1
|
Gribbins KM, Rajaguru S, Rheubert JL, Trauth SE. The Ultrastructure of Spermiogenesis Within the Seminiferous Epithelium of the Texas Horned Lizard, Phrynosoma cornutum (Phrynosomatidae). J Morphol 2024; 285:e70008. [PMID: 39543840 DOI: 10.1002/jmor.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Currently, there is limited histological data for spermatid morphologies within the testes of squamates. There are only 10 species of lizard that have complete ultrastructural data across the entire process of spermiogenesis, including several species of Sceloporus. These studies have shown that differences can be seen between spermatids of saurians within the same family or genus. Thus, the present study continues to test the hypothesis that differences exist in spermatid morphology between species within the same family. We collected five Phrynosoma cornutum males from Arizona. Their testes were extracted and processed with standard TEM techniques. Many of the characteristics of spermiogenesis within P. cornutum are conserved and similar in morphology to other phrynosomatid lizards. These similarities include the development of the acrosome, perforatorium, subacrosomal cone, nuclear rostrum, and epinuclear lucent zone. However, there were also differences observed in P. cornutum spermatids that are distinct compared to other phyrnosomatids. For example, P. cornutum spermatids include a wider and more robust perforatorium and less spiraling of the chromatin during condensation than that of other phrynosomatid lizards. The present results corroborate previous studies and indicate that even with morphological conservation within saurian spermatids, character differences between species can be recognized. Further studies on spermiogenesis are required to judge the relevance of these ontogenetic changes in terms of using them in amniotic or squamate spermatid/spermatozoa phylogenic analysis.
Collapse
Affiliation(s)
- Kevin M Gribbins
- Department of Biology, University of Indianapolis, Indianapolis, Indiana, USA
| | | | | | - Stanley E Trauth
- Department of Biological Sciences, Arkansas State University (Emeritus), State University, Arkansas, USA
| |
Collapse
|
2
|
Lipshutz SE, Torneo SJ, Rosvall KA. How Female-Female Competition Affects Male-Male Competition: Insights into Postcopulatory Sexual Selection from Socially Polyandrous Species. Am Nat 2023; 201:460-471. [PMID: 36848510 DOI: 10.1086/722799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSexual selection is a major driver of trait variation, and the intensity of male competition for mating opportunities has been linked with sperm size across diverse taxa. Mating competition among females may also shape the evolution of sperm traits, but the effect of the interplay between female-female competition and male-male competition on sperm morphology is not well understood. We evaluated variation in sperm morphology in two species with socially polyandrous mating systems, in which females compete to mate with multiple males. Northern jacanas (Jacana spinosa) and wattled jacanas (J. jacana) vary in their degree of social polyandry and sexual dimorphism, suggesting species differences in the intensity of sexual selection. We compared mean and variance in sperm head, midpiece, and tail length between species and breeding stages because these measures have been associated with the intensity of sperm competition. We found that the species with greater polyandry, northern jacana, has sperm with longer midpieces and tails as well as marginally lower intraejaculate variation in tail length. Intraejaculate variation was also significantly lower in copulating males than in incubating males, suggesting flexibility in sperm production as males cycle between breeding stages. Our results indicate that stronger female-female competition for mating opportunities may also shape more intense male-male competition by selecting for longer and less variable sperm traits. These findings extend frameworks developed in socially monogamous species to reveal that sperm competition may be an important evolutionary force layered atop female-female competition for mates.
Collapse
|
3
|
Cramer ERA, Grønstøl G, Lifjeld JT. Flagellum tapering and midpiece volume in songbird spermatozoa. J Morphol 2022; 283:1577-1589. [PMID: 36260518 PMCID: PMC9828668 DOI: 10.1002/jmor.21524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023]
Abstract
In contrast to numerous studies on spermatozoa length, relatively little work focuses on the width of spermatozoa, and particularly the width of the midpiece and flagellum. In flagellated spermatozoa, the flagellum provides forward thrust while energy may be provided via mitochondria in the midpiece and/or through glycolysis along the flagellum itself. Longer flagella may be able to provide greater thrust but may also require stronger structural features and more or larger mitochondria to supply sufficient energy. Here, we use scanning electron microscopy to investigate the ultrastructure of spermatozoa from 55 passerine species in 26 taxonomic families in the Passerides infraorder. Our data confirm the qualitative observation that the flagellum tapers along its length, and we show that longer flagella are wider at the neck. This pattern is similar to mammals, and likely reflects the need for longer cells to be stronger against shearing forces. We further estimate the volume of the mitochondrial helix and show that it correlates well with midpiece length, supporting the use of midpiece length as a proxy for mitochondrial volume, at least in between-species studies where midpiece length is highly variable. These results provide important context for understanding the evolutionary correlations among different sperm cell components and dimensions.
Collapse
|
4
|
Carreira JT, Lesobre L, Boullenger S, Chalah T, Lacroix F, Hingrat Y. Assisted Reproduction Techniques to Improve Reproduction in a Non-Model Species: The Case of the Arabian Bustard ( Ardeotis arabs) Conservation Breeding Program. Animals (Basel) 2022; 12:851. [PMID: 35405840 PMCID: PMC8996889 DOI: 10.3390/ani12070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Artificial reproductive technologies are highly valuable for ex situ conservation. While Arabian bustard populations are declining and extinct in some parts of the range, the International Fund for Houbara Conservation in the United Arab Emirates implemented a conservation breeding program. Since 2012, a total of 1253 eggs were laid through natural reproduction, 1090 were incubated and 379 of these were fertile (fertility rate of 34.8%), leading to the production of 251 chicks. To improve fertility and acquire crucial knowledge for other endangered large birds, artificial reproduction was implemented in 2018 using fresh, refrigerated, and frozen sperm. A total of 720 ejaculates were collected from 12 birds. We analysed these samples for concentration, volume, motility score (0 to 5), viability (eosin/nigrosine), length, and morphology. The first age at collection was 35.7 ± 18.8 months, mean volume was 89.2 ± 65.3 µL, mean concentration was 928 ± 731 sptz/mL and mean motility score was 2.61 ± 0.95. Morphology analyses revealed a bimodal distribution of sperm length. Five hundred and thirty-five ejaculates were cryopreserved and the initial motility score was 3.4 ± 0.7 and 2.0 ± 0.6 after thawing, while the percentage of normal and intact membrane sperm cells decreased from 88.8 ± 7.5% to 52.9 ± 1%. Sixty-five artificial inseminations were performed, leading to a global fertility rate of 84.3%-more precisely, 85.2% and 83.3%, respectively, for fresh and cryopreserved semen. All methods successfully produced fertile eggs, indicating that artificial insemination is an efficient tool for the conservation and genetic management of the species.
Collapse
|
5
|
Chen Y, Pan H, Li J, Pan D, Liu P, Hu H. Effects of Irradiated Sterile Male and Mating Sequence on the Fertility of Drosophila suzukii (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:22. [PMID: 35157761 PMCID: PMC8843077 DOI: 10.1093/jisesa/ieac009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 06/14/2023]
Abstract
The sterile insect technique has been explored in the laboratory to control populations of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a globally invasive pest. We studied the reproductive behavior of D. suzukii including mating frequency, time between matings, and mating duration among non-irradiated flies. Irradiation doses were tested at 0, 60, 90, 110, 120, 150, and 180 Gy to select the optimal dose for producing sterile males. In addition, we examined the effects of mating sequence on offspring production where females were presented with irradiated males first and then wild males, or the reverse. Female D. suzukii were found to mate twice on average through their lifespan, with 16.53 ± 12.05 d between matings. The first mating duration was 24.64 ± 1.52 min shorter than the second mating. A dose of 90 Gy was suitable where irradiated males lived as long as non-irradiated males, and few eggs hatched from matings. The mating sequence experiment revealed first-male parentage preference. Wild females that mated with a wild male and then irradiated male produced more offspring than females mated with an irradiated and then wild male. Overall, the influence of mating sequence should be taken into consideration when applying the sterile insect technique (SIT) to control D. suzukii populations.
Collapse
Affiliation(s)
- Yongzhuo Chen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Hui Pan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Jing Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Deng Pan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Pengcheng Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Haoyuan Hu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| |
Collapse
|
6
|
Reis AB, Salazar K, Folly C, Cossolin JFS, Zanuncio JC, Serrão JE. Morphology of the male reproductive tract and spermatozoa of Lasioderma serricorne (Coleoptera: Ptinidae). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Cramer ERA, Grønstøl G, Maxwell L, Kovach AI, Lifjeld JT. Sperm length divergence as a potential prezygotic barrier in a passerine hybrid zone. Ecol Evol 2021; 11:9489-9497. [PMID: 34306637 PMCID: PMC8293778 DOI: 10.1002/ece3.7768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The saltmarsh sparrow Ammospiza caudacuta and Nelson's sparrow A. nelsoni differ in ecological niche, mating behavior, and plumage, but they hybridize where their breeding distributions overlap. In this advanced hybrid zone, past interbreeding and current backcrossing result in substantial genomic introgression in both directions, although few hybrids are currently produced in most locations. However, because both species are nonterritorial and have only brief male-female interactions, it is difficult to determine to what extent assortative mating explains the low frequency of hybrid offspring. Since females often copulate with multiple males, a role of sperm as a postcopulatory prezygotic barrier appears plausible. Here, we show that sperm length differs between the two species in the hybrid zone, with low among-male variation consistent with strong postcopulatory sexual selection on sperm cells. We hypothesize that divergence in sperm length may constitute a reproductive barrier between species, as sperm length co-evolves with the size of specialized female sperm storage tubules. Sperm does not appear to act as a postzygotic barrier, as sperm from hybrids was unexceptional.
Collapse
Affiliation(s)
| | | | - Logan Maxwell
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - Adrienne I. Kovach
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | | |
Collapse
|
8
|
Cramer ERA, Garcia-del-Rey E, Johannessen LE, Laskemoen T, Marthinsen G, Johnsen A, Lifjeld JT. Longer Sperm Swim More Slowly in the Canary Islands Chiffchaff. Cells 2021; 10:cells10061358. [PMID: 34073133 PMCID: PMC8228216 DOI: 10.3390/cells10061358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/19/2022] Open
Abstract
Sperm swimming performance affects male fertilization success, particularly in species with high sperm competition. Understanding how sperm morphology impacts swimming performance is therefore important. Sperm swimming speed is hypothesized to increase with total sperm length, relative flagellum length (with the flagellum generating forward thrust), and relative midpiece length (as the midpiece contains the mitochondria). We tested these hypotheses and tested for divergence in sperm traits in five island populations of Canary Islands chiffchaff (Phylloscopus canariensis). We confirmed incipient mitochondrial DNA differentiation between Gran Canaria and the other islands. Sperm swimming speed correlated negatively with total sperm length, did not correlate with relative flagellum length, and correlated negatively with relative midpiece length (for Gran Canaria only). The proportion of motile cells increased with relative flagellum length on Gran Canaria only. Sperm morphology was similar across islands. We thus add to a growing number of studies on passerine birds that do not support sperm morphology-swimming speed hypotheses. We suggest that the swimming mechanics of passerine sperm are sufficiently different from mammalian sperm that predictions from mammalian hydrodynamic models should no longer be applied for this taxon. While both sperm morphology and sperm swimming speed are likely under selection in passerines, the relationship between them requires further elucidation.
Collapse
Affiliation(s)
- Emily R. A. Cramer
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
- Correspondence:
| | - Eduardo Garcia-del-Rey
- Macaronesian Institute of Field Ornithology, 38001 Santa Cruz de Tenerife, Canary Islands, Spain;
| | - Lars Erik Johannessen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Terje Laskemoen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Gunnhild Marthinsen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Arild Johnsen
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| | - Jan T. Lifjeld
- Sex and Evolution Research Group, Natural History Museum, University of Oslo, 0318 Oslo, Norway; (L.E.J.); (T.L.); (G.M.); (A.J.); (J.T.L.)
| |
Collapse
|
9
|
Dallai R, Fanciulli PP, Mercati D, Lupetti P. Coevolution between female seminal receptacle and sperm morphology in the semiaquatic measurer bug Hydrometra stagnorum L. (Heteroptera, Hydrometridae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101001. [PMID: 33120187 DOI: 10.1016/j.asd.2020.101001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The coevolution between sperm length and size of the female sperm-storage organs is described for the first time within Heteroptera. The long sperm of the measurer bug Hydrometra stagnorum is characterized by the unusually long acrosome with its anterior region helically arranged, and by a very short nucleus. The sperm flagellum has a 9 + 9+2 conventional axoneme and crystallized mitochondrial derivatives. The female spermatheca consists of an extraordinarily long spermathecal duct ending with an apical spermathecal bulb into which flows also the secretions of a relatively short spermathecal gland. Both spermathecal duct and gland have a thin epithelium lined by a cuticle, beneath which a complex of secretory and duct forming cells are present. The secretions of these two structures flow into the apical spermathecal bulb. A thick layer of muscle fibers surrounds the epithelium. These results confirm the opinion that the dimensions of the female reproductive sperm-storage organs are able to drive the sperm morphology.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
10
|
Birkhead TR, Montgomerie R. Three decades of sperm competition in birds. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200208. [PMID: 33070724 DOI: 10.1098/rstb.2020.0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the three decades, since Birkhead and Møller published Sperm competition in birds (1992, Academic Press) more than 1000 papers have been published on this topic, about half of these being empirical studies focused on extrapair paternity. Both technological innovations and theory have moved the field forward by facilitating the study of both the mechanisms underlying sperm competition in both sexes, and the ensuing behavioural and morphological adaptations. The proliferation of studies has been driven partly by the diversity of both behaviours and morphologies in birds that have been influenced by sperm competition, but also by the richness of the theory developed by Geoff Parker over the past 50 years. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Tim R Birkhead
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
11
|
Rudin-Bitterli TS, Mitchell NJ, Evans JP. Extensive geographical variation in testes size and ejaculate traits in a terrestrial-breeding frog. Biol Lett 2020; 16:20200411. [PMID: 32991823 PMCID: PMC7532705 DOI: 10.1098/rsbl.2020.0411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 11/12/2022] Open
Abstract
Ejaculate traits vary extensively among individuals and species, but little is known about their variation among populations of the same species. Here, we investigated patterns of intraspecific variation in male reproductive investment in the terrestrial-breeding frog Pseudophryne guentheri. Like most anurans, breeding activity in P. guentheri is cued by precipitation, and therefore the timing and duration of breeding seasons differ among geographically separated populations, potentially leading to differences in the level of sperm competition. We, therefore, anticipated local adaptation in sperm traits that reflect these phenological differences among populations. Our analysis of six natural populations across a rainfall gradient revealed significant divergence in testes and ejaculate traits that correspond with annual rainfall and rainfall seasonality; males from the northern and drier edge of the species range had significantly smaller testes containing fewer, smaller and less motile sperm compared with those from mesic central populations. These findings may reflect spatial variation in the strength of postcopulatory sexual selection, likely driven by local patterns of precipitation.
Collapse
Affiliation(s)
| | | | - Jonathan P. Evans
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
12
|
Omotoriogun TC, Albrecht T, Gohli J, Hořák D, Johannessen LE, Johnsen A, Kreisinger J, Marki PZ, Ottosson U, Rowe M, Sedláček O, Lifjeld JT. Sperm length variation among Afrotropical songbirds reflects phylogeny rather than adaptations to the tropical environment. ZOOLOGY 2020; 140:125770. [DOI: 10.1016/j.zool.2020.125770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
|
13
|
Liao WB, Zhong MJ, Lüpold S. Sperm quality and quantity evolve through different selective processes in the Phasianidae. Sci Rep 2019; 9:19278. [PMID: 31848414 PMCID: PMC6917726 DOI: 10.1038/s41598-019-55822-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/03/2019] [Indexed: 11/09/2022] Open
Abstract
Sperm competition is often considered the primary selective force underlying the rapid and diversifying evolution of ejaculate traits. Yet, several recent studies have drawn attention to other forms of selection with the potential of exceeding the effects of sperm competition. Since ejaculates are complex, multivariate traits, it seems plausible that different ejaculate components vary in their responses to different selective pressures. Such information, however, is generally lacking as individual ejaculate traits tend to be studied in isolation. Here, we studied the macroevolutionary patterns of ejaculate volume, sperm number, sperm length and the proportion of viable normal sperm in response to varying levels of sperm competition, body size and the duration of female sperm storage in pheasants and allies (Phasianidae). Ejaculate volume, sperm number and sperm viability were all relatively higher in polygamous than in monogamous mating systems. However, whereas ejaculate volume additionally covaried with body size, sperm number instead increased with the female sperm-storage duration, in conjunction with a decrease in sperm length. Overall, our results revealed important details on how different forms of selection can jointly shape ejaculates as complex, composite traits.
Collapse
Affiliation(s)
- Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China. .,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China. .,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China.
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China.,Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, 637009, China.,Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, 8057, Zurich, Switzerland
| |
Collapse
|
14
|
Breed WG, Hassan H, Gonzalez M, McLennan HJ, Leigh CM, Heaney LR. Interspecific diversity of testes mass and sperm morphology in the Philippine chrotomyine rodents: implications for differences in breeding systems across the species. Reprod Fertil Dev 2019; 31:705-711. [PMID: 30475689 DOI: 10.1071/rd18278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/23/2018] [Indexed: 01/16/2023] Open
Abstract
The high diversity of native Philippine murid rodents includes an old endemic group, the chrotomyines, which are the sister group of the Australasian hydromyines. Herein we detail their interspecific diversity of relative testes mass (RTM) and sperm morphology. We find that in chrotomyines, as in the Australasian hydromyines, testes mass relative to body mass differs by an order of magnitude across the species and ranges from a large RTM in Soricomys and Chrotomys species to a small RTM in Apomys. Sperm morphology is associated with these findings, with individuals in species of Soricomys and Chrotomys producing relatively larger spermatozoa with a prominent apical hook and long tail, whereas, by contrast, the Apomys species have a sperm head that either has a very short or no apical hook and a shorter tail. These findings indicate coevolution of RTM with sperm morphological traits across the species, with the marked interspecific differences in RTM suggesting differences in the intensity of intermale sperm competition and hence breeding system. Thus, we hypothesise that species of Soricomys and Chrotomys that produce more streamlined spermatozoa with longer tails have a polyandrous or promiscuous mating system, whereas the Apomys species, which produce smaller and less streamlined spermatozoa, may exhibit monogamy.
Collapse
Affiliation(s)
- William G Breed
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hazirah Hassan
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Macarena Gonzalez
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hanna J McLennan
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chris M Leigh
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lawrence R Heaney
- Field Museum of Natural History, Division of Mammals, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA
| |
Collapse
|
15
|
Rowley A, Locatello L, Kahrl A, Rego M, Boussard A, Garza-Gisholt E, Kempster RM, Collin SP, Giacomello E, Follesa MC, Porcu C, Evans JP, Hazin F, Garcia-Gonzalez F, Daly-Engel T, Mazzoldi C, Fitzpatrick JL. Sexual selection and the evolution of sperm morphology in sharks. J Evol Biol 2019; 32:1027-1035. [PMID: 31250483 DOI: 10.1111/jeb.13501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 01/18/2023]
Abstract
Post-copulatory sexual selection, and sperm competition in particular, is a powerful selective force shaping the evolution of sperm morphology. Although mounting evidence suggests that post-copulatory sexual selection influences the evolution of sperm morphology among species, recent evidence also suggests that sperm competition influences variation in sperm morphology at the intraspecific level. However, contradictory empirical results and limited taxonomic scope have led to difficulty in assessing the generality of sperm morphological responses to variation in the strength of sperm competition. Here, we use phylogenetically controlled analyses to explore the effects of sperm competition on sperm morphology and variance in sharks, a basal vertebrate group characterized by wide variation in rates of multiple mating by females, and consequently sperm competition risk. Our analyses reveal that shark species experiencing greater levels of sperm competition produce sperm with longer flagella and that sperm flagellum length is less variable in species under higher sperm competition risk. In contrast, neither the length of the sperm head and midpiece nor variation in sperm head and midpiece length was associated with sperm competition risk. Our findings demonstrate that selection influences both the inter- and intraspecific variation in sperm morphology and suggest that the flagellum is an important target of sexual selection in sharks. These findings provide important insight into patterns of selection on the ejaculate in a basal vertebrate lineage.
Collapse
Affiliation(s)
- Amy Rowley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Lisa Locatello
- Department of Biology, University of Padova, Padua, Italy
| | - Ariel Kahrl
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mariana Rego
- Laboratório de Histologia Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Annika Boussard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Eduardo Garza-Gisholt
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ryan M Kempster
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun P Collin
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia.,School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Eva Giacomello
- MARE - Marine and Environmental Sciences Centre, IMAR- Institute of the Sea, OKEANOS Centre- University of the Azores, Horta, Portugal
| | - Maria C Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Porcu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Fabio Hazin
- Laboratório de Histologia Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| | - Toby Daly-Engel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | | | | |
Collapse
|
16
|
Carballo L, Battistotti A, Teltscher K, Lierz M, Bublat A, Valcu M, Kempenaers B. Sperm morphology and evidence for sperm competition among parrots. J Evol Biol 2019; 32:856-867. [PMID: 31245887 PMCID: PMC6852422 DOI: 10.1111/jeb.13487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
Sperm competition is an important component of post‐copulatory sexual selection that has shaped the evolution of sperm morphology. Previous studies have reported that sperm competition has a concurrently directional and stabilizing effect on sperm size. For example, bird species that show higher levels of extrapair paternity and larger testes (proxies for the intensity of sperm competition) have longer sperm and lower coefficients of variation in sperm length, both within and between males. For this reason, these sperm traits have been proposed as indexes to estimate the level of sperm competition in species for which other measures are not available. The relationship between sperm competition and sperm morphology has been explored mostly for bird species that breed in temperate zones, with the main focus on passerine birds. We measured sperm morphology in 62 parrot species that breed mainly in the tropics and related variation in sperm length to life‐history traits potentially indicative of the level of sperm competition. We showed that sperm length negatively correlated with the within‐male coefficient of variation in sperm length and positively with testes mass. We also showed that sperm is longer in sexually dichromatic and in gregarious species. Our results support the general validity of the hypothesis that sperm competition drives variation in sperm morphology. Our analyses suggest that post‐copulatory sexual selection is also important in tropical species, with more intense sperm competition among sexually dichromatic species and among species that breed at higher densities.
Collapse
Affiliation(s)
- Luisana Carballo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Alessandra Battistotti
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Biology, University of Padua, Padova, Italy
| | - Kim Teltscher
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Giessen, Germany
| | - Andreas Bublat
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus-Liebig University, Giessen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
17
|
Langen K, Thünken T, Klemm J, Sandmann S, Bakker TCM. Sperm size is negatively related to relative testis size in West African riverine cichlid fishes. Naturwissenschaften 2019; 106:30. [PMID: 31147792 DOI: 10.1007/s00114-019-1622-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Fishes show a great diversity of mating systems and fertilization mechanisms. This diversity creates an enormous potential for sperm competition. Typically, monogamous species face a low risk of sperm competition and invest less into sperm, and thus show smaller relative testis mass compared to polygamous species with high sperm competition. In cichlids, sperm competition risk is very variable. In lacustrine East African cichlids, large sperm are interpreted as an adaptation to sperm competition, as in those species sperm length correlates with sperm swimming speed. The aim of the present study was to examine variation in sperm and testis traits of substrate breeding cichlids from West African river systems and its relationship to sperm competition. Therefore, sperm traits (total sperm size, flagellum-, midpiece-, and head size) and sperm number were related to the gonadosomatic index (GSI), an indicator of sperm competition, in eight species of two large informal tribes, the chromidotilapiines and the haplotilapiines. We found significant differences between species in all examined sperm traits, sperm number, and GSI with pronounced differences between chromidotilapiines and haplotilapiines. We used a generalized least-squares approach to control for non-independence of data. GSI was positively correlated with sperm number but negatively correlated with total sperm size (also negatively with the flagellum and head size but not significantly with midpiece size). Sperm number and sperm size were negatively correlated suggesting a trade-off between sperm size and quality. Our results suggest that large sperm can evolve in species with relatively low sperm expenditure and probably in absence of high sperm competition between males.
Collapse
Affiliation(s)
- Kathrin Langen
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany. .,Zoological Research Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Adenauerallee 160/162, 53113, Bonn, Germany.
| | - Timo Thünken
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Janine Klemm
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Sarah Sandmann
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| |
Collapse
|
18
|
Cai YL, Mai CL, Yu X, Liao WB. Effect of population density on relationship between pre- and postcopulatory sexual traits. ANIM BIOL 2019. [DOI: 10.1163/15707563-20181057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Sexual selection theory states that the premating (ornaments and armaments) sexual traits should trade off with the postmating (testes and ejaculates) sexual traits, assuming that growing and maintaining these traits is expensive and that total reproductive investments are limited. Male-male competition and sperm competition are predicted to affect how males allocate their finite resources to these traits. Here, we studied relative expenditure on pre- and postmating sexual traits among 82 species for three mammalian orders with varying population density using comparative phylogenetic analysis. The results showed that population density affected sexual size dimorphism (SSD) in both Artiodactyla and Carnivora, but not in Primates. However, relative testis mass and sperm size were not affected by population density. Moreover, we did not find associations between the SSD and testis mass or sperm size in three taxonomic groups. The interspecific relationships between pre- and postcopulatory sexual traits did not change with increased population density. Our findings suggest that population density did not affect variation in the relationship between pre- and postcopulatory sexual traits for these three mammalian orders.
Collapse
Affiliation(s)
- Yun Lin Cai
- 1Department of Urology, the Second Clinical Medical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Chun Lan Mai
- 2Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Xin Yu
- 2Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Wen Bo Liao
- 2Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| |
Collapse
|
19
|
Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: A comparative study of songbirds using electron microscopy. Evolution 2018; 72:1918-1932. [DOI: 10.1111/evo.13555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/24/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Arild Johnsen
- Natural History Museum University of Oslo 0318 Oslo Norway
| | | | - Melissah Rowe
- Natural History Museum University of Oslo 0318 Oslo Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences University of Oslo 0316 Oslo Norway
| |
Collapse
|
20
|
Sætre CLC, Johnsen A, Stensrud E, Cramer ERA. Sperm morphology, sperm motility and paternity success in the bluethroat (Luscinia svecica). PLoS One 2018; 13:e0192644. [PMID: 29509773 PMCID: PMC5839561 DOI: 10.1371/journal.pone.0192644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Abstract
Postcopulatory sexual selection may select for male primary sexual characteristics like sperm morphology and sperm motility, through sperm competition or cryptic female choice. However, how such characteristics influence male fertilization success remains poorly understood. In this study, we investigate possible correlations between sperm characteristics and paternity success in the socially monogamous bluethroat (Luscinia svecica svecica), predicting that sperm length and sperm swimming speed is positively correlated with paternity success. In total, 25% (15/61) of broods contained extra-pair offspring and 10% (33/315) of the offspring were sired by extra-pair males. Paternity success did not correlate significantly with sperm morphology or any aspects of sperm motility. Furthermore, sperm morphology and sperm motility did not correlate significantly with male morphological characters that previously have been shown to be associated with paternity success. Thus, the sperm characteristics investigated here do not appear to be strong predictors of paternity success in bluethroats.
Collapse
Affiliation(s)
| | - Arild Johnsen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Even Stensrud
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
21
|
Monro K, Marshall DJ. Unravelling anisogamy: egg size and ejaculate size mediate selection on morphology in free-swimming sperm. Proc Biol Sci 2017; 283:rspb.2016.0671. [PMID: 27412273 DOI: 10.1098/rspb.2016.0671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 01/28/2023] Open
Abstract
Gamete dimorphism (anisogamy) defines the sexes in most multicellular organisms. Theoretical explanations for its maintenance usually emphasize the size-related selection pressures of sperm competition and zygote survival, assuming that fertilization of all eggs precludes selection for phenotypes that enhance fertility. In external fertilizers, however, fertilization is often incomplete due to sperm limitation, and the risk of polyspermy weakens the advantage of high sperm numbers that is predicted to limit sperm size, allowing alternative selection pressures to target free-swimming sperm. We asked whether egg size and ejaculate size mediate selection on the free-swimming sperm of Galeolaria caespitosa, a marine tubeworm with external fertilization, by comparing relationships between sperm morphology and male fertility across manipulations of egg size and sperm density. Our results suggest that selection pressures exerted by these factors may aid the maintenance of anisogamy in external fertilizers by limiting the adaptive value of larger sperm in the absence of competition. In doing so, our study offers a more complete explanation for the stability of anisogamy across the range of sperm environments typical of this mating system and identifies new potential for the sexes to coevolve via mutual selection pressures exerted by gametes at fertilization.
Collapse
Affiliation(s)
- Keyne Monro
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
22
|
Liao WB, Huang Y, Zeng Y, Zhong MJ, Luo Y, Lüpold S. Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation? Evolution 2017; 72:4-17. [PMID: 28975611 DOI: 10.1111/evo.13372] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022]
Abstract
The evolution of sperm quality and quantity is shaped by various selective processes, with sperm competition generally considered the primary selective agent. Particularly in external fertilizers, however, sperm limitation through gamete dispersal can also influence gamete investments, but empirical data examining this effect are limited. Here, we studied the relative importance of sperm competition and the spawning conditions in explaining the macroevolutionary patterns of sperm size and number within two taxa with external fertilization but differences in their reproductive biology. In frogs, sperm swim slowly but for up to hours as they penetrate the gelatinous egg coating, whereas fish sperm typically swim fast, are very short-lived (seconds to minutes), and often face a relatively higher risk of being moved away from the ova by currents. Our phylogenetic models and path analyses revealed different trajectories of ejaculate evolution in these two taxa. Sperm size and number responded primarily to variation in sperm competition in the anurans, but more strongly to egg number and water turbulence in the fishes. Whereas the results across anurans align with the general expectation that sexual selection is the main driver of ejaculate evolution, our findings across the fishes suggest that sperm limitation has been underappreciated.
Collapse
Affiliation(s)
- Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Yan Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Yu Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Yi Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Apostólico LH, Marian JEAR. Dimorphic ejaculates and sperm release strategies associated with alternative mating behaviors in the squid. J Morphol 2017; 278:1490-1505. [DOI: 10.1002/jmor.20726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lígia H. Apostólico
- Departamento de Zoologia; Instituto de Biociências, Universidade de São Paulo; São Paulo SP Brazil
| | - José E. A. R. Marian
- Departamento de Zoologia; Instituto de Biociências, Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
24
|
Pitnick S, Marrow T, Spicer GS. EVOLUTION OF MULTIPLE KINDS OF FEMALE SPERM-STORAGE ORGANS IN DROSOPHILA. Evolution 2017; 53:1804-1822. [PMID: 28565462 DOI: 10.1111/j.1558-5646.1999.tb04564.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1998] [Accepted: 06/02/1999] [Indexed: 11/27/2022]
Abstract
Females of all species belonging to the family Drosophilidae have two kinds of sperm-storage organs: paired spherical spermathecae and a single elongate tubular seminal receptacle. We examined 113 species belonging to the genus Drosophila and closely allied genera and describe variation in female sperm-storage organ use and morphology. The macroevolutionary pattern of organ dysfunction and morphological divergence suggests that ancestrally both kinds of organs stored sperm. Loss of use of the spermathecae has evolved at least 13 times; evolutionary regain of spermathecal function has rarely if ever occurred. Loss of use of the seminal receptacle has likely occurred only once; in this case, all descendant species possess unusually elaborate spermathecae. Data further indicate that the seminal receptacle is the primary sperm-storage organ in Drosophila. This organ exhibits a pattern of strong correlated evolution with the length of sperm. The evolution of multiple kinds of female sperm-storage organs and the rapidly divergent and correlated evolution of sperm and female reproductive tract morphology are discussed.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Syracuse University, 108 College Place, Syracuse, New York, 13244-1270
| | - Therese Marrow
- Department of Zoology, Arizona State University, Tempe, Arizona, 85287-1501
| | - Greg S Spicer
- Department of Biology, San Francisco State University, San Francisco, California, 94132-1722
| |
Collapse
|
25
|
Santiago-Moreno J, Esteso MC, Villaverde-Morcillo S, Toledano-Déaz A, Castaño C, Velázquez R, López-Sebastián A, Goya AL, Martínez JG. Recent advances in bird sperm morphometric analysis and its role in male gamete characterization and reproduction technologies. Asian J Androl 2017; 18:882-888. [PMID: 27678467 PMCID: PMC5109880 DOI: 10.4103/1008-682x.188660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Postcopulatory sexual selection through sperm competition may be an important evolutionary force affecting many reproductive traits, including sperm morphometrics. Environmental factors such as pollutants, pesticides, and climate change may affect different sperm traits, and thus reproduction, in sensitive bird species. Many sperm-handling processes used in assisted reproductive techniques may also affect the size of sperm cells. The accurately measured dimensions of sperm cell structures (especially the head) can thus be used as indicators of environmental influences, in improving our understanding of reproductive and evolutionary strategies, and for optimizing assisted reproductive techniques (e.g., sperm cryopreservation) for use with birds. Computer-assisted sperm morphometry analysis (CASA-Morph) provides an accurate and reliable method for assessing sperm morphometry, reducing the problem of subjectivity associated with human visual assessment. Computerized systems have been standardized for use with semen from different mammalian species. Avian spermatozoa, however, are filiform, limiting their analysis with such systems, which were developed to examine the approximately spherical heads of mammalian sperm cells. To help overcome this, the standardization of staining techniques to be used in computer-assessed light microscopical methods is a priority. The present review discusses these points and describes the sperm morphometric characteristics of several wild and domestic bird species.
Collapse
|
26
|
Mai CL, Liu YH, Jin L, Mi ZP, Liao WB. Altitudinal variation in somatic condition and reproductive investment of male Yunnan pond frogs (Dianrana pleuraden). ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Droge-Young EM, Belote JM, Perez GS, Pitnick S. Resolving mechanisms of short-term competitive fertilization success in the red flour beetle. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:1-10. [PMID: 27343847 DOI: 10.1016/j.jinsphys.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Postcopulatory sexual selection occurs when sperm from multiple males occupy a female's reproductive tract at the same time and is expected to generate strong selection pressures on traits related to competitive fertilization success. However, knowledge of competitive fertilization success mechanisms and characters targeted by resulting selection is limited, partially due to the difficulty of discriminating among sperm from different males within the female reproductive tract. Here, we resolved mechanisms of competitive fertilization success in the promiscuous flour beetle Tribolium castaneum. Through creation of transgenic lines with fluorescent-tagged sperm heads, we followed the fate of focal male sperm in female reproductive tracts while tracking paternity across numerous rematings. Our results indicate that a given male's sperm persist and fertilize eggs through at least seven rematings. Additionally, the proportion of a male's sperm in the bursa (the site of spermatophore deposition), which is influenced by both timing of female's ejecting excess sperm and male size, significantly predicted paternity share in the 24h following a mating. Contrary to expectation, proportional representation of sperm within the female's specialized sperm-storage organ did not significantly predict paternity, though spermathecal sperm may play a role in fertilization when females do not have access to mates for longer time periods. We address the adaptive significance of the identified reproductive mechanisms in the context of T. castaneum's unique mating system and ecology.
Collapse
Affiliation(s)
| | - John M Belote
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Giselle S Perez
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Scott Pitnick
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
28
|
Lüpold S, Fitzpatrick JL. Sperm number trumps sperm size in mammalian ejaculate evolution. Proc Biol Sci 2016; 282:rspb.2015.2122. [PMID: 26582027 DOI: 10.1098/rspb.2015.2122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Postcopulatory sexual selection is widely accepted to underlie the extraordinary diversification of sperm morphology. However, why does it favour longer sperm in some taxa but shorter in others? Two recent hypotheses addressing this discrepancy offered contradictory explanations. Under the sperm dilution hypothesis, selection via sperm density in the female reproductive tract favours more but smaller sperm in large, but the reverse in small, species. Conversely, the metabolic constraint hypothesis maintains that ejaculates respond positively to selection in small endothermic animals with high metabolic rates, whereas low metabolic rates constrain their evolution in large species. Here, we resolve this debate by capitalizing on the substantial variation in mammalian body size and reproductive physiology. Evolutionary responses shifted from sperm length to number with increasing mammalian body size, thus supporting the sperm dilution hypothesis. Our findings demonstrate that body-size-mediated trade-offs between sperm size and number can explain the extreme diversification in sperm phenotypes.
Collapse
Affiliation(s)
- Stefan Lüpold
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - John L Fitzpatrick
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
29
|
Schmera D, Pizá J, Reinartz E, Ursenbacher S, Baur B. Breeding system, shell size and age at sexual maturity affect sperm length in stylommatophoran gastropods. BMC Evol Biol 2016; 16:89. [PMID: 27130818 PMCID: PMC4850656 DOI: 10.1186/s12862-016-0661-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm size and quality are key factors for fertilization success. There is increasing empirical evidence demonstrating that sperm form and function are influenced by selective pressures. Theoretical models predict that sperm competition could favour the evolution of longer sperm. In hermaphrodites, self-fertilizing species are expected to have shorter sperm than cross-fertilizing species, which use sperm stored from several mating partners for the fertilization of their eggs and thus are exposed to intense sperm competition. We tested this hypothesis by comparing original data on sperm length in 57 species of simultaneously hermaphroditic stylommatophoran gastropods from Europe and South America with respect to the species' breeding system. We used 28S rRNA nuclear and COI mitochondrial sequence data to construct a molecular phylogeny. Phylogenetic generalized linear models were applied to examine the potential influence of morphological and life-history characters. RESULTS The best-fit model revealed that the breeding system and age at sexual maturity influence sperm length in gastropods. In general, species with predominant cross-fertilization had longer sperm than species with predominant self-fertilization or a mixed breeding system. Across species with shells (snails), sperm length also increased with shell size. CONCLUSIONS Our study provides evidence that sperm length in stylommatophoran gastropods is influenced by the risk of sperm competition, as well as by age at sexual maturity and shell size. This finding extends present knowledge of sperm evolution to a group of so far poorly studied simultaneous hermaphrodites.
Collapse
Affiliation(s)
- Dénes Schmera
- Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St. Johanns-Vorstadt 10, 4056, Basel, Switzerland.
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno 3, 8237, Tihany, Hungary.
| | - Julia Pizá
- Departamento de Biología, Bioquímica y Farmacia, Laboratorio de Zoología de Invertebrados 1, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Ellen Reinartz
- Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St. Johanns-Vorstadt 10, 4056, Basel, Switzerland
| | - Sylvain Ursenbacher
- Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St. Johanns-Vorstadt 10, 4056, Basel, Switzerland
| | - Bruno Baur
- Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St. Johanns-Vorstadt 10, 4056, Basel, Switzerland
| |
Collapse
|
30
|
Supriya K, Rowe M, Laskemoen T, Mohan D, Price TD, Lifjeld JT. Early diversification of sperm size in the evolutionary history of the old world leaf warblers (Phylloscopidae). J Evol Biol 2016; 29:777-89. [PMID: 26781541 DOI: 10.1111/jeb.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Sperm morphological traits are highly variable among species and are commonly thought to evolve by post-copulatory sexual selection. However, little is known about the evolutionary dynamics of sperm morphology, and whether rates of evolutionary change are variable over time and among taxonomic groups. Here, we examine sperm morphology from 21 species of Old World leaf warblers (Phylloscopidae), a group of generally dull, sexually monochromatic birds, which are known to have high levels of extra-pair paternity. We found that sperm length differs markedly across species, spanning about 40% of the range observed across a larger selection of passerine birds. Furthermore, we found strong support for an 'early-burst' model of trait evolution, implying that the majority of divergence in sperm length has occurred early in the evolutionary history of this clade with subsequent evolutionary stasis. This large early divergence matches the early divergence reported in ecological traits (i.e. body size and feeding behaviour). Our findings demonstrate that rates of evolution in sperm morphology can change over time in passerine taxa, and that evolutionary stasis in sperm traits can occur even in species exhibiting characteristics consistent with moderate-to-high levels of sperm competition. It remains a major challenge to identify the selection mechanisms and possible constraints responsible for these variable rates of sperm evolution.
Collapse
Affiliation(s)
- K Supriya
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
| | - M Rowe
- Natural History Museum, University of Oslo, Oslo, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - T Laskemoen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - D Mohan
- Wildlife Institute of India, Dehradun, India
| | - T D Price
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - J T Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Cramer ERA, Stensrud E, Marthinsen G, Hogner S, Johannessen LE, Laskemoen T, Eybert MC, Slagsvold T, Lifjeld JT, Johnsen A. Sperm performance in conspecific and heterospecific female fluid. Ecol Evol 2016; 6:1363-77. [PMID: 26855769 PMCID: PMC4733106 DOI: 10.1002/ece3.1977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/08/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022] Open
Abstract
Divergent sexual selection within allopatric populations may result in divergent sexual phenotypes, which can act as reproductive barriers between populations upon secondary contact. This hypothesis has been most tested on traits involved in precopulatory sexual selection, with less work focusing on traits that act after copulation and before fertilization (i.e., postcopulatory prezygotic traits), particularly in internally fertilizing vertebrates. However, postcopulatory sexual selection within species can also drive trait divergence, resulting in reduced performance of heterospecific sperm within the female reproductive tract. Such incompatibilities, arising as a by‐product of divergent postcopulatory sexual selection in allopatry, can represent reproductive barriers, analogous to species‐assortative mating preferences. Here, we tested for postcopulatory prezygotic reproductive barriers between three pairs of taxa with diverged sperm phenotypes and moderate‐to‐high opportunity for postcopulatory sexual selection (barn swallows Hirundo rustica versus sand martins Riparia riparia, two subspecies of bluethroats, Luscinia svecica svecica versus L. s. namnetum, and great tits Parus major versus blue tits Cyanistes caeruleus). We tested sperm swimming performance in fluid from the outer reproductive tract of females, because the greatest reduction in sperm number in birds occurs as sperm swim across the vagina. Contrary to our expectations, sperm swam equally well in fluid from conspecific and heterospecific females, suggesting that postcopulatory prezygotic barriers do not act between these taxon pairs, at this stage between copulation and fertilization. We therefore suggest that divergence in sperm phenotypes in allopatry is insufficient to cause widespread postcopulatory prezygotic barriers in the form of impaired sperm swimming performance in passerine birds.
Collapse
Affiliation(s)
- Emily R A Cramer
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Even Stensrud
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Gunnhild Marthinsen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Silje Hogner
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | | | - Terje Laskemoen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | | | - Tore Slagsvold
- Department of Biosciences Center for Ecological and Evolutionary Synthesis (CEES) University of Oslo PO Box 1066 Blindern 0316 Oslo Norway
| | - Jan T Lifjeld
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| | - Arild Johnsen
- Natural History Museum University of Oslo PO Box 1172 Blindern 0318 Oslo Norway
| |
Collapse
|
32
|
Majhi RK, Kumar A, Yadav M, Kumar P, Maity A, Giri SC, Goswami C. Light and electron microscopic study of mature spermatozoa from White Pekin duck (Anas platyrhynchos): an ultrastructural and molecular analysis. Andrology 2016; 4:232-44. [DOI: 10.1111/andr.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Rakesh Kumar Majhi
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | - Ashutosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | - Manoj Yadav
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | | | - Apratim Maity
- Department of Biochemistry; OVC; Orissa University of Agriculture and Technology; Bhubaneswar India
| | | | - Chandan Goswami
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| |
Collapse
|
33
|
Opatová P, Ihle M, Albrechtová J, Tomášek O, Kempenaers B, Forstmeier W, Albrecht T. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol Evol 2015; 6:295-304. [PMID: 26811793 PMCID: PMC4716522 DOI: 10.1002/ece3.1868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/08/2022] Open
Abstract
Inbreeding depression, or the reduction in fitness due to mating between close relatives, is a key issue in biology today. Inbreeding negatively affects many fitness‐related traits, including survival and reproductive success. Despite this, very few studies have quantified the effects of inbreeding on vertebrate gamete traits under controlled breeding conditions using a full‐sib mating approach. Here, we provide comprehensive evidence for the negative effect of inbreeding on sperm traits in a bird, the zebra finch Taeniopygia guttata. We compared sperm characteristics of both inbred (pedigree F = 0.25) and outbred (pedigree F = 0) individuals from two captive populations, one domesticated and one recently wild‐derived, raised under standardized conditions. As normal spermatozoa morphology did not differ consistently between inbred and outbred individuals, our study confirms the hypothesis that sperm morphology is not particularly susceptible to inbreeding depression. Inbreeding did, however, lead to significantly lower sperm motility and a substantially higher percentage of abnormal spermatozoa in ejaculate. These results were consistent across both study populations, confirming the generality and reliability of our findings.
Collapse
Affiliation(s)
- Pavlína Opatová
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Department of Botany and Zoology Faculty of Science Masaryk University Kotlářská 267/2CZ-61137 Brno Czech Republic
| | - Malika Ihle
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard-Gwinner-Strasse 7 82319 Seewiesen Germany
| | - Jana Albrechtová
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Charles University in Prague Faculty of Sciences Department of Zoology Viničná 7CZ-12844 Prague Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Charles University in Prague Faculty of Sciences Department of Zoology Viničná 7CZ-12844 Prague Czech Republic
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard-Gwinner-Strasse 7 82319 Seewiesen Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Eberhard-Gwinner-Strasse 7 82319 Seewiesen Germany
| | - Tomáš Albrecht
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v.v.i. Květná 8CZ-603 65 Brno Czech Republic; Charles University in Prague Faculty of Sciences Department of Zoology Viničná 7CZ-12844 Prague Czech Republic
| |
Collapse
|
34
|
Lüpold S, Simmons LW, Tomkins JL, Fitzpatrick JL. No evidence for a trade-off between sperm length and male premating weaponry. J Evol Biol 2015; 28:2187-95. [PMID: 26332435 DOI: 10.1111/jeb.12742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/15/2023]
Abstract
Male ornaments and armaments that mediate success in mate acquisition and ejaculate traits influencing competitive fertilization success are under intense sexual selection. However, relative investment in these pre- and post-copulatory traits depends on the relative importance of either selection episode and on the energetic costs and fitness gains of investing in these traits. Theoretical and empirical work has improved our understanding of how precopulatory sexual traits and investments in sperm production covary in this context. It has recently also been suggested that male weapon size may trade off with sperm length as another post-copulatory sexual trait, but the theoretical framework for this suggestion remains unclear. We evaluated the relationship between precopulatory armaments and sperm length, previously reported in ungulates, in five taxa as well as meta-analytically. Within and between taxa, we found no evidence for a negative or positive relationship between sperm length and male traits that are important in male-male contest competition. It is important to consider pre- and post-copulatory sexual selection together to understand fitness, and to study investments in different reproductive traits jointly rather than separately. A trade-off between pre- and post-copulatory sexual traits may not manifest itself in sperm length but rather in sperm number or function. Particularly in large-bodied taxa such as ungulates, sperm number is more variable interspecifically and likely to be under more intense selection than sperm length. We discuss our and the previous results in this context.
Collapse
Affiliation(s)
- S Lüpold
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.,Department of Biology, Life Sciences Complex, Syracuse University, Syracuse, NY, USA
| | - L W Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia
| | - J L Tomkins
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia
| | - J L Fitzpatrick
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Tourmente M, Delbarco Trillo J, Roldan ERS. No evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals. J Evol Biol 2015; 28:1816-27. [DOI: 10.1111/jeb.12698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/06/2015] [Accepted: 07/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. Tourmente
- Reproductive Ecology and Biology Group; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - J. Delbarco Trillo
- Reproductive Ecology and Biology Group; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - E. R. S. Roldan
- Reproductive Ecology and Biology Group; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| |
Collapse
|
36
|
Byrne PG, Dunne C, Munn AJ, Silla AJ. Environmental osmolality influences sperm motility activation in an anuran amphibian. J Evol Biol 2015; 28:521-34. [PMID: 25586700 DOI: 10.1111/jeb.12584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 02/01/2023]
Abstract
Evolutionary theory predicts that selection will favour sperm traits that maximize fertilization success in local fertilization environments. In externally fertilizing species, osmolality of the fertilization medium is known to play a critical role in activating sperm motility, but there remains limited evidence for adaptive responses to local osmotic environments. In this study, we used a split-sample experimental design and computer-assisted sperm analysis to (i) determine the optimal medium osmolality for sperm activation (% sperm motility and sperm velocity) in male common eastern froglets (Crinia signifera), (ii) test for among-population variation in percentage sperm motility and sperm velocity at various activation-medium osmolalities and (iii) test for among-population covariation between sperm performance and environmental osmolality. Frogs were obtained from nine populations that differed in environmental osmolality, and sperm samples of males from different populations were subjected to a range of activation-medium osmolalities. Percentage sperm motility was optimal between 10 and 50 mOsm kg(-1) , and sperm velocity was optimal between 10 and 100 mOsm kg(-1) , indicating that C. signifera has evolved sperm that can function across a broad range of osmolalities. As predicted, there was significant among-population variation in sperm performance. Furthermore, there was a significant interaction between activation-medium osmolality and environmental osmolality, indicating that frogs from populations with higher environmental osmolality produced sperm that performed better at higher osmolalities in vitro. This finding may reflect phenotypic plasticity in sperm functioning, or genetic divergence resulting from spatial variation in the strength of directional selection. Both of these explanations are consistent with evolutionary theory, providing some of the first empirical evidence that local osmotic environments can favour adaptive sperm motility responses in species that use an external mode of fertilization.
Collapse
Affiliation(s)
- P G Byrne
- The Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | |
Collapse
|
37
|
Santiago-Moreno J, Castaño C, Toledano-Díaz A, Esteso M, López-Sebastián A, Gañán N, Hierro M, Marchal F, Campo J, Blesbois E. Characterization of red-legged partridge (Alectoris rufa) sperm: Seasonal changes and influence of genetic purity. Poult Sci 2015; 94:80-7. [DOI: 10.3382/ps/peu020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Zeng Y, Lou SL, Liao WB, Jehle R. Evolution of sperm morphology in anurans: insights into the roles of mating system and spawning location. BMC Evol Biol 2014; 14:104. [PMID: 24884745 PMCID: PMC4030069 DOI: 10.1186/1471-2148-14-104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The degree of postcopulatory sexual selection, comprising variable degrees of sperm competition and cryptic female choice, is an important evolutionary force to influence sperm form and function. Here we investigated the effects of mating system and spawning location on the evolution of sperm morphology in 67 species of Chinese anurans. We also examined how relative testes size as an indicator of the level of sperm competition affected variation in sperm morphology across a subset of 29 species. RESULTS We found a significant association of mating system and spawning location with sperm morphology. However, when removing the effects of body mass or absolute testes mass for species for which such data were available, this effect became non-significant. Consistent with predictions from sperm competition theory, we found a positive correlation between sperm morphology and relative testes size after taking phylogeny into account. CONCLUSIONS Our findings suggest that sexual selection in Chinese anurans favors longer sperm when the level of sperm competition is high. Pre-copulatory male-male competition and spawning location, on the other hand, do not affect the evolution of sperm morphology after taking body mass and absolute testes mass into account.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, P. R. China
- China Three Gorges Corporation, Beijing 100038, China
| | - Shang Ling Lou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, P. R. China
| | - Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, P. R. China
| | - Robert Jehle
- School of Environment & Life Sciences, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
39
|
Vrech DE, Olivero PA, Mattoni CI, Peretti AV. Testes mass, but not sperm length, increases with higher levels of polyandry in an ancient sex model. PLoS One 2014; 9:e94135. [PMID: 24736525 PMCID: PMC3988103 DOI: 10.1371/journal.pone.0094135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/14/2014] [Indexed: 11/26/2022] Open
Abstract
There is strong evidence that polyandrous taxa have evolved relatively larger testes than monogamous relatives. Sperm size may either increase or decrease across species with the risk or intensity of sperm competition. Scorpions represent an ancient direct mode with spermatophore-mediated sperm transfer and are particularly well suited for studies in sperm competition. This work aims to analyze for the first time the variables affecting testes mass, ejaculate volume and sperm length, according with their levels of polyandry, in species belonging to the Neotropical family Bothriuridae. Variables influencing testes mass and sperm length were obtained by model selection analysis using corrected Akaike Information Criterion. Testes mass varied greatly among the seven species analyzed, ranging from 1.6 ± 1.1 mg in Timogenes dorbignyi to 16.3 ± 4.5 mg in Brachistosternus pentheri with an average of 8.4 ± 5.0 mg in all the species. The relationship between testes mass and body mass was not significant. Body allocation in testes mass, taken as Gonadosomatic Index, was high in Bothriurus cordubensis and Brachistosternus ferrugineus and low in Timogenes species. The best-fitting model for testes mass considered only polyandry as predictor with a positive influence. Model selection showed that body mass influenced sperm length negatively but after correcting for body mass, none of the variables analyzed explained sperm length. Both body mass and testes mass influenced spermatophore volume positively. There was a strong phylogenetic effect on the model containing testes mass. As predicted by the sperm competition theory and according to what happens in other arthropods, testes mass increased in species with higher levels of sperm competition, and influenced positively spermatophore volume, but data was not conclusive for sperm length.
Collapse
Affiliation(s)
- David E. Vrech
- Institute of Animal Diversity and Ecology (IDEA), Laboratory of Reproductive Biology and Evolution, CONICET - The National University of Cordoba, Cordoba, Argentina
| | - Paola A. Olivero
- Institute of Animal Diversity and Ecology (IDEA), Laboratory of Reproductive Biology and Evolution, CONICET - The National University of Cordoba, Cordoba, Argentina
| | - Camilo I. Mattoni
- Institute of Animal Diversity and Ecology (IDEA), Laboratory of Reproductive Biology and Evolution, CONICET - The National University of Cordoba, Cordoba, Argentina
| | - Alfredo V. Peretti
- Institute of Animal Diversity and Ecology (IDEA), Laboratory of Reproductive Biology and Evolution, CONICET - The National University of Cordoba, Cordoba, Argentina
| |
Collapse
|
40
|
No experimental evidence for sneaking in a west african cichlid fish with extremely long sperm. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2013:714304. [PMID: 24386589 PMCID: PMC3872403 DOI: 10.1155/2013/714304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/10/2013] [Indexed: 11/17/2022]
Abstract
Alternative reproductive tactics are widespread in fishes, increasing the potential for sperm competition. Sperm competition has enormous impact on both variation in sperm numbers and sperm size. In cichlids, the sperm competition risk is very divergent and longer sperm are usually interpreted as adaptation to sperm competition. Here we examined whether sneaking tactics exist in Pelvicachromis taeniatus, a socially monogamous cichlid with biparental brood care from West Africa. The small testis indicates low gonadal investment which is typical for genetically monogamous species. In contrast, sperm length with up to 85 μm is extraordinarily long. We examined the reproductive behaviour of ten groups with a male-biased sex ratio under semi-natural conditions via continuous video recording. We recorded spawning site preferences and correlates of reproductive success and conducted paternity tests using microsatellites. Safe breeding sites that could be successfully defended were preferred. All offspring could be assigned to their parents and no multiple paternities were detected. Body size of spawning pairs predicted their spawning probability and offspring hatching rate suggesting benefits from mating with large individuals. Our study suggests low risk of sperm competition under the given conditions in P. taeniatus and thus first evidence for genetic monogamy in a substrate breeding cichlid.
Collapse
|
41
|
Sharma MD, Minder AM, Hosken DJ. No association between sperm competition and sperm length variation across dung flies (Scathophagidae). J Evol Biol 2013; 26:2341-9. [PMID: 24016061 DOI: 10.1111/jeb.12232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 11/29/2022]
Abstract
Sperm length is extremely variable across species, but a general explanation for this variation is lacking. However, when the risk of sperm competition is high, sperm length is predicted to be less variable within species, and there is some evidence for this in birds and social insects. Here, we examined intraspecific variation in sperm length, both within and between males, and its potential associations with sperm competition risk and variation in female reproductive tract morphology across dung flies. We used two measures of variation in sperm size, and testis size was employed as our index of sperm competition risk. We found no evidence of associations between sperm length variation and sperm competition or female reproductive tract variation. These results suggest that variation in sperm competition risk may not always be associated with variation in sperm morphology, and the cause(s) of sperm length variation in dung flies remains unclear.
Collapse
Affiliation(s)
- M D Sharma
- Centre for Conservation & Ecology, College of Life and Environmental Sciences, University of Exeter, Tremough, Penryn, UK
| | | | | |
Collapse
|
42
|
Firman RC, Bentley B, Bowman F, Marchant FGS, Parthenay J, Sawyer J, Stewart T, O'Shea JE. No evidence of sperm conjugate formation in an Australian mouse bearing sperm with three hooks. Ecol Evol 2013; 3:1856-63. [PMID: 23919134 PMCID: PMC3728929 DOI: 10.1002/ece3.577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 12/01/2022] Open
Abstract
Sperm conjugation occurs when two or more sperm physically unite for motility or transport through the female reproductive tract. In many muroid rodent species, sperm conjugates have been shown to form by a single, conspicuous apical hook located on the sperm head. These sperm “trains” have been reported to be highly variable in size and, despite all the heads pointing in roughly the same direction, exhibit a relatively disordered arrangement. In some species, sperm “trains” have been shown to enhance sperm swimming speed, and thus have been suggested to be advantageous in sperm competition. Here, we assessed the behavior of sperm in the sandy inland mouse (Pseudomys hermannsburgensis), a muroid rodent that bears sperm with three apical hooks. First, we accrued genetic evidence of multiple paternity within “wild” litters to unequivocally show that sperm competition does occur in this species. Following this we utilized both in vitro and in vivo methodologies to determine whether sandy inland mouse sperm conjugate to form motile trains. Our observations of in vitro preparations of active sperm revealed that sandy inland mouse sperm exhibit rapid, progressive motility as individual cells only. Similarly, histological sections of the reproductive tracts of mated females revealed no in vivo evidence of sperm conjugate formation. We conclude that the unique, three-hooked morphology of the sandy inland mouse sperm does not facilitate the formation of motile conjugates, and discuss our findings in relation to the different hypotheses for the evolution of the muroid rodent hook/s.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia Crawley, Western Australia, 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rowe M, Laskemoen T, Johnsen A, Lifjeld JT. Evolution of sperm structure and energetics in passerine birds. Proc Biol Sci 2013; 280:20122616. [PMID: 23282997 DOI: 10.1098/rspb.2012.2616] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spermatozoa exhibit considerable interspecific variability in size and shape. Our understanding of the adaptive significance of this diversity, however, remains limited. Determining how variation in sperm structure translates into variation in sperm performance will contribute to our understanding of the evolutionary diversification of sperm form. Here, using data from passerine birds, we test the hypothesis that longer sperm swim faster because they have more available energy. We found that sperm with longer midpieces have higher levels of intracellular adenosine triphosphate (ATP), but that greater energy reserves do not translate into faster-swimming sperm. Additionally, we found that interspecific variation in sperm ATP concentration is not associated with the level of sperm competition faced by males. Finally, using Bayesian methods, we compared the evolutionary trajectories of sperm morphology and ATP content, and show that both traits have undergone directional evolutionary change. However, in contrast to recent suggestions in other taxa, we show that changes in ATP are unlikely to have preceded changes in morphology in passerine sperm. These results suggest that variable selective pressures are likely to have driven the evolution of sperm traits in different taxa, and highlight fundamental biological differences between taxa with internal and external fertilization, as well as those with and without sperm storage.
Collapse
Affiliation(s)
- Melissah Rowe
- Natural History Museum, University of Oslo, 0318 Oslo, Norway.
| | | | | | | |
Collapse
|
44
|
Immler S, Gonzalez-Voyer A, Birkhead TR. Distinct evolutionary patterns of morphometric sperm traits in passerine birds. Proc Biol Sci 2012; 279:4174-82. [PMID: 22896646 DOI: 10.1098/rspb.2012.1398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The striking diversity of sperm shape across the animal kingdom is still poorly understood. Postcopulatory sexual selection is an important factor driving the evolution of sperm size and shape. Interestingly, morphometric sperm traits, such as the length of the head, midpiece and flagellum, exhibit a strong positive phenotypic correlation across species. Here we used recently developed comparative methods to investigate how such phenotypic correlations between morphometric sperm traits may evolve. We compare allometric relationships and evolutionary trajectories of three morphometric sperm traits (length of head, midpiece and flagellum) in passerine birds. We show that these traits exhibit strong phenotypic correlations but that allometry varies across families. In addition, the evolutionary trajectories of the midpiece and flagellum are similar while the trajectory for head length differs. We discuss our findings in the light of three scenarios accounting for correlated trait evolution: (i) genetic correlation; (ii) concerted response to selection acting simultaneously on different traits; and (iii) phenotypic correlation between traits driven by mechanistic constraints owing to selection on sperm performance. Our results suggest that concerted response to selection is the most likely explanation for the phenotypic correlation between morphometric sperm traits.
Collapse
Affiliation(s)
- Simone Immler
- Department of Animal and Plant Sciences, University of Sheffield, , Western Bank, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
45
|
Female reproductive tract form drives the evolution of complex sperm morphology. Proc Natl Acad Sci U S A 2012; 109:4538-43. [PMID: 22323584 DOI: 10.1073/pnas.1111474109] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coevolution of female mate preferences and exaggerated male traits is a fundamental prediction of many sexual selection models, but has largely defied testing due to the challenges of quantifying the sensory and cognitive bases of female preferences. We overcome this difficulty by focusing on postcopulatory sexual selection, where readily quantifiable female reproductive tract structures are capable of biasing paternity in favor of preferred sperm morphologies and thus represent a proximate mechanism of female mate choice when ejaculates from multiple males overlap within the tract. Here, we use phylogenetically controlled generalized least squares and logistic regression to test whether the evolution of female reproductive tract design might have driven the evolution of complex, multivariate sperm form in a family of aquatic beetles. The results indicate that female reproductive tracts have undergone extensive diversification in diving beetles, with remodeling of size and shape of several organs and structures being significantly associated with changes in sperm size, head shape, gains/losses of conjugation and conjugate size. Further, results of Bayesian analyses suggest that the loss of sperm conjugation is driven by elongation of the female reproductive tract. Behavioral and ultrastructural examination of sperm conjugates stored in the female tract indicates that conjugates anchor in optimal positions for fertilization. The results underscore the importance of postcopulatory sexual selection as an agent of diversification.
Collapse
|
46
|
Calhim S, Double MC, Margraf N, Birkhead TR, Cockburn A. Maintenance of sperm variation in a highly promiscuous wild bird. PLoS One 2011; 6:e28809. [PMID: 22194918 PMCID: PMC3240631 DOI: 10.1371/journal.pone.0028809] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
Postcopulatory sexual selection is an important force in the evolution of reproductive traits, including sperm morphology. In birds, sperm morphology is known to be highly heritable and largely condition-independent. Theory predicts, and recent comparative work corroborates, that strong selection in such traits reduces intraspecific phenotypic variation. Here we show that some variation can be maintained despite extreme promiscuity, as a result of opposing, copulation-role-specific selection forces. After controlling for known correlates of siring success in the superb fairy-wren (Malurus cyaneus), we found that (a) lifetime extra-pair paternity success was associated with sperm with a shorter flagellum and relatively large head, and (b) males whose sperm had a longer flagellum and a relatively smaller head achieved higher within-pair paternity. In this species extrapair copulations occur in the same morning, but preceding, pair copulations during a female's fertile period, suggesting that shorter and relatively larger-headed sperm are most successful in securing storage (defense), whereas the opposite phenotype might be better at outcompeting stored sperm (offense). Furthermore, since cuckolding ability is a major contributor to differential male reproductive output, stronger selection on defense sperm competition traits might explain the short sperm of malurids relative to other promiscuous passerines.
Collapse
Affiliation(s)
- Sara Calhim
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
47
|
Firman RC, Simmons LW. Experimental evolution of sperm competitiveness in a mammal. BMC Evol Biol 2011; 11:19. [PMID: 21251249 PMCID: PMC3031236 DOI: 10.1186/1471-2148-11-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 01/20/2011] [Indexed: 11/17/2022] Open
Abstract
Background When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of Drosophila failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence. Results Adopting the naturally polygamous house mouse (Mus domesticus) as our vertebrate model, we performed an experimental evolution study and observed genetic divergence in sperm quality; males from the polygamous selection lines produced ejaculates with increased sperm numbers and greater sperm motility compared to males from the monogamous lines. Here, after 12 generations of experimental evolution, we conducted competitive matings between males from lineages evolving under sperm competition and males from lineages subject to relaxed selection. We reduced variation in paternity arising from embryo mortality by genotyping embryos in utero at 14 days gestation. Our microsatellite data revealed a significant paternity bias toward males that evolved under the selective regime of sperm competition. Conclusion We provide evidence that the sperm competitiveness phenotype can respond to selection, and show that improved sperm quality translates to greater competitive fertilisation success in house mice.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology (M092), University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia.
| | | |
Collapse
|
48
|
Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One 2010; 5:e13456. [PMID: 20976147 PMCID: PMC2956655 DOI: 10.1371/journal.pone.0013456] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/23/2010] [Indexed: 11/29/2022] Open
Abstract
Background The rate of extrapair paternity is a commonly used index for the risk of sperm competition in birds, but paternity data exist for only a few percent of the approximately 10400 extant species. As paternity analyses require extensive field sampling and costly lab work, species coverage in this field will probably not improve much in the foreseeable future. Recent findings from passerine birds, which constitute the largest avian order (∼5 900 species), suggest that sperm phenotypes carry a signature of sperm competition. Here we examine how well standardized measures of sperm length variation can predict the rate of extrapair paternity in passerine birds. Methodology/Principal Findings We collected sperm samples from 55 passerine species in Canada and Europe for which extrapair paternity rates were already available from either the same (n = 24) or a different (n = 31) study population. We measured the total length of individual spermatozoa and found that both the coefficient of between-male variation (CVbm) and within-male variation (CVwm) in sperm length were strong predictors of the rate of extrapair paternity, explaining as much as 65% and 58%, respectively, of the variation in extrapair paternity among species. However, only the CVbm predictor was independent of phylogeny, which implies that it can readily be converted into a currency of extrapair paternity without the need for phylogenetic correction. Conclusion/Significance We propose the CVbm index as an alternative measure to extrapair paternity for passerine birds. Given the ease of sperm extraction from male birds in breeding condition, and a modest number of sampled males required for a robust estimate, this new index holds a great potential for mapping the risk of sperm competition across a wide range of passerine birds.
Collapse
|
49
|
Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the tree swallow Tachycineta bicolor. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-0962-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Janicke T, Schärer L. Sperm competition affects sex allocation but not sperm morphology in a flatworm. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-0951-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|