1
|
Jaime Tobón LM, Moser T. Bridging the gap between presynaptic hair cell function and neural sound encoding. eLife 2024; 12:RP93749. [PMID: 39718472 DOI: 10.7554/elife.93749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| |
Collapse
|
2
|
Dörje NM, Shvachiy L, Kück F, Outeiro TF, Strenzke N, Beutner D, Setz C. Age-related alterations in efferent medial olivocochlear-outer hair cell and primary auditory ribbon synapses in CBA/J mice. Front Cell Neurosci 2024; 18:1412450. [PMID: 38988659 PMCID: PMC11234844 DOI: 10.3389/fncel.2024.1412450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Hearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan. Methods Organs of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals. For each animal, one ear was used to characterize the synapses between the efferent MOC fibers and the outer hair cells (OHCs), while the contralateral ear was used to analyze the ribbon synapses between inner hair cells (IHCs) and type I afferent nerve fibers of spiral ganglion neurons (SGNs). Each cochlea was separated in apical, middle, and basal turns, respectively. Results The first significant age-related decline in afferent IHC-SGN ribbon synapses was observed in the basal cochlear turn at 14 months, the middle turn at 16 months, and the apical turn at 18 months of age. In contrast, efferent MOC-OHC synapses in CBA/J mice exhibited a less pronounced loss due to aging which only became significant in the basal and middle turns of the cochlea by 20 months of age. Discussion This study illustrates an age-related reduction on efferent MOC innervation of OHCs in CBA/J mice starting at 20 months of age. Our findings indicate that the morphological decline of efferent MOC-OHC synapses due to aging occurs notably later than the decline observed in afferent IHC-SGN ribbon synapses.
Collapse
Affiliation(s)
- Nele Marie Dörje
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Cardiovascular Centre, University of Lisbon, Lisbon, Portugal
| | - Fabian Kück
- University Medical Center Göttingen, Department of Medical Statistics, Core Facility Medical Biometry and Statistical Bioinformatics, Göttingen, Germany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola Strenzke
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
| | - Cristian Setz
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
3
|
Jaime Tobón LM, Moser T. Ca 2+ regulation of glutamate release from inner hair cells of hearing mice. Proc Natl Acad Sci U S A 2023; 120:e2311539120. [PMID: 38019860 DOI: 10.1073/pnas.2311539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca2+ in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca2+-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca2+-influx (power, m: 4.3) when manipulating the [Ca2+] available for SV release by Zn2+-flicker-blocking of the single Ca2+-channel current. In contrast, a near linear Ca2+ dependence (m: 1.2 to 1.5) was observed when varying the number of open Ca2+-channels during deactivating Ca2+-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca2+-channels over the range of physiological depolarizations revealed m: 1.8. These findings indicate that SV release requires ~4 Ca2+-ions to bind to their Ca2+-sensor of fusion. We interpret the near linear Ca2+-dependence of release during manipulations that change the number of open Ca2+-channels to reflect control of SV release by the high [Ca2+] in the Ca2+-nanodomain of one or few nearby Ca2+-channels. We propose that a combination of Ca2+ nanodomain control and supralinear intrinsic Ca2+-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca2+-signals unrelated to afferent synaptic transmission.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| |
Collapse
|
4
|
Drucker B, Goldwyn JH. Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris. BIOLOGICAL CYBERNETICS 2023; 117:143-162. [PMID: 37129628 DOI: 10.1007/s00422-023-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
A principal cue for sound source localization is the difference in arrival times of sounds at an animal's two ears (interaural time difference, ITD). Neurons that process ITDs are specialized to compare the timing of inputs with submillisecond precision. In the barn owl, ITD processing begins in the nucleus laminaris (NL) region of the auditory brain stem. Remarkably, NL neurons are sensitive to ITDs in high-frequency sounds (kilohertz-range). This contrasts with ITD-based sound localization in analogous regions in mammals where ITD sensitivity is typically restricted to lower-frequency sounds. Guided by previous experiments and modeling studies of tone-evoked responses of NL neurons, we propose NL neurons achieve high-frequency ITD sensitivity if they respond selectively to the small-amplitude, high-frequency oscillations in their inputs, and remain relatively non-responsive to mean input level. We use a biophysically based model to study the effects of soma-axon coupling on dynamics and function in NL neurons. First, we show that electrical separation of the soma from the axon region in the neuron enhances high-frequency ITD sensitivity. This soma-axon coupling configuration promotes linear subthreshold dynamics and rapid spike initiation, making the model more responsive to input oscillations, rather than mean input level. Second, we provide new evidence for the essential role of phasic dynamics for high-frequency neural coincidence detection. Transforming our model to the phasic firing mode further tunes the model to respond selectively to the oscillating inputs that carry ITD information. Similar structural and dynamical mechanisms specialize mammalian auditory brain stem neurons for ITD sensitivity, and thus, our work identifies common principles of ITD processing and neural coincidence detection across species and for sounds at widely different frequencies.
Collapse
Affiliation(s)
- Ben Drucker
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 10587, USA
| | - Joshua H Goldwyn
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA.
| |
Collapse
|
5
|
He F, Stevenson IH, Escabí MA. Two stages of bandwidth scaling drives efficient neural coding of natural sounds. PLoS Comput Biol 2023; 19:e1010862. [PMID: 36787338 PMCID: PMC9970106 DOI: 10.1371/journal.pcbi.1010862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/27/2023] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Theories of efficient coding propose that the auditory system is optimized for the statistical structure of natural sounds, yet the transformations underlying optimal acoustic representations are not well understood. Using a database of natural sounds including human speech and a physiologically-inspired auditory model, we explore the consequences of peripheral (cochlear) and mid-level (auditory midbrain) filter tuning transformations on the representation of natural sound spectra and modulation statistics. Whereas Fourier-based sound decompositions have constant time-frequency resolution at all frequencies, cochlear and auditory midbrain filters bandwidths increase proportional to the filter center frequency. This form of bandwidth scaling produces a systematic decrease in spectral resolution and increase in temporal resolution with increasing frequency. Here we demonstrate that cochlear bandwidth scaling produces a frequency-dependent gain that counteracts the tendency of natural sound power to decrease with frequency, resulting in a whitened output representation. Similarly, bandwidth scaling in mid-level auditory filters further enhances the representation of natural sounds by producing a whitened modulation power spectrum (MPS) with higher modulation entropy than both the cochlear outputs and the conventional Fourier MPS. These findings suggest that the tuning characteristics of the peripheral and mid-level auditory system together produce a whitened output representation in three dimensions (frequency, temporal and spectral modulation) that reduces redundancies and allows for a more efficient use of neural resources. This hierarchical multi-stage tuning strategy is thus likely optimized to extract available information and may underlies perceptual sensitivity to natural sounds.
Collapse
Affiliation(s)
- Fengrong He
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Ian H. Stevenson
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Monty A. Escabí
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
6
|
Guthrie OW. Abnormal neural adaptation consequent to combined exposure to jet fuel and noise. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:671-684. [PMID: 35469543 DOI: 10.1080/15287394.2022.2069064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A fundamental property of first-order sensory neurons is the ability to alter their response properties as a function of change in the statistical parameters of an input signal. Such neural adaptation shapes the performance features of contiguous neural circuits that ultimately drive sensory discrimination. The current study focused on whether combined exposure to jet fuel and noise might alter the capacity of the auditory nerve to adapt to stimulus presentation speed. Young hooded Long-Evans 4-5 weeks old male rats were grouped and used in the current experiment. One group was exposed via inhalation to 1000 mg/m3 of jet propulsion fuel for 6 hr per day, 5 days per week for 4 weeks. Another group was exposed to a 5.5-11.3 kHz band-pass noise at 85 dB SPL for 6 hr per day, 5 days per week for 4 weeks. An additional group was simultaneously exposed to both jet fuel and noise. An age-matched group served as control and was not exposed to either jet fuel or noise. After experimental exposures, animals were given 4 weeks to recover and then assessed for neural adaptation. Both slow and fast rectangular voltage pulses were employed to elicit neuroelectric activity from the animals. Data demonstrated significant neural adaptation (1.46 μV shift) among controls, where neural activity decreased as the stimulus presentation speed rose from 10 to 100 per sec. This effect might also be observed in animals in the jet fuel treated and rats in the noise-exposed group. However, animals who were simultaneously exposed to both jet fuel and noise failed to exhibit neural adaptation. This abnormality appeared to be masked because independent slow and fast stimuli produced similar neural activity between controls and rats exposed to both jet fuel and noise. Therefore, neural adaptation assays may further be developed to unmask silent neurotoxicity consequent to physiochemical exposures.
Collapse
Affiliation(s)
- O'Neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
7
|
The Quantum Tunneling of Ions Model Can Explain the Pathophysiology of Tinnitus. Brain Sci 2022; 12:brainsci12040426. [PMID: 35447958 PMCID: PMC9025927 DOI: 10.3390/brainsci12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Tinnitus is a well-known pathological entity in clinical practice. However, the pathophysiological mechanisms behind tinnitus seem to be elusive and cannot provide a comprehensive understanding of its pathogenesis and clinical manifestations. Hence, in the present study, we explore the mathematical model of ions’ quantum tunneling to propose an original pathophysiological mechanism for the sensation of tinnitus. The present model focuses on two major aspects: The first aspect is the ability of ions, including sodium, potassium, and calcium, to depolarize the membrane potential of inner hair cells and the neurons of the auditory pathway. This membrane depolarization is induced via the quantum tunneling of ions through closed voltage-gated channels. The state of membrane depolarization can be a state of hyper-excitability or hypo-excitability, depending on the degree of depolarization. Both of these states aid in understanding the pathophysiology of tinnitus. The second aspect is the quantum tunneling signals between the demyelinated neurons of the auditory pathway. These signals are mediated via the quantum tunneling of potassium ions, which exit to the extracellular fluid during an action potential event. These quantum signals can be viewed as a “quantum synapse” between neurons. The formation of quantum synapses results in hyper-excitability among the demyelinated neurons of the auditory pathway. Both of these aspects augment and amplify the electrical signals in the auditory pathway and result in a loss of the spatiotemporal fidelity of sound signals going to the brain centers. The brain interprets this hyper-excitability and loss of spatiotemporal fidelity as tinnitus. Herein, we show mathematically that the quantum tunneling of ions can depolarize the membrane potential of the inner hair cells and neurons of the auditory pathway. Moreover, we calculate the probability of action potential induction in the neurons of the auditory pathway generated by the quantum tunneling signals of potassium ions.
Collapse
|
8
|
Oluwole OG, James K, Yalcouye A, Wonkam A. Hearing loss and brain disorders: A review of multiple pathologies. Open Med (Wars) 2021; 17:61-69. [PMID: 34993346 PMCID: PMC8678477 DOI: 10.1515/med-2021-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Several causative factors are associated with hearing loss (HL) and brain disorders. However, there are many unidentified disease modifiers in these conditions. Our study summarised the most common brain disorders associated with HL and highlighted mechanisms of pathologies. We searched the literature for published articles on HL and brain disorders. Alzheimer's disease/dementia, Parkinson's disease, cognitive impairment, autism spectrum disorder, ataxia, epilepsy, stroke, and hypoxic-ischaemic encephalopathy majorly co-interact with HL. The estimated incidence rate was 113 per 10,000 person-years. Genetic, epigenetic, early life/neonatal stress, hypoxia, inflammation, nitric oxide infiltration, endoplasmic reticulum stress, and excess glutamate were the distinguished modifiers identified. Various mechanisms like adhesion molecules, transport proteins, hair cell apoptosis, and neurodegeneration have been implicated in these conditions and are serving as potential targets for therapies. To improve the quality of life of patients, these understandings will improve clinical diagnoses and management of HL and brain disorders.
Collapse
Affiliation(s)
- Oluwafemi Gabriel Oluwole
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, 3.14 Wernher & Beit North Building, P.O Box 7925, Cape Town, South Africa
| | - Kili James
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, 3.14 Wernher & Beit North Building, P.O Box 7925, Cape Town, South Africa
| | - Abdoulaye Yalcouye
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, 3.14 Wernher & Beit North Building, P.O Box 7925, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, 3.14 Wernher & Beit North Building, P.O Box 7925, Cape Town, South Africa
| |
Collapse
|
9
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
10
|
Hintze A, Gültas M, Semmelhack EA, Wichmann C. Ultrastructural maturation of the endbulb of Held active zones comparing wild-type and otoferlin-deficient mice. iScience 2021; 24:102282. [PMID: 33851098 PMCID: PMC8022229 DOI: 10.1016/j.isci.2021.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Endbulbs of Held are located in the anteroventral cochlear nucleus and present the first central synapses of the auditory pathway. During development, endbulbs mature functionally to enable rapid and powerful synaptic transmission with high temporal precision. This process is accompanied by morphological changes of endbulb terminals. Loss of the hair cell-specific protein otoferlin (Otof) abolishes neurotransmission in the cochlea and results in the smaller endbulb of Held terminals. Thus, peripheral hearing impairment likely also leads to alterations in the morphological synaptic vesicle (SV) pool size at individual endbulb of Held active zones (AZs). Here, we investigated endbulb AZs in pre-hearing, young, and adult wild-type and Otof−/− mice. During maturation, SV numbers at endbulb AZs increased in wild-type mice but were found to be reduced in Otof−/− mice. The SV population at a distance of 0–15 nm was most strongly affected. Finally, overall SV diameters decreased in Otof−/− animals during maturation. Maturation of wt endbulb of Held active zones leads to more synaptic vesicles At endbulbs of otoferlin knockout mice, synaptic vesicles decline with age Mainly two distinct synaptic vesicle populations are affected Synaptic vesicles sizes are reduced in six-month-old otoferlin knockout animals
Collapse
Affiliation(s)
- Anika Hintze
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Esther A Semmelhack
- Developmental, Neural, and Behavioral Biology MSc/PhD Program, University of Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Özçete ÖD, Moser T. A sensory cell diversifies its output by varying Ca 2+ influx-release coupling among active zones. EMBO J 2020; 40:e106010. [PMID: 33346936 PMCID: PMC7917556 DOI: 10.15252/embj.2020106010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch‐clamp recordings with dual‐color Rhod‐FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close‐by synapses.
Collapse
Affiliation(s)
- Özge D Özçete
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Encoding of a binaural speech stimulus at the brainstem level in middle-aged adults. The Journal of Laryngology & Otology 2020; 134:1044-1051. [PMID: 33153510 DOI: 10.1017/s0022215120002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Binaural hearing is facilitated by neural interactions in the auditory pathway. Ageing results in impairment of localisation and listening in noisy situations without any significant hearing loss. The present study focused on comparing the binaural encoding of a speech stimulus at the subcortical level in middle-aged versus younger adults, based on speech-evoked auditory brainstem responses. METHODS Thirty participants (15 young adults and 15 middle-aged adults) with normal hearing sensitivity (less than 15 dB HL) participated in the study. The speech-evoked auditory brainstem response was recorded monaurally and binaurally with a 40-ms /da/ stimulus. Fast Fourier transform analysis was utilised. RESULTS An independent sample t-test revealed a significant difference between the two groups in fundamental frequency (F0) amplitude recorded with binaural stimulation. CONCLUSION The present study suggested that ageing results in degradation of F0 encoding, which is essential for the perception of speech in noise.
Collapse
|
13
|
Yuan X, Liu H, Li Y, Li W, Yu H, Shen X. Ribbon Synapses and Hearing Impairment in Mice After in utero Sevoflurane Exposure. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2685-2693. [PMID: 32753847 PMCID: PMC7354911 DOI: 10.2147/dddt.s253031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Introduction In utero, exposure to sevoflurane (a commonly used inhalation anesthetic) can lead to hearing impairment in offspring mice, but the underlying impairment mechanism is not known. Materials and Methods Day-15 pregnant mice were treated with 2.5% sevoflurane for 2 h to investigate sevoflurane ototoxicity. Cochleae from offspring mice were harvested for hair-cell and ribbon-synapse assessments. Hearing in offspring mice was assessed at postnatal day 30 using an auditory brainstem-response (ABR) test. Cochlear-explant cultures from offspring mice were exposed to 2.5% sevoflurane for 6 h. Immediately after treatment, explants were assessed for hair-cell morphology, mitochondrial oxidative stress, and autophagy. Results In utero, sevoflurane exposure impaired hearing in the offspring is demonstrated by a decrease in ABR wave I amplitudes, a marker for ribbon-synapse functionality. Sevoflurane exposure caused no obvious damage to hair cells, but cochlear ribbon synapses were reduced in postnatal day 15 offspring, and partially recovered by postnatal day 30. Sevoflurane treatment also increased mitochondrial reactive-oxygen species stress and decreased autophagy in the cochlear explants. Conclusion These results suggest that oxidative stress and reduced autophagy may underly ribbon-synapse involvement in sevoflurane-induced hearing loss.
Collapse
Affiliation(s)
- Xia Yuan
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Hongjun Liu
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Yufeng Li
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Wen Li
- Research Center, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Huiqian Yu
- Department of Otorhinolaryngology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Xia Shen
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| |
Collapse
|
14
|
Markowitz AL, Kalluri R. Gradients in the biophysical properties of neonatal auditory neurons align with synaptic contact position and the intensity coding map of inner hair cells. eLife 2020; 9:e55378. [PMID: 32639234 PMCID: PMC7343388 DOI: 10.7554/elife.55378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Sound intensity is encoded by auditory neuron subgroups that differ in thresholds and spontaneous rates. Whether variations in neuronal biophysics contributes to this functional diversity is unknown. Because intensity thresholds correlate with synaptic position on sensory hair cells, we combined patch clamping with fiber labeling in semi-intact cochlear preparations in neonatal rats from both sexes. The biophysical properties of auditory neurons vary in a striking spatial gradient with synaptic position. Neurons with high thresholds to injected currents contact hair cells at synaptic positions where neurons with high thresholds to sound-intensity are found in vivo. Alignment between in vitro and in vivo thresholds suggests that biophysical variability contributes to intensity coding. Biophysical gradients were evident at all ages examined, indicating that cell diversity emerges in early post-natal development and persists even after continued maturation. This stability enabled a remarkably successful model for predicting synaptic position based solely on biophysical properties.
Collapse
Affiliation(s)
- Alexander L Markowitz
- Neuroscience Graduate Program, University of Southern CaliforniaLos AngelesUnited States
- Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Radha Kalluri
- Neuroscience Graduate Program, University of Southern CaliforniaLos AngelesUnited States
- Department of Otolaryngology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
15
|
Abstract
Cochlear damage is often thought to result in hearing thresholds shift, whether permanent or temporary. The report of tinnitus in the absence of any clear deficit in cochlear function was believed to indicate that hearing loss and tinnitus, while comorbid, could arise independently from each other. In all likelihood, tinnitus that is not of central nervous system origin is associated with hearing loss. As a correlate, although a treatment of most forms of tinnitus will likely emerge in the years to come, curing tinnitus will first require curing hearing loss.
Collapse
Affiliation(s)
- Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erika L Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Didier Depireux
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; R&D OtolithLabs, Washington, DC, USA.
| |
Collapse
|
16
|
Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports. J Clin Med 2020; 9:jcm9041074. [PMID: 32290039 PMCID: PMC7230308 DOI: 10.3390/jcm9041074] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by deteriorated speech perception, despite relatively preserved pure-tone detection thresholds. Affected individuals usually present with abnormal auditory brainstem responses (ABRs), but normal otoacoustic emissions (OAEs). These electrophysiological characteristics have led to the hypothesis that ANSD may be caused by various dysfunctions at the cochlear inner hair cell (IHC) and spiral ganglion neuron (SGN) levels, while the activity of outer hair cells (OHCs) is preserved, resulting in discrepancies between pure-tone and speech comprehension thresholds. The exact prevalence of ANSD remains unknown; clinical findings show a large variability among subjects with hearing impairment ranging from mild to profound hearing loss. A wide range of prenatal and postnatal etiologies have been proposed. The study of genetics and of the implicated sites of lesion correlated with clinical findings have also led to a better understanding of the molecular mechanisms underlying the various forms of ANSD, and may guide clinicians in better screening, assessment and treatment of ANSD patients. Besides OAEs and ABRs, audiological assessment includes stapedial reflex measurements, supraliminal psychoacoustic tests, electrocochleography (ECochG), auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs). Hearing aids are indicated in the treatment of ANSD with mild to moderate hearing loss, whereas cochlear implantation is the first choice of treatment in case of profound hearing loss, especially in case of IHC presynaptic disorders, or in case of poor auditory outcomes with conventional hearing aids.
Collapse
|
17
|
Soto J, Castaneda-Villa N, Gil A, Gonzalez-Velez V. Simulation of the efficiency of inner hair cell secretion in the auditory pathway. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2332-2335. [PMID: 31946367 DOI: 10.1109/embc.2019.8857293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sound coding involves several stages of processing along the auditory path. Specifically, the Inner Hair Cells (IHC) act as sensory receptors and transduce acoustic information -frequency, intensity and duration of the stimulus- into neuronal signals. In this work, a stochastic model was implemented to achieve a better understanding of the IHC-auditory nerve synapse, specifically, the process of Ready Releasable Pool (RRP) vesicle exocytosis, a complicated process to study experimentally because current protocols do not provide adequate temporal resolution, in the order of milliseconds. The presented model allows predicting the efficiency of glutamate release towards explaining maturation changes or disease impacts in the auditory pathway.
Collapse
|
18
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Rybalko N, Mitrovic D, Šuta D, Bureš Z, Popelář J, Syka J. Behavioral evaluation of auditory function abnormalities in adult rats with normal hearing thresholds that were exposed to noise during early development. Physiol Behav 2019; 210:112620. [DOI: 10.1016/j.physbeh.2019.112620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/07/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
20
|
Viral Transfer of Mini-Otoferlins Partially Restores the Fast Component of Exocytosis and Uncovers Ultrafast Endocytosis in Auditory Hair Cells of Otoferlin Knock-Out Mice. J Neurosci 2019; 39:3394-3411. [PMID: 30833506 DOI: 10.1523/jneurosci.1550-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023] Open
Abstract
Transmitter release at auditory inner hair cell (IHC) ribbon synapses involves exocytosis of glutamatergic vesicles during voltage activation of L-type Cav1.3 calcium channels. At these synapses, the fast and indefatigable release of synaptic vesicles by IHCs is controlled by otoferlin, a six-C2-domain (C2-ABCDEF) protein that functions as a high-affinity Ca2+ sensor. The molecular events by which each otoferlin C2 domain contributes to the regulation of the synaptic vesicle cycle in IHCs are still incompletely understood. Here, we investigate their role using a cochlear viral cDNA transfer approach in vivo, where IHCs of mouse lacking otoferlin (Otof -/- mice of both sexes) were virally transduced with cDNAs of various mini-otoferlins. Using patch-clamp recordings and membrane capacitance measurements, we show that the viral transfer of mini-otoferlin containing C2-ACEF, C2-EF, or C2-DEF partially restores the fast exocytotic component in Otof -/- mouse IHCs. The restoration was much less efficient with C2-ACDF, underlining the importance of the C2-EF domain. None of the mini-otoferlins tested restored the sustained component of vesicle release, explaining the absence of hearing recovery. The restoration of the fast exocytotic component in the transduced Otof -/- IHCs was also associated with a recovery of Ca2+ currents with normal amplitude and fast time inactivation, confirming that the C-terminal C2 domains of otoferlin are essential for normal gating of Cav1.3 channels. Finally, the reintroduction of the mini-otoferlins C2-EF, C2-DEF, or C2-ACEF allowed us to uncover and characterize for the first time a dynamin-dependent ultrafast endocytosis in IHCs.SIGNIFICANCE STATEMENT Otoferlin, a large six-C2-domain protein, is essential for synaptic vesicle exocytosis at auditory hair cell ribbon synapses. Here, we show that the viral expression of truncated forms of otoferlin (C2-EF, C2-DEF, and C2-ACEF) can partially rescue the fast and transient release component of exocytosis in mouse hair cells lacking otoferlin, yet cannot sustain exocytosis after long repeated stimulation. Remarkably, these hair cells also display a dynamin-dependent ultrafast endocytosis. Overall, our study uncovers the pleiotropic role of otoferlin in the hair cell synaptic vesicle cycle, notably in triggering both ultrafast exocytosis and endocytosis and recruiting synaptic vesicles to the active zone.
Collapse
|
21
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
22
|
Haider HF, Bojić T, Ribeiro SF, Paço J, Hall DA, Szczepek AJ. Pathophysiology of Subjective Tinnitus: Triggers and Maintenance. Front Neurosci 2018; 12:866. [PMID: 30538616 PMCID: PMC6277522 DOI: 10.3389/fnins.2018.00866] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tinnitus is the conscious perception of a sound without a corresponding external acoustic stimulus, usually described as a phantom perception. One of the major challenges for tinnitus research is to understand the pathophysiological mechanisms triggering and maintaining the symptoms, especially for subjective chronic tinnitus. Our objective was to synthesize the published literature in order to provide a comprehensive update on theoretical and experimental advances and to identify further research and clinical directions. We performed literature searches in three electronic databases, complemented by scanning reference lists from relevant reviews in our included records, citation searching of the included articles using Web of Science, and manual searching of the last 6 months of principal otology journals. One-hundred and thirty-two records were included in the review and the information related to peripheral and central mechanisms of tinnitus pathophysiology was collected in order to update on theories and models. A narrative synthesis examined the main themes arising from this information. Tinnitus pathophysiology is complex and multifactorial, involving the auditory and non-auditory systems. Recent theories assume the necessary involvement of extra-auditory brain regions for tinnitus to reach consciousness. Tinnitus engages multiple active dynamic and overlapping networks. We conclude that advancing knowledge concerning the origin and maintenance of specific tinnitus subtypes origin and maintenance mechanisms is of paramount importance for identifying adequate treatment.
Collapse
Affiliation(s)
- Haúla Faruk Haider
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sara F Ribeiro
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - João Paço
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Deborah A Hall
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.,University of Nottingham Malaysia, Semeniyh, Malaysia
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Cui W, Wang H, Cheng Y, Ma X, Lei Y, Ruan X, Shi L, Lv M. Long‑term treatment with salicylate enables NMDA receptors and impairs AMPA receptors in C57BL/6J mice inner hair cell ribbon synapse. Mol Med Rep 2018; 19:51-58. [PMID: 30431080 PMCID: PMC6297756 DOI: 10.3892/mmr.2018.9624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/09/2018] [Indexed: 01/08/2023] Open
Abstract
Salicylate is widely used to produce animal models of tinnitus in mice and/or rats. The side effects on auditory function, including hearing loss and tinnitus, are considered the results of the auditory nerve dysfunction. A recent study indicated that chronic treatment with salicylate for several weeks reduces compressed action potential amplitude, which is contradictory to the studies reporting excessive activation of N-methyl-D-aspartate receptors (NMDAR) in tinnitus-induced animals. The specific aims of the experiment were to detect the effect of salicylate on the inner hair cells (IHCs), ribbon synapse, as well as the association between the hearing threshold and the number of mismatched ribbon synapses. In the present study, mice were injected intraperitoneally with a low dose of salicylate (200 mg/kg) for 14 days. The auditory brainstem response and otoacoustic emission were measured to assess auditory function of the mice. The postsynaptic regions of IHC were identified with two types of immunostaining targets: Postsynaptic density protein 95 and Glu2/3. The number of spheres was counted and the synapses were reconstructed in 3-dimensional images. Increases in distortion product otoacoustic emissions amplitudes of the salicylate group were detected, however, an elevation in the hearing threshold was also observed. A mismatch between pre-and post-ribbon synapses was observed. In addition, the cochlear components, including the numbers of outer hair cells and IHCs, were unlikely to be affected by salicylate. IHC ribbon synapses were more susceptible to salicylate stimuli. Furthermore, mismatch of pre- and post-ribbon synapses may indicate a competitive inhibition between NMDAR and α-amino-3-hydroxy-5-methyl-4-isoxa-zole-propionate receptors and dysfunction of ribbon synapses.
Collapse
Affiliation(s)
- Wanming Cui
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| | - Haolin Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| | - Yu Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| | - Xiaorui Ma
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| | - Yu Lei
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| | - Xingxing Ruan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| | - Lin Shi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| | - Mei Lv
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116013, P.R. China
| |
Collapse
|
24
|
Horst JW, McGee J, Walsh EJ. Input-output curves of low and high spontaneous rate auditory nerve fibers are exponential near threshold. Hear Res 2018; 367:195-206. [DOI: 10.1016/j.heares.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
|
25
|
Zhang L, Engler S, Koepcke L, Steenken F, Köppl C. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells. Hear Res 2018; 364:81-89. [DOI: 10.1016/j.heares.2018.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022]
|
26
|
Edderkaoui B, Sargsyan L, Hetrick A, Li H. Deficiency of Duffy Antigen Receptor for Chemokines Ameliorated Cochlear Damage From Noise Exposure. Front Mol Neurosci 2018; 11:173. [PMID: 29899689 PMCID: PMC5988871 DOI: 10.3389/fnmol.2018.00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023] Open
Abstract
Cochlear inflammatory response to various environmental insults, including acoustic and ototoxic overexposures, has been increasingly become a topic of interest. As the immune response is associated with both pathology and protection, targeting specific components of the immune response is expected to dissect the relationships between cellular damage and inflammation-associated protection and repair in the cochlea. Duffy antigen receptor for chemokines (DARC) is a member of a group of atypical chemokine receptors, and essential for chemokine-regulated leukocyte/neutrophil trafficking during inflammation. Previous studies have reported that Darc deficiency alters chemokine bioavailability and leukocyte homeostasis, leading to significant anti-inflammatory effects in tissues following injury. In this study, we have used Darc knockout mice to determine the impact of a deficiency in this gene on cochlear development, as well as function in cochlea subjected to various stresses. We observed that DARC is not required for normal development of cochlear function, as evidenced by typical hearing sensitivity in juvenile Darc-KO mice, as compared to wild type (WT) C57BL/6 mice. However, Darc-KO mice exhibited improved hearing recovery after intense noise exposure when compared to wild-type. The auditory brainstem response (ABR) threshold shift between KO and WT mice was most obvious at 1-week post-noise exposure. At cochlear locations above the frequency range of the energy band of damaging noise, both hair cell survival and ribbon synapse density were improved in Darc deficient animals. In addition, the mRNA levels of some major inflammatory effectors, including Mcp-1 and Gdf15, were altered in Darc-KO mice compared to control mice at 1, 3 and 7 days post-noise exposure. These data collectively suggest that the normal Darc-dependent inflammatory response slows down the process of hearing recovery, and exacerbates cellular damage in the cochlea after noise exposure.
Collapse
Affiliation(s)
- Bouchra Edderkaoui
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Alisa Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
27
|
Snidal CA, Li Q, Elliott BB, Mah HKH, Chen RHC, Gardezi SR, Stanley EF. Molecular Characterization of an SV Capture Site in the Mid-Region of the Presynaptic CaV2.1 Calcium Channel C-Terminal. Front Cell Neurosci 2018; 12:127. [PMID: 29867360 PMCID: PMC5958201 DOI: 10.3389/fncel.2018.00127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/23/2018] [Indexed: 01/28/2023] Open
Abstract
Neurotransmitter is released from presynaptic nerve terminals at fast-transmitting synapses by the action potential-gating of voltage dependent calcium channels (CaV), primarily of the CaV2.1 and CaV2.2 types. Entering Ca2+ diffuses to a nearby calcium sensor associated with a docked synaptic vesicle (SV) and initiates its fusion and discharge. Our previous findings that single CaVs can gate SV fusion argued for one or more tethers linking CaVs to docked SVs but the molecular nature of these tethers have not been established. We recently developed a cell-free, in vitro biochemical assay, termed SV pull-down (SV-PD), to test for SV binding proteins and used this to demonstrate that CaV2.2 or the distal third of its C-terminal can capture SVs. In subsequent reports we identified the binding site and characterized an SV binding motif. In this study, we set out to test if a similar SV-binding mechanism exists in the primary presynaptic channel type, CaV2.1. We cloned the chick variant of this channel and to our surprise found that it lacked the terminal third of the C-terminal, ruling out direct correlation with CaV2.2. We used SV-PD to identify an SV binding site in the distal half of the CaV2.1 C-terminal, a region that corresponds to the central third of the CaV2.2 C-terminal. Mutant fusion proteins combined with motif-blocking peptide strategies identified two domains that could account for SV binding; one in an alternatively spliced region (E44) and a second more distal site. Our findings provide a molecular basis for CaV2.1 SV binding that can account for recent evidence of C-terminal-dependent transmitter release modulation and that may contribute to SV tethering within the CaV2.1 single channel Ca2+ domain.
Collapse
Affiliation(s)
- Christine A Snidal
- Presynaptic Mechanisms Laboratory, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Qi Li
- Presynaptic Mechanisms Laboratory, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Brittany B Elliott
- Presynaptic Mechanisms Laboratory, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Henry K-H Mah
- Presynaptic Mechanisms Laboratory, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert H C Chen
- Presynaptic Mechanisms Laboratory, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sabiha R Gardezi
- Presynaptic Mechanisms Laboratory, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Elise F Stanley
- Presynaptic Mechanisms Laboratory, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
28
|
Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations. J Neurosci 2017; 36:10584-10597. [PMID: 27733610 DOI: 10.1523/jneurosci.1187-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
Auditory nerve fibers (ANFs) exhibit a range of spontaneous firing rates (SRs) that are inversely correlated with threshold for sounds. To probe the underlying mechanisms and time course of SR differentiation during cochlear maturation, loose-patch extracellular recordings were made from ANF dendrites using acutely excised rat cochlear preparations of different ages after hearing onset. Diversification of SRs occurred mostly between the second and the third postnatal week. Statistical properties of ANF spike trains showed developmental changes that approach adult-like features in older preparations. Comparison with intracellularly recorded EPSCs revealed that most properties of ANF spike trains derive from the characteristics of presynaptic transmitter release. Pharmacological tests and waveform analysis showed that endogenous firing produces some fraction of ANF spikes, accounting for their unusual properties; the endogenous firing diminishes gradually during maturation. Paired recordings showed that ANFs contacting the same inner hair cell could have different SRs, with no correlation in their spike timing. SIGNIFICANCE STATEMENT The inner hair cell (IHC)/auditory nerve fiber (ANF) synapse is the first synapse of the auditory pathway. Remarkably, each IHC is the sole partner of 10-30 ANFs with a range of spontaneous firing rates (SRs). Low and high SR ANFs respond to sound differently, and both are important for encoding sound information across varying acoustical environments. Here we demonstrate SR diversification after hearing onset by afferent recordings in acutely excised rat cochlear preparations. We describe developmental changes in spike train statistics and endogenous firing in immature ANFs. Dual afferent recordings provide the first direct evidence that fibers with different SRs contact the same IHCs and do not show correlated spike timing at rest. These results lay the groundwork for understanding the differential sensitivity of ANFs to acoustic trauma.
Collapse
|
29
|
Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear Res 2017; 349:138-147. [PMID: 28087419 PMCID: PMC5438769 DOI: 10.1016/j.heares.2017.01.003] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Common causes of hearing loss in humans - exposure to loud noise or ototoxic drugs and aging - often damage sensory hair cells, reflected as elevated thresholds on the clinical audiogram. Recent studies in animal models suggest, however, that well before this overt hearing loss can be seen, a more insidious, but likely more common, process is taking place that permanently interrupts synaptic communication between sensory inner hair cells and subsets of cochlear nerve fibers. The silencing of affected neurons alters auditory information processing, whether accompanied by threshold elevations or not, and is a likely contributor to a variety of perceptual abnormalities, including speech-in-noise difficulties, tinnitus and hyperacusis. Work described here will review structural and functional manifestations of this cochlear synaptopathy and will consider possible mechanisms underlying its appearance and progression in ears with and without traditional 'hearing loss' arising from several common causes in humans.
Collapse
MESH Headings
- Animals
- Auditory Perception
- Auditory Threshold
- Cochlear Nerve/metabolism
- Cochlear Nerve/pathology
- Cochlear Nerve/physiopathology
- Glutamic Acid/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/psychology
- Hearing Loss, Sensorineural/metabolism
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/psychology
- Humans
- Nerve Degeneration
- Noise/adverse effects
- Risk Factors
- Synapses/metabolism
- Synapses/pathology
- Synaptic Transmission
Collapse
Affiliation(s)
- M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston MA, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston MA, USA
| | - Sharon G Kujawa
- Department of Otology and Laryngology, Harvard Medical School, Boston MA, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston MA, USA.
| |
Collapse
|
30
|
Sanju HK, Bohra V, Sinha SK. Speech evoked auditory brainstem response and gap detection threshold in middle-aged individual. Eur Arch Otorhinolaryngol 2016; 274:2041-2048. [PMID: 27885514 DOI: 10.1007/s00405-016-4402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
Abstract
This study aimed at characterizing the gap detection threshold (GDT) and speech evoked ABR (SABR) in younger and middle-aged individuals. Two groups of subjects were participated in the study which includes 15 young adults in the age range of 15-25 years and 15 middle-aged individuals in the age range of 40-60 years. SABR with stimulus/da/of 40 ms and GDT were investigated on both groups. For SABR, Mann-Whitney U test revealed that ageing has significantly adverse effect on the encoding of F1 and F2 at brainstem level. However, no significant effect of ageing (till middle age) on the encoding of F0 was observed in present study. Mann-Whitney U test also showed significant longer latency of wave V in middle-aged individuals compared to younger adults. Furthermore, GDT was significantly better in younger adults compared to middle-aged individuals according to Mann-Whitney U test. This study also revealed no significant correlation between GDT and F0, F1, F2 for younger as well as middle-aged individuals. The findings of this study showed poor encoding of certain aspects of speech at brainstem level in middle-aged individuals compared to younger adults. This study also revealed deterioration of auditory processes in middle-aged individuals.
Collapse
Affiliation(s)
- Himanshu Kumar Sanju
- Department of Audiology and Speech Language Pathology, Amity Medical School, Amity University, Gurgaon, 122413, Haryana, India.
| | - Vaishnavi Bohra
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, 570006, Karnataka, India
| | - Sujeet Kumar Sinha
- Department of Audiology, All India Institute of Speech and Hearing, Mysore, 570006, Karnataka, India
| |
Collapse
|
31
|
Abstract
The inner ear uses specialized synapses to indefatigably transmit sound information from hair cells to spiral ganglion neurons at high rates with submillisecond precision. The emerging view is that hair cell synapses achieve their demanding function by employing an unconventional presynaptic molecular composition. Hair cell active zones hold the synaptic ribbon, an electron-dense projection made primarily of RIBEYE, which tethers a halo of synaptic vesicles and is thought to enable a large readily releasable pool of vesicles and to contribute to its rapid replenishment. Another important presynaptic player is otoferlin, coded by a deafness gene, which assumes a multi-faceted role in vesicular exocytosis and, when disrupted, causes auditory synaptopathy. A functional peculiarity of hair cell synapses is the massive heterogeneity in the sizes and shapes of excitatory postsynaptic currents. Currently, there is controversy as to whether this reflects multiquantal release with a variable extent of synchronization or uniquantal release through a dynamic fusion pore. Another important question in the field has been the precise mechanisms of coupling presynaptic Ca
2+ channels and vesicular Ca
2+ sensors. This commentary provides an update on the current understanding of sound encoding in the cochlea with a focus on presynaptic mechanisms.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; Auditory Neuroscience and Optogenetics Group, German Primate Center, Göttingen, Germany
| | - Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
32
|
Abstract
Sensorineural hearing impairment is the most common form of hearing loss, and encompasses pathologies of the cochlea and the auditory nerve. Hearing impairment caused by abnormal neural encoding of sound stimuli despite preservation of sensory transduction and amplification by outer hair cells is known as 'auditory neuropathy'. This term was originally coined for a specific type of hearing impairment affecting speech comprehension beyond changes in audibility: patients with this condition report that they "can hear but cannot understand". This type of hearing impairment can be caused by damage to the sensory inner hair cells (IHCs), IHC ribbon synapses or spiral ganglion neurons. Human genetic and physiological studies, as well as research on animal models, have recently shown that disrupted IHC ribbon synapse function--resulting from genetic alterations that affect presynaptic glutamate loading of synaptic vesicles, Ca(2+) influx, or synaptic vesicle exocytosis--leads to hearing impairment termed 'auditory synaptopathy'. Moreover, animal studies have demonstrated that sound overexposure causes excitotoxic loss of IHC ribbon synapses. This mechanism probably contributes to hearing disorders caused by noise exposure or age-related hearing loss. This Review provides an update on recently elucidated sensory, synaptic and neural mechanisms of hearing impairment, their corresponding clinical findings, and discusses current rehabilitation strategies as well as future therapies.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Arnold Starr
- Center for Hearing Research, University of California, Irvine, California 92697, USA
| |
Collapse
|
33
|
Rutherford MA, Moser T. The Ribbon Synapse Between Type I Spiral Ganglion Neurons and Inner Hair Cells. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Abstract
The first synapses transmitting visual information contain an unusual organelle, the ribbon, which is involved in the transport and priming of vesicles to be released at the active zone. The ribbon is one of many design features that allow efficient refilling of the active zone, which in turn enables graded changes in membrane potential to be transmitted using a continuous mode of neurotransmitter release. The ribbon also plays a key role in supplying vesicles for rapid and transient bursts of release that signal fast changes, such as the onset of light. We increasingly understand how the physiological properties of ribbon synapses determine basic transformations of the visual signal and, in particular, how the process of refilling the active zone regulates the gain and adaptive properties of the retinal circuit. The molecular basis of ribbon function is, however, far from clear.
Collapse
Affiliation(s)
- Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom;
| | - Frank Schmitz
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Medical School Saarland University, Homburg/Saar, Germany;
| |
Collapse
|
35
|
Fuchs PA, Glowatzki E. Synaptic studies inform the functional diversity of cochlear afferents. Hear Res 2015; 330:18-25. [PMID: 26403507 DOI: 10.1016/j.heares.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 11/25/2022]
Abstract
Type I and type II cochlear afferents differ markedly in number, morphology and innervation pattern. The predominant type I afferents transmit the elemental features of acoustic information to the central nervous system. Excitation of these large diameter myelinated neurons occurs at a single ribbon synapse of a single inner hair cell. This solitary transmission point depends on efficient vesicular release that can produce large, rapid, suprathreshold excitatory postsynaptic potentials. In contrast, the many fewer, thinner, unmyelinated type II afferents cross the tunnel of Corti, turning basally for hundreds of microns to form contacts with ten or more outer hair cells. Although each type II afferent is postsynaptic to many outer hair cells, transmission from each occurs by the infrequent release of single vesicles, producing receptor potentials of only a few millivolts. Analysis of membrane properties and the site of spike initiation suggest that the type II afferent could be activated only if all its presynaptic outer hair cells were maximally stimulated. Thus, the details of synaptic transfer inform the functional distinctions between type I and type II afferents. High efficiency transmission across the inner hair cell's ribbon synapse supports detailed analyses of the acoustic world. The much sparser transfer from outer hair cells to type II afferents implies that these could respond only to the loudest, sustained sounds, consistent with previous reports from in vivo recordings. However, type II afferents could be excited additionally by ATP released during acoustic stress of cochlear tissues.
Collapse
Affiliation(s)
- P A Fuchs
- The Center for Hearing and Balance, Otolaryngology- Head and Neck Surgery and the Center for Sensory Biology, Institute for Basic Biomedical Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - E Glowatzki
- The Center for Hearing and Balance, Otolaryngology- Head and Neck Surgery and the Center for Sensory Biology, Institute for Basic Biomedical Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Shi L, Guo X, Shen P, Liu L, Tao S, Li X, Song Q, Yu Z, Yin S, Wang J. Noise-induced damage to ribbon synapses without permanent threshold shifts in neonatal mice. Neuroscience 2015; 304:368-77. [PMID: 26232715 DOI: 10.1016/j.neuroscience.2015.07.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022]
Abstract
Recently, ribbon synapses to the hair cells (HCs) in the cochlea have become a novel site of interest in the investigation of noise-induced cochlear lesions in adult rodents (Kujawa and Liberman, 2009; Lin et al., 2011; Liu et al., 2012; Shi et al., 2013). Permanent noise-induced damage to this type of synapse can result in subsequent degeneration of spiral ganglion neurons (SGNs) in the absence of permanent changes to hearing sensitivity. To verify whether noise exposure during an early developmental period produces a similar impact on ribbon synapses, the present study examined the damaging effects of noise exposure in neonatal Kunming mice. The animals received exposure to broadband noise at 105-decibel (dB) sound pressure level (SPL) for 2h on either postnatal day 10 (P10d) or postnatal day 14 (P14d), and then hearing function (based on the auditory brainstem response (ABR)) and cochlear morphology were evaluated during either postnatal weeks 3-4 (P4w) or postnatal weeks 7-8 (P8w). There were no significant differences in the hearing threshold between noise-exposed and control animals, which suggests that noise did not cause permanent loss of hearing sensitivity. However, noise exposure did produce a significant loss of ribbon synapses, particularly in P14d mice, which continued to increase from P4w to P8w. Additionally, a corresponding reduction in the amplitude of compound action potential (CAP) was observed in the noise-exposed groups at P4w and P8w, and the CAP latency was elongated, indicating a change in synaptic function.
Collapse
Affiliation(s)
- L Shi
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China.
| | - X Guo
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China; Children's Medical Center, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan Road North, Nanjing 210003, China.
| | - P Shen
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China.
| | - L Liu
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China.
| | - S Tao
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China.
| | - X Li
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China.
| | - Q Song
- Department of Otolaryngology, 6th Affiliated Hospital, Jiaotong University, 600 Yishan Road, Shanghai 200233, China.
| | - Z Yu
- School of Human Communication Disorders, Dalhousie University, 1256 Barrington Street, Halifax, NS B3J1Y6, Canada.
| | - S Yin
- Department of Otolaryngology, 6th Affiliated Hospital, Jiaotong University, 600 Yishan Road, Shanghai 200233, China.
| | - J Wang
- Department of Physiology, Medical College of Southeast University, 87 Dingjiaoqiao Road, Nanjing 210009, China; School of Human Communication Disorders, Dalhousie University, 1256 Barrington Street, Halifax, NS B3J1Y6, Canada.
| |
Collapse
|
37
|
Wichmann C. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information. Hear Res 2015; 330:178-90. [PMID: 26188105 DOI: 10.1016/j.heares.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/21/2015] [Accepted: 07/10/2015] [Indexed: 01/20/2023]
Abstract
Hearing impairment is the most common human sensory deficit. Considering the sophisticated anatomy and physiology of the auditory system, disease-related failures frequently occur. To meet the demands of the neuronal circuits responsible for processing auditory information, the synapses of the lower auditory pathway are anatomically and functionally specialized to process acoustic information indefatigably with utmost temporal precision. Despite sharing some functional properties, the afferent synapses of the cochlea and of auditory brainstem differ greatly in their morphology and employ distinct molecular mechanisms for regulating synaptic vesicle release. Calyceal synapses of the endbulb of Held and the calyx of Held profit from a large number of release sites that project onto one principal cell. Cochlear inner hair cell ribbon synapses exhibit a unique one-to-one relation of the presynaptic active zone to the postsynaptic cell and use hair-cell-specific proteins such as otoferlin for vesicle release. The understanding of the molecular physiology of the hair cell ribbon synapse has been advanced by human genetics studies of sensorineural hearing impairment, revealing human auditory synaptopathy as a new nosological entity.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience & InnerEarLab, University Medical Center, Göttingen, Germany.
| |
Collapse
|
38
|
Santarelli R, del Castillo I, Cama E, Scimemi P, Starr A. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations. Hear Res 2015; 330:200-12. [PMID: 26188103 DOI: 10.1016/j.heares.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/21/2015] [Accepted: 07/12/2015] [Indexed: 11/26/2022]
Abstract
Mutations in the OTOF gene encoding otoferlin result in a disrupted function of the ribbon synapses with impairment of the multivesicular glutamate release. Most affected subjects present with congenital hearing loss and abnormal auditory brainstem potentials associated with preserved cochlear hair cell activities (otoacoustic emissions, cochlear microphonics [CMs]). Transtympanic electrocochleography (ECochG) has recently been proposed for defining the details of potentials arising in both the cochlea and auditory nerve in this disorder, and with a view to shedding light on the pathophysiological mechanisms underlying auditory dysfunction. We review the audiological and electrophysiological findings in children with congenital profound deafness carrying two mutant alleles of the OTOF gene. We show that cochlear microphonic (CM) amplitude and summating potential (SP) amplitude and latency are normal, consistently with a preserved outer and inner hair cell function. In the majority of OTOF children, the SP component is followed by a markedly prolonged low-amplitude negative potential replacing the compound action potential (CAP) recorded in normally-hearing children. This potential is identified at intensities as low as 90 dB below the behavioral threshold. In some ears, a synchronized CAP is superimposed on the prolonged responses at high intensity. Stimulation at high rates reduces the amplitude and duration of the prolonged potentials, consistently with their neural generation. In some children, however, the ECochG response only consists of the SP, with no prolonged potential. Cochlear implants restore hearing sensitivity, speech perception and neural CAP by electrically stimulating the auditory nerve fibers. These findings indicate that an impaired multivesicular glutamate release in OTOF-related disorders leads to abnormal auditory nerve fiber activation and a consequent impairment of spike generation. The magnitude of these effects seems to vary, ranging from no auditory nerve fiber activation to an abnormal generation of EPSPs that occasionally trigger a synchronized electrical activity, resulting in high-threshold CAPs.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy.
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Elona Cama
- Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Pietro Scimemi
- Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Arnold Starr
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Abstract
Models are valuable tools to assess how deeply we understand complex systems: only if we are able to replicate the output of a system based on the function of its subcomponents can we assume that we have probably grasped its principles of operation. On the other hand, discrepancies between model results and measurements reveal gaps in our current knowledge, which can in turn be targeted by matched experiments. Models of the auditory periphery have improved greatly during the last decades, and account for many phenomena observed in experiments. While the cochlea is only partly accessible in experiments, models can extrapolate its behavior without gap from base to apex and with arbitrary input signals. With models we can for example evaluate speech coding with large speech databases, which is not possible experimentally, and models have been tuned to replicate features of the human hearing organ, for which practically no invasive electrophysiological measurements are available. Auditory models have become instrumental in evaluating models of neuronal sound processing in the auditory brainstem and even at higher levels, where they are used to provide realistic input, and finally, models can be used to illustrate how such a complicated system as the inner ear works by visualizing its responses. The big advantage there is that intermediate steps in various domains (mechanical, electrical, and chemical) are available, such that a consistent picture of the evolvement of its output can be drawn. However, it must be kept in mind that no model is able to replicate all physiological characteristics (yet) and therefore it is critical to choose the most appropriate model—or models—for every research question. To facilitate this task, this paper not only reviews three recent auditory models, it also introduces a framework that allows researchers to easily switch between models. It also provides uniform evaluation and visualization scripts, which allow for direct comparisons between models.
Collapse
|
40
|
Jensen JB, Lysaght AC, Liberman MC, Qvortrup K, Stankovic KM. Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One 2015; 10:e0125160. [PMID: 25955832 PMCID: PMC4425526 DOI: 10.1371/journal.pone.0125160] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/20/2015] [Indexed: 12/12/2022] Open
Abstract
Moderate acoustic overexposure in adult rodents is known to cause acute loss of synapses on sensory inner hair cells (IHCs) and delayed degeneration of the auditory nerve, despite the completely reversible temporary threshold shift (TTS) and morphologically intact hair cells. Our objective was to determine whether a cochlear synaptopathy followed by neuropathy occurs after noise exposure in pubescence, and to define neuropathic versus non-neuropathic noise levels for pubescent mice. While exposing 6 week old CBA/CaJ mice to 8-16 kHz bandpass noise for 2 hrs, we defined 97 dB sound pressure level (SPL) as the threshold for this particular type of neuropathic exposure associated with TTS, and 94 dB SPL as the highest non-neuropathic noise level associated with TTS. Exposure to 100 dB SPL caused permanent threshold shift although exposure of 16 week old mice to the same noise is reported to cause only TTS. Amplitude of wave I of the auditory brainstem response, which reflects the summed activity of the cochlear nerve, was complemented by synaptic ribbon counts in IHCs using confocal microscopy, and by stereological counts of peripheral axons and cell bodies of the cochlear nerve from 24 hours to 16 months post exposure. Mice exposed to neuropathic noise demonstrated immediate cochlear synaptopathy by 24 hours post exposure, and delayed neurodegeneration characterized by axonal retraction at 8 months, and spiral ganglion cell loss at 8-16 months post exposure. Although the damage was initially limited to the cochlear base, it progressed to also involve the cochlear apex by 8 months post exposure. Our data demonstrate a fine line between neuropathic and non-neuropathic noise levels associated with TTS in the pubescent cochlea.
Collapse
Affiliation(s)
- Jane Bjerg Jensen
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Department of Biomedical Sciences, CFIM, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Andrew C. Lysaght
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, 02139, United States of America
| | - M. Charles Liberman
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, 02139, United States of America
| | - Klaus Qvortrup
- Department of Biomedical Sciences, CFIM, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, 02139, United States of America
- * E-mail:
| |
Collapse
|
41
|
Magistretti J, Spaiardi P, Johnson SL, Masetto S. Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses. Front Cell Neurosci 2015; 9:123. [PMID: 25904847 PMCID: PMC4389406 DOI: 10.3389/fncel.2015.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023] Open
Abstract
Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca2+ entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca2+ channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.
Collapse
Affiliation(s)
- Jacopo Magistretti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia Pavia, Italy
| | - Paolo Spaiardi
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield Sheffield, UK
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| |
Collapse
|
42
|
Rutherford MA. Resolving the structure of inner ear ribbon synapses with STED microscopy. Synapse 2015; 69:242-55. [DOI: 10.1002/syn.21812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/03/2015] [Accepted: 02/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology; Central Institute for the Deaf, Washington University School of Medicine, Washington University School of Medicine; St. Louis Missouri 63110
- Inner Ear Lab; Department of Otolaryngology; University of Göttingen Medical Center; Göttingen Germany D-37077
| |
Collapse
|
43
|
A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. J Neurosci 2015; 34:15097-109. [PMID: 25378173 DOI: 10.1523/jneurosci.0903-14.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In mammalian auditory systems, the spiking characteristics of each primary afferent (type I auditory-nerve fiber; ANF) are mainly determined by a single ribbon synapse in a single receptor cell (inner hair cell; IHC). ANF spike trains therefore provide a window into the operation of these synapses and cells. It was demonstrated previously (Heil et al., 2007) that the distribution of interspike intervals (ISIs) of cat ANFs during spontaneous activity can be modeled as resulting from refractoriness operating on a non-Poisson stochastic point process of excitation (transmitter release events from the IHC). Here, we investigate nonrenewal properties of these cat-ANF spontaneous spike trains, manifest as negative serial ISI correlations and reduced spike-count variability over short timescales. A previously discussed excitatory process, the constrained failure of events from a homogeneous Poisson point process, can account for these properties, but does not offer a parsimonious explanation for certain trends in the data. We then investigate a three-parameter model of vesicle-pool depletion and replenishment and find that it accounts for all experimental observations, including the ISI distributions, with only the release probability varying between spike trains. The maximum number of units (single vesicles or groups of simultaneously released vesicles) in the readily releasable pool and their replenishment time constant can be assumed to be constant (∼4 and 13.5 ms, respectively). We suggest that the organization of the IHC ribbon synapses not only enables sustained release of neurotransmitter but also imposes temporal regularity on the release process, particularly when operating at high rates.
Collapse
|
44
|
Spontaneous and Partial Repair of Ribbon Synapse in Cochlear Inner Hair Cells After Ototoxic Withdrawal. Mol Neurobiol 2014; 52:1680-1689. [PMID: 25377793 DOI: 10.1007/s12035-014-8951-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Ototoxicity is one of the major causes of sensorineural deafness. However, it remains unclear whether sensorineural deafness is reversible after ototoxic withdrawal. Here, we report that the ribbon synapses between the inner hair cells (IHCs) and spiral ganglion nerve (SGN) fibers can be restored after ototoxic trauma. This corresponds with hearing restoration after ototoxic withdrawal. In this study, adult mice were injected daily with a low dose of gentamicin for 14 consecutive days. Immunostaining for RIBEYE/CtBP2 was used to estimate the number and size of synaptic ribbons in the cochlea. Hearing thresholds were assessed using auditory brainstem responses. Auditory temporal processing between IHCs and SGNs was evaluated by compound action potentials. We found automatic hearing restoration after ototoxicity withdrawal, which corresponded to the number and size recovery of synaptic ribbons, although both hearing and synaptic recovery were not complete. Thus, our study indicates that sensorineural deafness in mice can be reversible after ototoxic withdrawal due to an intrinsic repair of ribbon synapse in the cochlea.
Collapse
|
45
|
Levi R, Akanyeti O, Ballo A, Liao JC. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish. J Neurophysiol 2014; 113:657-68. [PMID: 25355959 DOI: 10.1152/jn.00414.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish (Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment.
Collapse
Affiliation(s)
- Rafael Levi
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, Florida
| | - Otar Akanyeti
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, Florida
| | - Aleksander Ballo
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, Florida
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, Florida
| |
Collapse
|
46
|
Global Ca2+ signaling drives ribbon-independent synaptic transmission at rod bipolar cell synapses. J Neurosci 2014; 34:6233-44. [PMID: 24790194 DOI: 10.1523/jneurosci.5324-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribbon-type presynaptic active zones are a hallmark of excitatory retinal synapses, and the ribbon organelle is thought to serve as the organizing point of the presynaptic active zone. Imaging of exocytosis from isolated retinal neurons, however, has revealed ectopic release (i.e., release away from ribbons) in significant quantities. Here, we demonstrate in an in vitro mouse retinal slice preparation that ribbon-independent release from rod bipolar cells activates postsynaptic AMPARs on AII amacrine cells. This form of release appears to draw on a unique, ribbon-independent, vesicle pool. Experimental, anatomical, and computational analyses indicate that it is elicited by a significant, global elevation of intraterminal [Ca(2+)] arising following local buffer saturation. Our observations support the conclusion that ribbon-independent release provides a read-out of the average behavior of all of the active zones in a rod bipolar cell's terminal.
Collapse
|
47
|
Liu K, Shi C, Sun Y, Xu Y, Shi L, Shi L, Wang X, Ji F, Hou Z, Yang S. Dynamic distribution of ototoxic gentamicin entry into inner hair cells of mice. Acta Otolaryngol 2014; 134:345-51. [PMID: 24521345 DOI: 10.3109/00016489.2013.875219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Dynamic distribution of ototoxic gentamicin entry into inner hair cells (IHCs) may cause an interruption of cochlear ribbon synapse. OBJECTIVE To explore the pattern of uptake of gentamicin into IHCs, as well as its possible contribution to hearing loss. METHODS Adult C57 mice were injected intraperitoneally with gentamicin (100 mg/kg, conjugated with Texas Red ester) continuously for 14 days. The hearing thresholds were detected by auditory brainstem response (ABR) examinations. Immunostaining and confocal microscopy were utilized to trace gentamicin distribution, as well as the expression of RIBEYE/CtBP2 in mouse IHCs. Scanning electron microscopy (SEM) observation was used to find possible alterations of stereocilia. RESULTS The distribution of gentamicin in IHCs was first found on the 4th day and the accumulation of gentamicin was increased significantly on the 7th day after treatment, corresponding to the maximal elevation of the hearing threshold. However, the accumulation of gentamicin on the 14th day did not show significant differences compared with the level found on the 7th day. In addition, the uptake of gentamicin was excessively identified at or near the synaptic ribbons of IHCs throughout the 4th, 7th, and 14th days after the treatment, suggesting that cochlear ribbon synapses could be affected by ototoxic gentamicin exposure.
Collapse
MESH Headings
- Alcohol Oxidoreductases
- Animals
- Anti-Bacterial Agents/pharmacokinetics
- Anti-Bacterial Agents/toxicity
- Co-Repressor Proteins
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/drug effects
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Follow-Up Studies
- Gentamicins/pharmacokinetics
- Gentamicins/toxicity
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hearing Loss/metabolism
- Hearing Loss/pathology
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Phosphoproteins/biosynthesis
- Phosphoproteins/drug effects
Collapse
Affiliation(s)
- Ke Liu
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital , Beijing
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wong AB, Rutherford MA, Gabrielaitis M, Pangrsic T, Göttfert F, Frank T, Michanski S, Hell S, Wolf F, Wichmann C, Moser T. Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis. EMBO J 2014; 33:247-64. [PMID: 24442635 DOI: 10.1002/embj.201387110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cochlear inner hair cells (IHCs) develop from pre-sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe-like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3-channels were selectively reduced, (iv) the intrinsic Ca(2)(+) dependence of fast exocytosis probed by Ca(2)(+) uncaging remained unchanged but (v) the apparent Ca(2)(+) dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca(2)(+) influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca(2)(+) influx through an individual channel dominates the [Ca(2)(+)] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca(2)(+) influx and exocytosis.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling
- Electrophysiology
- Exocytosis/physiology
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/physiology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Models, Neurological
- Mutation
- Patch-Clamp Techniques
- Presynaptic Terminals/ultrastructure
- Spiral Ganglion/cytology
- Spiral Ganglion/physiology
- Synapses/physiology
- Synapses/ultrastructure
Collapse
Affiliation(s)
- Aaron B Wong
- InnerEarLab Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shi L, Liu L, He T, Guo X, Yu Z, Yin S, Wang J. Ribbon synapse plasticity in the cochleae of Guinea pigs after noise-induced silent damage. PLoS One 2013; 8:e81566. [PMID: 24349090 PMCID: PMC3857186 DOI: 10.1371/journal.pone.0081566] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Noise exposure at low levels or low doses can damage hair cell afferent ribbon synapses without causing permanent threshold shifts. In contrast to reports in the mouse cochleae, initial damage to ribbon synapses in the cochleae of guinea pigs is largely repairable. In the present study, we further investigated the repair process in ribbon synapses in guinea pigs after similar noise exposure. In the control samples, a small portion of afferent synapses lacked synaptic ribbons, suggesting the co-existence of conventional no-ribbon and ribbon synapses. The loss and recovery of hair cell ribbons and post-synaptic densities (PSDs) occurred in parallel, but the recovery was not complete, resulting in a permanent loss of less than 10% synapses. During the repair process, ribbons were temporally separated from the PSDs. A plastic interaction between ribbons and postsynaptic terminals may be involved in the reestablishment of synaptic contact between ribbons and PSDs, as shown by location changes in both structures. Synapse repair was associated with a breakdown in temporal processing, as reflected by poorer responses in the compound action potential (CAP) of auditory nerves to time-stress signals. Thus, deterioration in temporal processing originated from the cochlea. This deterioration developed with the recovery in hearing threshold and ribbon synapse counts, suggesting that the repaired synapses had deficits in temporal processing.
Collapse
Affiliation(s)
- Lijuan Shi
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
| | - Lijie Liu
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
| | - Tingting He
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
| | - Xiaojing Guo
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
| | - Zhiping Yu
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Shankai Yin
- Department of Otolaryngology, 6 Affiliated Hospital, Jiaotong University, Shanghai, China
| | - Jian Wang
- Department of Physiology and Pharmacology, Medical College of Southeast University, Nanjing, China
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
- * E-mail:
| |
Collapse
|
50
|
Zampini V, Johnson SL, Franz C, Knipper M, Holley MC, Magistretti J, Masetto S, Marcotti W. Burst activity and ultrafast activation kinetics of CaV1.3 Ca²⁺ channels support presynaptic activity in adult gerbil hair cell ribbon synapses. J Physiol 2013; 591:3811-20. [PMID: 23713031 PMCID: PMC3764630 DOI: 10.1113/jphysiol.2013.251272] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Auditory information transfer to afferent neurons relies on precise triggering of neurotransmitter release at the inner hair cell (IHC) ribbon synapses by Ca2+ entry through CaV1.3 Ca2+ channels. Despite the crucial role of CaV1.3 Ca2+ channels in governing synaptic vesicle fusion, their elementary properties in adult mammals remain unknown. Using near-physiological recording conditions we investigated Ca2+ channel activity in adult gerbil IHCs. We found that Ca2+ channels are partially active at the IHC resting membrane potential (−60 mV). At −20 mV, the large majority (>70%) of Ca2+ channel first openings occurred with an estimated delay of about 50 μs in physiological conditions, with a mean open time of 0.5 ms. Similar to other ribbon synapses, Ca2+ channels in IHCs showed a low mean open probability (0.21 at −20 mV), but this increased significantly (up to 0.91) when Ca2+ channel activity switched to a bursting modality. We propose that IHC Ca2+ channels are sufficiently rapid to transmit fast signals of sound onset and support phase-locking. Short-latency Ca2+ channel opening coupled to multivesicular release would ensure precise and reliable signal transmission at the IHC ribbon synapse.
Collapse
Affiliation(s)
- Valeria Zampini
- Department of Biomedical Science, University of Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|