1
|
Abdullahi A, Etoom M, Badaru UM, Elibol N, Abuelsamen AA, Alawneh A, Zakari UU, Saeys W, Truijen S. Vagus nerve stimulation for the treatment of epilepsy: things to note on the protocols, the effects and the mechanisms of action. Int J Neurosci 2024; 134:560-569. [PMID: 36120993 DOI: 10.1080/00207454.2022.2126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Epilepsy is a chronic brain disorder that is characterized by repetitive un-triggered seizures that occur severally within 24 h or more. Non-pharmacological methods for the management of epilepsy were discussed. The non-pharmacological methods include the vagus nerve stimulation (VNS) which is subdivided into invasive and non-invasive techniques. For the non-invasive techniques, the auricular VNS, stimulation of the cervical branch of vagus nerve in the neck, manual massage of the neck, and respiratory vagal nerve stimulation were discussed. Similarly, the stimulation parameters used and the mechanisms of actions through which VNS improves seizures were also discussed. Use of VNS to reduce seizure frequency has come a long way. However, considering the cost and side effects of the invasive method, non-invasive techniques should be given a renewed attention. In particular, respiratory vagal nerve stimulation should be considered. In doing this, the patients should for instance carry out slow-deep breathing exercise 6 to 8 times every 3 h during the waking hours. Slow-deep breathing can be carried out by the patients on their own; therefore this can serve as a form of self-management.HIGHLIGHTSEpilepsy can interfere with the patients' ability to carry out their daily activities and ultimately affect their quality of life.Medications are used to manage epilepsy; but they often have their serious side effects.Vagus nerve stimulation (VNS) is gaining ground especially in the management of refractory epilepsy.The VNS is administered through either the invasive or the non-invasive methodsThe invasive method of VNS like the medication has potential side effects, and can be costly.The non-invasive method includes auricular VNS, stimulation of the neck muscles and skin and respiratory vagal nerve stimulation via slow-deep breathing exercises.The respiratory vagal nerve stimulation via slow-deep breathing exercises seems easy to administer even by the patients themselves.Consequently, it is our opinion that patients with epilepsy be made to carry out slow-deep breathing exercise 6-8 times every 3 h during the waking hours.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Nigeria
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Mohammad Etoom
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | | | - Nuray Elibol
- Department of Physiotherapy and Rehabilitation Sciences, Ege University, Izmir, Turkey
| | | | - Anoud Alawneh
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | - Usman Usman Zakari
- Department of Physiotherapy, Federal Medical Center, Birnin Kudu, Jigawa State, Nigeria
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics 2024; 21:e00308. [PMID: 38177025 PMCID: PMC11103217 DOI: 10.1016/j.neurot.2023.e00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Epilepsy is a common and debilitating neurological disorder, and approximately one-third of affected individuals have ongoing seizures despite appropriate trials of two anti-seizure medications. This population with drug-resistant epilepsy (DRE) may benefit from neurostimulation approaches, such as vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). In some patient populations, these techniques are FDA-approved for treating DRE. VNS is used as adjuvant therapy for children and adults. Acting via the vagus afferent network, VNS modulates thalamocortical circuits, reducing seizures in approximately 50 % of patients. RNS uses an adaptive (closed-loop) system that records intracranial EEG patterns to activate the stimulation at the appropriate time, being particularly well-suited to treat seizures arising within eloquent cortex. For DBS, the most promising therapeutic targets are the anterior and centromedian nuclei of the thalamus, with anterior nucleus DBS being used for treating focal and secondarily generalized forms of DRE and centromedian nucleus DBS being applied for treating generalized epilepsies such as Lennox-Gastaut syndrome. Here, we discuss the indications, advantages and limitations of VNS, DBS and RNS in treating DRE and summarize the spatial distribution of neuroimaging observations related to epilepsy and stimulation using NeuroQuery and NeuroSynth.
Collapse
Affiliation(s)
| | - Nebras M Warsi
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Jung B, Yang C, Lee SH. Vagus Nerves Stimulation: Clinical Implication and Practical Issue as a Neuropsychiatric Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:13-22. [PMID: 38247408 PMCID: PMC10811398 DOI: 10.9758/cpn.23.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 01/23/2024]
Abstract
Vagus nerve stimulation (VNS) has been approved as an adjunctive treatment for epilepsy and depression. As the progress of VNS treatment for these neuropsychiatric disorders continues, its applications have expanded to a wide range of conditions, including inflammatory diseases to cognitive dysfunctions. The branches of the vagal nerves directly or indirectly innervate the anatomical structures implicated in these neuropsychiatric conditions, which has led to promising results regarding the effectiveness of VNS. Previous studies investigating the effectiveness of VNS have mostly utilized invasive forms of stimulation. However, current preclinical and clinical research indicates that non-invasive forms of VNS, such as transcutaneous vagus nerve stimulation, hold the promise for treating various neuropsychiatric conditions. This review aims to delve into relevant clinical studies of VNS in various illness states, different methods of VNS, and the potential mechanisms underlying the therapeutic effects in these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychology, Sogang University, Seoul, Korea
| | - Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
4
|
Houskamp EJ, Mossner JM, Bandt SK. Reversible Vagal Nerve Stimulation-Induced Vocal Cord Paralysis and Intractable Neck Pain Following a Syncopal Fall: A Case Report. Cureus 2024; 16:e51489. [PMID: 38304691 PMCID: PMC10831208 DOI: 10.7759/cureus.51489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2024] [Indexed: 02/03/2024] Open
Abstract
Vagal nerve stimulation (VNS) is a well-tolerated procedure for patients with medication-resistant and non-focal epilepsy. It does, however, have potential complications (e.g., hoarseness and cough) thought to be from vagus nerve irritation. These arise postoperatively and generally improve without intervention. If these symptoms present later or do not improve, it suggests a more insidious etiology. Herein we report the case of a patient in their 50s with medication-resistant epilepsy, who subsequently underwent VNS electrode array and pulse generator implantation to aid seizure management. Three years after the initial implantation, the patient experienced vocal cord paralysis and neck pain following a syncopal fall. The pain radiated to their jaw and chest and was eliminated when their VNS was turned off. The patient was taken to the OR for removal and replacement of their entire VNS system. Their original electrodes were unable to be removed secondary to being scarred in place. The patient's preoperative pain symptoms completely resolved after the removal of their old VNS and implantable pulse generator (IPG) and replacement with a new system 14 days postoperatively. While short-term postoperative sequelae and lead fractures/displacements have been reported in the literature, this is the first case to our knowledge of a patient experiencing a likely symptomatic traction injury without displacement of the VNS coils or obvious vagus nerve injury. Furthermore, the removal and replacement of the entire VNS system led to complete relief of their presenting symptoms.
Collapse
Affiliation(s)
- Ethan J Houskamp
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - James M Mossner
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - S Katie Bandt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
5
|
Gonçalves-Sánchez J, Sancho C, López DE, Castellano O, García-Cenador B, Servilha-Menezes G, Corchado JM, García-Cairasco N, Gonçalves-Estella JM. Effect of Vagus Nerve Stimulation on the GASH/Sal Audiogenic-Seizure-Prone Hamster. Int J Mol Sci 2023; 25:91. [PMID: 38203262 PMCID: PMC10778912 DOI: 10.3390/ijms25010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Vagus nerve stimulation (VNS) is an adjuvant neuromodulation therapy for the treatment of refractory epilepsy. However, the mechanisms behind its effectiveness are not fully understood. Our aim was to develop a VNS protocol for the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) in order to evaluate the mechanisms of action of the therapy. The rodents were subject to VNS for 14 days using clinical stimulation parameters by implanting a clinically available neurostimulation device or our own prototype for laboratory animals. The neuroethological assessment of seizures and general behavior were performed before surgery, and after 7, 10, and 14 days of VNS. Moreover, potential side effects were examined. Finally, the expression of 23 inflammatory markers in plasma and the left-brain hemisphere was evaluated. VNS significantly reduced seizure severity in GASH/Sal without side effects. No differences were observed between the neurostimulation devices. GASH/Sal treated with VNS showed statistically significant reduced levels of interleukin IL-1β, monocyte chemoattractant protein MCP-1, matrix metalloproteinases (MMP-2, MMP-3), and tumor necrosis factor TNF-α in the brain. The described experimental design allows for the study of VNS effects and mechanisms of action using an implantable device. This was achieved in a model of convulsive seizures in which VNS is effective and shows an anti-inflammatory effect.
Collapse
Affiliation(s)
- Jaime Gonçalves-Sánchez
- Department of Cellular Biology and Pathology, School of Medicine, University of Salamanca, 37007 Salamanca, Spain; (D.E.L.); (O.C.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (C.S.); (B.G.-C.); (J.M.C.); (J.M.G.-E.)
- Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
| | - Consuelo Sancho
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (C.S.); (B.G.-C.); (J.M.C.); (J.M.G.-E.)
- Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, School of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Dolores E. López
- Department of Cellular Biology and Pathology, School of Medicine, University of Salamanca, 37007 Salamanca, Spain; (D.E.L.); (O.C.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (C.S.); (B.G.-C.); (J.M.C.); (J.M.G.-E.)
- Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
| | - Orlando Castellano
- Department of Cellular Biology and Pathology, School of Medicine, University of Salamanca, 37007 Salamanca, Spain; (D.E.L.); (O.C.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (C.S.); (B.G.-C.); (J.M.C.); (J.M.G.-E.)
- Institute of Neuroscience of Castilla y León, 37007 Salamanca, Spain
| | - Begoña García-Cenador
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (C.S.); (B.G.-C.); (J.M.C.); (J.M.G.-E.)
- Department of Surgery, School of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (G.S.-M.); (N.G.-C.)
| | - Juan M. Corchado
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (C.S.); (B.G.-C.); (J.M.C.); (J.M.G.-E.)
- Bioinformatics, Intelligent Systems and Educational Technology (BISITE) Research Group, 37007 Salamanca, Spain
| | - Norberto García-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil; (G.S.-M.); (N.G.-C.)
| | - Jesús M. Gonçalves-Estella
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (C.S.); (B.G.-C.); (J.M.C.); (J.M.G.-E.)
- Department of Surgery, School of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Downes MH, Kalagara R, Chennareddy S, Vasan V, Reford E, Schuldt BR, Odland I, Tosto-Mancuso J, Putrino D, Panov F, Kellner CP. Vagal Nerve Stimulation: A Bibliometric Analysis of Current Research Trends. Neuromodulation 2023; 26:529-537. [PMID: 35970764 DOI: 10.1016/j.neurom.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vagal nerve stimulation (VNS) has become established as an effective tool for the management of various neurologic disorders. Consequently, a growing number of VNS studies have been published over the past four decades. This study presents a bibliometric analysis investigating the current trends in VNS literature. MATERIALS AND METHODS Using the Web of Science collection data base, a search was performed to identify literature that discussed applications of VNS from 2000 to 2021. Analysis and visualization of the included literature were completed with VOSviewer. RESULTS A total of 2895 publications were identified. The number of articles published in this area has increased over the past two decades, with the most citations (7098) occurring in 2021 and the most publications (270) in 2020. The h-index, i-10, and i-100 were 97, 994, and 91, respectively, with 17.0 citations per publication on average. The highest-producing country and institution of VNS literature were the United States and the University of Texas, respectively. The most productive journal was Epilepsia. Epilepsy was the predominant focus of VNS research, with the keyword "epilepsy" having the greatest total link strength (749) in the keyword analysis. The keyword analysis also revealed two major avenues of VNS research: 1) the mechanisms by which VNS modulates neural circuitry, and 2) therapeutic applications of VNS in a variety of diseases beyond neurology. It also showed a significant prevalence of noninvasive VNS research. Although epilepsy research appears more linked to implanted VNS, headache and depression specialists were more closely associated with noninvasive VNS. CONCLUSION VNS may serve as a promising intervention for rehabilitation beyond neurologic applications, with an expanding base of literature over the past two decades. Although epilepsy researchers have produced most current literature, other fields have begun to explore VNS as a potential treatment, likely owing to the rise of noninvasive forms of VNS.
Collapse
Affiliation(s)
- Margaret H Downes
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Roshini Kalagara
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Chennareddy
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Reford
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Braxton R Schuldt
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian Odland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenna Tosto-Mancuso
- Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Putrino
- Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Jung B, Yang C, Lee SH. Electroceutical and Bioelectric Therapy: Its Advantages and Limitations. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:19-31. [PMID: 36700309 PMCID: PMC9889897 DOI: 10.9758/cpn.2023.21.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023]
Abstract
Given the long history, the field of electroceutical and bioelectric therapy has grown impressively, recognized as the main modality of mental health treatments along with psychotherapy and pharmacotherapy. Electroceutical and bioelectric therapy comprises electroconvulsive therapy (ECT), vagus nerve stimulation (VNS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), transcranial electrical stimulation (tES), and other brain stimulation techniques. Much empirical research has been published regarding the application guidelines, mechanism of action, and efficacy of respective brain stimulation techniques, but no comparative study that delineates the advantages and limitations of each therapy exists for a comprehensive understanding of each technique. This review provides a comparison of existing electroceutical and bioelectric techniques, primarily focusing on the therapeutic advantages and limitations of each therapy in the current electroceutical and bioelectric field.
Collapse
Affiliation(s)
- Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea,Department of Psychology, Sogang University, Seoul, Korea
| | - Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea,Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea,Address for correspondence: Seung-Hwan Lee Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang 10380, Korea, E-mail: , ORCID: https://orcid.org/0000-0003-0305-3709
| |
Collapse
|
8
|
Impact of Non-Pharmacological Interventions on the Mechanisms of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23169097. [PMID: 36012362 PMCID: PMC9409393 DOI: 10.3390/ijms23169097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis remains the leading cause of mortality and morbidity worldwide characterized by the deposition of lipids and fibrous elements in the form of atheroma plaques in vascular areas which are hemodynamically overloaded. The global burden of atherosclerotic cardiovascular disease is steadily increasing and is considered the largest known non-infectious pandemic. The management of atherosclerotic cardiovascular disease is increasing the cost of health care worldwide, which is a concern for researchers and physicians and has caused them to strive to find effective long-term strategies to improve the efficiency of treatments by managing conventional risk factors. Primary prevention of atherosclerotic cardiovascular disease is the preferred method to reduce cardiovascular risk. Fasting, a Mediterranean diet, and caloric restriction can be considered useful clinical tools. The protective impact of physical exercise over the cardiovascular system has been studied in recent years with the intention of explaining the mechanisms involved; the increase in heat shock proteins, antioxidant enzymes and regulators of cardiac myocyte proliferation concentration seem to be the molecular and biochemical shifts that are involved. Developing new therapeutic strategies such as vagus nerve stimulation, either to prevent or slow the disease’s onset and progression, will surely have a profound effect on the lives of millions of people.
Collapse
|
9
|
Settell ML, Skubal AC, Chen RCH, Kasole M, Knudsen BE, Nicolai EN, Huang C, Zhou C, Trevathan JK, Upadhye A, Kolluru C, Shoffstall AJ, Williams JC, Suminski AJ, Grill WM, Pelot NA, Chen S, Ludwig KA. In vivo Visualization of Pig Vagus Nerve "Vagotopy" Using Ultrasound. Front Neurosci 2021; 15:676680. [PMID: 34899151 PMCID: PMC8660563 DOI: 10.3389/fnins.2021.676680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Placement of the clinical vagus nerve stimulating cuff is a standard surgical procedure based on anatomical landmarks, with limited patient specificity in terms of fascicular organization or vagal anatomy. As such, the therapeutic effects are generally limited by unwanted side effects of neck muscle contractions, demonstrated by previous studies to result from stimulation of (1) motor fibers near the cuff in the superior laryngeal and (2) motor fibers within the cuff projecting to the recurrent laryngeal. Objective: Conventional non-invasive ultrasound, where the transducer is placed on the surface of the skin, has been previously used to visualize the vagus with respect to other landmarks such as the carotid and internal jugular vein. However, it lacks sufficient resolution to provide details about the vagus fascicular organization, or detail about smaller neural structures such as the recurrent and superior laryngeal branch responsible for therapy limiting side effects. Here, we characterize the use of ultrasound with the transducer placed in the surgical pocket to improve resolution without adding significant additional risk to the surgical procedure in the pig model. Methods: Ultrasound images were obtained from a point of known functional organization at the nodose ganglia to the point of placement of stimulating electrodes within the surgical window. Naïve volunteers with minimal training were then asked to use these ultrasound videos to trace afferent groupings of fascicles from the nodose to their location within the surgical window where a stimulating cuff would normally be placed. Volunteers were asked to select a location for epineural electrode placement away from the fascicles containing efferent motor nerves responsible for therapy limiting side effects. 2-D and 3-D reconstructions of the ultrasound were directly compared to post-mortem histology in the same animals. Results: High-resolution ultrasound from the surgical pocket enabled 2-D and 3-D reconstruction of the cervical vagus and surrounding structures that accurately depicted the functional vagotopy of the pig vagus nerve as confirmed via histology. Although resolution was not sufficient to match specific fascicles between ultrasound and histology 1 to 1, it was sufficient to trace fascicle groupings from a point of known functional organization at the nodose ganglia to their locations within the surgical window at stimulating electrode placement. Naïve volunteers were able place an electrode proximal to the sensory afferent grouping of fascicles and away from the motor nerve efferent grouping of fascicles in each subject (n = 3). Conclusion: The surgical pocket itself provides a unique opportunity to obtain higher resolution ultrasound images of neural targets responsible for intended therapeutic effect and limiting off-target effects. We demonstrate the increase in resolution is sufficient to aid patient-specific electrode placement to optimize outcomes. This simple technique could be easily adopted for multiple neuromodulation targets to better understand how patient specific anatomy impacts functional outcomes.
Collapse
Affiliation(s)
- Megan L. Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
| | - Aaron C. Skubal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
| | - Rex C. H. Chen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
| | - Maïsha Kasole
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
| | - Bruce E. Knudsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
| | - Evan N. Nicolai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Chenyun Zhou
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
| | - Aniruddha Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Aaron J. Suminski
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Institute of Neuroengineering (WITNe), University of Wisconsin-Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Arora G, Maman P, Sharma A, Verma N, Puri V. Systemic Overview of Microstrip Patch Antenna's for Different Biomedical Applications. Adv Pharm Bull 2021; 11:439-449. [PMID: 34513618 PMCID: PMC8421620 DOI: 10.34172/apb.2021.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 02/01/2023] Open
Abstract
Timely diagnosis is the most important parameter for the detection and hindrance with tissues (infected). Many conventional techniques are used for the determination of the chronic disease like MRI, X-ray, mammography, ultrasound and other diagnosing methods. Nevertheless, they have some limitations. We epitomize between 4 and 34 % of all carcinogenic tissues are lacking because of weak, in adequate malignant/benign cancer tissue on the contrary. So, an effective alternative method is the valid concern in the field of medical right now. Imaging with the help of patch antenna to detect chronic disease like breast cancer, oxidative stress syndrome etc. it has been proved to be a suitable potential method, and there are many works in this area. All materials have different conductivity and permittivity. With the help of these antennas, a 3D tissue structure which has different conductivity and permittivity is modelled in high-frequency structure simulator through finite element method which resolves electromagnetic field values and a microstrip patch antenna operation process. As compared with conventional antennas, micro strip patch antennas have enhanced benefits and better prospects. An integrated Antenna plays an important or crucial role for supporting many applications in biomedical, commercial and in military fields. The Antenna designed for these applications should be wideband, not sensitive to the human body. In this present review, the precise application of the Antenna in different biomedical aspects is considered. Furthermore, the author has also discussed the analytical results using simulation models and experimental results for some of the significantdisease.
Collapse
Affiliation(s)
- Govind Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Nitin Verma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
11
|
Abstract
Neuromodulation, including first-generation open-loop devices and second-generation closed-loop devices, is a valuable but poorly understood therapeutic option for patients with drug-refractory epilepsy. The precise therapy a patient receives is contingent on the relationship between the patient's own unique neurophysiology and the custom programming of detection and stimulation parameters. Recent evidence demonstrates that therapeutic efficacy can be achieved through neuromodulation of seizure networks, rather than simple disruption of seizure evolution. Nevertheless, the improvement in outcomes achieved combined with its minimally invasive, nondestructive nature make closed-loop stimulation a promising therapy for additional indications, such as generalized and pediatric epilepsy.
Collapse
Affiliation(s)
- Nathaniel D Sisterson
- Department of Neurological Surgery, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 429A Thier, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Kayyali H, Abdelmoity S, Bansal L, Kaufman C, Smith K, Fecske E, Pawar K, Hall A, Gustafson M, Abdelmoity A, Abdelmoity A. The Efficacy and Safety of Rapid Cycling Vagus Nerve Stimulation in Children With Intractable Epilepsy. Pediatr Neurol 2020; 109:35-38. [PMID: 32461031 DOI: 10.1016/j.pediatrneurol.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Vagus nerve stimulation (VNS) is an effective adjunctive therapy for drug-resistant epilepsy. Nevertheless, information is lacking regarding optimization of stimulation parameters to improve efficacy. Our study examines the safety and efficacy of rapid duty cycle VNS (OFF time ≤1.1 minute keeping duty cycle less than 50%) in pediatric cohort with intractable epilepsy. METHODS Retrospective chart review of 50 patients (one to 17 years) with drug-resistant epilepsy treated with VNS between 2010 and 2015 at a single pediatric epilepsy center. Safety and tolerability data were aggregated across all patient visits to determine frequency of adverse events between differing duty cycles. We also compared seizure reduction rates for each patient at (1) last regular duty cycle visit, (2) first rapid duty cycle visit, and (3) last recorded rapid duty cycle visit. RESULTS Rapid duty cycle was well tolerated, with no adverse events reported in 96.6% patient encounters. At the last visit before switching to rapid duty cycle 45.5% patients were showing response to VNS (seizure reduction rates ≥50%). This rate increased to 77.3% after switching to rapid duty cycle and remained at 77.4% at the last rapid duty cycle visit. Fifteen patients (34.1%) became responders to VNS after switching to rapid cycling; another 19 (43.2%) maintained their response with mostly improved seizure reduction rates. In only a few instances, responders became nonresponders after switching to rapid duty cycle. CONCLUSIONS Rapid duty cycle VNS is probably safe and well tolerated; it may also be more efficacious than regular cycling VNS in some patients. This study highlights the necessity of prospective, long-term, double-blinded studies for understanding the advantages of this VNS modality.
Collapse
Affiliation(s)
| | - Sherouk Abdelmoity
- University of Missouri, at Kansas City, School of Medicine, Kansas City, Missouri
| | - Lalit Bansal
- Division of Neurology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Christian Kaufman
- Section of Neurosurgery, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Kyle Smith
- Department of Neurosurgery University of Kansas Medical Center, Kansas City, Missouri
| | - Erin Fecske
- Division of Neurology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Kailash Pawar
- Division of Neurology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Ara Hall
- Division of Neurology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Megan Gustafson
- Division of Neurology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Ayman Abdelmoity
- Division of Neurology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Ahmed Abdelmoity
- Division of Neurology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri.
| |
Collapse
|
13
|
Falcone JD, Liu T, Goldman L, David D P, Rieth L, Bouton CE, Straka M, Sohal HS. A novel microwire interface for small diameter peripheral nerves in a chronic, awake murine model. J Neural Eng 2020; 17:046003. [DOI: 10.1088/1741-2552/ab9b6d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
González HFJ, Yengo-Kahn A, Englot DJ. Vagus Nerve Stimulation for the Treatment of Epilepsy. Neurosurg Clin N Am 2019; 30:219-230. [PMID: 30898273 DOI: 10.1016/j.nec.2018.12.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vagus nerve stimulation (VNS) was the first neuromodulation device approved for treatment of epilepsy. In more than 20 years of study, VNS has consistently demonstrated efficacy in treating epilepsy. After 2 years, approximately 50% of patients experience at least 50% reduced seizure frequency. Adverse events with VNS treatment are rare and include surgical adverse events (including infection, vocal cord paresis, and so forth) and stimulation side effects (hoarseness, voice change, and cough). Future developments in VNS, including closed-loop and noninvasive stimulation, may reduce side effects or increase efficacy of VNS.
Collapse
Affiliation(s)
- Hernán F J González
- Department of Biomedical Engineering, Vanderbilt University Medical Center, 1500 21st Avenue South, 4340 Village at Vanderbilt, Nashville, TN 37232-8618, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1500 21st Avenue South, 4340 Village at Vanderbilt, Nashville, TN 37232-8618, USA.
| | - Aaron Yengo-Kahn
- Department of Neurological Surgery, Vanderbilt University Medical Center, 1121 21st Avenue South, Medical Center North, T4224, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University Medical Center, 1500 21st Avenue South, 4340 Village at Vanderbilt, Nashville, TN 37232-8618, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1500 21st Avenue South, 4340 Village at Vanderbilt, Nashville, TN 37232-8618, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, 1500 21st Avenue South, 4340 Village at Vanderbilt, Nashville, TN 37232-8618, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1500 21st Avenue South, 4340 Village at Vanderbilt, Nashville, TN 37232-8618, USA
| |
Collapse
|
15
|
Nuñez M, Zinbarg RE, Mittal VA. Efficacy and mechanisms of non-invasive brain stimulation to enhance exposure therapy: A review. Clin Psychol Rev 2019; 70:64-78. [PMID: 30986744 DOI: 10.1016/j.cpr.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Though cognitive behavioral techniques are generally effective in the treatment of anxiety disorders, some people fail to benefit from exposure therapy or experience a return of fear after terminating exposure therapy. The burgeoning field of non-invasive brain stimulation provides a potential method of augmenting exposure therapy so that it is more effective. Successful exposure therapy is hypothesized to occur due to inhibition, and research suggests that brain stimulation can alter inhibitory learning and related processes. As such, one can reasonably posit that brain stimulation could be used to test the inhibitory learning theory of exposure therapy and to increase the efficacy of exposure therapy by inducing stronger inhibitory learning during exposures. Four known studies that pair brain stimulation with exposure therapy have yielded promising preliminary evidence in support of the therapeutic use of brain stimulation. In this review we describe research illustrating the mechanisms and efficacy of non-invasive brain stimulation to enhance the understanding of and outcomes produced by exposure therapy.
Collapse
Affiliation(s)
- Mia Nuñez
- Northwestern University, United States; Rogers Behavioral Health, United States.
| | - Richard E Zinbarg
- Northwestern University, United States; The Family Institute, Northwestern University, United States
| | | |
Collapse
|
16
|
|
17
|
Affiliation(s)
- Robert S Fisher
- Department of Neurology, Stanford Neuroscience Health Center, Room 2852, 213 Quarry Road, MC 5979, Palo Alto, CA, 94304-5979, USA.
| |
Collapse
|
18
|
Ghani S, Vilensky J, Turner B, Tubbs RS, Loukas M. Meta-analysis of vagus nerve stimulation treatment for epilepsy: correlation between device setting parameters and acute response. Childs Nerv Syst 2015; 31:2291-304. [PMID: 26493055 DOI: 10.1007/s00381-015-2921-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/23/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is an adjunctive neurophysiological treatment for those patients who have pharmacoresistant or surgically resistant partial onset epilepsy. OBJECTIVE The aim of this study is to determine the effects of high and low stimulation paradigms on a responder rate of ≥50 and ≥75% reduction in seizure frequency and associated adverse effects in adults and children. METHOD A literature search was performed using Medline, PubMed, EMBASE, and Cochrane library for studies using vagus nerve stimulation published from January 1980 until July 2014 for medically or surgically resistant partial onset seizures, in children and adults. No restrictions on languages were imposed. DATA COLLECTION AND ANALYSIS Four authors reviewed and selected studies for inclusion and exclusion. The search identified five randomized control trials that fit with our inclusion criteria. The following outcomes were evaluated: 50% or greater reduction in total seizure frequency, 75% or greater reduction in total seizure frequency, and adverse effects. RESULTS Four randomized controlled trials were analyzed in this meta-analysis. Results indicate high stimulation is more effective in adult patients who experienced ≥50 and ≥75% reduction in seizure frequency with a significant difference within both high and low stimulation groups. In children, there was no significant difference between the two groups and patients with ≥50 % reduction in seizures. Adverse effects such as hoarseness and dyspnea were more common in the high stimulation group where the remaining side effects were not statistically different among both groups. CONCLUSION High stimulation is more effective than low stimulation in producing a greater reduction in seizure frequency in patients with medically and surgically resistant epilepsy.
Collapse
Affiliation(s)
- S Ghani
- Department of Psychiatry, School of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Anatomical Sciences, School of Medicine, St. George's University, Grenada, WI, USA
| | - J Vilensky
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Fort Wayne, IN, USA
| | - B Turner
- Department of Anatomical Sciences, School of Medicine, St. George's University, Grenada, WI, USA
| | - R S Tubbs
- Department of Anatomical Sciences, School of Medicine, St. George's University, Grenada, WI, USA.,Pediatric Neurosurgery, Children's Hospital, Birmingham, AL, USA
| | - M Loukas
- Department of Anatomical Sciences, School of Medicine, St. George's University, Grenada, WI, USA.
| |
Collapse
|
19
|
Abstract
The vagus nerve is a major component of the autonomic nervous system, has an important role in the regulation of metabolic homeostasis, and plays a key role in the neuroendocrine-immune axis to maintain homeostasis through its afferent and efferent pathways. Vagus nerve stimulation (VNS) refers to any technique that stimulates the vagus nerve, including manual or electrical stimulation. Left cervical VNS is an approved therapy for refractory epilepsy and for treatment resistant depression. Right cervical VNS is effective for treating heart failure in preclinical studies and a phase II clinical trial. The effectiveness of various forms of non-invasive transcutaneous VNS for epilepsy, depression, primary headaches, and other conditions has not been investigated beyond small pilot studies. The relationship between depression, inflammation, metabolic syndrome, and heart disease might be mediated by the vagus nerve. VNS deserves further study for its potentially favorable effects on cardiovascular, cerebrovascular, metabolic, and other physiological biomarkers associated with depression morbidity and mortality.
Collapse
|
20
|
The Role of Biomaterials in Stimulating Bioelectrodes. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Lead breakage and vocal cord paralysis following blunt neck trauma in a patient with vagal nerve stimulator. J Neurol Sci 2012; 304:132-5. [PMID: 21397256 DOI: 10.1016/j.jns.2011.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 11/20/2022]
Abstract
Patients with medically intractable seizures who are not candidates for epilepsy surgery are left with few options. Vagal nerve stimulation therapy is often a viable alternative for these patients and can have a positive impact on quality of life. Rarely complications may occur. We report a case of mild blunt neck trauma resulting in VNS malfunction and delayed vocal cord paralysis. A systematic review of the literature on VNS malfunction, self-inflicted injuries, vagal nerve injury, and common side effects including voice changes was performed. Only a handful of relevant publications were found. Symptoms following VNS dysfunction include pain, dyspnea, and dysphonia. These symptoms are usually nonspecific, and in many cases, do not help differentiate from vagal nerve traction, lead breakage, or pulse generator malfunction. In our case, lead fracture and visible traction injury to the left vagus nerve were seen during surgical exploration. The vocal cord function completely recovered after revision of the leads. Prompt medical attention including appropriate diagnostic studies and early surgical exploration is necessary in cases of delayed vocal cord dysfunction and can help prevent long-term complications such as neuroma formation. The authors present a unique case of reversible vocal cord injury from blunt neck trauma leading to left vagus nerve damage.
Collapse
|
22
|
Vonck K, de Herdt V, Sprengers M, Ben-Menachem E. Neurostimulation for epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2012; 108:955-970. [PMID: 22939078 DOI: 10.1016/b978-0-444-52899-5.00040-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Kristl Vonck
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | |
Collapse
|
23
|
Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat 2010; 42:288-96. [PMID: 21167932 DOI: 10.1016/j.jchemneu.2010.12.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
In this short overview a reappraisal of the anatomical connections of vagal afferents is reported. The manuscript moves from classic neuroanatomy to review details of vagus nerve anatomy which are now becoming more and more relevant for clinical outcomes (i.e. the therapeutic use of vagus nerve stimulation). In drawing such an updated odology of central vagal connections the anatomical basis subserving the neurochemical effects of vagal stimulation are addressed. In detail, apart from the thalamic projection of central vagal afferents, the monoaminergic systems appear to play a pivotal role. Stemming from the chemical neuroanatomy of monoamines such as serotonin and norepinephrine the widespread effects of vagal stimulation on cerebral cortical activity are better elucidated. This refers both to the antiepileptic effects and most recently to the beneficial effects of vagal stimulation in mood and cognitive disorders.
Collapse
Affiliation(s)
- Riccardo Ruffoli
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma 55, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Ortler M, Unterhofer C, Dobesberger J, Haberlandt E, Trinka E. Complete removal of vagus nerve stimulator generator and electrodes. J Neurosurg Pediatr 2010; 5:191-4. [PMID: 20121370 DOI: 10.3171/2009.9.peds0810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vagus nerve stimulation has become widely used in the palliative treatment of refractory epilepsy. Removal of a vagus nerve stimulator may be desirable or even necessary due to lack of efficacy, intolerable side effects, signs of infection, or failure of the device. Unless the lead or the helical electrodes are defective, only the generator is explanted and the electrodes are usually left behind for fear of damaging nerve or surrounding structures. The authors review their experience with complete removal of the stimulating electrodes and pacemaker-like generator device in 9 consecutive patients, 3 of whom were children. Using microsurgical techniques, the authors were able to completely remove the stimulator, including electrodes in all patients. All nerves remained morphologically intact. One case of temporary and one of permanent clinically silent ipsilateral vocal cord paresis were observed.
Collapse
Affiliation(s)
- Martin Ortler
- Clinical Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
25
|
Grill WM, Norman SE, Bellamkonda RV. Implanted Neural Interfaces: Biochallenges and Engineered Solutions. Annu Rev Biomed Eng 2009; 11:1-24. [DOI: 10.1146/annurev-bioeng-061008-124927] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281;
| | - Sharon E. Norman
- Bioengineering Program Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Ravi V. Bellamkonda
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia 30332
| |
Collapse
|
26
|
Boon P, Raedt R, de Herdt V, Wyckhuys T, Vonck K. Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 2009; 6:218-27. [PMID: 19332313 PMCID: PMC5084197 DOI: 10.1016/j.nurt.2008.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/31/2008] [Indexed: 01/24/2023] Open
Abstract
Despite the advent of new pharmacological treatments and the high success rate of many surgical treatments for epilepsy, a substantial number of patients either do not become seizure-free or they experience major adverse events (or both). Neurostimulation-based treatments have gained considerable interest in the last decade. Vagus nerve stimulation (VNS) is an alternative treatment for patients with medically refractory epilepsy, who are unsuitable candidates for conventional epilepsy surgery, or who have had such surgery without optimal outcome. Although responder identification studies are lacking, long-term VNS studies show response rates between 40% and 50% and long-term seizure freedom in 5% to 10% of patients. Surgical complications and perioperative morbidity are low. Research into the mechanism of action of VNS has revealed a crucial role for the thalamus and cortical areas that are important in the epileptogenic process. Acute deep brain stimulation (DBS) in various thalamic nuclei and medial temporal lobe structures has recently been shown to be efficacious in small pilot studies. There is little evidence-based information on rational targets and stimulation parameters. Amygdalohippocampal DBS has yielded a significant decrease of seizure counts and interictal EEG abnormalities during long-term follow-up. Data from pilot studies suggest that chronic DBS for epilepsy may be a feasible, effective, and safe procedure. Further trials with larger patient populations and with controlled, randomized, and closed-loop designs should now be initiated. Further progress in understanding the mechanism of action of DBS for epilepsy is a necessary step to making this therapy more efficacious and established.
Collapse
Affiliation(s)
- Paul Boon
- Reference Center for Refractory Epilepsy and Laboratory for Clinical and Experimental Neurophysiology (LCEN), Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
27
|
Milby AH, Halpern CH, Baltuch GH. Vagus nerve stimulation in the treatment of refractory epilepsy. Neurotherapeutics 2009; 6:228-37. [PMID: 19332314 PMCID: PMC5084198 DOI: 10.1016/j.nurt.2009.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/16/2009] [Accepted: 01/17/2009] [Indexed: 10/21/2022] Open
Abstract
Many patients with epilepsy suffer from persistent seizures despite maximal anti-epileptic drug therapy. Chronic, intermittent vagus nerve stimulation has been proven to be an effective option for many patients suffering from refractory seizures who are not candidates for surgical resection. Although only a small minority of patients will be entirely seizure-free, vagus nerve stimulation, as an adjunct to medical therapy, may result in significant improvements in quality of life. Vagus nerve stimulation is generally well-tolerated, as device implantation is associated with a low rate of perioperative complications, and the majority of side effects are stimulation-dependent and thus reversible.
Collapse
Affiliation(s)
- Andrew H. Milby
- grid.412713.20000000404351019Department of Neurosurgery, Center for Functional and Restorative Neurosurgery, University of Pennsylvania Medical Center, 19104 Philadelphia, Pennsylvania
| | - Casey H. Halpern
- grid.412713.20000000404351019Department of Neurosurgery, Center for Functional and Restorative Neurosurgery, University of Pennsylvania Medical Center, 19104 Philadelphia, Pennsylvania
| | - Gordon H. Baltuch
- grid.412713.20000000404351019Department of Neurosurgery, Center for Functional and Restorative Neurosurgery, University of Pennsylvania Medical Center, 19104 Philadelphia, Pennsylvania
- grid.411115.10000000404350884Department of Neurosurgery, 3 Silverstein, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104 Philadelphia, PA
| |
Collapse
|
28
|
|
29
|
Vonck K, De Herdt V, Boon P. Vagal nerve stimulation--a 15-year survey of an established treatment modality in epilepsy surgery. Adv Tech Stand Neurosurg 2009; 34:111-46. [PMID: 19368083 DOI: 10.1007/978-3-211-78741-0_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neurostimulation is an emerging treatment for neurological diseases. Electrical stimulation of the tenth cranial nerve or vagus nerve stimulation (VNS) has become a valuable option in the therapeutic armamentarium for patients with refractory epilepsy. It is indicated in patients with refractory epilepsy who are unsuitable candidates for epilepsy surgery or who have had insufficient benefit from such a treatment. Vagus nerve stimulation reduces seizure frequency with > 50% in 1/3 of patients and has a mild side effects profile. Research to elucidate the mechanism of action of vagus nerve stimulation has shown that effective stimulation in humans is primarily mediated by afferent vagal A- and B-fibers. Crucial brainstem and intracranial structures include the locus coeruleus, the nucleus of the solitary tract, the thalamus and limbic structures. Neurotransmitters playing a role may involve the major inhibitory neurotransmitter GABA but also serotoninergic and adrenergic systems. This manuscript reviews the clinical studies investigating efficacy and side effects in patients and the experimental studies aiming to elucidate the mechanims of action.
Collapse
Affiliation(s)
- K Vonck
- Department of Neurology, Ghent University Hospital, Gent, Belgium
| | | | | |
Collapse
|
30
|
|
31
|
Dietrich S, Smith J, Scherzinger C, Hofmann-Preiss K, Freitag T, Eisenkolb A, Ringler R. [A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI]. ACTA ACUST UNITED AC 2008; 53:104-11. [PMID: 18601618 DOI: 10.1515/bmt.2008.022] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Left cervical vagus nerve stimulation (VNS) using the implanted NeuroCybernetic Prosthesis (NCP) can reduce epileptic seizures and has recently been shown to give promising results for treating therapy-resistant depression. To address a disadvantage of this state-of-the-art VNS device, the use of an alternative transcutaneous electrical nerve stimulation technique, designed for muscular stimulation, was studied. Functional magnetic resonance imaging (MRI) has been used to test non-invasively access nerve structures associated with the vagus nerve system. The results and their impact are unsatisfying due to missing brainstem activations. These activations, however, are mandatory for reasoning, higher subcortical and cortical activations of vagus nerve structures. The objective of this study was to test a new parameter setting and a novel device for performing specific (well-controlled) transcutaneous VNS (tVNS) at the inner side of the tragus. This paper shows the feasibility of these and their potential for brainstem and cerebral activations as measured by blood oxygenation level dependent functional MRI (BOLD fMRI). MATERIALS AND METHODS In total, four healthy male adults were scanned inside a 1.5-Tesla MR scanner while undergoing tVNS at the left tragus. We ensured that our newly developed tVNS stimulator was adapted to be an MR-safe stimulation device. In the experiment, cortical and brainstem representations during tVNS were compared to a baseline. RESULTS A positive BOLD response was detected during stimulation in brain areas associated with higher order relay nuclei of vagal afferent pathways, respectively the left locus coeruleus, the thalamus (left >> right), the left prefrontal cortex, the right and the left postcentral gyrus, the left posterior cingulated gyrus and the left insula. Deactivations were found in the right nucleus accumbens and the right cerebellar hemisphere. CONCLUSION The method and device are feasible and appropriate for accessing cerebral vagus nerve structures, respectively. As functional patterns share features with fMRI BOLD, the effects previously studied with the NCP are discussed and new possibilities of tVNS are hypothesised.
Collapse
|
32
|
Stimulation chronique du nerf vague dans le traitement del’épilepsie pharmacorésistante. Neurochirurgie 2008; 54:332-9. [DOI: 10.1016/j.neuchi.2008.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 11/19/2022]
|
33
|
Abstract
Many patients with epilepsy suffer from persistent seizures despite maximal antiepileptic drug (AED) therapy. Chronic, intermittent vagus nerve stimulation (VNS) has proven to be a safe, effective option for patients suffering from refractory seizures who are not candidates for surgical resection. Although only a small minority of patients will be entirely seizure-free, VNS as an adjunct to medical therapy does appear to provide a significant amount of improvement in quality of life. Reports of antidepressant effects independent of seizure control, along with the use of multiple AEDs in the treatment of depression, has led to the investigation of VNS as a potential adjunctive treatment for major depressive disorder. Both the number of severely depressed patients refractory to available pharmacologic options and the need for repeated treatments and significant side effects associated with electroconvulsive therapy have heightened the interest in VNS for this patient population. Pilot studies of VNS for depression have shown impressive response rates; however, the effect appears to be gradual in onset, as demonstrated by the lack of a favorable response in a short-term, randomized controlled study. Investigation is thus needed to establish the potential role of VNS as an adjunctive treatment for severe depression.
Collapse
Affiliation(s)
- Andrew H. Milby
- grid.412713.20000000404351019Department of Neurosurgery, Center for Functional and Restorative Neurosurgery, University of Pennsylvania Medical Center, 19104 Philadelphia, Pennsylvania
| | - Casey H. Halpern
- grid.412713.20000000404351019Department of Neurosurgery, Center for Functional and Restorative Neurosurgery, University of Pennsylvania Medical Center, 19104 Philadelphia, Pennsylvania
| | - Gordon H. Baltuch
- grid.412713.20000000404351019Department of Neurosurgery, Center for Functional and Restorative Neurosurgery, University of Pennsylvania Medical Center, 19104 Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Tyler DJ. Neuroprostheses for management of dysphagia resulting from cerebrovascular disorders. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:293-304. [PMID: 17691390 DOI: 10.1007/978-3-211-33079-1_40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Swallowing is a complicated process that involves intricate timing between many different muscles in the mouth and neck. The primary purpose of swallowing is to move food through the mouth and pharynx and into the esophagus for transport to the stomach for digestion. Dysphagia is a general term that refers to a disruption in any part of the process. The consequences of dysphagia include social embarrassment; malnutrition; and aspiration. Of these, aspiration is the most significant as it is associated with a significantly greater risk of pneumonia and death. If patients fail to adequately protect the airways with standard exercise and therapy, they are often disallowed from taking food by mouth and receive nutrition by alternate means. If patients still experience frequent pneumonia, more drastic surgical measures that permanently separate the airway from foodway are required. As an alternative to these surgical procedures, neuroprostheses can dynamically restore airway protection. There are two primary protective mechanisms that neuroprostheses seek to restore. The first is laryngeal elevation and the second is vocal fold closure. The present article is an introductory overview of the swallowing process, the primary muscles and nerves related to swallowing, the effects of dysphagia, the standard treatment options, and the neuroprosthetic options.
Collapse
Affiliation(s)
- D J Tyler
- Biomedical Engineering, Case Western Reserve University, Research Associate, Louis-Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
35
|
Kraus T, Hösl K, Kiess O, Schanze A, Kornhuber J, Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm (Vienna) 2007; 114:1485-93. [PMID: 17564758 DOI: 10.1007/s00702-007-0755-z] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 04/20/2007] [Indexed: 12/31/2022]
Abstract
UNLABELLED Direct vagus nerve stimulation (VNS) has proved to be an effective treatment for seizure disorder and major depression. However, since this invasive technique implies surgery, with its side-effects and relatively high financial costs, a non-invasive method to stimulate vagal afferences would be a great step forward. We studied effects of non-invasive electrical stimulation of the nerves in the left outer auditory canal in healthy subjects (n = 22), aiming to activate vagal afferences transcutaneously (t-VNS). Short-term changes in brain activation and subjective well-being induced by t-VNS were investigated by functional magnetic resonance imaging (fMRI) and psychometric assessment using the Adjective Mood Scale (AMS), a self-rating scale for current subjective feeling. Stimulation of the ear lobe served as a sham control. fMRI showed that robust t-VNS induced BOLD-signal decreases in limbic brain areas, including the amygdala, hippocampus, parahippocampal gyrus and the middle and superior temporal gyrus. Increased activation was seen in the insula, precentral gyrus and the thalamus. Psychometric assessment revealed significant improvement of well-being after t-VNS. Ear lobe stimulation as a sham control intervention did not show similar effects in either fMRI or psychometric assessment. No significant effects on heart rate, blood pressure or peripheral microcirculation could be detected during the stimulation procedure. CONCLUSIONS Our study shows the feasibility and beneficial effects of transcutaneous nerve stimulation in the left auditory canal of healthy subjects. Brain activation patterns clearly share features with changes observed during invasive vagus nerve stimulation.
Collapse
Affiliation(s)
- T Kraus
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Robert H Howland
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pennsylvania 15213, USA.
| |
Collapse
|
37
|
Schachter SC. Vagus nerve stimulation: current status and clinical applications. Expert Opin Investig Drugs 2005; 6:1327-35. [PMID: 15989504 DOI: 10.1517/13543784.6.10.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the recent introduction of new anti-epileptic drugs (AEDs), many patients with epilepsy, especially those with partial-onset seizures, continue to have seizures that are refractory to pharmacotherapy. Other patients are unable to tolerate the side-effects of AEDs given singly or in combination. Cerebral resective surgery may be an option for a sub-group of these patients; however, many patients with refractory partial epilepsy are not optimal candidates for epilepsy surgery. Consequently, the introduction of left vagus nerve stimulation (VNS) for those patients who have been afflicted by seizures or medication side-effects has opened up a new, non-pharmacological approach to epilepsy treatment. The mechanism of action of VNS is uncertain. VNS exerts an anticonvulsant effect in a variety of animal seizure models; has no effect on hepatic metabolic processes, serum concentrations of AEDS, or laboratory values; and has no clinically significant effect on vagally-mediated physiological processes. VNS is safe and well-tolerated in patients with long-standing, medically-refractory, partial-onset epilepsy. Adverse effects are usually mild to moderate in severity and related to stimulation, and almost always resolve with adjustment in stimulation settings. Controlled studies of patients on AED therapy show that adjunctive VNS is effective for partial-onset seizures when given every 5 min for 30 s intervals. Results of studies in paediatric patients are encouraging.
Collapse
Affiliation(s)
- S C Schachter
- Comprehensive Epilepsy Program, Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
38
|
Shaffer MJ, Jackson CE, Szabo CA, Simpson CB. Vagal nerve stimulation: clinical and electrophysiological effects on vocal fold function. Ann Otol Rhinol Laryngol 2005; 114:7-14. [PMID: 15697156 DOI: 10.1177/000348940511400103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
More than 16,000 vagal nerve stimulators (VNSs) have been implanted for refractory epileptic seizures. The most commonly reported side effect is hoarseness. This study examines the effects of VNS placement on vocal fold function. Eleven patients who had undergone VNS placement at our institution were recruited. Subjective evaluation by a panel of speech and language pathologists of both connected speech and videolaryngoscopy recordings were used both at rest and during VNS activation. Additional subjective evaluation included use of the Voice Handicap Index for the study group. These results were compared to data from age- and sex-matched controls. Objective data included maximum phonation time in the study and control groups, as well as laryngeal electromyography performed on the VNS-implanted patients only. Motor unit potential morphology and recruitment, as well as spontaneous activity, were analyzed bilaterally for the cricothyroid and thyroarytenoid muscles. Significant differences were found between the study and control groups subjectively for vocal quality and videolaryngoscopy parameters. Vocal fold tension, supraglottic muscular hyperfunction, and reduced vocal fold mobility were the most common findings during VNS activation. Two of 10 patients had immobile left vocal folds in the absence of active stimulation. The maximum phonation time was generally reduced in the subject group, but this reduction did not reach statistical significance. Finally, 6 of 10 patients had abnormal electromyographic results, including large-amplitude polyphasic motor unit potentials and decreased recruitment. We conclude that implantation of a VNS can affect vocal fold function. The effects are magnified during periods of active stimulation. There is the potential for nerve degeneration after prolonged repetitive stimulation, and there may be a trend toward greater vocal fold dysfunction with higher stimulation parameters.
Collapse
Affiliation(s)
- Monica J Shaffer
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
39
|
Handforth A, Ondo WG, Tatter S, Mathern GW, Simpson RK, Walker F, Sutton JP, Hubble JP, Jankovic J. Vagus nerve stimulation for essential tremor. Neurology 2003; 61:1401-5. [PMID: 14638963 DOI: 10.1212/01.wnl.0000094355.51119.d2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To assess the safety and efficacy of vagus nerve stimulation (VNS) for essential tremor (ET).Methods: This was a pilot open-treatment trial at three centers, with masked videotape tremor assessments. Inclusion required a severity score of 3 or 4 on the Tremor Rating Scale (TRS) in one or both hands. At baseline, tremor was assessed with TRS and Unified Tremor Rating Assessment (UTRA), accelerometry, and a videotape protocol. The VNS device was implanted with leads placed around the left cervical vagus nerve. Stimulation was adjusted over 4 weeks before the repeat tremor assessments. Two raters masked to the study visit scored the videotapes.Results: Nine subjects participated, with a mean age of 65 years and a mean age at onset of tremor of 24. Investigators rated hand tremor as mildly improved (TRS 2.3 ± 0.7 during VNS vs 3.0 ± 0.4 during baseline, p = 0.06). Accelerometry-measured total power improved 50.2 ± 31.8% (p < 0.01). Videotape tremor scores were highly correlated between the masked raters and revealed no changes in tremor scores with treatment. VNS was well tolerated, with the most common adverse events being stimulation related.Conclusions: VNS was judged by investigators to mildly improve upper extremity tremor. This finding was not confirmed in videotape scoring by masked raters. VNS is not likely to have a clinically meaningful effect on ET.
Collapse
Affiliation(s)
- A Handforth
- Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The purpose of this open retrospective study was to analyze the efficacy and tolerability of vagal nerve stimulation (VNS) in a Norwegian cohort of referral patients with refractory epileptic seizures. A total of 47 patients have been assessed after a mean follow-up time of 2.7 years. Mean age was 34.4 years, mean duration of epilepsy was 25.3 years. Forty-two patients (89%) had localization-related epilepsy, 36 patients (77%) had daily seizures. The patients had tried on average 9.5 antiepileptic drugs, and 12 patients (26%) had undergone epilepsy surgery. Sixteen patients (34%) had >50% reduction of seizure frequency with VNS, of which one patient became seizure free. The stimulation was generally well tolerated, but three patients requested the device removed because of troublesome side effects. We conclude that VNS is an efficacious and safe mode of treatment that should be offered to patients with medically and surgically refractory seizures.
Collapse
|
41
|
Muñana KR, Vitek SM, Tarver WB, Saito M, Skeen TM, Sharp NJH, Olby NJ, Haglund MM. Use of vagal nerve stimulation as a treatment for refractory epilepsy in dogs. J Am Vet Med Assoc 2002; 221:977-83. [PMID: 12369700 DOI: 10.2460/javma.2002.221.977] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate safety and efficacy of vagal nerve stimulation in dogs with refractory epilepsy. DESIGN Placebo-controlled, double-masked, crossover study. ANIMALS 10 dogs with poorly controlled seizures. PROCEDURE A programmable pacemaker-like device designed to deliver intermittent stimulation to the left cervical trunk of the vagus was surgically implanted in each dog. Dogs were assigned randomly to two 13-week test periods, 1 with nerve stimulation and 1 without nerve stimulation. Owners recorded data on seizure frequency, duration, and intensity, as well as adverse effects. RESULTS No significant difference in seizure frequency, duration, or severity was detected between overall 13-week treatment and control periods. During the final 4 weeks of the treatment period, a significant decrease in mean seizure frequency (34.4%) was detected, compared with the control period. Complications included transient bradycardia, asystole, and apnea during intraoperative device testing, and seroma formation, subcutaneous migration of the generator, and transient Horner's syndrome during the 14-day period between surgery and suture removal. No adverse effects of stimulation were detected, and most owners were satisfied with the treatment. CONCLUSIONS AND CLINICAL RELEVANCE Vagal nerve stimulation is a potentially safe approach to seizure control that appears to be efficacious in certain dogs and should be considered a possible treatment option when antiepileptic medications are ineffective.
Collapse
Affiliation(s)
- Karen R Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Therapeutic options for intractable epilepsy include new and investigational antiepileptic drugs, ketogenic diet, epilepsy surgery, and, now, vagus nerve stimulation, which is approved by the U.S. Food and Drug Administration for the treatment of refractory partial seizures in adolescents and adults. The exact mechanisms of action are unknown. Although the use of vagus nerve stimulation in children has increased, including those younger than 12 years of age or those with generalized epilepsy, there has been no large controlled pediatric study to date. The identification of favorable prognostic indicators, especially in children, would be useful. Preliminary results suggest that children with Lennox-Gastaut syndrome may have a favorable response, with improvement in both seizure control and global evaluation scores. Improved global evaluation scores have occurred even without an associated improvement in seizure control.
Collapse
Affiliation(s)
- I Valencia
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
43
|
Broniatowski M, Grundfest-Broniatowski S, Tyler DJ, Scolieri P, Abbass F, Tucker HM, Brodsky S. Dynamic laryngotracheal closure for aspiration: a preliminary report. Laryngoscope 2001; 111:2032-40. [PMID: 11801992 DOI: 10.1097/00005537-200111000-00031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS An estimated 500,000 patients per year in the United States. are affected by stroke-related dysphagia. Approximately half experience aspiration, which can lead to pneumonia or death. Aspiration may result from many factors, including delayed transport of the bolus, faulty laryngeal elevation, and poor coordination or inappropriate timing of vocal cord closure. Interventions carried out to protect the lungs are usually irreversible, destructive to the upper airway, and rarely prevent the need for enteral tube feeding. STUDY DESIGN We present a report of the first implantations of a new device in an FDA-approved study to restore dynamic laryngotracheal separation. Two stroke patients needing tracheostomy were selected based on chronic aspiration verified by clinical and radiologic criteria (modified barium swallow [MBS]). METHODS The left recurrent laryngeal nerve was exposed and electrically stimulated to verify vocal fold adduction. Huntington Medical Research Institute Bipolar Helical Electrodes were then implanted around the nerve. The leads were tunneled and linked to a NeuroControl Implantable Receiver-Stimulator placed subcutaneously on the chest wall. Activation of the stimulator was performed through an external transmitter linked by induction. RESULTS The device was successfully triggered intra- and postoperatively. Serial flexible fiberoptic endoscopies and MBS demonstrate that aspiration is systematically arrested using low levels of electrical stimulation (42 Hz, 48-100 microsec, 1 mA). DISCUSSION This pioneering work has shown that aspiration can be controlled without airway damage for a wide population of neurologically impaired patients because it appears more physiological than standard therapies. CONCLUSION Based on the first two patients, paced laryngotracheal separation is clinically effective in controlling aspiration.
Collapse
Affiliation(s)
- M Broniatowski
- Department of Surgery Otolaryngology-Head and Neck Surgery, St. Vincent Charity Hospital, University Hospital Health System, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Bohning DE, Lomarev MP, Denslow S, Nahas Z, Shastri A, George MS. Feasibility of vagus nerve stimulation-synchronized blood oxygenation level-dependent functional MRI. Invest Radiol 2001; 36:470-9. [PMID: 11500598 DOI: 10.1097/00004424-200108000-00006] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RATIONALE AND OBJECTIVES Left cervical vagus nerve stimulation (VNS) by use of an implanted neurocybernetic prosthesis (NCP) system is effective in treating epilepsy, with open data suggesting effectiveness in depression, yet the mechanisms of action are unknown. Our objective was to develop a methodology for performing VNS-synchronized functional magnetic resonance imaging (VNS-fMRI) and then to demonstrate its feasibility for studying VNS effects. METHODS In nine patients implanted for treatment of intractable depression, a Macintosh computer was used to detect the signal from the implanted VNS stimulator and then to synchronize fMRI image acquisition with its regular firing. RESULTS With our VNS-fMRI methodology, the blood oxygenation level-dependent response to VNS was shown in brain regions regulated by the vagus nerve: orbitofrontal and parieto-occipital cortex bilaterally, left temporal cortex, the hypothalamus, and the left amygdala. CONCLUSIONS Vagus nerve stimulation pulses from an NCP system can be detected externally to determine its firing pattern, thus allowing VNS-fMRI studies of VNS-induced brain activity.
Collapse
Affiliation(s)
- D E Bohning
- Center for Advanced Imaging Research, Department of Radiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Fallen EL, Kamath MV, Tougas G, Upton A. Afferent vagal modulation. Clinical studies of visceral sensory input. Auton Neurosci 2001; 90:35-40. [PMID: 11485290 DOI: 10.1016/s1566-0702(01)00265-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED The frequency composition of a continuous time series of R-R intervals may be viewed as the phasic output of a central processing system intimately dependent on sensory input from a variety of afferent sources. While different measures of heart rate variability permit a glimpse into the autonomic efferent limb of this complex system, direct access of afferent fibers in humans has remained elusive. Using a specially designed esophageal catheter/manometer probe, we have been able to gain access to vagal afferent fibers in the distal esophagus. Our studies on the effect of vagal afferent electrostimulation on both cerebral evoked potentials (EvP) and the power spectrum of heart rate variability have yielded the following observations: 1. Stimulation of esophageal vagal afferents dramatically and reproducibly increases the high frequency (HF) vagal power and reduces the low frequency (LF) power of the heart rate autospectrum. 2. This effect is constant across stimulation frequencies from 0.1 to 1.0 Hz and across stimulation intensities from 2.5 to 20 mA. 3. Regardless of the stimulation parameters, there are only minimal changes in heart rate (2-6 bpm) and no change in respiratory frequency. 4. There is a linear correlation between electrical stimulation intensity and the amplitude of cerebral evoked potentials, whereas there is a non-linear relationship with all short-term power spectral indices. 5. While cerebral evoked potentials are only elicited at stimulation intensities above perception threshold, there is already a significant shift to increased vagal efferent modulation well below perception threshold. CONCLUSION These studies support the concept that power spectral indices of heart rate variability represent phasic output responses to tonic afferent viscerosensory signals in humans. These studies also demonstrate the feasibility of accessing vagal afferents in humans.
Collapse
Affiliation(s)
- E L Fallen
- Department of Medicine, McMaster University Medical Centre, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
46
|
Abstract
Antiepileptic drugs are the primary form of treatment for patients with epilepsy. In the United States, hundreds of thousands of people do not achieve seizure control, or have significant side effects, or both. Only a minority of patients with intractable epilepsy are candidates for traditional epilepsy surgery. Vagus nerve stimulation is now the second most common treatment for epilepsy in the United States. Additionally, the ketogenic diet has established itself as a valid treatment. This article discusses the history, mechanism of action, patient selection, efficacy, initiation, complications, and advantages of vagus nerve stimulation and the ketogenic diet.
Collapse
Affiliation(s)
- J W Wheless
- Neurology and Pediatrics, University of Texas-Houston, Texas Comprehensive Epilepsy Program, 77030, USA.
| | | | | |
Collapse
|
47
|
Parker AP, Polkey CE, Binnie CD, Madigan C, Ferrie CD, Robinson RO. Vagal nerve stimulation in epileptic encephalopathies. Pediatrics 1999; 103:778-82. [PMID: 10103302 DOI: 10.1542/peds.103.4.778] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To study the effect of vagal nerve stimulation (VNS) in children with epileptic encephalopathies. METHODS AND MATERIALS All children receiving VNS during a 2-year period at our center were studied prospectively for changes in seizure frequency, electroencephalogram (EEG), adaptive behavior, quality of life, and where appropriate, verbal/nonverbal performance. Assessments were made before and for at least 1 year after implant. RESULTS Sixteen children were studied. One device was removed because of infection. Of the remaining 15 children, 4 had a >50% reduction and 2 had a >50% increase in seizure frequency at 1 year after implant. Median reduction in seizure frequency was 17%. There was no trend toward improvement of the EEG or adaptive behavior. Quality of life was unchanged in most areas, except in perceived treatment side effects and general behavior that were improved. In 6 children undergoing further assessment, there was a significant improvement in verbal performance; this did not correlate with reduction in seizure frequency. CONCLUSION VNS did not significantly improve seizure frequency, severity, adaptive behavior, or the EEG during the first year of treatment for the group as a whole, although 4 children (27%) had a worthwhile reduction in seizure frequency. There were significant improvements in perceived treatment side effects and general behavior.
Collapse
Affiliation(s)
- A P Parker
- Newcomen Centre, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 1999; 2:94-8. [PMID: 10195186 DOI: 10.1038/4600] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuromodulators associated with arousal modulate learning and memory, but most of these substances do not freely enter the brain from the periphery. In rodents, these neuromodulators act in part by initiating neural messages that travel via the vagus nerve to the brain, and electrical stimulation of the vagus enhances memory. We now extend that finding to human verbal learning. We examined word-recognition memory in patients enrolled in a clinical study evaluating the capacity of vagus nerve stimulation to control epilepsy. Stimulation administered after learning significantly enhanced retention. These findings confirm in humans the hypothesis that vagus nerve activation modulates memory formation similarly to arousal.
Collapse
Affiliation(s)
- K B Clark
- Department of Psychology, Southern Illinois University, Carbondale 62901-6502, USA
| | | | | | | | | |
Collapse
|
49
|
Amar AP, Heck CN, Levy ML, Smith T, DeGiorgio CM, Oviedo S, Apuzzo ML. An Institutional Experience with Cervical Vagus Nerve Trunk Stimulation for Medically Refractory Epilepsy: Rationale, Technique, and Outcome. Neurosurgery 1998. [DOI: 10.1227/00006123-199812000-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Amar AP, Heck CN, Levy ML, Smith T, DeGiorgio CM, Oviedo S, Apuzzo ML. An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy: rationale, technique, and outcome. Neurosurgery 1998; 43:1265-76; discussion 1276-80. [PMID: 9848840 DOI: 10.1097/00006123-199812000-00001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Intermittent stimulation of the left cervical vagus nerve trunk is emerging as a novel adjunct in the treatment of medically refractory seizures. We sought to evaluate theoretical and practical issues attendant to this concept. We review the anatomic and physiological background arguing for clinical application of vagus nerve stimulation, discuss salient aspects of patient selection and the nuances of surgical technique, and present our observations of and results from application of the method. METHODS Each of 18 patients with medically refractory epilepsy and at least six complex partial or secondarily generalized seizures per month underwent placement of a NeuroCybernetic Prosthesis pulse generator (Cyberonics, Webster, TX) in the chest, connected to helical platinum leads applied to the left cervical vagus nerve trunk. The patients were then randomized in a double-blinded fashion to receive either high (presumably therapeutic) or low (presumably less therapeutic) levels of vagus nerve stimulation. Reduction in seizure frequency, global assessments of quality of life, physiological measurements, and adverse events were recorded during a 3-month period. Patients in the low group were then crossed over to high-stimulation paradigms during a 15-month extension trial. RESULTS All operations were successful, uneventful, and without adverse postoperative sequelae. One patient was excluded from analysis because of inadequate seizure calendars. Of the seven patients initially assigned to high stimulation, the mean reduction in seizure frequency was 71% at 3 months and 81% at 18 months. Five (72%) of these patients had a greater than 75% reduction in seizure frequency, and one (14%) remained seizure-free after more than 1.5 years of follow-up. The mean reduction in seizure frequency among the low-stimulation group was only 6% at 3 months. No serious complications, device failures, or physiological perturbations occurred. CONCLUSION In our experience, vagus nerve stimulation has proven to be a safe, feasible, and potentially effective method of reducing seizures in select patient populations. However, the elements of strict definition for the application of the method require further study.
Collapse
Affiliation(s)
- A P Amar
- Department of Neurological Surgery, University of Southern California, Los Angeles 90033, USA
| | | | | | | | | | | | | |
Collapse
|