons. OPTICS LETTERS 2020; 45:6748-6751. [PMID: 33325887 DOI: 10.1364/ol.413287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
It has recently been shown that counter-intuitive Franson-like second-order interference can be observed with a pair of classically correlated pseudo thermal light beams and two separate unbalanced interferometers (UIs): the second-order interference visibility remains fixed at 1/3 even though the path length difference in each UI is increased significantly beyond the coherence length of the pseudo thermal light [Phys. Rev. Lett.119, 223603 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.223603]. However, as the pseudo thermal beam itself originated from a long-coherence laser (and by using a rotating ground disk), there exists the possibility of a classical theoretical model to account for second-order interference beyond the coherence time on the long coherence time of the original laser beam. In this work, we experimentally explore this counter-intuitive phenomenon with a true thermal photon source generated via quantum thermalization, i.e., obtaining a mixed state from a pure two-photon entangled state. This experiment not only demonstrates the unique second-order coherence properties of thermal light clearly but may also open up remote sensing applications based on such effects.
Collapse
|
14
|
Nitsche T, De S, Barkhofen S, Meyer-Scott E, Tiedau J, Sperling J, Gábris A, Jex I, Silberhorn C. Local Versus Global Two-Photon Interference in Quantum Networks. PHYSICAL REVIEW LETTERS 2020; 125:213604. [PMID: 33275016 DOI: 10.1103/physrevlett.125.213604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
We devise an approach to characterizing the intricate interplay between classical and quantum interference of two-photon states in a network, which comprises multiple time-bin modes. By controlling the phases of delocalized single photons, we manipulate the global mode structure, resulting in distinct two-photon interference phenomena for time-bin resolved (local) and time-bucket (global) coincidence detection. This coherent control over the photons' mode structure allows for synthesizing two-photon interference patterns, where local measurements yield standard Hong-Ou-Mandel dips while the global two-photon visibility is governed by the overlap of the delocalized single-photon states. Thus, our experiment introduces a method for engineering distributed quantum interferences in networks.
Collapse
Affiliation(s)
- Thomas Nitsche
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Syamsundar De
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Sonja Barkhofen
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Evan Meyer-Scott
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Johannes Tiedau
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Jan Sperling
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Aurél Gábris
- Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1-Staré Město, Czech Republic
- Wigner Research Centre for Physics, Konkoly-Thege M. út 29-33, H-1121 Budapest, Hungary
| | - Igor Jex
- Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1-Staré Město, Czech Republic
| | - Christine Silberhorn
- Applied Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
15
|
Huo N, Liu Y, Li J, Cui L, Chen X, Palivela R, Xie T, Li X, Ou ZY. Direct Temporal Mode Measurement for the Characterization of Temporally Multiplexed High Dimensional Quantum Entanglement in Continuous Variables. PHYSICAL REVIEW LETTERS 2020; 124:213603. [PMID: 32530692 DOI: 10.1103/physrevlett.124.213603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Field-orthogonal temporal mode analysis of optical fields has recently been developed for a new framework of quantum information science. However, so far, the exact profiles of the temporal modes are not known, which makes it difficult to achieve mode selection and demultiplexing. Here, we report a novel method that measures directly the exact form of the temporal modes. This, in turn, enables us to make mode-orthogonal homodyne detection with mode-matched local oscillators. We apply the method to a pulse-pumped, specially engineered fiber parametric amplifier and demonstrate temporally multiplexed multidimensional quantum entanglement of continuous variables in telecom wavelength. The temporal mode characterization technique can be generalized to other pulse-excited systems to find their eigenmodes for multiplexing in the temporal domain.
Collapse
Affiliation(s)
- Nan Huo
- College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yuhong Liu
- College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiamin Li
- College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Liang Cui
- College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Chen
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Rithwik Palivela
- Carmel High School, 520 East Main Street, Carmel, Indiana 46033, USA
| | - Tianqi Xie
- College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoying Li
- College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Z Y Ou
- College of Precision Instrument and Opto-Electronics Engineering, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| |
Collapse
|
16
|
Volkovich S, Shwartz S. Subattosecond x-ray Hong-Ou-Mandel metrology. OPTICS LETTERS 2020; 45:2728-2731. [PMID: 32412452 DOI: 10.1364/ol.382044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
We show that subattosecond delays and subangstrom optical path differences can be measured by using Hong-Ou-Mandel interference measurements with x-rays. Our scheme relies on the subattosecond correlation time of photon pairs that are generated by x-ray spontaneous parametric down-conversion, which leads to a dip in correlation measurements with a comparable width. Therefore, the precision of the measurements is expected to be better than 0.1 attosecond. We anticipate that the scheme we describe in this work will lead to the development of various techniques of quantum measurements with ultra-high precision at x-ray wavelengths.
Collapse
|
17
|
Duan ZC, Deng YH, Yu Y, Chen S, Qin J, Wang H, Ding X, Peng LC, Schneider C, Wang DW, Höfling S, Dowling JP, Lu CY, Pan JW. Quantum Beat between Sunlight and Single Photons. NANO LETTERS 2020; 20:152-157. [PMID: 31841348 DOI: 10.1021/acs.nanolett.9b03512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate fourth-order quantum beat between sunlight and single photons from a quantum dot. With a fast time-resolved detection system, we observed high-visibility quantum beat between the independent photons of different frequencies from the two astronomically separated light sources. The temporal dynamics of the beat oscillation indicate the coherent behavior of the interfering photons, and the raw visibility of two-photon interference shows violation of the classical limit with a frequency mismatch of three-times the line width.
Collapse
Affiliation(s)
- Zhao-Chen Duan
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yu-Hao Deng
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ying Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, School of Physics , Sun Yat-sen University , Guangzhou , Guangdong 510275 , China
| | - Si Chen
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian Qin
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hui Wang
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xing Ding
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Li-Chao Peng
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Christian Schneider
- Technische Physik, Physikalisches Institüt and Wilhelm Conrad Röntgen-Center for Complex Material Systems , Universitat Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Da-Wei Wang
- Department of Physics , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Sven Höfling
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- Technische Physik, Physikalisches Institüt and Wilhelm Conrad Röntgen-Center for Complex Material Systems , Universitat Würzburg , Am Hubland, D-97074 Würzburg , Germany
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Jonathan P Dowling
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- Hearne Institute for Theoretical Physics and Department of Physics and Astronomy , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
- NYU-ECNU Institute for Physics at NYU Shanghai , Shanghai 200062 , China
| | - Chao-Yang Lu
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian-Wei Pan
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Shanghai 201315 , China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
18
|
Okoth C, Cavanna A, Santiago-Cruz T, Chekhova MV. Microscale Generation of Entangled Photons without Momentum Conservation. PHYSICAL REVIEW LETTERS 2019; 123:263602. [PMID: 31951435 DOI: 10.1103/physrevlett.123.263602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 05/26/2023]
Abstract
We report, for the first time, the observation of spontaneous parametric down-conversion (SPDC) free of phase matching (momentum conservation). We alleviate the need to conserve momentum by exploiting the position-momentum uncertainty relation and using a planar geometry source, a 6 μm thick layer of lithium niobate. Nonphase-matched SPDC opens up a new platform on which to investigate fundamental quantum effects but it also has practical applications. The ultrasmall thickness leads to a frequency spectrum an order of magnitude broader than that of phase-matched SPDC. The strong two-photon correlations are still preserved due to energy conservation. This results in ultrashort temporal correlation widths and huge frequency entanglement. The studies we make here can be considered as the initial steps into the emerging field of nonlinear quantum optics on the microscale and nanoscale.
Collapse
Affiliation(s)
- C Okoth
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
- University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany
| | - A Cavanna
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
- University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany
| | - T Santiago-Cruz
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
- University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany
| | - M V Chekhova
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
- University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
19
|
|
20
|
Magaña-Loaiza OS, Boyd RW. Quantum imaging and information. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:124401. [PMID: 31639774 DOI: 10.1088/1361-6633/ab5005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The maturity of fields such as optical physics and quantum optics has brought with it a new era where the photon represents a promising information resource. In the past few years, scientists and engineers have exploited multiple degrees of freedom of the photon to perform information processing for a wide variety of applications. Of particular importance, the transverse spatial degree of freedom has offered a flexible platform to test complex quantum information protocols in a relatively simple fashion. In this regard, novel imaging techniques that exploit the quantum properties of light have also been investigated. In this review article, we define the fundamental parameters that describe the spatial wavefunction of the photon and establish their importance for applications in quantum information processing. More specifically, we describe the underlying physics behind remarkable protocols in which information is processed through high-dimensional spatial states of photons with sub-shot-noise levels or where quantum images with unique resolution features are formed. We also discuss the fundamental role that certain imaging techniques have played in the development of novel methods for quantum information processing and vice versa.
Collapse
Affiliation(s)
- Omar S Magaña-Loaiza
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | | |
Collapse
|
21
|
Smith TA, Shih Y. Turbulence-free two-photon double-slit interference with coherent and incoherent light. OPTICS EXPRESS 2019; 27:33282-33297. [PMID: 31878400 DOI: 10.1364/oe.27.033282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
This article reports a study on a turbulence-free Young's double-slit interferometer. When the environmental turbulence blurs out the classic Young's double-slit interference completely, a two-photon interference pattern is still observable from the measurement of intensity or photon number fluctuation correlation. This two-photon interferometer always produces a turbulence-free interference pattern, when the double-slit interferometer is utilizing both first-order spatially incoherent light and spatially coherent light. This type of two-photon interferometer establishes new capabilities in optical observations and sensing measurements that require high sensitivity and stability.
Collapse
|
22
|
Zopf M, Keil R, Chen Y, Yang J, Chen D, Ding F, Schmidt OG. Entanglement Swapping with Semiconductor-Generated Photons Violates Bell's Inequality. PHYSICAL REVIEW LETTERS 2019; 123:160502. [PMID: 31702338 DOI: 10.1103/physrevlett.123.160502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 06/10/2023]
Abstract
Transferring entangled states between photon pairs is essential in quantum communication. Semiconductor quantum dots are the leading candidate for generating polarization-entangled photons deterministically. Here we show for the first time swapping of entangled states between two pairs of photons emitted by a single dot. A joint Bell measurement heralds the successful generation of the Bell state Ψ^{+}, yielding a fidelity of 0.81±0.04 and violating the CHSH and Bell inequalities. Our photon source matches atomic quantum memory frequencies, facilitating implementation of hybrid quantum repeaters.
Collapse
Affiliation(s)
- Michael Zopf
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Robert Keil
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Yan Chen
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Jingzhong Yang
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Disheng Chen
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Fei Ding
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
23
|
Wu CH, Liu CK, Chen YC, Chuu CS. Revival of Quantum Interference by Modulating the Biphotons. PHYSICAL REVIEW LETTERS 2019; 123:143601. [PMID: 31702211 DOI: 10.1103/physrevlett.123.143601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/02/2019] [Indexed: 06/10/2023]
Abstract
The possibility to manipulate the wave packets of single photons or biphotons has enriched quantum optics and quantum information science, with examples ranging from faithful quantum-state mapping and high-efficiency quantum memory to the purification of single photons. Here we demonstrate another fascinating use of wave packet manipulation on restoring quantum interference. By modulating the photons' temporal wave packet, we observe the revival of postselected entanglement that would otherwise be degraded or lost due to poor quantum interference. Our study shows that the amount of the restored entanglement is only limited by the forms of modulation and can achieve full recovery if the modulation function is properly designed. Our work has potential applications in long-distance quantum communication and linear optical quantum computation, particularly for quantum repeaters and large cluster states.
Collapse
Affiliation(s)
- Chih-Hsiang Wu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan Center for Quantum Technology, Hsinchu 30013, Taiwan
| | - Chiao-Kai Liu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan Center for Quantum Technology, Hsinchu 30013, Taiwan
| | - Yi-Cheng Chen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan Center for Quantum Technology, Hsinchu 30013, Taiwan
| | - Chih-Sung Chuu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan Center for Quantum Technology, Hsinchu 30013, Taiwan
| |
Collapse
|
24
|
Orre VV, Goldschmidt EA, Deshpande A, Gorshkov AV, Tamma V, Hafezi M, Mittal S. Interference of Temporally Distinguishable Photons Using Frequency-Resolved Detection. PHYSICAL REVIEW LETTERS 2019; 123:123603. [PMID: 31633982 PMCID: PMC8489807 DOI: 10.1103/physrevlett.123.123603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 05/17/2023]
Abstract
We demonstrate quantum interference of three photons that are distinguishable in time by resolving them in the conjugate parameter frequency. We show that the multiphoton interference pattern in our setup can be manipulated by tuning the relative delays between the photons, without the need for reconfiguring the optical network. Furthermore, we observe that the symmetries of our optical network and the spectral amplitude of the input photons are manifested in the interference pattern. We also demonstrate time-reversed Hong-Ou-Mandel-like interference in the spectral correlations using time-bin entangled photon pairs. By adding a time-varying dispersion using a phase modulator, our setup can be used to realize dynamically reconfigurable and scalable boson sampling in the time domain as well as frequency-resolved multiboson correlation sampling.
Collapse
Affiliation(s)
- Venkata Vikram Orre
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering and IREAP, University of Maryland, College Park, Maryland 20742, USA
| | - Elizabeth A. Goldschmidt
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- U.S. Army Research Laboratory, Adelphi, Maryland 20783, USA
| | - Abhinav Deshpande
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V. Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Vincenzo Tamma
- School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
- Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
| | - Mohammad Hafezi
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering and IREAP, University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Sunil Mittal
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering and IREAP, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
25
|
Deng YH, Wang H, Ding X, Duan ZC, Qin J, Chen MC, He Y, He YM, Li JP, Li YH, Peng LC, Matekole ES, Byrnes T, Schneider C, Kamp M, Wang DW, Dowling JP, Höfling S, Lu CY, Scully MO, Pan JW. Quantum Interference between Light Sources Separated by 150 Million Kilometers. PHYSICAL REVIEW LETTERS 2019; 123:080401. [PMID: 31491194 DOI: 10.1103/physrevlett.123.080401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Indexed: 06/10/2023]
Abstract
We report an experiment to test quantum interference, entanglement, and nonlocality using two dissimilar photon sources, the Sun and a semiconductor quantum dot on the Earth, which are separated by ∼150 million kilometers. By making the otherwise vastly distinct photons indistinguishable in all degrees of freedom, we observe time-resolved two-photon quantum interference with a raw visibility of 0.796(17), well above the 0.5 classical limit, providing unambiguous evidence of the quantum nature of thermal light. Further, using the photons with no common history, we demonstrate postselected two-photon entanglement with a state fidelity of 0.826(24) and a violation of Bell inequality by 2.20(6). The experiment can be further extended to a larger scale using photons from distant stars and open a new route to quantum optics experiments at an astronomical scale.
Collapse
Affiliation(s)
- Yu-Hao Deng
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Hui Wang
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xing Ding
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Z-C Duan
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jian Qin
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - M-C Chen
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Yu He
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Yu-Ming He
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jin-Peng Li
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Yu-Huai Li
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Li-Chao Peng
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - E S Matekole
- Hearne Institute for Theoretical Physics and Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Tim Byrnes
- New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China
| | - C Schneider
- Technische Physik, Physikalisches Institt and Wilhelm Conrad Rntgen-Center for Complex Material Systems, Universitat Wrzburg, Am Hubland, D-97074 Wrzburg, Germany
| | - M Kamp
- Technische Physik, Physikalisches Institt and Wilhelm Conrad Rntgen-Center for Complex Material Systems, Universitat Wrzburg, Am Hubland, D-97074 Wrzburg, Germany
| | - Da-Wei Wang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jonathan P Dowling
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- Hearne Institute for Theoretical Physics and Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China
| | - Sven Höfling
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- Technische Physik, Physikalisches Institt and Wilhelm Conrad Rntgen-Center for Complex Material Systems, Universitat Wrzburg, Am Hubland, D-97074 Wrzburg, Germany
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Chao-Yang Lu
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Physics, Baylor University, Waco, Texas 76798, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Jian-Wei Pan
- Shanghai Branch, Department of Modern Physics and National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Shanghai 201315, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| |
Collapse
|
26
|
Abstract
A modification of the standard Hong-Ou-Mandel interferometer is proposed which allows one to replicate the celebrated coincidence dip in the case of two-independent delay parameters. In the ideal case where such delays are sufficiently stable with respect to the mean wavelength of the pump source, properly symmetrized input bi-photon states allow one to pinpoint their values through the identification of a zero in the coincidence counts, a feature that cannot be simulated by semiclassical inputs having the same spectral properties. Besides, in the presence of fluctuating parameters the zero in the coincidences is washed away: still the bi-photon state permits to recover the values of parameters with a visibility which is higher than the one allowed by semiclassical sources. The detrimental role of loss and dispersion is also analyzed and an application in the context of quantum positioning is presented.
Collapse
|
27
|
Im DG, Kim Y, Kim YH. Periodic revival of frustrated two-photon creation via interference. OPTICS EXPRESS 2019; 27:7593-7601. [PMID: 30876321 DOI: 10.1364/oe.27.007593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
It has been known that suitably placed external mirrors can enhance and suppress emission of entangled photon pairs in spontaneous parametric down-conversion (SPDC), known as frustrated two-photon creation via interference. In this work, we report periodic revival of frustrated two-photon creation via interference with SPDC pumped by a continuous-wave (cw) multi-mode laser. As the mirrors are translated relative to the position of the SPDC source, the effect of frustrated two-photon creation via interference gradually dies off. However, as the mirrors are translated even further, the effect of frustrated two-photon creation via interference re-appears periodically. Our theoretical and numerical analyses show that this revival phenomenon is due to the nature of cw multi-mode pump laser. This work clearly demonstrates how the properties of the pump laser, in addition to suitably placed external mirrors, can be used to modify the process of spontaneous two-photon emission.
Collapse
|
28
|
Marinković I, Wallucks A, Riedinger R, Hong S, Aspelmeyer M, Gröblacher S. Optomechanical Bell Test. PHYSICAL REVIEW LETTERS 2018; 121:220404. [PMID: 30547658 DOI: 10.1103/physrevlett.121.220404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 06/09/2023]
Abstract
Over the past few decades, experimental tests of Bell-type inequalities have been at the forefront of understanding quantum mechanics and its implications. These strong bounds on specific measurements on a physical system originate from some of the most fundamental concepts of classical physics-in particular that properties of an object are well-defined independent of measurements (realism) and only affected by local interactions (locality). The violation of these bounds unambiguously shows that the measured system does not behave classically, void of any assumption on the validity of quantum theory. It has also found applications in quantum technologies for certifying the suitability of devices for generating quantum randomness, distributing secret keys and for quantum computing. Here we report on the violation of a Bell inequality involving a massive, macroscopic mechanical system. We create light-matter entanglement between the vibrational motion of two silicon optomechanical oscillators, each comprising approx. 10^{10} atoms, and two optical modes. This state allows us to violate a Bell inequality by more than 4 standard deviations, directly confirming the nonclassical behavior of our optomechanical system under the fair sampling assumption.
Collapse
Affiliation(s)
- Igor Marinković
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, Netherlands
| | - Andreas Wallucks
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, Netherlands
| | - Ralf Riedinger
- Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
| | - Sungkun Hong
- Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
| | - Markus Aspelmeyer
- Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
| | - Simon Gröblacher
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, Netherlands
| |
Collapse
|
29
|
Rambach M, Lau WYS, Laibacher S, Tamma V, White AG, Weinhold TJ. Hectometer Revivals of Quantum Interference. PHYSICAL REVIEW LETTERS 2018; 121:093603. [PMID: 30230888 DOI: 10.1103/physrevlett.121.093603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Cavity-enhanced single photon sources exhibit mode-locked biphoton states with comblike correlation functions. Our ultrabright source additionally emits single photon pairs as well as two-photon NOON states, dividing the output into an even and an odd comb, respectively. With even-comb photons we demonstrate revivals of the typical nonclassical Hong-Ou-Mandel interference up to the 84th dip, corresponding to a path length difference exceeding 100 m. With odd-comb photons we observe single photon interference fringes modulated over twice the displacement range of the Hong-Ou-Mandel interference.
Collapse
Affiliation(s)
- Markus Rambach
- ARC Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4067, Australia
| | - W Y Sarah Lau
- ARC Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4067, Australia
| | - Simon Laibacher
- Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Baden-Württemberg 89069, Germany
| | - Vincenzo Tamma
- Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Ulm, Baden-Württemberg 89069, Germany
- Faculty of Science, SEES and Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, Hampshire PO1 2UP, United Kingdom
| | - Andrew G White
- ARC Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4067, Australia
| | - Till J Weinhold
- ARC Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4067, Australia
| |
Collapse
|
30
|
Wang XJ, Jing B, Sun PF, Yang CW, Yu Y, Tamma V, Bao XH, Pan JW. Experimental Time-Resolved Interference with Multiple Photons of Different Colors. PHYSICAL REVIEW LETTERS 2018; 121:080501. [PMID: 30192608 DOI: 10.1103/physrevlett.121.080501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Interference of multiple photons via a linear-optical network has profound applications for quantum foundation, quantum metrology, and quantum computation. Particularly, a boson sampling experiment with a moderate number of photons becomes intractable even for the most powerful classical computers. Scaling up from small-scale experiments requires highly indistinguishable single photons, which may be prohibited for many physical systems. Here we report a time-resolved multiphoton interference experiment by using photons not overlapping in their frequency spectra from three atomic-ensemble quantum memories. Time-resolved measurement enables us to observe nonclassical multiphoton correlation landscapes, which agree well with theoretical calculations. Symmetries in the landscapes are identified to reflect symmetries of the optical network. Our experiment can be further extended to realize boson sampling with many photons and plenty of modes, which thus may provide a route towards quantum supremacy with nonidentical photons.
Collapse
Affiliation(s)
- Xu-Jie Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Bo Jing
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Peng-Fei Sun
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Chao-Wei Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Yong Yu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Vincenzo Tamma
- School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
- Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
| | - Xiao-Hui Bao
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| |
Collapse
|
31
|
Dittel C, Dufour G, Walschaers M, Weihs G, Buchleitner A, Keil R. Totally Destructive Many-Particle Interference. PHYSICAL REVIEW LETTERS 2018; 120:240404. [PMID: 29956991 DOI: 10.1103/physrevlett.120.240404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 06/08/2023]
Abstract
In a general, multimode scattering setup, we show how the permutation symmetry of a many-particle input state determines those scattering unitaries that exhibit strictly suppressed many-particle transition events. We formulate purely algebraic suppression laws that identify these events and show that the many-particle interference at their origin is robust under weak disorder and imperfect indistinguishability of the interfering particles. Finally, we demonstrate that all suppression laws so far described in the literature are embedded in the general framework that we here introduce.
Collapse
Affiliation(s)
- Christoph Dittel
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Gabriel Dufour
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität-Freiburg, Albertstr. 19, 79104 Freiburg, Germany
| | - Mattia Walschaers
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France; 4 place Jussieu, F-75252 Paris, France
| | - Gregor Weihs
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Robert Keil
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
32
|
Lester BJ, Lin Y, Brown MO, Kaufman AM, Ball RJ, Knill E, Rey AM, Regal CA. Measurement-Based Entanglement of Noninteracting Bosonic Atoms. PHYSICAL REVIEW LETTERS 2018; 120:193602. [PMID: 29799233 DOI: 10.1103/physrevlett.120.193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Indexed: 06/08/2023]
Abstract
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Collapse
Affiliation(s)
- Brian J Lester
- JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Yiheng Lin
- JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Mark O Brown
- JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Adam M Kaufman
- JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Randall J Ball
- JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Emanuel Knill
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana M Rey
- JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Cindy A Regal
- JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
33
|
Lyons A, Knee GC, Bolduc E, Roger T, Leach J, Gauger EM, Faccio D. Attosecond-resolution Hong-Ou-Mandel interferometry. SCIENCE ADVANCES 2018; 4:eaap9416. [PMID: 29736414 PMCID: PMC5935478 DOI: 10.1126/sciadv.aap9416] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/13/2018] [Indexed: 05/24/2023]
Abstract
When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they "bunch" deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon interference effect has long-held the potential for application in precision measurement of time delays, such as those induced by transparent specimens with unknown thickness profiles. However, the technique has never achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic layer two-dimensional materials.
Collapse
Affiliation(s)
- Ashley Lyons
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - George C. Knee
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Eliot Bolduc
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Thomas Roger
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Jonathan Leach
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Erik M. Gauger
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Daniele Faccio
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
34
|
Anwar A, Vaity P, Perumangatt C, Singh RP. Direct transfer of pump amplitude to parametric down-converted photons. OPTICS LETTERS 2018; 43:1155-1158. [PMID: 29489803 DOI: 10.1364/ol.43.001155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
In general, the spatial distribution of individual photons (signal or idler) generated by spontaneous parametric down-conversion (SPDC) does not evidently show any particular spatial mode structure because of their randomness in generation and the incoherent nature. Here, we numerically showed that all individual photons generated by the SPDC process carry the transverse amplitude as that of the pump and then confirmed it experimentally. The pump amplitude is revealed in SPDC when individual photons are spatially filtered from the total SPDC distribution. This is observed simply by imaging the photons that are filtered using a minimum-sized aperture. The phase measurements showed that the observed mode distribution does not possess the transverse phase distribution as that of the pump.
Collapse
|
35
|
GAZZANO O, HUBER T, LOO V, POLYAKOV S, FLAGG EB, SOLOMON GS. Effects of resonant-laser excitation on the emission properties in a single quantum dot. OPTICA 2018; 5:10.1364/optica.5.000354. [PMID: 39380575 PMCID: PMC11459610 DOI: 10.1364/optica.5.000354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/23/2018] [Indexed: 10/10/2024]
Abstract
While many solid-state emitters can be optically excited non-resonantly, resonant excitation is necessary for many quantum information protocols as it often maximizes the non-classicality of the emitted light. Here, we study the resonance fluorescence in a solid-state system-a quantum dot-with the addition of weak, non-resonant light. In the inelastic scattering regime, changes in the resonance fluorescence intensity and linewidth are linked to both the non-resonant and resonant laser powers. Details of the intensity change indicate that charge-carrier loss from the quantum dot is resonant laser. As we enter the Mollow triplet regime, this resonant laser loss term rate is approximately 1∕50 ns-1. This work further clarifies resonance fluorescence in solid-state systems and will aid in the further improvement of solid-state non-classical light sources.
Collapse
Affiliation(s)
- O. GAZZANO
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - T. HUBER
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - V. LOO
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - S. POLYAKOV
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - E. B. FLAGG
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315, USA
| | - G. S. SOLOMON
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
36
|
Ihn YS, Kim Y, Tamma V, Kim YH. Second-Order Temporal Interference with Thermal Light: Interference beyond the Coherence Time. PHYSICAL REVIEW LETTERS 2017; 119:263603. [PMID: 29328723 DOI: 10.1103/physrevlett.119.263603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 06/07/2023]
Abstract
We report the observation of a counterintuitive phenomenon in multipath correlation interferometry with thermal light. The intensity correlation between the outputs of two unbalanced Mach-Zehnder interferometers (UMZIs) with two classically correlated beams of thermal light at the input exhibits genuine second-order interference with the visibility of 1/3. Surprisingly, the second-order interference does not degrade at all no matter how much the path length difference in each UMZI is increased beyond the coherence length of the thermal light. Moreover, the second-order interference is dependent on the difference of the UMZI phases. These results differ substantially from those of the entangled-photon Franson interferometer, which exhibits two-photon interference dependent on the sum of the UMZI phases and the interference vanishes as the path length difference in each UMZI exceeds the coherence length of the pump laser. Our work offers deeper insight into the interplay between interference and coherence in multiphoton interferometry.
Collapse
Affiliation(s)
- Yong Sup Ihn
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yosep Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Vincenzo Tamma
- Faculty of Science, SEES and Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom
| | - Yoon-Ho Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
37
|
Orieux A, Versteegh MAM, Jöns KD, Ducci S. Semiconductor devices for entangled photon pair generation: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076001. [PMID: 28346219 DOI: 10.1088/1361-6633/aa6955] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.
Collapse
Affiliation(s)
- Adeline Orieux
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Informatique de Paris 6 (LIP6), 4 Place Jussieu, 75005 Paris, France. IRIF UMR 8243, Université Paris Diderot, Sorbonne Paris Cité, CNRS, 75013 Paris, France
| | | | | | | |
Collapse
|
38
|
Schlager A, Pressl B, Laiho K, Suchomel H, Kamp M, Höfling S, Schneider C, Weihs G. Temporally versatile polarization entanglement from Bragg reflection waveguides. OPTICS LETTERS 2017; 42:2102-2105. [PMID: 28569855 DOI: 10.1364/ol.42.002102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Bragg reflection waveguides emitting broadband parametric downconversion (PDC) have been proven to be well suited for the on-chip generation of polarization entanglement in a straightforward fashion [Sci. Rep.3, 2314 (2013)SRWSDA2045-232210.1038/srep02314]. Here, we investigate how the properties of the created states can be modified by controlling the relative temporal delay between the pair of photons created via PDC. Our results offer an easily accessible approach for changing the coherence of the polarization entanglement, in other words, to tune the phase of the off-diagonal elements of the density matrix. Furthermore, we provide valuable insight into the engineering of these states directly at the source.
Collapse
|
39
|
Keil R, Zopf M, Chen Y, Höfer B, Zhang J, Ding F, Schmidt OG. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun 2017; 8:15501. [PMID: 28548092 PMCID: PMC5458563 DOI: 10.1038/ncomms15501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization-entangled photon pairs. Despite remarkable progress in the past 20 years, many challenges still remain for this material, such as the extremely low yield, the low degree of entanglement and the large wavelength distribution. Here, we show that with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement and ultra-narrow wavelength distribution at rubidium transitions. Therefore, this material system is an attractive candidate for the realization of a solid-state quantum repeater-among many other key enabling quantum photonic elements.
Collapse
Affiliation(s)
- Robert Keil
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Michael Zopf
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Yan Chen
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Bianca Höfer
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Jiaxiang Zhang
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Fei Ding
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.,Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.,Merge Technologies for Multifunctional Lightweight Structures, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
40
|
Hong KH, Jung J, Cho YW, Han SW, Moon S, Oh K, Kim YS, Kim YH. Limits on manipulating conditional photon statistics via interference of weak lasers. OPTICS EXPRESS 2017; 25:10610-10621. [PMID: 28468433 DOI: 10.1364/oe.25.010610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photon anti-bunching, measured via the Hanbury-Brown-Twiss experiment, is one of the key signatures of quantum light and is tied to sub-Poissonian photon number statistics. Recently, it has been reported that photon anti-bunching or conditional sub-Poissonian photon number statistics can be obtained via second-order interference of mutually incoherent weak lasers and heralding based on photon counting [Phys. Rev. A92, 033855 (2015)10.1103/PhysRevA.92.033855; Opt. Express24, 19574 (2016)10.1364/OE.24.019574; https://arxiv.org/abs/1601.08161]. Here, we report theoretical analysis on the limits of manipulating conditional photon statistics via interference of weak lasers. It is shown that conditional photon number statistics can become super-Poissonian in such a scheme. We, however, demonstrate explicitly that it cannot become sub-Poissonian, i.e., photon anti-bunching cannot be obtained in such a scheme. We point out that incorrect results can be obtained if one does not properly account for seemingly negligible higher-order photon number expansions of the coherent state.
Collapse
|
41
|
Cassano M, D'angelo M, Garuccio A, Peng T, Shih Y, Tamma V. Spatial interference between pairs of disjoint optical paths with a single chaotic source. OPTICS EXPRESS 2017; 25:6589-6603. [PMID: 28381006 DOI: 10.1364/oe.25.006589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate a novel second-order spatial interference effect between two indistinguishable pairs of disjoint optical paths from a single chaotic source. Beside providing a deeper understanding of the physics of multi-photon interference and coherence, the effect enables retrieving information on both the spatial structure and the relative position of two distant double-pinhole masks, in the absence of first order coherence. We also demonstrate the exploitation of the phenomenon for simulating quantum logic gates, including a controlled-NOT gate operation.
Collapse
|
42
|
Kuo PS, Gerrits T, Verma V, Nam SW. Spectral correlation and interference in continuous-wave non-degenerate photon pairs at telecom wavelengths. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 1.011817E6. [PMID: 32116402 DOI: 10.1117/12.2263389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We have developed an entangled photon pair source based on a domain-engineered, type-II periodically poled lithium niobate crystal that produces signal and idler photons at 1533 nm and 1567 nm. We characterized the spectral correlations of the generated entangled photons using fiber-assisted signal-photon spectroscopy. We observed interference between the two down-conversion paths after erasing polarization distinguishability of the down-converted photons. The observed interference signature is closely related to the spectral correlations between photons in a Hong- Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two downconversion paths, which is required for high entanglement visibility.
Collapse
Affiliation(s)
- Paulina S Kuo
- Information Technology Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD, USA 20899-8913
| | - Thomas Gerrits
- Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO, USA 80305-3337
| | - Varun Verma
- Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO, USA 80305-3337
| | - Sae Woo Nam
- Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, CO, USA 80305-3337
| |
Collapse
|
43
|
Lee JC, Park KK, Zhao TM, Kim YH. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms. PHYSICAL REVIEW LETTERS 2016; 117:250501. [PMID: 28036221 DOI: 10.1103/physrevlett.117.250501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.
Collapse
Affiliation(s)
- Jong-Chan Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kwang-Kyoon Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Tian-Ming Zhao
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yoon-Ho Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
44
|
Rigovacca L, Di Franco C, Metcalf BJ, Walmsley IA, Kim MS. Nonclassicality Criteria in Multiport Interferometry. PHYSICAL REVIEW LETTERS 2016; 117:213602. [PMID: 27911519 DOI: 10.1103/physrevlett.117.213602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 06/06/2023]
Abstract
Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.
Collapse
Affiliation(s)
- L Rigovacca
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - C Di Franco
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- Complexity Institute, Nanyang Technological University, 637723, Singapore
| | - B J Metcalf
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - I A Walmsley
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M S Kim
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
45
|
Kuo PS, Gerrits T, Verma VB, Nam SW. Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths. OPTICS LETTERS 2016; 41:5074-5077. [PMID: 27805689 PMCID: PMC5414416 DOI: 10.1364/ol.41.005074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down-conversion paths. The observed interference signature is closely related to the spectral correlations between photons in a Hong-Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two down-conversion paths, which is required for high entanglement visibility.
Collapse
Affiliation(s)
- Paulina S. Kuo
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899
| | - Thomas Gerrits
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| | - Varun B. Verma
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| | - Sae Woo Nam
- Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305
| |
Collapse
|
46
|
Abstract
Einstein was wrong with his 1927 Solvay Conference claim that quantum mechanics is incomplete and incapable of describing diffraction of single particles. However, the Einstein-Podolsky-Rosen paradox of entangled pairs of particles remains lurking with its 'spooky action at a distance'. In molecules quantum entanglement can be viewed as basis of both chemical bonding and excitonic states. The latter are important in many biophysical contexts and involve coupling between subsystems in which virtual excitations lead to eigenstates of the total Hamiltonian, but not for the separate subsystems. The author questions whether atomic or photonic systems may be probed to prove that particles or photons may stay entangled over large distances and display the immediate communication with each other that so concerned Einstein. A dissociating hydrogen molecule is taken as a model of a zero-spin entangled system whose angular momenta are in principle possible to probe for this purpose. In practice, however, spins randomize as a result of interactions with surrounding fields and matter. Similarly, no experiment seems yet to provide unambiguous evidence of remaining entanglement between single photons at large separations in absence of mutual interaction, or about immediate (superluminal) communication. This forces us to reflect again on what Einstein really had in mind with the paradox, viz. a probabilistic interpretation of a wave function for an ensemble of identically prepared states, rather than as a statement about single particles. Such a prepared state of many particles would lack properties of quantum entanglement that make it so special, including the uncertainty upon which safe quantum communication is assumed to rest. An example is Zewail's experiment showing visible resonance in the dissociation of a coherently vibrating ensemble of NaI molecules apparently violating the uncertainty principle. Einstein was wrong about diffracting single photons where space-like anti-bunching observations have proven recently their non-local character and how observation in one point can remotely affect the outcome in other points. By contrast, long range photon entanglement with immediate, superluminal response is still an elusive, possibly partly misunderstood issue. The author proposes that photons may entangle over large distances only if some interaction exists via fields that cannot propagate faster than the speed of light. An experiment to settle this 'interaction hypothesis' is suggested.
Collapse
|
47
|
Peng T, Tamma V, Shih Y. Experimental controlled-NOT gate simulation with thermal light. Sci Rep 2016; 6:30152. [PMID: 27439330 PMCID: PMC4954974 DOI: 10.1038/srep30152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
We report a recent experimental simulation of a controlled-NOT gate operation based on polarization correlation measurements of thermal fields in photon-number fluctuations. The interference between pairs of correlated paths at the very heart of these experiments has the potential for the simulation of correlations between a larger number of qubits.
Collapse
Affiliation(s)
- Tao Peng
- University of Maryland Baltimore County, Department of Physics, Baltimore, Maryland 21250, USA
| | - Vincenzo Tamma
- Universität Ulm, Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm, D-89069, Germany
| | - Yanhua Shih
- University of Maryland Baltimore County, Department of Physics, Baltimore, Maryland 21250, USA
| |
Collapse
|
48
|
Lim HT, Hong KH, Kim YH. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion. Sci Rep 2016; 6:25846. [PMID: 27174100 PMCID: PMC4865730 DOI: 10.1038/srep25846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/25/2016] [Indexed: 11/09/2022] Open
Abstract
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.
Collapse
Affiliation(s)
- Hyang-Tag Lim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Kang-Hee Hong
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Yoon-Ho Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| |
Collapse
|
49
|
Calderón-Losada O, Flórez J, Villabona-Monsalve JP, Valencia A. Measuring different types of transverse momentum correlations in the biphoton's Fourier plane. OPTICS LETTERS 2016; 41:1165-1168. [PMID: 26977660 DOI: 10.1364/ol.41.001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this Letter, we present a theoretical and experimental study about the spatial correlations of paired photons generated by Type II spontaneous parametric down-conversion. In particular, we show how these correlations can be positive or negative, depending on the direction in which the far-field plane is scanned and the polarization postselected. Our results provide a straightforward way to observe different kind of correlations that complement other well-known methods to tune the spatial correlations of paired photons.
Collapse
|
50
|
Grieve JA, Chandrasekara R, Tang Z, Cheng C, Ling A. Correcting for accidental correlations in saturated avalanche photodiodes. OPTICS EXPRESS 2016; 24:3592-3600. [PMID: 26907016 DOI: 10.1364/oe.24.003592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper we present a general method for estimating rates of accidental coincidence between a pair of single photon detectors operated within their saturation regimes. By folding the effects of recovery time of both detectors and the detection circuit into an "effective duty cycle" we are able to accomodate complex recovery behaviour at high event rates. As an example, we provide a detailed high-level model for the behaviour of passively quenched avalanche photodiodes, and demonstrate effective background subtraction at rates commonly associated with detector saturation. We show that by post-processing using the updated model, we observe an improvement in polarization correlation visibility from 88.7% to 96.9% in our experimental dataset. This technique will be useful in improving the signal-to-noise ratio in applications which depend on coincidence measurements, especially in situations where rapid changes in flux may cause detector saturation.
Collapse
|