1
|
Arroyo-Ataz G, Jones D. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease. Microcirculation 2024; 31:e12887. [PMID: 39329178 PMCID: PMC11560633 DOI: 10.1111/micc.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for proper functioning of the lymphatic system, as they provide the driving force for lymph transport. Recent studies have advanced our understanding of the molecular mechanisms that regulate LMCs, which control rhythmic contraction and vessel tone of lymphatic vessels-traits also found in cardiac and vascular smooth muscle. In this review, we discuss the molecular pathways that orchestrate LMC-mediated contractility and summarize current knowledge about their developmental origin, which may shed light on the distinct contractile characteristics of LMCs. Further, we highlight the growing evidence implicating LMC dysregulation in the pathogenesis of lymphedema and other diseases related to lymphatic vessel dysfunction. Given the limited number and efficacy of existing therapies to treat lymphedema, LMCs present a promising focus for identifying novel therapeutic targets aimed at improving lymphatic vessel contractility. Here, we discuss LMCs in health and disease, as well as therapeutic strategies aimed at targeting them to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Shi L, Lu S, Han X, Ye F, Li X, Zhang Z, Jiang Q, Yan B. Lymphatic-specific methyltransferase-like 3-mediated m 6A modification drives vascular patterning through prostaglandin metabolism reprogramming. MedComm (Beijing) 2024; 5:e728. [PMID: 39372388 PMCID: PMC11450254 DOI: 10.1002/mco2.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 10/08/2024] Open
Abstract
Lymphangiogenesis plays a pivotal role in the pathogenesis of various vascular disorders, including ocular vascular diseases and cancers. Deregulation of N 6-methyladenosine (m6A) modification has been identified as a key contributor to human diseases. However, the specific involvement of m6A modification in lymphatic remodeling remains poorly understood. In this study, we demonstrate that inflammatory stimulation and corneal sutures induce elevated levels of methyltransferase-like 3 (METTL3)-mediated m6A modification. METTL3 knockdown inhibits lymphatic endothelial viability, proliferation, migration, and tube formation in vitro. METTL3 knockdown attenuates corneal sutures-induced lymphangiogenesis and intratumoral lymphangiogenesis initiated by subcutaneous grafts, consequently restraining corneal neovascularization, tumor growth, and tumor neovascularization in vivo. Mechanistically, METTL3 knockdown upregulates prostaglandin-endoperoxide synthase 2 expression through an m6A-YTHDF2-dependent pathway, enhancing the synthesis of cyclopentenone prostaglandins (CyPGs). Aberrant CyPG production in lymphatic endothelial cells impairs mitochondrial oxidative phosphorylation, contributing to pathological lymphangiogenesis. Moreover, selective inhibition of METTL3 with STM2457 reduces m6A levels in lymphatic endothelial cells, effectively suppressing pathological lymphangiogenesis. This study provides compelling evidence that lymphatic-specific METTL3 plays a critical role in vascular patterning through prostaglandin metabolism reprogramming. Thus, METTL3 emerges as a promising target for treating lymphangiogenesis-related diseases.
Collapse
Affiliation(s)
- Lianjun Shi
- Department of Ophthalmology and OptometryThe Affiliated Eye Hospital, Nanjing Medical UniversityChina
- The Fourth School of Clinical MedicineNanjing Medical UniversityNanjingChina
| | - Shuting Lu
- The Fourth School of Clinical MedicineNanjing Medical UniversityNanjingChina
| | - Xue Han
- The Fourth School of Clinical MedicineNanjing Medical UniversityNanjingChina
| | - Fan Ye
- The Fourth School of Clinical MedicineNanjing Medical UniversityNanjingChina
| | - Xiumiao Li
- Department of Ophthalmology and OptometryThe Affiliated Eye Hospital, Nanjing Medical UniversityChina
| | - Ziran Zhang
- The Fourth School of Clinical MedicineNanjing Medical UniversityNanjingChina
| | - Qin Jiang
- Department of Ophthalmology and OptometryThe Affiliated Eye Hospital, Nanjing Medical UniversityChina
- The Fourth School of Clinical MedicineNanjing Medical UniversityNanjingChina
| | - Biao Yan
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Bendon CL, Hanssen E, Nowell C, Karnezis T, Shayan R. The Arteria Lymphatica and Lymphatic Microperforators: A Dedicated Blood Supply to Collecting Lymphatics and Their Potential Implications in Lymphedema: Anatomical Description. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5547. [PMID: 38268719 PMCID: PMC10807887 DOI: 10.1097/gox.0000000000005547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
Background Lymphedema is common after lymphatic damage in cancer treatment, with negative impacts on function and quality of life. Evidence suggests that blood vessel microvasculature is sensitive to irradiation and trauma; however, despite knowledge regarding dedicated mural blood supply to arteries and veins (vasa vasorum), equivalent blood vessels supplying lymphatics have not been characterized. We studied collecting lymphatics for dedicated mural blood vessels in our series of 500 lymphaticovenous anastomosis procedures for lymphedema, and equivalent controls. Methods Microscopic images of lymphatics from lymphedema and control patients were analyzed for lymphatic wall vascular density. Collecting lymphatics from 20 patients with lymphedema and 10 control patients were sampled for more detailed analysis (podoplanin immunostaining, light/confocal microscopy, microcomputed tomography, and transmission electron microscopy) to assess lymphatic wall ultrastructure and blood supply. Results Analysis revealed elaborate, dense blood microvessel networks associating with lymphatic walls in lymphedema patients and smaller equivalent vessels in controls. These vasa vasora or "arteria lymphatica" were supplied by regular axial blood vessels, parallel to lymphatic microperforators linking dermal and collecting lymphatics. Lymphatic walls were thicker in lymphedema patients than controls, with immunohistochemistry, computed tomography, transmission electron microscopy, and confocal microscopy characterizing abnormal blood vessels (altered appearance, thickened walls, elastin loss, narrow lumina, and fewer red blood cells) on these lymphatic walls. Conclusions Dedicated blood vessels on lymphatics are significantly altered in lymphedema. A better understanding of the role of these vessels may reveal mechanistic clues into lymphedema pathophysiology and technical aspects of lymphedema microsurgery, and suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Charlotte L. Bendon
- From The O’Brien Institute Department, St Vincent’s Institute for Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tara Karnezis
- From The O’Brien Institute Department, St Vincent’s Institute for Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Ramin Shayan
- From The O’Brien Institute Department, St Vincent’s Institute for Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Zhao S, Cui J, Wang Y, Xu D, Su Y, Ma J, Gong X, Bai W, Wang J, Cao R. Three-dimensional visualization of the lymphatic, vascular and neural network in rat lung by confocal microscopy. J Mol Histol 2023; 54:715-723. [PMID: 37755618 DOI: 10.1007/s10735-023-10160-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In order to demonstrate the intricate interconnection of pulmonary lymphatic vessels, blood vessels, and nerve fibers, the rat lung was selected as the target and sliced at the thickness of 100 μm for multiply immunofluorescence staining with lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), alpha smooth muscle actin (α-SMA), phalloidin, cluster of differentiation 31 (CD31), and protein gene product 9.5 (PGP9.5) antibodies. Taking the advantages of the thicker tissue section and confocal microscopy, the labeled pulmonary lymphatic vessels, blood vessels, and nerve fibers were demonstrated in rather longer distance, which was more convenient to reconstruct a three-dimensional (3D) view for analyzing their spatial correlation in detail. It was clear that LYVE-1+ lymphatic vessels were widely distributed in pulmonary lobules and closely to the lobar bronchus. Through 3D reconstruction, it was also demonstrated that LYVE-1+ lymphatic vessels ran parallel to or around the α-SMA+ venules, phalloidin+ arterioles and CD31+ capillaries, with PGP9.5+ nerve fibers traversing alongside or wrapping around them, forming a lymphatic, vascular and neural network in the lung. By this study, we provide a detailed histological view to highlight the spatial correlation of pulmonary lymphatic, vascular and neural network, which may help us for insight into the functional role of this network under the physiological and pathological conditions.
Collapse
Affiliation(s)
- Shitong Zhao
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuqing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Ma
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100038, China
| | - Xuefeng Gong
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Rui Cao
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
5
|
Banda CH, Shiraishi M, Mitsui K, Okada Y, Danno K, Ishiura R, Maemura K, Chiba C, Mizoguchi A, Imanaka-Yoshida K, Maruyama K, Narushima M. Structural and functional analysis of the newt lymphatic system. Sci Rep 2023; 13:6902. [PMID: 37106059 PMCID: PMC10140069 DOI: 10.1038/s41598-023-34169-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
Regeneration competent vertebrates such as newts and salamanders possess a weakened adaptive immune system characterized by multiple connections between the lymphatic system and the blood vascular system called lymphatic hearts. The role of lymphatic vasculature and these lymphaticovenous connections in regeneration is unknown. We used in-vivo near-infrared lymphangiography, ultra-high frequency ultrasonography, micro-CT lymphangiography, and histological serial section 3-dimentional computer reconstruction to evaluate the lymphatic territories of Cynops pyrrhogaster. We used our model and supermicrosurgery to show that lymphatic hearts are not essential for lymphatic circulation and limb regeneration. Instead, newts possess a novel intraosseous network of lymphatics inside the bone expressing VEGFR-3, LYVE-1 and CD-31. However, we were unable to show Prox-1 expression by these vessels. We demonstrate that adult newt bone marrow functions as both a lymphatic drainage organ and fat reservoir. This study reveals the fundamental anatomical differences between the immune system of urodeles and mammals and provides a model for investigating lymphatics and regeneration.
Collapse
Affiliation(s)
- Chihena H Banda
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kohei Mitsui
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Yoshimoto Okada
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kanako Danno
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Ryohei Ishiura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kaho Maemura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Chikafumi Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture, 305-8571, Japan
| | - Akira Mizoguchi
- Department of Personalized Cancer Immunotherapy, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie Prefecture, 514-8507, Japan.
| |
Collapse
|
6
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
7
|
Liu J, Yu C. Lymphangiogenesis and Lymphatic Barrier Dysfunction in Renal Fibrosis. Int J Mol Sci 2022; 23:ijms23136970. [PMID: 35805972 PMCID: PMC9267103 DOI: 10.3390/ijms23136970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
As an integral part of the vascular system, the lymphatic vasculature is essential for tissue fluid homeostasis, nutritional lipid assimilation and immune regulation. The composition of the lymphatic vasculature includes fluid-absorbing initial lymphatic vessels (LVs), transporting collecting vessels and anti-regurgitation valves. Although, in recent decades, research has drastically enlightened our view of LVs, investigations of initial LVs, also known as lymphatic capillaries, have been stagnant due to technical limitations. In the kidney, the lymphatic vasculature mainly presents in the cortex, keeping the local balance of fluid, solutes and immune cells. The contribution of renal LVs to various forms of pathology, especially chronic kidney diseases, has been addressed in previous studies, however with diverging and inconclusive results. In this review, we discuss the most recent advances in the proliferation and permeability of lymphatic capillaries as well as their influencing factors. Novel technologies to visualize and measure LVs function are described. Then, we highlight the role of the lymphatic network in renal fibrosis and the crosstalk between kidney and other organs, such as gut and heart.
Collapse
|
8
|
Eldaly AS, Avila FR, Torres-Guzman RA, Maita KC, Garcia JP, Serrano LP, Saleem HY, Forte AJ. Animal models in lymph node transfer surgery: A systematic review. J Clin Transl Res 2022; 8:243-255. [PMID: 35813893 PMCID: PMC9260349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND AIM Lymph node transfer surgery (LNTS) is indicated in secondary lymphedema (LE) patients who do not respond to conservative therapy. Animal models are the spearhead of LE research and were used to pioneer most of the surgical interventions currently in practice. We conducted a systematic review of the literature to explore animal models dedicated to LNTS to compare different species, techniques, and outcomes. METHODS Four databases were searched: PubMed, Cumulative Index of Nursing and Allied Health Literature, Scopus, and Web of Science. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as our basis of organization. RESULTS Avascular lymph node graft (ALNG) and vascularized lymph node transfer (VLNT) effectively treated LE and lead to better outcomes than controls. Whole ALNGs are superior to fragmented ALNGs. Larger fragments are more likely to be reintegrated into the lymphatic system than small fragments. VLNT was superior to whole and fragmented ALNG. Increasing the number of VLNT resulted in better outcomes. Adipose-derived stem cells improved outcomes of VLNT; vascular endothelial growth factor C and D and platelet-rich plasma improved outcomes for ALNG. Cryopreservation of lymph nodes (LNs) did not affect outcomes for ALNG. The critical ischemia and venous occlusion time for LN flaps were 4-5 and 4 h, respectively. The critical time for reperfusion injury was 2 h. Some of the novel models included venous LNT, and cervical adipocutaneous flap to groin. CONCLUSION Current evidence from animals favors VLNT over other surgical interventions. Several pharmacological therapies significantly improved outcomes of ALNG and VLNT. RELEVANCE TO PATIENTS LE is a chronic condition affecting millions of patients worldwide. LNTS is becoming more popular as a LE treatment. Animal models have led the LE research for decades and developing new models for LE are essential for LE research. This systematic review aims to summarize the existing animal models dedicated to LNTS. We believe that this review is critical to guide researchers in the selection of the model that is best fit for their hypothesis-driven experiments.
Collapse
Affiliation(s)
- Abdullah S. Eldaly
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida, United States
| | - Francisco R. Avila
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida, United States
| | | | - Karla C. Maita
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida, United States
| | - John P. Garcia
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida, United States
| | - Luiza P. Serrano
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida, United States
| | - Humza Y. Saleem
- 2Department of General Surgery, Mayo Clinic, Jacksonville, Florida, United States
| | - Antonio J. Forte
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida, United States,Corresponding author: Antonio J. Forte, Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida, United States. Tel.: 904-953-2073
| |
Collapse
|
9
|
Weber E, Aglianò M, Bertelli E, Gabriele G, Gennaro P, Barone V. Lymphatic Collecting Vessels in Health and Disease: A Review of Histopathological Modifications in Lymphedema. Lymphat Res Biol 2022; 20:468-477. [PMID: 35041535 PMCID: PMC9603277 DOI: 10.1089/lrb.2021.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Secondary lymphedema of the extremities affects millions of people in the world as a common side effect of oncological treatments with heavy impact on every day life of patients and on the health care system. One of the surgical techniques for lymphedema treatment is the creation of a local connection between lymphatic vessels and veins, facilitating drainage of lymphatic fluid into the circulatory system. Successful results, however, rely on using a functional vessel for the anastomosis, and vessel function, in turn, depends on its structure. The structure of lymphatic collecting vessels changes with the progression of lymphedema. They appear initially dilated by excess interstitial fluid entered at capillary level. The number of lymphatic smooth muscle cells in their media then increases in the attempt to overcome the impaired drainage. When lymphatic muscle cells hyperplasia occurs at the expenses of the lumen, vessel patency decreases hampering lymph flow. Finally, collagen fiber accumulation leads to complete occlusion of the lumen rendering the vessel unfit to conduct lymph. Different types of vessels may coexist in the same patient but usually the distal part of the limb contains less affected vessels that are more likely to perform efficient lymphatic–venular anastomosis. Here we review the structure of the lymphatic collecting vessels in health and in lymphedema, focusing on the histopathological changes of the lymphatic vessel wall based on the observations on segments of the vessels used for lymphatic–venular anastomoses.
Collapse
Affiliation(s)
- Elisabetta Weber
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Margherita Aglianò
- Department of Clinical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Guido Gabriele
- Department of Medical Biotechnologies, University of Siena, Azienda Ospedaliera Universitaria Senese AOUS, Siena, Italy
| | - Paolo Gennaro
- Department of Medical Biotechnologies, University of Siena, Azienda Ospedaliera Universitaria Senese AOUS, Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine and Surgical and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Expression of Lymphatic Markers in the Berger's Space and Bursa Premacularis. Int J Mol Sci 2021; 22:ijms22042086. [PMID: 33669860 PMCID: PMC7923221 DOI: 10.3390/ijms22042086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
We previously reported that the bursa premacularis (BPM), a peculiar vitreous structure located above the macula, contains numerous cells expressing markers of lymphatic endothelial cells, such as podoplanin and LYVE-1. Herein, we examined the expression of lymphatic markers in the Berger’s space (BS), BPM, and vitreous core (VC). BS, BPM, and VC specimens were selectively collected in macular hole and epiretinal membrane patients during vitrectomy and were then immunostained with antibodies for podoplanin, LYVE-1, and fibrillin-1 and -2. By visualization using triamcinolone acetonide, the BS was recognized as a sac-like structure with a septum located behind the lens as well as BPM. Those tissues adhered to the lens or retina in a circular manner by means of a ligament-like structure. Immunostaining showed intense expression of podoplanin and LYVE-1 in the BS. Both BS and BPM stained strongly positive for fibrillin-1 and -2. The VC was faintly stained with antibodies for those lymph-node markers. Our findings indicate that both BS and BPM possibly belong to the lymphatic system, such as lymph nodes, draining excess fluid and waste products into lymphatic vessels in the dura mater of the optic nerve and the ciliary body, respectively, via intravitreal canals.
Collapse
|
11
|
Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (Basel) 2020; 12:cancers12113380. [PMID: 33203154 PMCID: PMC7696032 DOI: 10.3390/cancers12113380] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary A clinical decision and study design investigating the level and extent of angiogenesis modulation aimed at vascular normalization without rendering tissues hypoxic is key and represents an unmet medical need. Specifically, determining the active concentration and optimal times of the administration of antiangiogenetic drugs is crucial to inhibit the growth of any microscopic residual tumor after surgical resection and in the pre-malignant and smolder neoplastic state. This review uncovers the pre-clinical translational insights crucial to overcome the caveats faced so far while employing anti-angiogenesis. This literature revision also explores how abnormalities in the tumor endothelium harm the crosstalk with an effective immune cell response, envisioning a novel combination with other anti-cancer drugs and immunomodulatory agents. These insights hold vast potential to both repress tumorigenesis and unleash an effective immune response. Abstract Cancer-associated neo vessels’ formation acts as a gatekeeper that orchestrates the entrance and egress of patrolling immune cells within the tumor milieu. This is achieved, in part, via the directed chemokines’ expression and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. The crosstalk between adaptive immune cells and the cancer endothelium is thus essential for tumor immune surveillance and the success of immune-based therapies that harness immune cells to kill tumor cells. This review will focus on the biology of the endothelium and will explore the vascular-specific molecular mediators that control the recruitment, retention, and trafficking of immune cells that are essential for effective antitumor immunity. The literature revision will also explore how abnormalities in the tumor endothelium impair crosstalk with adaptive immune cells and how targeting these abnormalities can improve the success of immune-based therapies for different malignancies, with a particular focus on the paradigmatic example represented by multiple myeloma. We also generated and provide two original bio-informatic analyses, in order to sketch the physiopathology underlying the endothelial–neoplastic interactions in an easier manner, feeding into a vicious cycle propagating disease progression and highlighting novel pathways that might be exploited therapeutically.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| |
Collapse
|
12
|
Deng J, Wulff-Burchfield EM, Murphy BA. Late Soft Tissue Complications of Head and Neck Cancer Therapy: Lymphedema and Fibrosis. J Natl Cancer Inst Monogr 2020; 2019:5551348. [PMID: 31425591 DOI: 10.1093/jncimonographs/lgz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer and its treatment result in soft tissue damage secondary to lymphedema and fibrosis. Lymphedema is the result of pathological accumulation of interstitial fluid in tissues. It is caused by the inability of the lymphatic system to transport lymph fluid from the tissues to the central circulatory system and is manifested clinically by tissue swelling. Fibrosis is defined as an overaccumulation of fibrotic tissues within the skin and soft tissues after a single or repetitive injury and is characterized by hardening of the soft tissues with associated loss of elasticity. Lymphedema and fibrosis are common yet overlooked late effects of head and neck cancer and its therapy. They may result in profound long-term symptom burden, loss of critical functions, and altered quality of life. The following review will discuss the current pathobiology, clinical manifestations, and future directions for research related to lymphedema and fibrosis.
Collapse
Affiliation(s)
- Jie Deng
- School of Nursing, University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
13
|
Greenlee JD, King MR. Engineered fluidic systems to understand lymphatic cancer metastasis. BIOMICROFLUIDICS 2020; 14:011502. [PMID: 32002106 PMCID: PMC6986954 DOI: 10.1063/1.5133970] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/12/2020] [Indexed: 05/03/2023]
Abstract
The majority of all cancers metastasize initially through the lymphatic system. Despite this, the mechanisms of lymphogenous metastasis remain poorly understood and understudied compared to hematogenous metastasis. Over the past few decades, microfluidic devices have been used to model pathophysiological processes and drug interactions in numerous contexts. These devices carry many advantages over traditional 2D in vitro systems, allowing for better replication of in vivo microenvironments. This review highlights prominent fluidic devices used to model the stages of cancer metastasis via the lymphatic system, specifically within lymphangiogenesis, vessel permeability, tumor cell chemotaxis, transendothelial migration, lymphatic circulation, and micrometastases within the lymph nodes. In addition, we present perspectives for the future roles that microfluidics might play within these settings and beyond.
Collapse
Affiliation(s)
- Joshua D. Greenlee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
14
|
|
15
|
Armani G, Madeddu D, Mazzaschi G, Bocchialini G, Sogni F, Frati C, Lorusso B, Falco A, Lagrasta CA, Cavalli S, Mangiaracina C, Vilella R, Becchi G, Gnetti L, Corradini E, Quaini E, Urbanek K, Goldoni M, Carbognani P, Ampollini L, Quaini F. Blood and lymphatic vessels contribute to the impact of the immune microenvironment on clinical outcome in non-small-cell lung cancer. Eur J Cardiothorac Surg 2019; 53:1205-1213. [PMID: 29346540 DOI: 10.1093/ejcts/ezx492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Lymphangiogenesis plays a critical role in the immune response, tumour progression and therapy effectiveness. The aim of this study was to determine whether the interplay between the lymphatic and the blood microvasculature, tumour-infiltrating lymphocytes and the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint constitutes an immune microenvironment affecting the clinical outcome of patients with non-small-cell lung cancer. METHODS Samples from 50 squamous cell carcinomas and 42 adenocarcinomas were subjected to immunofluorescence to detect blood and lymphatic vessels. CD3pos, CD8pos and PD-1pos tumour-infiltrating lymphocytes and tumour PD-L1 expression were assessed by immunohistochemical analysis. RESULTS Quantification of vascular structures documented a peak of lymphatics at the invasive margin together with a decreasing gradient of blood and lymphatic vessels from the peritumour area throughout the neoplastic core. Nodal involvement and pathological stage were strongly associated with vascularization, and an increased density of vessels was detected in samples with a higher incidence of tumour-infiltrating lymphocytes and a lower expression of PD-L1. Patients with a high PD-L1 to PD-1 ratio and vascular rarefaction had a gain of 10 months in overall survival compared to those with a low ratio and prominent vascularity. CONCLUSIONS Microvessels are an essential component of the cancer immune microenvironment. The clinical impact of the PD-1/PD-L1-based immune contexture may be implemented by the assessment of microvascular density to potentially identify patients with non-small-cell lung cancer who could benefit from immunotherapy and antiangiogenic treatment.
Collapse
Affiliation(s)
- Giovanna Armani
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Denise Madeddu
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Giulia Mazzaschi
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | | | - Francesco Sogni
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Caterina Frati
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Bruno Lorusso
- Department of Pathology, University Hospital of Parma, Parma, Italy
| | - Angela Falco
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | | | - Stefano Cavalli
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Chiara Mangiaracina
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Rocchina Vilella
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Gabriella Becchi
- Department of Pathology, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Department of Pathology, University Hospital of Parma, Parma, Italy
| | - Emilia Corradini
- Department of Pathology, University Hospital of Parma, Parma, Italy
| | - Eugenio Quaini
- Clinical Institute Sant'Ambrogio, Department of Cardiac Surgery, Hospital Group San Donato, Milan, Italy
| | - Konrad Urbanek
- Section of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Matteo Goldoni
- Medical Statistics, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Paolo Carbognani
- Department of Thoracic Surgery, University Hospital of Parma, Parma, Italy
| | - Luca Ampollini
- Department of Thoracic Surgery, University Hospital of Parma, Parma, Italy
| | - Federico Quaini
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| |
Collapse
|
16
|
Li JL, Hai-ying W, Liu JR, He QM, Chen KS, Yang J, Qian F. Fetal Lymphangioma: Prenatal diagnosis on ultrasound, treatment, and prognosis. Eur J Obstet Gynecol Reprod Biol 2018; 231:268-273. [DOI: 10.1016/j.ejogrb.2018.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
|
17
|
Weber E, Sozio F, Borghini A, Sestini P, Renzoni E. Pulmonary lymphatic vessel morphology: a review. Ann Anat 2018; 218:110-117. [PMID: 29679722 DOI: 10.1016/j.aanat.2018.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023]
Abstract
Our understanding of lymphatic vessels has been advanced by the recent identification of relatively specific lymphatic endothelium markers, including Prox-1, VEGFR3, podoplanin and LYVE-1. The use of lymphatic markers has led to the observation that, contrary to previous assumptions, human lymphatic vessels extend deep inside the pulmonary lobule, either in association with bronchioles, intralobular arterioles or small pulmonary veins. Pulmonary lymphatic vessels may thus be classified into pleural, interlobular (in interlobular septa) and intralobular. Intralobular lymphatic vessels may be further subdivided in: bronchovascular (associated with a bronchovascular bundle), perivascular (associated with a blood vessel), peribronchiolar (associated with a bronchiole), and interalveolar (in interalveolar septa). Most of the intralobular lymphatic vessels are in close contact with a blood vessel, either alone or within a bronchovascular bundle. A minority is associated with a bronchiole, and small lymphatics are occasionally present even in interalveolar septa, seemingly independent of blood vessels or bronchioles. The lymphatics of the interlobular septa often contain valves, are usually associated with the pulmonary veins, and connect with the pleural lymphatics. The large lymphatics associated with bronchovascular bundles have similar characteristics to pleural and interlobular lymphatics and may be considered conducting vessels. The numerous small perivascular lymphatics and the few peribronchiolar ones that are found inside the lobule are probably the absorbing compartment of the lung responsible for maintaining the alveolar interstitium relatively dry in order to provide a minimal thickness of the air-blood barrier and thus optimize gas diffusion. These lymphatic populations could be differentially involved in the pathogenesis of diseases preferentially involving distinct lung compartments.
Collapse
Affiliation(s)
- E Weber
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - F Sozio
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - A Borghini
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - P Sestini
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, viale Bracci 16, 53100 Siena, Italy
| | - E Renzoni
- ILD Unit Royal Brompton Hpospital,Sydney Street SW3 6LR, London, UK.
| |
Collapse
|
18
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
19
|
Abstract
BACKGROUND The purpose of this study was to investigate whether lymphatic reconstitution and regeneration occurs after clinical facial transplantation using indocyanine green lymphography and immunohistochemical markers. METHODS Allograft skin biopsies at multiple posttransplant time points were stained with Lyve1 lymphatic antibody and other endothelial antibodies. Staining intensity was interpreted on a scale of none, mild, moderate, and strong by 2 investigators and consolidated by a third party for final interpretation. Standardized real-time lymphography was performed at various posttransplant time points to evaluate lymphatic reconstitution and regeneration. RESULTS Forty-two biopsies were evaluated at 15 different time points from posttransplant days 7 to 420. Strong Lyve1 staining was observed in 52.4%, moderate staining in 14.3%, and weak staining in 33.3% of biopsies. Strong staining was present on days 7, 10, 44, 79, 269, 402, and 420. Three lymphographic studies were conducted at 8.5, 30, and 35 months posttransplant. Initial drainage via distinct lymphatic channels with abrupt dermal splash and lymphostasis was observed at 8.5-month posttransplant. At 30- and 35-month posttransplant, communication of multiple lymphatic channels between donor tissue and recipient tissue was evident with distinct drainage into native recipient cervical lymph nodes. This correlated with ongoing clinical resolution of facial edema and was unaffected by 3 episodes of acute rejection. CONCLUSIONS These findings support ongoing lymphatic reconstitution between the donor facial allograft and recipient native tissue. Donor lymphatic regeneration begins after facial transplantation and continues long term. This mechanism may be responsible for the temporal and spatial process of lymphatic reconstitution with recipient lymphatic channels.
Collapse
|
20
|
Ma C, Yin H, Zhong J, Zhang Y, Luo C, Che D, Fang Z, Li L, Qin S, Liang J, Qi W, Yang Z, Zhou T, Ma J, Yang X, Gao G. Kallistatin exerts anti-lymphangiogenic effects by inhibiting lymphatic endothelial cell proliferation, migration and tube formation. Int J Oncol 2017; 50:2000-2010. [PMID: 28440474 PMCID: PMC5435323 DOI: 10.3892/ijo.2017.3972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Kallistatin has been recognized as an endogenous angiogenic inhibitor. However, its effects on lymphatic endothelial cells and lymphangiogenesis remain poorly understood. Lymphangiogenesis is involved in tumor metastasis via the lymphatic vasculature in various types of tumors. The aim of this study was to investigate the effects of kallistatin on lymphangiogenesis and the mechanism of action involved. Treatment with kallistatin recombinant protein or overexpression of kallistatin inhibited the proliferation, migration and tube formation of human lymphatic endothelial cells (hLECs), and induced apoptosis of hLECs. Furthermore, our results showed that the lymphatic vessel density (LVD) was reduced in lung and stomach sections from kallistatin-overexpressing transgenic mice. Treatment with kallistatin recombinant protein decreased the LVD in the implanted gastric xenograft tumors of nude mice. To the best of our knowledge, the present study is the first to demonstrate that kallistatin possesses anti-lymphangiogenic activity in vitro and in vivo. Moreover, kallistatin inhibited proliferation and migration of hLECs by reducing the phosphorylation of ERK and Akt, respectively. These findings suggested that kallistatin may be a promising agent that could be used to suppress cancer metastasis by inhibiting both angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Caiqi Ma
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haofan Yin
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jun Zhong
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Zhang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chuanghua Luo
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Di Che
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenzhen Fang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lei Li
- Reproductive Center, The Third Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shuxing Qin
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jieying Liang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianxing Ma
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
21
|
Jeon EJ, Davaatseren M, Hwang JT, Park JH, Hur HJ, Lee AS, Sung MJ. Effect of Oral Administration of 3,3'-Diindolylmethane on Dextran Sodium Sulfate-Induced Acute Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7702-7709. [PMID: 27700072 DOI: 10.1021/acs.jafc.6b02604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In patients with inflammatory bowel disease (IBD), inflammation is induced and maintained by lymphangiogenesis and angiogenesis. 3,3'-Diindolylmethane (DIM) is a natural product formed in acidic conditions from indole-3-carbinol in cruciferous vegetables, and it is known for its chemotherapeutic activity. This study evaluated DIM's effects on angiogenesis, lymphangiogenesis, and inflammation in a mouse colitis model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. DIM remarkably attenuated the clinical signs and histological characteristics in mice with DSS-induced colitis. DIM suppressed neutrophil infiltration and pro-inflammatory cytokines. Moreover, it significantly suppressed the expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor (VEGFR)-2, indicating that the mechanism may be related to the repression of pro-angiogenesis activity. DIM also remarkably suppressed the expression of VEGF-C, VEGF-D, VEGFR-3, and angiopoietin-2; thus, the mechanism may also be related to the suppression of lymphangiogenesis. Therefore, DIM is a possible treatment option for inflammation of the intestine and associated angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Eun-Joo Jeon
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-ang University , Ansung, Keongki, Republic of Korea
| | - Jin-Taek Hwang
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Ho Park
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Haeng Jeon Hur
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Ae Sin Lee
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Mi Jeong Sung
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| |
Collapse
|
22
|
Schaupper M, Jeltsch M, Rohringer S, Redl H, Holnthoner W. Lymphatic Vessels in Regenerative Medicine and Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:395-407. [DOI: 10.1089/ten.teb.2016.0034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mira Schaupper
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michael Jeltsch
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | | | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
23
|
Fu MR, Conley YP, Axelrod D, Guth AA, Yu G, Fletcher J, Zagzag D. Precision assessment of heterogeneity of lymphedema phenotype, genotypes and risk prediction. Breast 2016; 29:231-40. [PMID: 27460425 DOI: 10.1016/j.breast.2016.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Lymphedema following breast cancer surgery is considered to be mainly due to the mechanical injury from surgery. Recent research identified that inflammation-infection and obesity may be the important predictors for lymphedema. The purpose of this exploratory research was to prospectively examine phenotype of arm lymphedema defined by limb volume and lymphedema symptoms in relation to inflammatory genes in women treated for breast cancer. A prospective, descriptive and repeated-measure design using candidate gene association method was used to enroll 140 women at pre-surgery and followed at 4-8 weeks and 12 months post-surgery. Arm lymphedema was determined by a perometer measurement of ≥5% limb volume increase from baseline of pre-surgery. Lymphedema symptom phenotype was evaluated using a reliable and valid instrument. Saliva samples were collected for DNA extraction. Genes known for inflammation were evaluated, including lymphatic specific growth factors (VEGF-C & VEGF-D), cytokines (IL1-a, IL-4, IL6, IL8, IL10, & IL13), and tumor necrosis factor-a (TNF-a). No significant associations were found between arm lymphedema phenotype and any inflammatory genetic variations. IL1-a rs17561 was marginally associated with symptom count phenotype of ≥8 symptoms. IL-4 rs2070874 was significantly associated with phenotype of impaired limb mobility and fluid accumulation. Phenotype of fluid accumulation was significantly associated with IL6 rs1800795, IL4 rs2243250 and IL4 rs2070874. Phenotype of discomfort was significantly associated with VEGF-C rs3775203 and IL13 rs1800925. Precision assessment of heterogeneity of lymphedema phenotype and understanding the biological mechanism of each phenotype through the exploration of inherited genetic susceptibility is essential for finding a cure. Further exploration of investigative intervention in the context of genotype and gene expressions would advance our understanding of heterogeneity of lymphedema phenotype.
Collapse
Affiliation(s)
- Mei R Fu
- NYU Rory Meyers College of Nursing, New York University, New York, NY, USA; NYU Laura and Isaac Perlmutter Cancer Center, New York, NY, USA.
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Axelrod
- Department of Surgery, New York University School of Medicine, New York, NY, USA; NYU Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Amber A Guth
- Department of Surgery, New York University School of Medicine, New York, NY, USA; NYU Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Gary Yu
- NYU Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Jason Fletcher
- NYU Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - David Zagzag
- Pathology and Neurosurgery, Division of Neuropathology, Microvascular and Molecular Neuro-Oncology Laboratory, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Salajegheh A, Vosgha H, Rahman MA, Amin M, Smith RA, Lam AKY. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Hum Pathol 2016; 51:75-85. [DOI: 10.1016/j.humpath.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
|
25
|
Rahman M, Mohammed S. Breast cancer metastasis and the lymphatic system. Oncol Lett 2015; 10:1233-1239. [PMID: 26622656 DOI: 10.3892/ol.2015.3486] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/23/2015] [Indexed: 01/07/2023] Open
Abstract
Breast cancer remains the leading cause of cancer mortality worldwide, despite a significant decline in death rates due to early detection. The majority of cancer mortalities are due to the metastasis of tumor cells to other organs. Metastasis or tumor cell dissemination occurs via the hematogenous and lymphatic systems. For many carcinomas, the dissemination of tumor cells via lymphatic drainage of the tumor is the most common metastatic route. Such lymphatic drainage collects at the regional lymph nodes and the dissection and pathological examination of these nodes for lodged cancer cells is the gold standard procedure to detect metastasis. The present report provides an overview of the lymphatic system and its clinical significance as a prognostic factor, in addition to the interactions between the primary tumor and its microenvironment, and the influence of genomic subtypes on the resulting organ-specific pattern of tumor cell dissemination. It also examines the seemingly protracted asymptomatic period, during which the disseminated cells remain dormant, leading to the manifestation of metastasis decades after the successful treatment of the primary tumor.
Collapse
Affiliation(s)
- Munazzah Rahman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Sulma Mohammed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA ; Purdue Center for Cancer Research, West Lafayette, IN 47907, USA ; Bindley Bioscience, Purdue Discovery Park, West Lafayette, IN 47907, USA
| |
Collapse
|
26
|
GUPTA M, POONAWALA T, FAROOQUI M, ERICSON ME, GUPTA K. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats. J Diabetes 2015; 7:573-583. [PMID: 25266258 PMCID: PMC4844062 DOI: 10.1111/1753-0407.12223] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. METHODS We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-platelet derived growth factor receptor-β (PDGFR-β) were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. RESULTS Fentanyl significantly promoted wound closure as compared to phosphate-buffered saline (PBS). Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho-PDGFR-β co-localized with CD31 co-staining for vasculature. CONCLUSIONS Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing.
Collapse
Affiliation(s)
- Mihir GUPTA
- Stanford University School of Medicine, Stanford, CA, 94305
| | - Tasneem POONAWALA
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, Minneapolis, MN 55455
| | - Mariya FAROOQUI
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, Minneapolis, MN 55455
| | - Marna E ERICSON
- Department of Dermatology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Kalpna GUPTA
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, Minneapolis, MN 55455
- Corresponding Author: Kalpna Gupta, Ph.D., Vascular Biology Center, Medicine - Hematology, Oncology and Transplantation, University of Minnesota, Mayo Mail Code 480; 420 Delaware Street SE, Minneapolis, MN, 55455, USA, Phone: 612-625-7648, Fax: 612-625-6919,
| |
Collapse
|
27
|
Vascularized lymph node transfer for treatment of lymphedema: a comprehensive literature review. Ann Surg 2015; 261:1013-23. [PMID: 24950271 DOI: 10.1097/sla.0000000000000763] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A comprehensive literature review of VLNT with updates and comparisons on current application, techniques, results, studies and possible future implications. BACKGROUND Lymphedema is a debilitating condition that often results secondary to treatment of cancer. Unfortunately there is no cure. However, microsurgical procedures such as VLNT has gained popularity as there have been increasing reports that VLNT may help alleviate the severity of lymphedema. METHODS A review of literature was conducted over major medical indices (PubMed-MEDLINE, Factiva, Scopus, Sciencedirect, EMBASE). Search terms were focused on vascularized, lymph node transfer (also autologous, lymph node transplant) to cover both human and animal studies. Each study was verified for the nature of the procedure; a free microsurgical flap containing lymph nodes for the purpose of relieving lymphedema. RESULTS There are human and animal studies that individually report clear benefits, but because of methodological shortcomings comparative studies with uniform patient selection and monitoring are lacking. CONCLUSIONS Although the results with the use of VLNT for treatment of lymphedema have been largely positive, further exploration into standardized protocols for diagnosis, treatment optimization, and patient outcomes assessment is needed.
Collapse
|
28
|
Shi J, Li YJ, Yan B, Wei PK. Interleukin-8: A potent promoter of human lymphatic endothelial cell growth in gastric cancer. Oncol Rep 2015; 33:2703-10. [PMID: 25891418 PMCID: PMC4431450 DOI: 10.3892/or.2015.3916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022] Open
Abstract
Lymphatic metastasis is a major progression route of gastric cancer. Interleukin-8 (IL-8), as an inflammatory cytokine, is induced by Helicobacter pylori infection and is strongly associated with gastric cancer development and metastasis. The blood and lymphatic systems are similar in their function and gene expression profiles. It has been proposed that IL-8 activates angiogenesis. However, the direct role of IL-8 in lymphangiogenesis in gastric cancer remains unclear. We investigated the effect of IL-8 on the growth of human lymphatic endothelial cells (LECs). In addition, protein and mRNA expression of selected lymphangiogenesis markers was assessed in these cells. LECs were co-cultured with gastric cancer SGC7901 cells and exposed to various concentrations of IL-8 (0, 0.2, 0.5, 0.8 and 1.0 ng/ml). The Cell Counting Kit-8 was used to evaluate LEC proliferation (cultured for 1-6 days). Then, protein (immunofluorescence and western blotting) and mRNA [quantitative transcription-polymerase chain reaction (qPCR)] levels were measured in samples obtained from the 24-h cultured cells, for lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), vascular endothelial growth factor (VEGF)-C, VEGF-D and vascular endothelial growth factor receptor-3 (VEGFR-3). The data presented herein demonstrated that IL-8 promotes the proliferation of LECs and enhances the protein and mRNA expression of LYVE-1. Notably, IL-8 inhibited VEGF-C, VEGF-D and VEGFR-3 protein expression as well as VEGF-D and VEGFR-3 mRNA expression. These findings suggest that IL-8 may be a potent inducer of LECs, although this effect does not appear to involve the VEGF-C/VEGF-D and VEGFR-3 signaling pathway.
Collapse
Affiliation(s)
- Jun Shi
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
| | - Yong-Jin Li
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
| | - Bing Yan
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
| | - Pin-Kang Wei
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
29
|
Abstract
Tendons lack sufficient blood supply and represent a bradytroph tissue with prolonged healing time under pathological conditions. While the role of lymphatics in wound/defect healing in tissues with regular blood supply is well investigated, its involvement in tendon defects is not clear. We here try to identify the role of the lymphatic system in a tendon lesion model with morphological methods. A rat Achilles tendon lesion model (n = 5) was created via surgical intervention. Two weeks after surgery, animals were killed and lesioned site removed and prepared for polarization microscopy (picrosirius red) and immunohistochemistry using the lymphatic markers PROX1, VEGFR3, CCL21, LYVE-1, PDPN, and the vascular marker CD31. Additionally, DAPI was applied. Untreated tendons served as controls, confocal laser-scanning microscopy was used for documentation. At the lesion site, polarization microscopy revealed a structural reintegration while immunohistochemistry detected band-like profiles immunoreactive for PDPN, VEGFR3, CCL21, LYVE1, and CD31, surrounding DAPI-positive nuclei. PROX1-positive nuclei were detected within the lesion forming lines and opposed to each other. These PROX1-positive nuclei were surrounded by LYVE-1- or VEGFR3-positive surfaces. Few CD31-positive profiles contained PROX1-positive nuclei, while the majority of CD31-positive profiles lacked PROX1-positive nuclei. VEGFR3-, PDPN-, and LYVE-1-positive profiles were numerous within the lesion site, but absent in control tissue. Within 2 weeks, a structural rearrangement takes place in this lesion model, with dense lymphatic supply. The role of lymphatics in tendon wound healing is unclear, and proposed model represents a good possibility to study healing dynamics and lymphangiogenesis in a tissue almost completely lacking lymphatics in physiological conditions.
Collapse
|
30
|
Schroedl F, Kaser-Eichberger A, Schlereth SL, Bock F, Regenfuss B, Reitsamer HA, Lutty GA, Maruyama K, Chen L, Lütjen-Drecoll E, Dana R, Kerjaschki D, Alitalo K, De Stefano ME, Junghans BM, Heindl LM, Cursiefen C. Consensus statement on the immunohistochemical detection of ocular lymphatic vessels. Invest Ophthalmol Vis Sci 2014; 55:6440-2. [PMID: 25315233 DOI: 10.1167/iovs.14-15638] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is currently considerable controversy about existence and classification of "lymphatic vessels" in the eye. Some of the confusion is certainly caused by inappropriate use (or nonuse) of the correct immunohistochemical markers. Many experts in the field expressed the need for a consensus statement, and, in this perspective, authors offer arguments and solutions to reliably continue with immunohistochemical ocular lymphatic research.
Collapse
Affiliation(s)
- Falk Schroedl
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria Department of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Birgit Regenfuss
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Herbert A Reitsamer
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lu Chen
- Center for Eye Disease & Development, Program in Vision Science and School of Optometry, University of California at Berkeley, Berkeley, California, United States
| | | | - Reza Dana
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Kari Alitalo
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Maria Egle De Stefano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Roma, Italy
| | - Barbara M Junghans
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Gerald D, Adini I, Shechter S, Perruzzi C, Varnau J, Hopkins B, Kazerounian S, Kurschat P, Blachon S, Khedkar S, Bagchi M, Sherris D, Prendergast GC, Klagsbrun M, Stuhlmann H, Rigby AC, Nagy JA, Benjamin LE. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. Nat Commun 2014; 4:2824. [PMID: 24280686 PMCID: PMC3868161 DOI: 10.1038/ncomms3824] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 10/25/2013] [Indexed: 12/30/2022] Open
Abstract
Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.
Collapse
Affiliation(s)
- Damien Gerald
- 1] Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] ImClone Systems (a wholly owned subsidiary of Eli Lilly and Company), New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ni X, Zhao Y, Ma J, Xia T, Liu X, Ding Q, Zha X, Wang S. Hypoxia-induced factor-1 alpha upregulates vascular endothelial growth factor C to promote lymphangiogenesis and angiogenesis in breast cancer patients. J Biomed Res 2013; 27:478-85. [PMID: 24285946 PMCID: PMC3841473 DOI: 10.7555/jbr.27.20130021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/15/2013] [Accepted: 06/05/2013] [Indexed: 12/27/2022] Open
Abstract
Hypoxia-induced factor-1 alpha (HIF-1α) affects many effector molecules and regulates tumor lymphangiogenesis and angiogenesis during hypoxia. The aim of this study was to investigate the role of HIF-1α in the regulation of vascular endothelial growth factor C (VEGF-C) expression and its effect on lymphangiogenesis and angiogenesis in breast cancer. Lymphatic vessel density (LVD), microvessel density (MVD) and the expressions of HIF-1α and VEGF-C proteins were evaluated by immunohistochemistry in 75 breast cancer samples. There was a significant correlation between HIF-1α and VEGF-C (P = 0.014, r = 0.273, Spearman's coefficient of correlation). HIF-1α and VEGF-C overexpression was significantly correlated with higher LVD (P = 0.003 and P = 0.017, respectively), regional lymph nodal involvement (P = 0.002 and P = 0.004, respectively) and advanced tumor, node, metastasis (TNM) classification (P = 0.001 and P = 0.01, respectively). Higher MVD was observed in the group expressing higher levels of HIF-1α and VEGF-C (P = 0.033 and P = 0.037, respectively). Univariate analysis showed shorter survival time in patients expressing higher levels of HIF-1α and VEGF-C. HIF-1α was also found to be an independent prognostic factor of overall survival in multivariate analysis. The results suggest that HIF-1α may affect VEGF-C expression, thus acting as a crucial regulator of lymphangiogenesis and angiogenesis in breast cancer. This study highlights promising potential of HIF-1α as a therapeutic target against tumor lymph node metastasis.
Collapse
Affiliation(s)
- Xiaojian Ni
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bernaudin JF, Kambouchner M, Lacave R. [Lymphatic vascular system, development and lymph formation. Review]. REVUE DE PNEUMOLOGIE CLINIQUE 2013; 69:93-101. [PMID: 23474100 DOI: 10.1016/j.pneumo.2013.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/12/2013] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The lymphatic vascular system is widely developed among vertebrates. Lymphatic vessels provide the interstitial fluid (20% of the body weight) drainage through interstitial prelymphatic channels, capillaries, precollectors and collectors flowing into the venous blood. Endothelial cells of capillaries are overlapped and fixed to interstitial collagen and elastic fibres by anchoring filaments facilitating the fluid transfer. Precollectors and collectors have valves controlling the lymph flux direction. In addition to external mechanisms, the lymphangions of collectors have contracting muscle cells driving the flow. Lymphatic endothelial cells are routinely identified by the expression of podoplanin, LYVE-1 and VEGFR3. In the embryo, prelymphatic endothelial cells emerge from the cardinal veins and migrate into the mesenchyma forming embryonic lymphatic sacs. Prox1, Sox18 and COUP-TFII play a major role in the endothelial speciation, VEGFC as VEGFD combined to VEGFR3 in cell migration and proliferation and FoxC2 in valves development. In cancer or inflammation, various factors secreted by cancer cells and/or inflammatory cells induce a neolymphangiogenesis. Recently it has been shown that cells from the bone marrow could be potential precursors for lymphatic endothelial cells.
Collapse
Affiliation(s)
- J-F Bernaudin
- Histologie Biologie Tumorale, ER2 UPMC, Hôpital Tenon, 4, rue de la Chine, 75020 Paris, France.
| | | | | |
Collapse
|
34
|
Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clin Exp Metastasis 2012; 30:345-56. [PMID: 23124573 DOI: 10.1007/s10585-012-9541-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Tumor metastasis to lymph nodes is a key indicator of patient survival, and is enhanced by the neo-lymphatics induced by tumor-secreted VEGF-C or VEGF-D, acting via VEGFR-3 signalling. These targets constitute important avenues for anti-metastatic treatment. Despite this new understanding, clinical observations linking metastasis with tumor depth or location suggest that lymphangiogenic growth factors are not the sole determinants of metastasis. Here we explored the influence of tumor proximity to lymphatics capable of responding to growth factors on nodal metastasis in a murine VEGF-D over-expression tumor model. We found that primary tumor location profoundly influenced VEGF-D-mediated lymph node metastasis: 89 % of tumors associated with the flank skin metastasised, in contrast with only 19 % of tumors located more deeply on the body wall (p < 0.01). Lymphatics in metastatic tumors arose from small lymphatics, and displayed distinct molecular and morphological profiles compared with those found in normal lymphatics. Smaller lymphatic subtypes were more abundant in skin (2.5-fold, p < 0.01) than in body wall, providing a richer source of lymphatics for VEGF-D(+) skin tumors, a phenomenon also confirmed in human samples. This study shows that the proximity of a VEGF-D(+) primary tumor to small lymphatics is an important determinant of metastasis. These observations may explain why tumor location relative to the lymphatic network is prognostically important for some human cancers.
Collapse
|
35
|
Wu X, Yu Z, Liu N. Comparison of approaches for microscopic imaging of skin lymphatic vessels. SCANNING 2012; 34:174-180. [PMID: 21898460 DOI: 10.1002/sca.20285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Assessment of skin lymphatic vessels is of great significance in understanding their roles in many pathological conditions. Our aim was to identify the optimal approach for investigation of cutaneous lymphatic system. We performed comparative studies on skin lymphatic vessels using immunohistochemistry of tissue sections, computer graphic reconstruction method together with immunohistochemically stained serial sections and whole mount fluorescence in human lower limb. Lymphatic vessels were identified with podoplanin antibody. The relative merits and drawbacks of each method in evaluation of structure, spatial organization, and distribution of cutaneous lymphatic vessels were described. Immunohistology of tissue sections enabled the investigation of the structure and distribution of the whole cutaneous lymphatic system in two-dimensional slices, whereas three-dimensional morphology of only the most superficial lymph capillary network immediately under the epidermis could be evaluated with the whole mount technique. Meanwhile, only little segmentation of skin lymphatic vessel from five immunohistochemically stained serial sections was reconstructed and evaluated due to expense and special skills required using computer graphic three-dimensional reconstruction. Furthermore, a great number of artifacts and special skills required in its processes leaded to less accurate structure of skin lymphatic vessels. Our findings demonstrated that the use of either of the proposed techniques alone could not allow a comprehensive analysis of the skin lymphatic system due to their relative drawbacks. Combination of immunohistology of tissue sections and three-dimensional whole-mount preparations appears to be the best candidate for comprehensive evaluation of skin lymphatic system.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lymphology Center of Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | |
Collapse
|
36
|
Parra ER, Araujo CAL, Lombardi JG, Ab'Saber AM, Carvalho CRR, Kairalla RA, Capelozzi VL. Lymphatic fluctuation in the parenchymal remodeling stage of acute interstitial pneumonia, organizing pneumonia, nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis. ACTA ACUST UNITED AC 2012; 45:466-72. [PMID: 22488224 PMCID: PMC3854286 DOI: 10.1590/s0100-879x2012007500055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/21/2012] [Indexed: 11/24/2022]
Abstract
Because the superficial lymphatics in the lungs are distributed in the subpleural, interlobular and peribroncovascular interstitium, lymphatic impairment may occur in the lungs of patients with idiopathic interstitial pneumonias (IIPs) and increase their severity. We investigated the distribution of lymphatics in different remodeling stages of IIPs by immunohistochemistry using the D2-40 antibody. Pulmonary tissue was obtained from 69 patients with acute interstitial pneumonia/diffuse alveolar damage (AIP/DAD, N = 24), cryptogenic organizing pneumonia/organizing pneumonia (COP/OP, N = 6), nonspecific interstitial pneumonia (NSIP/NSIP, N = 20), and idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP, N = 19). D2-40+ lymphatic in the lesions was quantitatively determined and associated with remodeling stage score. We observed an increase in the D2-40+ percent from DAD (6.66 ± 1.11) to UIP (23.45 ± 5.24, P = 0.008) with the advanced process of remodeling stage of the lesions. Kaplan-Meier survival curves showed a better survival for patients with higher lymphatic D2-40+ expression than 9.3%. Lymphatic impairment occurs in the lungs of IIPs and its severity increases according to remodeling stage. The results suggest that disruption of the superficial lymphatics may impair alveolar clearance, delay organ repair and cause severe disease progress mainly in patients with AIP/DAD. Therefore, lymphatic distribution may serve as a surrogate marker for the identification of patients at greatest risk for death due to IIPs.
Collapse
Affiliation(s)
- E R Parra
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Brasil.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sozio F, Rossi A, Weber E, Abraham DJ, Nicholson AG, Wells AU, Renzoni EA, Sestini P. Morphometric analysis of intralobular, interlobular and pleural lymphatics in normal human lung. J Anat 2012; 220:396-404. [PMID: 22283705 DOI: 10.1111/j.1469-7580.2011.01473.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In spite of their presumed relevance in maintaining interalveolar septal fluid homeostasis, the knowledge of the anatomy of human lung lymphatics is still incomplete. The recent discovery of reliable markers specific for lymphatic endothelium has led to the observation that, contrary to previous assumptions, human lymphatic vessels extend deep inside the pulmonary lobule in association with bronchioles, intralobular arterioles or small pulmonary veins. The aim of this study was to provide a morphometric characterization of lymphatic vessels in the periphery of the human lung. Human lung sections were immunolabelled with the lymphatic marker D2-40, followed by blood vessel staining with von Willebrand Factor. Lymphatic vessels were classified into: intralobular (including those associated with bronchovascular bundles, perivascular, peribronchiolar and interalveolar), pleural (in the connective tissue of the visceral pleura), and interlobular (in interlobular septa). The percentage area occupied by the lymphatic lumen was much greater in the interlobular septa and in the subpleural space than in the lobule. Most of the intralobular lymphatic vessels were in close contact with a blood vessel, either alone or within a bronchovascular bundle, whereas 7% were associated with a bronchiole and < 1% were not connected to blood vessels or bronchioles (interalveolar). Intralobular lymphatic size progressively decreased from bronchovascular through to peribronchiolar, perivascular and interalveolar lymphatics. Lymphatics associated with bronchovascular bundles had similar morphometric characteristics to pleural and interlobular lymphatics. Shape factors were similar across lymphatic populations, except that peribronchiolar lymphatics had a marginally increased roundness and circularity, suggesting a more regular shape due to increased filling, and interlobular lymphatics had greater elongation, due to a greater proportion of conducting lymphatics cut longitudinally. Unsupervised cluster analysis confirmed a marked heterogeneity of lymphatic vessels both within and between groups, with a cluster of smaller vessels specifically represented in perivascular and interalveolar lymphatics within the alveolar interstitium. Our data indicate that intralobular lymphatics are a heterogeneous population, including vessels surrounding the bronchovascular bundle analogous to the conducting vessels present in the pleural and interlobular septa, many small perivascular lymphatics responsible for maintaining fluid balance in the alveolar interstitium, and a minority of intermediate lymphatics draining the peripheral airways. These lymphatic populations could be differentially involved in the pathogenesis of diseases preferentially involving distinct lung compartments.
Collapse
Affiliation(s)
- Francesca Sozio
- Department of Neuroscience, Molecular Medicine Section, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim JH, Han EH, Jin ZW, Lee HK, Fujimiya M, Murakami G, Cho BH. Fetal topographical anatomy of the upper abdominal lymphatics: its specific features in comparison with other abdominopelvic regions. Anat Rec (Hoboken) 2011; 295:91-104. [PMID: 22144396 DOI: 10.1002/ar.21527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/22/2010] [Indexed: 12/12/2022]
Abstract
Using semiserial sections from 19 human fetuses of 8-30 weeks gestation, we examined the topohistology of the upper abdominal lymphatics and compared it with that of the lower abdominal and pelvic lymphatics. The upper abdominal lymphatics were characterized by an intimate relationship with the peritoneal lining, a common mesentery for the celiac trunk and superior mesenteric artery (SMA). Lymphatic connections from the upper abdominal viscera to the paraaortic and paracaval areas followed two routes: (1) from the intestinal mesentery, along the peritoneum on the left aspect of the proximal SMA, via the chain of lymph follicles (LFs) lying along the retropancreatic fusion fascia, to drain into the LFs around the left renal vein; (2) from sites along the peritoneum on the posterior wall of the omental bursa, via the root of the hepatoduodenal ligament, to drain into LFs around the vena cava. The development of these two posterior drainage routes seemed to be promoted by the peritoneum or a peritoneal remnant (i.e., fusion fascia) attaching to the great vessels, and inhibited or impeded by the developing nerves and diaphragm. No paraaortic, paracaval, or pelvic LFs lay along the peritoneum. The pelvic LFs were usually located along the bundle of lymphatic vessels originating from the femoral canal.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Surgery and Research Institute of Clinical Medicine, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Maldonado GEM, Pérez CAA, Covarrubias EEA, Cabriales SAM, Leyva LA, Pérez JCJ, Almaguer DG. Autologous stem cells for the treatment of post-mastectomy lymphedema: a pilot study. Cytotherapy 2011; 13:1249-55. [DOI: 10.3109/14653249.2011.594791] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Abstract
It is well known that radiation significantly impacts the morbidity of thyroid cancer and that is why Belarus has the highest incidence of the malignancy. Author describes statistical data, classification of angiogenesis, and typical pathological features of malignant thyroid diseases with regard to the vascular network.
Collapse
Affiliation(s)
- Matvey Vladimir Sprindzuk
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk. Belarus, 220040, Minsk, Bogdanovicha lane, 112/38. ,
| |
Collapse
|
41
|
Alexander JS, Chaitanya GV, Grisham MB, Boktor M. Emerging roles of lymphatics in inflammatory bowel disease. Ann N Y Acad Sci 2010; 1207 Suppl 1:E75-85. [PMID: 20961310 DOI: 10.1111/j.1749-6632.2010.05757.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mobilization and recruitment of blood and lymphatic vasculatures are widely described in inflammatory bowel diseases (IBDs). Although angiogenesis contributes to intense gut inflammation, it remains unclear whether and when lymphangiogenesis amplifies or protects in IBD. The prolonged maintenance of lymphatic (over blood vessels) in inflammation indicates that lymphatic-blood vessel interactions may regulate IBD pathogenesis and restitution. Although lymphatic expansion helps to restore fluid balance and clear cytokines and immune cells, lymphatic failure results in accumulation of these factors and exacerbates IBD. Lymphatic obstruction and remodeling may impair lymphatic pumping, leading to repeated rounds of lymphangiogenesis. Early descriptions of Crohn's disease and ulcerative colitis describe colon lymphatic congestion, remodeling, expansion, and many other features that are recapitulated in experimental IBD and also by intestinal lymphatic obstruction, supporting lymphangitis as a cause and consequence of IBD. Growth factors, cytokines, gut flora, Toll receptors, and leukocytes all regulate inflammation and gut lymphatic remodeling in IBD. This review summarizes the importance of lymphatics and lymphangiogenesis in IBD etiology that may be useful in diagnosis and therapy of gut inflammation.
Collapse
Affiliation(s)
- J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | |
Collapse
|
42
|
Rossi A, Gabbrielli E, Villano M, Messina M, Ferrara F, Weber E. Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis. J Anat 2010; 217:705-14. [PMID: 21039476 DOI: 10.1111/j.1469-7580.2010.01306.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrillin microfibrils constitute a scaffold for elastin deposition in the wall of arteries and form the anchoring filaments that connect the lymphatic endothelium to surrounding elastic fibers. We previously reported that fibrillin is deposited in a honeycomb pattern in bovine arterial endothelial cells, which also deposit microfibril-associated glycoprotein (MAGP)-1, whereas thoracic duct endothelial cells form an irregular web. The present immunohistochemical study was designed to verify whether lymphatic and blood human dermal microvascular endothelial cells (HDMECs) isolated from human foreskin by the sequential use of a pan-endothelial marker, CD31, and the lymphatic specific marker, D2-40, deposit fibrillin and MAGP-1. In both cell types, fibrillin and MAGP-1 co-localized and were deposited with different patterns of increasing complexity co-existing in the same culture. Fibrillin microfibrils formed a wide-mesh honeycomb leaving fibrillin-free spaces that were gradually filled. This modality of fibrillin deposition, similar to that of bovine large artery endothelial cells, was basically the same in blood and lymphatic HDMECs. In some lymphatic HDMECs, fibrillin was initially deposited as uniformly scattered short fibrillin strands probably as a result of anchoring filaments carried over from the vessels of origin. Our findings show that blood and lymphatic endothelial cells participate in fibrillin deposition in human skin.
Collapse
Affiliation(s)
- Antonella Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration. Hepatol Int 2010; 4:537-47. [PMID: 21063476 DOI: 10.1007/s12072-010-9192-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 07/09/2010] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is naturally resistant to radiotherapy and cytotoxic chemotherapy, leaving surgery as the mainstream therapeutic approach. However, the 5-year recurrence rate after curative resection is as high as 61.5%. The background hepatitis B- or C-induced cirrhosis and the presence of micrometastases at the time of surgery have been regarded as two main causes of recurrence. Recently, accumulating evidence suggests that growth factors and cytokines released during the physiological process of post-surgical liver regeneration could induce the activation of dormant micrometastatic lesions. The establishment of neovasculature to support either liver regeneration or HCC growth involves multiple cell types including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and circulating endothelial progenitors. The crosstalks among these cells are driven by multiple molecules and signaling pathways, including vascular endothelial growth factors and their receptors, platelet-derived growth factor, the angiopoietin/Tie family, hepatocyte growth factor/c-Met signaling, and others. Anti-angiogenic agent targeting liver cancer vasculature has been reported to be able to generate limited survival benefit of the patients. In this review, discussions are focused on various angiogenic mechanisms of HCC and liver regeneration, as well as the prevailing anti-angiogenic strategies.
Collapse
|
44
|
Ganta VC, Cromer W, Mills GL, Traylor J, Jennings M, Daley S, Clark B, Michael Mathis J, Bernas M, Jordan P, Witte M, Steven Alexander J, Alexander JS. Angiopoietin-2 in experimental colitis. Inflamm Bowel Dis 2010; 16:1029-39. [PMID: 19902545 PMCID: PMC2881632 DOI: 10.1002/ibd.21150] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The pathophysiology of inflammatory bowel disease (IBD) includes leukocyte infiltration, blood and lymphatic remodeling, weight loss and protein enteropathy. The roles of angiopoietin-2 (Ang-2) in initiating gut inflammation, leukocyte infiltration and angiogenesis are not well understood. METHODS Disease activity index, histopathological scoring, myeloperoxidase assay, immunohistochemistry and sodium dodecyl sulphate- polyacrylamide gel electrophoretic methods were employed in the present study to address the roles of Ang-2 in experimental colitis. RESULTS Several important differences were seen in the development of experimental IBD in Ang-2(-/-) mice. Although weight change and disease activity differ only slightly in WT and Ang-2(-/-) + DSS treated mice, leukocyte infiltration, inflammation and blood and lymphatic vessel density is significantly attenuated compared to WT + DSS mice. Gut capillary fragility and water export (stool blood and form) appear significantly earlier in Ang-2(-/-) + DSS mice vs. WT. Colon lengths were also significantly reduced in Ang-2(-/-) and gut histopathology was less severe in Ang-2(-/-) compared to WT + DSS. Lastly, the decrease in serum protein content in WT + DSS was less severe in Ang-2(-/-) + DSS, thus protein losing enteropathy (PLE) a feature of IBD is relieved by Ang-2(-/-). CONCLUSION These data demonstrate that in DSS colitis, Ang-2 mediates inflammatory hemangiogenesis, lymphangiogenesis and neutrophil infiltration to reduce some, but not all clinical features of IBD. The implications for Ang-2 manipulation in the development of IBD and other inflammatory diseases and treatments involving Ang-2 are discussed.
Collapse
Affiliation(s)
- Vijay C. Ganta
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Walter Cromer
- Department of Cell Biology and Anatomy Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Ginny L. Mills
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - James Traylor
- Department of Pathology Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Merilyn Jennings
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - Sarah Daley
- Department of Surgery, University of Arizona, Arizona
| | - Benjamin Clark
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | - J. Michael Mathis
- Department of Cell Biology and Anatomy Louisiana Health Sciences Centre-Shreveport, Louisiana
| | | | - Paul Jordan
- Department of Gastroenterology, University of Arizona, Arizona
| | - Marlys Witte
- Department of Surgery, University of Arizona, Arizona
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Centre-Shreveport, Louisiana
| | | |
Collapse
|
45
|
Abstract
Lung cancer represents one of the most frequent causes of death due to neoplastic disease in Poland and around the world. The high mortality which accompany neoplastic diseases used to be ascribed mainly to dissemination of cancerous cells. Studies on animal models suggest that tumour lymphangiogenesis represents the principal factor in the process of metastases formation. Lymphangiogenesis involves a process of formation of new lymphatic vessels from already existing lymphatic capillaries. Lymphangiogenesis is stimulated by vascular endothelial growth factors (VEGF) and other, recently reported factors, such as, e.g., cyclooxygenase 2, fibroblast growth factor 2, angiopoetin-1 and the insulin-resembling growth factor. In lymphangiogenesis a key role is played by neutropilin 2 or podoplanin and this promoted development of studies on lymphangiogenesis. Activation of VEGF-C/VEGF-D/VEGFR-3 axis increases motility and invasiveness of neoplastic cells, promotes development of metastases in several types of tumours such as, e.g., lung cancer, mammary carcinoma, cancers of the neck, prostate and large intestine. In recent years lymphangiogenesis provided topic of many studies. A positive correlation was detected between expressions of VEGF-C/D and VEGFR-3 in non-small cell lung cancer. In patients with lung cancer with high expression of VEGF-C a markedly abbreviated survival was noted. Positive correlation was detected between expression of VEGF-C and VEGF-D on one hand and expression of LYVE-1 on the other in sentinel lymph nodes with metastases of neoplastic cells in patients with non-small cell lung cancer. Also, high density of lymphatic vessels and high density of intraneoplastic microvessels proved to be independent poor prognostic indices in patients with non-small cell lung cancer. Extensive hope is linked to studies on inhibitors of lymphangiogenesis, which may improve results of treatment also in tumour patients.
Collapse
|
46
|
Gerli R, Secciani I, Sozio F, Rossi A, Weber E, Lorenzini G. Absence of lymphatic vessels in human dental pulp: a morphological study. Eur J Oral Sci 2010; 118:110-7. [DOI: 10.1111/j.1600-0722.2010.00717.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Nakamura K, Radhakrishnan K, Wong YM, Rockson SG. Anti-inflammatory pharmacotherapy with ketoprofen ameliorates experimental lymphatic vascular insufficiency in mice. PLoS One 2009; 4:e8380. [PMID: 20027220 PMCID: PMC2791214 DOI: 10.1371/journal.pone.0008380] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 11/25/2009] [Indexed: 11/23/2022] Open
Abstract
Background Disruption of the lymphatic vasculature causes edema, inflammation, and end-tissue destruction. To assess the therapeutic efficacy of systemic anti-inflammatory therapy in this disease, we examined the impact of a nonsteroidal anti-inflammatory drug (NSAID), ketoprofen, and of a soluble TNF-α receptor (sTNF-R1) upon tumor necrosis factor (TNF)-α activity in a mouse model of acquired lymphedema. Methods and Findings Lymphedema was induced by microsurgical ablation of major lymphatic conduits in the murine tail. Untreated control mice with lymphedema developed significant edema and extensive histopathological inflammation compared to sham surgical controls. Short-term ketoprofen treatment reduced tail edema and normalized the histopathology while paradoxically increasing TNF-α gene expression and cytokine levels. Conversely, sTNF-R1 treatment increased tail volume, exacerbated the histopathology, and decreased TNF-α gene expression. Expression of vascular endothelial growth factor-C (VEGF-C), which stimulates lymphangiogenesis, closely correlated with TNF-α expression. Conclusions Ketoprofen therapy reduces experimental post-surgical lymphedema, yet direct TNF-α inhibition does not. Reducing inflammation while preserving TNF-α activity appears to optimize the repair response. It is possible that the observed favorable responses, at least in part, are mediated through enhanced VEGF-C signaling.
Collapse
Affiliation(s)
- Kenta Nakamura
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kavita Radhakrishnan
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yat Man Wong
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stanley G. Rockson
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Girling JE, Rogers PAW. Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin–TIE signalling system. Reproduction 2009; 138:883-93. [DOI: 10.1530/rep-09-0147] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiogenesis, lymphangiogenesis and vascular maturation occur on a regular, physiological basis in human endometrium. These processes form part of a continuum of vascular remodelling involving numerous regulatory factors. Key factors include vascular endothelial growth factor (VEGF)A, VEGFC and VEGFD, and their associated receptors VEGFR1, VEGFR2 and VEGFR3. A second group of vascular regulatory proteins belongs to the angiopoietin (ANG)–TIE system. Although members of the VEGF family and the ANG–TIE system are represented in the endometrium, our understanding of how these different molecules interact to regulate remodelling of the blood and lymphatic vasculature present in the endometrium is still limited. A review of the current information is provided.
Collapse
|
49
|
Abstract
Intestinal lymphangiectasia (IL) is a potentially fatal disorder of the lymphatic system if it is not recognized and proper treatment initiated. The disease is characterized by lymphocytopenia, peripheral edema, and hypoalbuminemia. Because IL is a rare disease, the symptoms, diagnostic workup, and treatment are unfamiliar to many clinicians. Current literature documents only a few reported cases of IL in a preterm infant. This case report of a preterm infant reviews history, symptomatology, and the diagnostic workup performed. The steps in making the diagnosis, the treatment, and the prognosis of this condition are also presented.
Collapse
MESH Headings
- Diagnosis, Differential
- Female
- Humans
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/nursing
- Intensive Care Units, Neonatal
- Lymphangiectasis, Intestinal/diagnosis
- Lymphangiectasis, Intestinal/nursing
- Neonatal Nursing/methods
Collapse
|
50
|
Ogasawara S, Kaneko MK, Price JE, Kato Y. Characterization of anti-podoplanin monoclonal antibodies: critical epitopes for neutralizing the interaction between podoplanin and CLEC-2. Hybridoma (Larchmt) 2008; 27:259-67. [PMID: 18707544 DOI: 10.1089/hyb.2008.0017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Podoplanin (Aggrus) is a mucin-type sialoglycoprotein that is known as a useful marker for lymphatic endothelium and tumor-initiating cells (TICs). Interaction between podoplanin and C-type lectin-like receptor-2 (CLEC-2) is reported to be critical for podoplanin-induced platelet aggregation and cancer metastasis. Recently, several anti-human podoplanin antibodies have been created; however, these anti-podoplanin antibodies have not been well characterized. Five anti-podoplanin antibodies (NZ-1, D2-40, AB3, 18H5, and a rabbit polyclonal antibody) were investigated using ELISA, Western blot, and flow cytometry with synthesized podoplanin peptides and deletion mutants of recombinant podoplanin. The epitope of NZ-1 is platelet aggregation-stimulating (PLAG) domain-2/3; the epitope of D2-40, AB3, and 18H5 is PLAG1/2. The epitopes of D2-40 and AB3 are quite similar, although 18H5 is different from D2-40 and AB3. Using flow cytometric analysis, NZ-1 partially inhibited the interaction between podoplanin and CLEC-2, although other antibodies did not. In conclusion, the two most frequently used anti-podoplanin antibodies, D2-40 and AB3, have similar properties, although several studies have reported differences. NZ-1 neutralizes the interaction between podoplanin and CLEC-2, which may lead to the development of therapeutic antibodies against podoplanin-dependent cancer metastasis.
Collapse
Affiliation(s)
- Satoshi Ogasawara
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|