1
|
Parisi A, Furutani KM, Sato T, Beltran CJ. LET-based approximation of the microdosimetric kinetic model for proton radiotherapy. Med Phys 2024; 51:7589-7605. [PMID: 39153222 DOI: 10.1002/mp.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Phenomenological relative biological effectiveness (RBE) models for proton therapy, based on the dose-averaged linear energy transfer (LET), have been developed to address the apparent RBE increase towards the end of the proton range. The results of these phenomenological models substantially differ due to varying empirical assumptions and fitting functions. In contrast, more theory-based approaches are used in carbon ion radiotherapy, such as the microdosimetric kinetic model (MKM). However, implementing microdosimetry-based models in LET-based proton therapy treatment planning systems poses challenges. PURPOSE This work presents a LET-based version of the MKM that is practical for clinical use in proton radiotherapy. METHODS At first, we derived an approximation of the Mayo Clinic Florida (MCF) MKM for relatively-sparsely ionizing radiation such as protons. The mathematical formalism of the proposed model is equivalent to the original MKM, but it maintains some key features of the MCF MKM, such as the determination of model parameters from measurable cell characteristics. Subsequently, we carried out Monte Carlo calculations with PHITS in different simulated scenarios to establish a heuristic correlation between microdosimetric quantities and the dose averaged LET of protons. RESULTS A simple allometric function was found able to describe the relationship between the dose-averaged LET of protons and the dose-mean lineal energy, which includes the contributions of secondary particles. The LET-based MKM was used to model the in vitro clonogenic survival RBE of five human and rodent cell lines (A549, AG01522, CHO, T98G, and U87) exposed to pristine and spread-out Bragg peak (SOBP) proton beams. The results of the LET-based MKM agree well with the biological data in a comparable or better way with respect to the other models included in the study. A sensitivity analysis on the model results was also performed. CONCLUSIONS The LET-based MKM integrates the predictive theoretical framework of the MCF MKM with a straightforward mathematical description of the RBE based on the dose-averaged LET, a physical quantity readily available in modern treatment planning systems for proton therapy.
Collapse
Affiliation(s)
- Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
- Research Center for Nuclear Physics, Osaka University, Suita, Osaka, Japan
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
2
|
Chakraborty P, Saitoh H, Miyake Y, Suzuki T, Chang W. Estimation of the lateral variation of photon beam energy spectra using the percentage depth dose reconstruction method. Radiol Phys Technol 2024:10.1007/s12194-024-00835-5. [PMID: 39240450 DOI: 10.1007/s12194-024-00835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024]
Abstract
In photon-collapsed cone convolution (pCCC) algorithm of the Monaco treatment planning system (TPS), the central-axis energy spectrum is assumed constant throughout the entire irradiation area. To consider lateral variations, an off-axis softening factor is applied to attenuation coefficients during the total energy released per unit mass calculation. We evaluated this method through comparison studies of percentage depth doses (PDDs) and off-axis ratios (OARs) calculated by Monaco and measured for a 6 MV photon beam at various off-axis angles and depths. Significant differences were observed, with relative differences exceeding ± 1%. Therefore, this method may not accurately represent lateral variations of energy spectra. We propose directly implementing energy spectra on both central-axis and off-axis to improve dose calculation accuracy for large field. To this end, we introduce reconstruction of PDDs from monoenergetic depth doses (MDDs) along off-axis angles, thereby estimating energy spectra as functions of radial distance. This method derives energy spectra quickly without significantly increasing the beam modeling time. MDDs were computed through Monte Carlo simulations (DOSRZnrc). The variances between reconstructed and measured PDDs were minimized using the generalized-reduced-gradient method to optimize energy spectra. Reconstructed PDDs along off-axis angles of 0°, 1.15°, 2.29°, 3.43°, 4.57°, 5.71°, 6.84°, 7.97°, 9.09°, 10.2° to estimate energy spectra at radial distances of 0-18 cm in 2 cm increments and OARs calculated using estimated energy spectra at 5, 10, and 20 cm depths, well agreed with measurement (relative differences within ± 0.5%). In conclusion, our proposed method accurately estimates lateral energy spectrum variation, thereby improving dose calculation accuracy of pCCC algorithm.
Collapse
Affiliation(s)
- Puspen Chakraborty
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| | - Hidetoshi Saitoh
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuta Miyake
- Department of Application Physics, Elekta K.K., Tokyo, Japan
| | - Tenyoh Suzuki
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Weishan Chang
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
3
|
Rogers DWO. Minimum phantom size for megavoltage photon beam reference dosimetry. Med Phys 2024; 51:5663-5671. [PMID: 38669481 DOI: 10.1002/mp.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Water phantoms are required to perform reference dosimetry and beam quality measurements but there are no published studies about the size requirements for such phantoms. PURPOSE To investigate, using Monte Carlo techniques, the size requirements for water phantoms used in reference dosimetry and/or to measure the beam quality specifiers% d d ( 10 ) x $\%dd(10)_{\sf x}$ andT P R 10 20 $TPR^{20}_{10}$ . METHODS The EGSnrc application DOSXYZnrc is used to calculateD ( 10 ) $D(10)$ , the dose per incident fluence at 10 cm depth in a water phantom irradiated by incident10 × 10 cm 2 $10\,\times \,10 \, {\rm {cm}}^{2}$ beams of60 Co $^{60}{\rm {Co}}$ or 6 MV photons. The water phantom dimensions are varied from30 × 30 × 40 cm 3 $30 \,\times \, 30 \,\times \, 40 \, {\rm {cm}}^3$ to15 × 15 × 22 cm 3 $15 \,\times \, 15 \,\times \, 22 \, {\rm {cm}}^3$ and occasionally smaller. The% d d ( 10 ) x $\%dd(10)_{\sf x}$ andT P R 10 20 $TPR^{20}_{10}$ values are also calculated with care being taken to distinguishT P R 10 20 $TPR^{20}_{10}$ results when using Method A (changing depth of water in phantom) and Method B (moving entire phantom). Typical statistical uncertainties are 0.03%. RESULTS Phantom dimensions have only minor effects for phantoms larger than20 × 20 × 25 cm 3 $20 \,\times \, 20 \,\times \, 25 \, {\rm {cm}}^3$ . A table of corrections to the dose at 10 cm depth in10 × 10 cm 2 $10 \,\times \, 10 \, {\rm {cm}}^{2}$ beams of60 Co $^{60}{\rm {Co}}$ or 6 MV photons are provided and range from no correction to 0.75% for a60 Co $^{60}{\rm {Co}}$ beam incident on a20 × 20 × 15 cm 3 $20 \,\times \, 20 \,\times \, 15 \, {\rm {cm}}^3$ phantom. There can be distinct differences in theT P R 10 20 $TPR^{20}_{10}$ values measured using Method A or Method B, especially for smaller phantoms. It is explicitly demonstrated that, within ± $\pm$ 0.15%,T P R 10 20 $TPR^{20}_{10}$ values for a30 × 30 × 30 cm 3 $30 \,\times \, 30 \,\times \, 30 \, {\rm {cm}}^3$ phantom measured using Method A or B are independent of source detector distance between 40 and 200 cm. CONCLUSIONS The phantom sizes recommended in the TG-51 and IAEA TRS-398 reference dosimetry protocols are adequate for accurate reference dosimetry and in some cases are even conservative. Correction factors are necessary for accurate measurement of the dose at 10 cm depth in smaller phantoms and these factors are provided. Very accurate beam quality specifiers are not required for reference dosimetry itself, but for specifying beam stability and characteristics it is important to specify phantom sizes and also the method used forT P R 10 20 $TPR^{20}_{10}$ measurements.
Collapse
Affiliation(s)
- D W O Rogers
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| |
Collapse
|
4
|
Bradley DA, Lam SE, Nawi SNM, Taheri A, Abdul Sani F, Ung NM, Alzimami K, Khandaker MU, Moradi F. Graphite foils as potential skin and epithelium dosimeters at therapeutic photon energies. Appl Radiat Isot 2024; 210:111371. [PMID: 38815447 DOI: 10.1016/j.apradiso.2024.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
This work builds upon a prior study, examining the dosimetric utility of pencil lead and thin graphitic sheets, focusing upon the measurement of skin doses within the mammographic regime. In recognizing the near soft-tissue equivalence of graphite and the earlier-observed favourable thermoluminescence yield of thin sheets of graphite, this has led to present study of 50 μm thick graphite for parameters typical of external beam fractionated radiotherapy and skin dose evaluations. The graphite layers were annealed and then stacked to form an assembly of 0.5 mm nominal thickness. Using a 6 MV photon beam and delivering doses from 2- to 60 Gy, irradiations were conducted, the assembly first forming a superficial layer to a solid water phantom and subsequently underlying a 1.5 cm bolus, seeking to circumvent the build-up to electronic equilibrium for skin treatments. Investigations were made of several dosimetric properties arising from the thermoluminescence yield of the 50 μm thick graphite slabs, in particular proportionality and sensitivity to dose. The results show excellent sensitivity within the dose range of interest, the thermoluminescence response varying with increasing depth through the stacked graphite layers, obtaining a coefficient of determination of 90%. Acknowledging there to be considerable challenge in accurately matching skin thickness with dose, the graphite sheets have nevertheless shown considerable promise as dosimeters of skin, sensitive in determination of dose from the surface of the graphite through to sub-dermal depth thicknesses.
Collapse
Affiliation(s)
- D A Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford, United Kingdom.
| | - S E Lam
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Malaysia
| | - S N Mat Nawi
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Malaysia
| | - A Taheri
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Malaysia
| | - F Abdul Sani
- Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - N M Ung
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Malaysia
| | - K Alzimami
- Department of Radiological Sciences, King Saud University, Saudi Arabia
| | - M U Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, Sunway University, Malaysia
| | - F Moradi
- Multimedia University, Persiaran Multimedia, Cyberjaya, Malaysia
| |
Collapse
|
5
|
De Saint-Hubert M, Caprioli M, de Freitas Nascimento L, Delombaerde L, Himschoot K, Vandenbroucke D, Leblans P, Crijns W. New optically stimulated luminescence dosimetry film optimized for energy dependence guided by Monte Carlo simulations. Phys Med Biol 2024; 69:075005. [PMID: 38394683 DOI: 10.1088/1361-6560/ad2ca2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Optically stimulated luminescence (OSL) film dosimeters, based on BaFBr:Eu2+phosphor material, have major dosimetric advantages such as dose linearity, high spatial resolution, film re-usability, and immediate film readout. However, they exhibit an energy-dependent over-response at low photon energies because they are not made of tissue-equivalent materials. In this work, the OSL energy-dependent response was optimized by lowering the phosphor grain size and seeking an optimal choice of phosphor concentration and film thickness to achieve sufficient signal sensitivity. This optimization process combines measurement-based assessments of energy response in narrow x-ray beams with various energy response calculation methods applied to different film metrics. Theoretical approaches and MC dose simulations were used for homogeneous phosphor distributions and for isolated phosphor grains of different dimensions, where the dose in the phosphor grain was calculated. In total 8 OSL films were manufactured with different BaFBr:Eu2+median particle diameters (D50): 3.2μm, 1.5μm and 230 nm and different phosphor concentrations (1.6%, 5.3% and 21.3 %) and thicknesses (from 5.2 to 49μm). Films were irradiated in narrow x-ray spectra (N60, N80, N-150 and N-300) and the signal intensity relative to the nominal dose-to-water value was normalized to Co-60. Finally, we experimentally tested the response of several films in Varian 6MV TrueBeam STx linear accelerator using the following settings: 10 × 10 cm2field, 0deggantry angle, 90 cm SSD, 10 cm depth. The x-ray irradiation experiment reported a reduced energy response for the smallest grain size with an inverse correlation between response and grain size. The N-60 irradiation showed a 43% reduction in the energy over-response when going from 3μm to 230 nm grain size for the 5% phosphor concentration. Energy response calculation using a homogeneous dispersion of the phosphor underestimated the experimental response and was not able to obtain the experimental correlation between grain size and energy response. Isolated grain size modeling combined with MC dose simulations allowed to establish a good agreement with experimental data, and enabled steering the production of optimized OSL-films. The clinical 6 MV beam test confirmed a reduction in energy dependence, which is visible in small-grain films where a decrease in out-of-field over-response was observed.
Collapse
Affiliation(s)
| | - Marco Caprioli
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
| | | | - Laurence Delombaerde
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Katleen Himschoot
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Dirk Vandenbroucke
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Paul Leblans
- Corporate Innovation Office, Agfa N.V., Septestraat 27, Mortsel, B-2640, Belgium
| | - Wouter Crijns
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
6
|
Hmodi MS, Nahili M, Tsalafoutas IA, Saad B, Hasan A, Anjak O, Shamout K. Validation of the geometric equivalent field concept in total scatter factor calculations, for half-, quarter- and off-isocenter asymmetric square fields. J Appl Clin Med Phys 2023; 24:e14103. [PMID: 37957949 PMCID: PMC10691636 DOI: 10.1002/acm2.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/06/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Monitor unit (MU) verification for any symmetric or asymmetric field is performed using a total scatter factor (Scp ), that is calculated based on the geometric equivalent square field (GESF) concept. In this study, we measured the Scp of various asymmetric square fields (ASFs ) and their respective GESFs. METHODS Square half-fields (SHFs ), square quarter-fields (SQFs ) and square off-isocenter fields (SOFs ), with sizes ranging from 3×3 cm2 to 20×20 cm2 were created, by varying the collimator jaws of two Varian iX Linacs (6/18 and 6/23 MV). A semi-flex ion chamber was used to measure Scp at a depth of 10 cm within a water phantom, at the effective field center (EFC) of all ASFs , and at the isocenter (IC) of their respective GESFs. The later Scp values were corrected by the off-axis ratio [OAR(r)] of the 40×40 cm2 field size, where r is the distance between EFC and IC. RESULTS The results show that the Scp (EFC) is independent of the type of the ASF (SHF, SQF, or SOF) and no significant difference exists between the 18 and 23 MV beams. Compared with the Scp (IC), the Scp (EFC) increased with increasing r, by up to 2% and 4% for 18/23 and 6 MV, respectively. CONCLUSIONS The GESF concept provides acceptable accuracy (< 2%) for the calculation of Scp of the ASFs used in most clinical situations (except from SOF with EFC at large r), and thus can be used in MU verification calculations.
Collapse
Affiliation(s)
- Mohammad Samir Hmodi
- Department of PhysicsFaculty of SciencesDamascus UniversityDamascusSyria
- Department of OncologyTishreen University HospitalLattakiaSyria
| | - Majeda Nahili
- Department of PhysicsFaculty of SciencesDamascus UniversityDamascusSyria
| | | | - Bassam Saad
- Department of OncologyTishreen University HospitalLattakiaSyria
- Cancer Research CenterTishreen University HospitalLattakiaSyria
| | - Ali Hasan
- Department of OncologyTishreen University HospitalLattakiaSyria
| | - Ousamah Anjak
- Department of Protection and SafetyAtomic Energy Commission of SyriaDamascusSyria
| | - Karlos Shamout
- Department of OncologyTishreen University HospitalLattakiaSyria
| |
Collapse
|
7
|
Chumak V, Bakhanova E, Altunal V, Lawrence Y, Dubinski S, Yu Y, Liao L, Yegingil Z. Experimental and Monte Carlo study of energy response of BEO-based OSL detectors within photon energy range up to 15 MeV. RADIATION PROTECTION DOSIMETRY 2023; 199:1829-1833. [PMID: 37819352 DOI: 10.1093/rpd/ncad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 10/13/2023]
Abstract
Response of personal dosemeters to high energy photon radiation is of great interest nowadays due to a spread of new radiation technologies and the expansion of occupational exposure domains. ICRU95 publication has expanded the range of relevant photon energies upwards, setting new horizons for individual monitoring. Beryllium oxide (BeO) material is increasingly popular due to its excellent optically stimulated luminescence (OSL) properties, simple readout and reasonable energy response in the low energy (below 100 keV) range. The study considers energy dependence of OSL response at higher photon energies. Energy deposition of monoenergetic photons with energy up to 15 MeV in the BeO chips of various thickness was modeled with Monte Carlo MCNP 6.2 code. Benchmark experiments were conducted at LINAC with high voltage of 6, 10 and 15 MV resulting in respective incident photon spectra. The findings of this study add knowledge regarding behavior of BeO personal dosemeters in the photon fields within the energy range above 3 MeV.
Collapse
Affiliation(s)
- Vadim Chumak
- National Research Centre for Radiation Medicine NAMS Ukraine, Yu.Illyenko 53, Kyiv 04050, Ukraine
- RPE DOSIMETRICA, P.O. box 40, Kyiv 04119, Ukraine
| | - Elena Bakhanova
- National Research Centre for Radiation Medicine NAMS Ukraine, Yu.Illyenko 53, Kyiv 04050, Ukraine
- RPE DOSIMETRICA, P.O. box 40, Kyiv 04119, Ukraine
| | - Volkan Altunal
- Physics Department, Cukurova University, Balcalı, Sarıçam, Adana 01250, Turkey
| | - Yaacov Lawrence
- Department of Radiation Oncology, Sheba Medical Center, 1 Derech Sheba, Tel HaShomer 5265601, Israel
| | - Sergey Dubinski
- Department of Radiation Oncology, Sheba Medical Center, 1 Derech Sheba, Tel HaShomer 5265601, Israel
| | - Yan Yu
- Sidney Kimmel Medical College at Thomas Jefferson University, 111 S. 11th St., Philadelphia, PA 19107, USA
| | - Lydia Liao
- Sidney Kimmel Medical College at Thomas Jefferson University, 111 S. 11th St., Philadelphia, PA 19107, USA
| | - Zehra Yegingil
- Physics Department, Cukurova University, Balcalı, Sarıçam, Adana 01250, Turkey
- Toros University, Engineering Faculty, Electrical and Electronic Engineering Department, Akdeniz Mahallesi, 39753 Sokak, No: 12, 33210 Mezitli, Mersin, Turkey
| |
Collapse
|
8
|
Quispe-Huillcara B, de-la-Rosa KM, Reyes U, Cerón PV, Vega HR, Sosa MA. Characterization of the radiation beam of a tomotherapy equipment with MCNP. Appl Radiat Isot 2023; 200:110978. [PMID: 37603966 DOI: 10.1016/j.apradiso.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
This work aims to model and characterize the radiation beam of one Accuray tomotherapy equipment using the Monte Carlo Code MCNP5 (Monte Carlo N-Particle). This tomotherapy equipment is used for delivering high doses of radiation in tumor regions to kill cancer cells and shrink the tumor during radiation therapy of cancer patients, however, the radiation can damage surrounding areas and nearby organs at risk (OAR) if the radiation field is not well delimited. In particular, intensity-modulated radiotherapy treatments (IMRT) with tomotherapy equipment offer great benefits to patients allowing treatment of tumor regions without affecting surrounding areas and OAR. Nowadays, it is well known that a correct simulation of transport of radiation in tomotherapy equipment facilitates considerably the estimation of ideal doses in the tumor, surrounding regions, and OAR. For that reason, in this work, we simulated the geometry of the 6 MV ACCURAY Tomotherapy equipment of the CECAN using the MCNP5. The model includes a TomoLINAC consisting of an electron source that emits Gaussian distribution particles with an average energy of 5.7 MeV and width of 0.3 MeV. The emitted particles impact the tungsten target and pass through primary collimators and jaws that define the irradiation field in the isocenter. To validate the geometry and radiation transport in the TomoLINAC the curves of depth dose percentage (PDD) estimated by simulation and the curves measured experimentally were tuned. In the same way, the simulated transverse and longitudinal profiles were compared with the experimental results. In addition, a comparison between the qualities of the radiation beam characterized with MCNP and measured experimentally in CECAN showed a deviation of 1%. For the simulations, cylindrical detectors located inside a water phantom were considered and it was employed the tally *F8. A good agreement was observed between the PDD's curves obtained from the simulation and those measured experimentally for a field of 5 × 10 cm2 in the isocenter and SSD (distance from the source to the surface) of 85 cm. Also, the comparison between the simulated and experimental transverse profiles obtained at 1.5 cm, 10 cm and 15 cm depth with a radiation field of 5 × 40 cm2 showed very good agreement. The longitudinal profiles were estimated with the same depths as the transverse ones, but for each of them, the openings of the jaws were 5.0 cm, 2.5 cm and 1.0 cm in the longitudinal direction, which corresponds to the direction in which the patient's table moves. The comparison between the simulated and experimental longitudinal profiles showed good concordance too. Once the radiation beam of the ACCURAY tomotherapy equipment had been characterized, experimental dose measurements were made using a Cheese phantom and two A1SL ionization chambers. These results obtained experimentally were compared with those estimated with MCNP for a field of 5 × 40 cm2 at the isocenter and SAD of 85 cm and, it was concluded that both results were similar considering the regions of uncertainty. Finally, we must highlight that the modeling and characterization of the radiation beam of CECAN's ACCURAY tomotherapy equipment can be a key tool for dose estimations in different cancer treatment plans and future research.
Collapse
Affiliation(s)
| | | | - Uvaldo Reyes
- State Center of Cancerology, Durango Health Services, 34000, Durango, Dgo., Mexico
| | - Pablo V Cerón
- Department of Environmental Sciences, DCIyT, University of Quintana Roo, 77019, Chetumal, QRoo, Mexico
| | - Héctor R Vega
- Academic Unit of Nuclear Studies, Autonomous University of Zacatecas, 98000, Zacatecas, Zac., Mexico
| | - Modesto A Sosa
- Department of Physical Engineering, DCI, University of Guanajuato, 37150, Leon, Gto., Mexico.
| |
Collapse
|
9
|
Steciw S. A convolution-superposition fluence model for the Siemens HD120 multi leaf collimator with application to a 3D VMAT dose engine. Biomed Phys Eng Express 2023; 9:065004. [PMID: 37657420 DOI: 10.1088/2057-1976/acf5f3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Purpose. To construct a fast-calculating fluence modelfor the Siemens HD120 multi leaf collimator (MLC) using convolution-superposition techniques, and to develop a 3D VMAT dose engine using this fluence model. This work offers analternative to time-consuming open-source Monte Carlo simulations for thosedeveloping in-house dose-calculating software for research or clinical needs.Methods. EPID-acquired images of sweeping-window and sweeping-checker field profiles were used to commission transmission, 2 Dinterleaf leakage, and tongue-and-groove maps specific to the HD120 MLC. These maps, along with a 2D head-scattermodel were incorporated into a convolution-superposition algorithm to provide a fluence model for the HD120 MLC. This fluence model was used to develop a 3D VMAT dose engine, where 3D pre-computed 6MV dose kernels (EGSnrc) and a 3D fluence curvature-correction map were incorporatedto calculate 3D VMAT doses in a 22 cm diameter cylindrical phantom. Four VMAT patient plans witha large range of PTV sizes (36 cc to 604 cc) were chosen to test the fluence model and dose engine.Results. Excellent agreement was observed between the simulated commissioning fields and measured EPID-responses. 2D 2%/2 mm gamma analysis yielded a 98.9% pass rate for 1 cm, 2 cm, and 4 cm sweeping-window fields. 2D 2%/2mm gamma analysis for outer/inner MLC leaves yielded 89.1%/77.0% and 95.2%/91.1% pass rates from 1 cm and 2 cm sweeping-checker fields. Mean 3%/3 mm gamma analysis showed excellent agreement between our dose engine and Eclipse (Acuros) regardless of PTV size: 98.7% pass rate, with 95.1% pass rate in the high-dose volume. Fluence calculation times were13.6 seconds per dynamic MLC field and 1.4 minutes/arc for 3D VMAT dose on a standard PC. Conclusions. A fast-calculating convolution-superposition fluence model has been commissioned for the Siemens HD120 MLC and incorporatedinto a 3D VMAT dose engine. This work can be used to facilitate the development of fast in-house dose-calculating software.
Collapse
Affiliation(s)
- Stephen Steciw
- Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Alberta T6G 1Z2, Canada
- Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
10
|
Mori Y, Isobe T, Takei H, Miyazaki S, Kamizawa S, Tomita T, Kobayashi D, Sakurai H, Sakae T. Evaluation of basic characteristics of 3-mm dose equivalent measuring instrument for evaluating lens exposure dose in radiotherapy. J Med Radiat Sci 2023; 70:154-160. [PMID: 36811316 PMCID: PMC10258639 DOI: 10.1002/jmrs.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Despite the development of DOSIRIS™, an eye lens dosimeter, the characteristics of DOSIRIS™ in the area of radiotherapy have not been investigated. The purpose of this study was to evaluate the basic characteristics of the 3-mm dose equivalent measuring instrument DOSIRIS™ in radiotherapy. METHODS Dose linearity and energy dependence were evaluated for the irradiation system based on the calibration method of the monitor dosimeter. The angle dependence was measured by irradiating from a total of 18 directions. Interdevice variation was repeated three times by simultaneously irradiating five dosimeters. The measurement accuracy was based on the absorbed dose measured by the monitor dosimeter of the radiotherapy equipment. Absorbed doses were converted to 3-mm dose equivalents and compared with DOSIRIS™ measurements. RESULTS Dose linearity was evaluated using the determination coefficient (R2 ) R2 = 0.9998 and 0.9996 at 6 and 10 MV, respectively. For energy dependence, although the therapeutic photons evaluated in this study had higher energies than in the previous studies and had a continuous spectrum, the response was equivalent to 0.2-1.25 MeV, well below the IEC 62387 limits. The maximum error at all angles was 15% (angle of 140°) and the coefficient of variation at all angles was 4.70%, which satisfies the standard of the thermoluminescent dosimeter measuring instrument. Accuracy of measurement was determined in terms of the measurement errors for DOSIRIS™ (3.2% and 4.3% at 6 and 10 MV, respectively,) using the 3-mm dose equivalent obtained from the theoretical value as a reference. The DOSIRIS™ measurements met the IEC standard which defines the measurement error of ±30% of the irradiance value in IEC 62387. CONCLUSIONS We found that the characteristics of the 3-mm dose equivalent dosimeter in a high-energy radiation satisfy the IEC standards and have the same measurement accuracy as diagnostic areas such as Interventional Radiology.
Collapse
Affiliation(s)
- Yutaro Mori
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Proton Medical Research CenterUniversity of Tsukuba HospitalTsukubaJapan
| | - Tomonori Isobe
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Proton Medical Research CenterUniversity of Tsukuba HospitalTsukubaJapan
| | - Hideyuki Takei
- Quantum Life and Medical Science DirectorateNational Institute for Quantum Science and TechnologyInage‐kuJapan
| | - Shohei Miyazaki
- Department of RadiologyUniversity of Tsukuba HospitalTsukubaJapan
| | - Satoshi Kamizawa
- Proton Medical Research CenterUniversity of Tsukuba HospitalTsukubaJapan
| | - Tetsuya Tomita
- Department of RadiologyUniversity of Tsukuba HospitalTsukubaJapan
| | | | - Hideyuki Sakurai
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Proton Medical Research CenterUniversity of Tsukuba HospitalTsukubaJapan
| | - Takeji Sakae
- Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Proton Medical Research CenterUniversity of Tsukuba HospitalTsukubaJapan
| |
Collapse
|
11
|
McDermott PN, Drake D, Knill C, Sigler MD. Linac primary barrier transmission: Flattening filter free and field size dependence. J Appl Clin Med Phys 2023; 24:e13886. [PMID: 36601672 PMCID: PMC10018660 DOI: 10.1002/acm2.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
There is widespread consensus in the literature that flattening filter free (FFF) beams have a lower primary barrier transmission than flattened beams. Measurements presented here, however, show that for energy compensated FFF beams, the barrier transmission can be as much as 70% higher than for flattened beams. The ratio of the FFF barrier transmission to the flattened beam barrier transmission increases with increasing barrier thickness. The use of published FFF TVL data for energy compensated FFF beams could lead to an order of magnitude underestimate of the air kerma rate. There are little data in the literature on the field size dependence of the barrier transmission for flattened beams. Barrier transmission depends on the field size at the barrier, not at isocenter Measurements are presented showing the relative dependence of barrier transmission on the field size, measured at the barrier, for 6 MV and 10 MV beams. An analytical fitting formula is provided for the field size dependence. For field sizes greater than about 150 cm in side length, the field size dependence is minimal. For field sizes less than about 100 cm, the transmission declines rapidly as the field size decreases.
Collapse
Affiliation(s)
| | | | - Cory Knill
- Beaumont Health System, Dearborn, Michigan, USA
| | | |
Collapse
|
12
|
Al-Saleh WM, Hugtenburg RP. Monte Carlo modelling of a 6 MV Elekta linear accelerator for in-field and out-of-field dosimetry. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Antunes PCG, Siqueira PDTD, Shorto JBM, Yoriyaz H. A versatile physical phantom design and construction for I-125 dose measurements and dose-to-medium determination. Brachytherapy 2023; 22:80-92. [PMID: 36396567 DOI: 10.1016/j.brachy.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE In this paper we present a phantom designed to provide conditions to generate set of "true" independent reference data as requested by TG-186, and mitigating the scarcity of experimental studies on brachytherapy validation. It was used to perform accurate experimental measurements of dose of 125I brachytherapy seeds using LiF dosimeters, with the objective of experimentally validating Monte Carlo (MC) calculations with model-based dose calculation algorithm (MBDCA). In addition, this work intends to evaluate a methodology to convert the experimental values from LiF into dose in the medium. METHODS AND MATERIALS The proposed PMMA physical phantom features cavities to insert a LiF dosimeter and a 125I seed, adjusted in different configurations with variable thickness. Monte Carlo calculations performed with MCNP6.2 code were used to score the absorbed dose in the LiF and the dose conversion parameters. A sensitivity analysis was done to verify the source of possible uncertainties and quantify their impact on the results. RESULTS The proposed phantom and experimental procedure developed in this work provided precise dose data within 5.68% uncertainty (k = 1). The achieved precision made it possible to convert the LiF responses into absorbed dose to medium and to validate the dose conversion factor methodology. CONCLUSIONS The proposed phantom is simple both in design and as in its composition, thus achieving the demanded precision in dose evaluations due to its easy reproducibility of experimental setup. The results derived from the phantom measurements support the dose conversion methodology. The phantom and the experimental procedure developed here can be applied for other materials and radiation sources.
Collapse
Affiliation(s)
| | | | | | - Hélio Yoriyaz
- Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP, São Paulo, Brazil
| |
Collapse
|
14
|
McDermott PN. Linac primary barrier transmission for concrete: Monte Carlo calculations. J Appl Clin Med Phys 2022; 24:e13847. [PMID: 36471480 PMCID: PMC9859993 DOI: 10.1002/acm2.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Recent publications have called into question the accuracy of reference tenth-value layer (TVL) data cited in official reports for linac primary concrete barriers. Doubts have arisen based on both experimental and theoretical evidence. Most of the standard reference TVL values trace back to a publication that appeared in 1984 that used beam spectra that are not representative of modern linacs. This study reports a new set of TVL data for concrete based on modern linac beam spectra and a definition of the barrier transmission that is consistent with its use in shielding calculations. TVL values have been computed for concrete using Monte Carlo simulation for beam energies of 4, 6, 10, 15, and 18 MV. The barrier transmission depends on the field size at the barrier and the distance from the distal surface of the barrier to the point of observation. The TVL values reported here lead to barrier transmission values that are up to a factor of 4 larger than those in official reports. The air kerma rate beyond the barrier does not obey an inverse square law as the barrier now acts like a new (non-point) source of radiation. For distance greater than 0.3 m from the distal side of the barrier, inverse square predictions of the air kerma rate are low by up to a factor of 2. The average energy of the transmitted photons declines rapidly for all beam energies with increasing barrier thickness up to a thickness of about 50 cm and then slowly increases with increasing thickness.
Collapse
|
15
|
Lazarus GL, van Eeden D, du Plessis FCP. Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon 2022; 8:e10682. [PMID: 36185136 PMCID: PMC9519483 DOI: 10.1016/j.heliyon.2022.e10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
In Intra-Operative Radiation Therapy (IORT) the tumour site is surgically exposed and normal tissue located around the tumour may be avoided. Electron applicators would require large surgical incisions; therefore, the preferred mechanism for beam collimation is the IORT cone system. FLASH radiotherapy (FLASH-RT) involves the treatment of tumours at ultra-high dose rates and the IORT cone system can also be used. This study validates the Monte Carlo-based calculations for these small electron beams to accurately determine the dose characteristics of each possible cone-energy combination as well as custom-built alloy cutouts attached to the end of the IORT cone. This will contribute to accurate dose distribution and output factor calculations that are essential to all radiation therapy treatments. A Monte Carlo (MC) model was modelled for electron beams produced by a Siemens Primus LINAC and the IORT cones. The accelerator was built with the component modules available in the BEAMnrc code. The phase-space file generated by the BEAM simulation was used as the source input for the subsequent DOSXYZnrc simulations. Percentage Depth Dose (PDD) data and profiles were extracted from the dose distributions obtained with the DOSXYZnrc simulations. These beam characteristics were compared with measured data for 6, 12, and 18 MeV electron beams for the IORT open cones of diameters 19, 45, and 64 mm and irregularly shaped cutouts. The MC simulations could replicate electron beams within a criterion of 3%/3 mm. Applicator factors were within 0.7%, and cone factors showed good agreement, except for the 9 mm cone size. Based on the successful comparisons between measurement and MC-calculated dose distributions, output factors for the open cones and for small irregularly shaped IORT beams, it may be concluded that the Monte Carlo based dose calculation could replicate electron beams used for IORT and FLASH-IORT.
Collapse
Affiliation(s)
- Graeme L. Lazarus
- University of Kwazulu-Natal, School of Clinical Medicine, College of Health Sciences, Durban, 4013, South Africa
| | - Déte van Eeden
- Department of Medical Physics, University of the Free State, Bloemfontein, 9300, South Africa
| | - Frederik CP. du Plessis
- Department of Medical Physics, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
16
|
Monte Carlo computation of photon energy spectra in central axis of flattened and unflattened beams and doses in critical organs in a water phantom model of prostate radiotherapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Oliver S, Juste B, Miró R, Verdú G. Toolkit implementation to exchange phase-space files between IAEA and MCNP6 monte Carlo code format. Int J Radiat Biol 2022; 99:373-383. [PMID: 35938808 DOI: 10.1080/09553002.2022.2110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Some Monte Carlo simulation codes can read and write phase space files in IAEA format, which are used to characterize accelerators, brachytherapy seeds and other radiation sources. Moreover, as the format has been standardized, these files can be used with different simulation codes. However, MCNP6 has not still implemented this capability, which complicate the studies involving this kind of sources and the reproducibility of results among independent researchers. Therefore, the purpose of this work is to develop a tool to perform conversions between IAEA and MCNP6 phase space files formats, to be used for Monte Carlo simulations. MATERIALS AND METHODS This paper presents a toolkit written in C language that uses the IAEA libraries to convert phase space files between IAEA and MCNP6 format and vice versa. To test the functionality of the provided tool, a set of verification tests has been carried out. In addition, a linear accelerator treatment has been simulated with the PENELOPE library using the PenEasy framework, which is already capable to read and write IAEA phase space files, and MCNP6 using the developed tools. RESULTS Both codes show compatible depth dose curves and profiles in a water tank, demonstrating that the conversion tools work properly. Moreover, the phase space file formats have been converted from IAEA to MCNP6 format and back again to IAEA format, reproducing the very same results. CONCLUSION The toolkit developed in this work offers MCNP6 scientific community an external and validated program able to convert phase space files in IAEA format to MCNP6 internal format and use them for Monte Carlo applications. Furthermore, the developed tools provide also the reverse conversion, which allow sharing MCNP6 results with users of other Monte Carlo codes. This capability in the MCNP6 ecosystem provides to the scientific community the ability not only to share radiation sources, but also to facilitate the reproducibility among different groups using different codes via the standard format specified by the IAEA.
Collapse
Affiliation(s)
- Sandra Oliver
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, València, Spain
| | - Belén Juste
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, València, Spain
| | - Rafael Miró
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, València, Spain
| | - Gumersindo Verdú
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, València, Spain
| |
Collapse
|
18
|
Sá AC, Barateiro A, Bednarz BP, Almeida P, Vaz P, Madaleno T. Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements. Front Oncol 2022; 12:879167. [PMID: 35992845 PMCID: PMC9388939 DOI: 10.3389/fonc.2022.879167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. Purpose Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric patients has been discussed, as it leads to a "bath" of low doses to large volumes of out-of-field organs and tissues. This study aims to compare out-of-field doses in pediatric patients comparing IMRT and 3DCRT techniques using measurements, Monte Carlo (MC) simulations, and treatment planning system (TPS) calculations. Materials and methods A total dose of 54 Gy was prescribed to a PTV in the brain of a pediatric anthropomorphic phantom, for both techniques. To assess the out-of-field organ doses for both techniques, two treatment plans were performed with the 3DCRT and IMRT techniques in TPS. Measurements were carried out in a LINAC using a pediatric anthropomorphic phantom and thermoluminescent dosimeters to recreate the treatment plans, previously performed in the TPS. A computational model of a LINAC, the associated multileaf collimators, and a voxelized pediatric phantom implemented in the Monte Carlo N-Particle 6.1 computer program were also used to perform MC simulations of the out-of-field organ doses, for both techniques. Results The results obtained by measurements and MC simulations indicate a significant increase in dose using the IMRT technique when compared to the 3DCRT technique. More specifically, measurements show higher doses with IMRT, namely, in right eye (13,041 vs. 593 mGy), left eye (6,525 vs. 475 mGy), thyroid (79 vs. 70 mGy), right lung (37 vs. 28 mGy), left lung (27 vs. 20 mGy), and heart (31 vs. 25 mGy). The obtained results indicate that out-of-field doses can be seriously underestimated by TPS. Discussion This study presents, for the first time, out-of-field dose measurements in a realistic scenario and calculations for IMRT, centered on a voxelized pediatric phantom and an MC model of a medical LINAC, including MLC with log file-based simulations. The results pinpoint significant discrepancies in out-of-field doses for the two techniques and are a cause of concern because TPS calculations cannot accurately predict such doses. The obtained doses may presumably increase the risk of development of second tumors.
Collapse
Affiliation(s)
- Ana Cravo Sá
- Radiation Protection and Safety Group, Centro de Ciências e Tecnologias Nucleares (C2TN), Bobadela, Portugal
- Diagnostic, Therapeutic and Public Health Sciences Department, Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Radiotherapy Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| | - Bryan P. Bednarz
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin Hospital and Clinics, Madison, WI, United States
| | - Pedro Almeida
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Vaz
- Radiation Protection and Safety Group, Centro de Ciências e Tecnologias Nucleares (C2TN), Bobadela, Portugal
| | - Tiago Madaleno
- Radiotherapy Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
19
|
Chand B, Singh R, Kumar M. Determination and validation of the initial beam parameters of Elekta Agility collimator head by Monte Carlo simulations. Phys Eng Sci Med 2022; 45:889-899. [PMID: 35849322 DOI: 10.1007/s13246-022-01159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
The availability of geometrical, physical, and initial beam parameters for Monte Carlo (MC) simulations of the Elekta Agility collimator head has become very difficult due to the proprietary nature of this data. This study presents strategies to independently determine the geometrical and physical properties of the components and initial beam parameters of the Agility collimator head for full beam simulations and postulates a benchmarking process using the EGSnrc MC toolkit. Target material of W (90%) and Re (10%) of 0.09 cm thickness, flattening filter of 1.77 cm thick stainless steel placed on 0.5 cm Al disc, and primary and secondary collimators of Tungsten alloy have been found to best fit the Agility head. The initial beam energy of 6.0 MeV with a radial distribution given as full-width half maxima (FWHM) of 0.301 cm (crossline) × 0.201 cm (inline) for 6 MV beam with a mean angular spread of 1.34° has been found best fitting the model. Variations of 0.29% and 0.59% have been noted in the measured and calculated values of TPR20,10 and D10 respectively. More than 90% dose points for all simulations passed the 2D gamma criteria of 3% DD, 3 mm DTA. This MC model of the Agility head can be used for dose calculation and validation of advanced treatment techniques.
Collapse
Affiliation(s)
- Bhagat Chand
- Department of Physics, Lovely Professional University, Phagwara, 1444141, Punjab, India.,Department of Radiotherapy, Dr. Rajendra Prasad Government Medical College, Tanda, Kangra, 176001, Himachal Pradesh, India
| | - Ranjit Singh
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Mukesh Kumar
- Department of Physics, Lovely Professional University, Phagwara, 1444141, Punjab, India.
| |
Collapse
|
20
|
Moradi F, Abdul Sani S, Norazri M, Ung N, Almugren K, Saraee KE, Bradley D. Evaluation of perturbation effects for various size TLDs in small field dosimetry. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
MRI-LINAC dosimetry approach by Monte Carlo codes coupling charged particle radiation transport with strong magnetic fields. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Torres-Díaz J, Grad GB, Bonzi EV. Measurement of linear accelerator spectra, reconstructed from percentage depth dose curves by neural networks. Phys Med 2022; 96:81-89. [DOI: 10.1016/j.ejmp.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
|
23
|
Almatani T, Hugtenburg RP, Smakovs A. A Monte Carlo model of an agility head for a 10-MV photon beam. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2050097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Richard P. Hugtenburg
- College of Medicine, Swansea University, Swansea, UK
- Department of Medical Physics and Clinical Engineering, Swansea Bay University Health Board, Swansea, UK
| | - Artjoms Smakovs
- Department of Medical Physics and Clinical Engineering, Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
24
|
McDermott PN, Sigler MD, Lake IP, Lack D. Uncertainties in linac primary barrier transmission values. J Appl Clin Med Phys 2022; 23:e13574. [PMID: 35235233 PMCID: PMC8992934 DOI: 10.1002/acm2.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Primary barrier design for linac shielding depends very sensitively on tenth value layer (TVL) data. Inaccuracies can lead to large discrepancies between measured and calculated values of the barrier transmission. Values of the TVL for concrete quoted in several widely used standard references are substantially different than those calculated more recently. The older standard TVL data predict significantly lower radiation levels outside primary barriers than the more recently calculated values under some circumstances. The difference increases with increasing barrier thickness and energy, and it can be as large as a factor of 4 for 18 MV and concrete thickness of 200 cm. This may be due to significant differences in the beam spectra between the earlier and the more recent calculations. Measured instantaneous air kerma rates sometimes show large variations for the same energy and thickness. This may be due to confounding factors such as extra material on, or inside the barrier, variable field size at the barrier, density of concrete, and distal distance from the barrier surface. In some cases, the older TVL data significantly underestimate measured instantaneous air kerma rates, by up to a factor of 3, even when confounding factors are taken into account. This could lead to the necessity for expensive remediation. The more recent TVL values tend to overestimate the measured instantaneous dose rates. Reference TVL data should be computed in a manner that is mathematically consistent with their use in the calculation of air kerma rate outside barriers directly from the linac “dose” rate in MU/min.
Collapse
Affiliation(s)
| | | | - Ian P Lake
- Beaumont Health System, Royal Oak, Michigan, USA
| | | |
Collapse
|
25
|
McDermott PN. Medical linac photon skyshine: Monte Carlo calculations and a methodology for estimates. J Appl Clin Med Phys 2022; 23:e13543. [PMID: 35157367 PMCID: PMC8992933 DOI: 10.1002/acm2.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022] Open
Abstract
It has been shown that a widely quoted formula for estimating medical linac photon skyshine equivalent doses is erroneous. Monte Carlo calculations have been performed to develop an easy method for quickly and accurately estimating skyshine radiation levels and to gain improved physical insight into the skyshine phenomenon. Calculations of linac photon skyshine have been performed for 4, 6, 10, 15, and 18 MV beams for 10 × 10 cm2 and 40 × 40 cm2 fields and for a range of room dimensions and roof thicknesses. The effect of flattening filter free beams has been considered. Air kerma rates (AKRs) can be accurately fitted to a simple algebraic formula that is a function of the horizontal distance from the isocenter with a single energy dependent fitting parameter. The AKR, at a height of 1.3 m above level ground, reaches a local maximum at a distance dmax = 1.5dw + 1.1h, where dw is the horizontal distance from the isocenter to the outside of the side wall, and h is the vertical distance from the isocenter to the top of the roof. For thin roofs, low energy beams lead to significantly more skyshine than high energy beams because low energy photons are more easily scattered through large angles. In the absence of a roof, the maximum skyshine dose rate is on the order of 8 × 10-7 times the dose rate at isocenter. The average energy of the skyshine photons is about 0.15 MeV, and it is remarkably independent of almost all parameters. A simple methodology is outlined for the evaluation of photon skyshine.
Collapse
|
26
|
Mariotti V, Gayol A, Pianoschi T, Mattea F, Vedelago J, Pérez P, Valente M, Alva-Sánchez M. Radiotherapy dosimetry parameters intercomparison among eight gel dosimeters by Monte Carlo simulation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Alissa M, Zink K, Tessier F, Schoenfeld AA, Czarnecki D. Monte Carlo calculated beam quality correction factors for two cylindrical ionization chambers in photon beams. Phys Med 2021; 94:17-23. [PMID: 34972070 DOI: 10.1016/j.ejmp.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/04/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Although several studies provide data for reference dosimetry, the SNC600c and SNC125c ionization chambers (Sun Nuclear Corporation, Melbourne, FL) are in clinical use worldwide for which no beam quality correction factors kQ are available. The goal of this study was to calculate beam quality correction factors kQ for these ionization chambers according to dosimetry protocols TG-51, TRS 398 and DIN 6800-2. METHODS Monte Carlo simulations using EGSnrc have been performed to calculate the absorbed dose to water and the dose to air within the active volume of ionization chamber models. Both spectra and simulations of beam transport through linear accelerator head models were used as radiation sources for the Monte Carlo calculations. RESULTS kQ values as a function of the respective beam quality specifier Q were fitted against recommended equations for photon beam dosimetry in the range of 4 MV to 25 MV. The fitting curves through the calculated values showed a root mean square deviation between 0.0010 and 0.0017. CONCLUSIONS The investigated ionization chamber models (SNC600c, SNC125c) are not included in above mentioned dosimetry protocols, but are in clinical use worldwide. This study covered this knowledge gap and compared the calculated results with published kQ values for similar ionization chambers. Agreements with published data were observed in the 95% confidence interval, confirming the use of data for similar ionization chambers, when there are no kQ values available for a given ionization chamber.
Collapse
Affiliation(s)
- Mohamad Alissa
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany.
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany; Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg, Germany; Marburg Ionbeam Therapycenter (MIT), Marburg, Germany
| | - Frédéric Tessier
- Ionization Radiation Standards, National Research Council, Ottawa, Canada
| | | | - Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany
| |
Collapse
|
28
|
Alem-Bezoubiri A, Suleiman SA, Behidj I, Mazrou H, Chami AC. Monte Carlo study of organ doses and related risk for cancer in Algeria from scattered neutrons in prostate treatment involving 3D-CRT. Appl Radiat Isot 2021; 180:110065. [PMID: 34933226 DOI: 10.1016/j.apradiso.2021.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022]
Abstract
The present study aimed to evaluate organ doses and related risk for cancer from scattered neutrons involving 3D Conformational Radiotherapy (3D-CRT) for patients with prostate cancer in Algeria based on Monte Carlo technique and to estimate the secondary cancer risks. To this purpose, a detailed geometric Monte Carlo (MC) modeling of the LINAC Varian 2100C combined with a computational whole-body phantom was carried out. The neutron equivalent doses were calculated in-field and out-of field of patient's organs using the phase-space method. The obtained neutron equivalent doses were used to estimate the Lifetime Attributable Risks (LARs) for cancer incidence in out of field organs. LARs was evaluated assuming Biological Effects of Ionizing Radiation VII (BEIR VII) risk model for exposure age in the range 35-70 years, according to the interval's age of treated patients in Algeria. The baselines cancer risks and survival data were associated with the statistical data for the Algerian population. The results showed that the neutrons equivalent doses per prescribed dose (Photon Dose) mostly depend on the distance of organs from the treated volume. The highest and lowest equivalent doses of 1.18 mSv/Gy and 0.25 mSv/Gy were recorded in the bladder and heart, respectively. The highest estimated lifetime attributable risk per 100,000 population was found for 35 yrs' exposure age in colon 49.94, lung 16.63 and stomach 11.17. The lowest risks were found for 70 yrs' age, in spine 0.06 and thyroid 0.14. The results showed that LARs values decrease with the increase of the exposure age and cancer incidence risk is lower than the baseline cancer risk incidence for all organs. The present study may help in providing a database on the impact of radiotherapy-induced secondary cancer incidence during 3D-CRT for prostate cancer in Algeria.
Collapse
Affiliation(s)
- Asma Alem-Bezoubiri
- Medical Physics Department, Radiological Physics Division, Algiers Nuclear Research Center (CRNA), 02 Boulevard Frantz-Fanon, BP 399 Alger-RP, 16000, Algiers, Algeria.
| | - Suleiman Ameir Suleiman
- Radiation Control Directorate, Tanzania Atomic Energy Commission, P.O BOX 743, Arusha, Tanzania
| | - Ikram Behidj
- Radiotherapy Service, Central Army Hospital, Algiers, Algeria
| | - Hakim Mazrou
- Division of Environment, Safety, and Radioactive Waste, Algiers Nuclear Research Center (CRNA), 02 Boulevard Frantz-Fanon, BP 399 Alger-RP, 16000, Algiers, Algeria
| | - Ahmed Chafik Chami
- Faculty of Physics, University of Science and Technology Houari Boumediene, USTHB, BP 32 EL ALIA, BAB EZZOUAR, Algiers, Algeria
| |
Collapse
|
29
|
Yan H, Carlson DJ, Abolfath R, Liu W. Microdosimetric Investigation and a Novel Model of Radiosensitization in the Presence of Metallic Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13122191. [PMID: 34959471 PMCID: PMC8709133 DOI: 10.3390/pharmaceutics13122191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Auger cascades generated in high atomic number nanoparticles (NPs) following ionization were considered a potential mechanism for NP radiosensitization. In this work, we investigated the microdosimetric consequences of the Auger cascades using the theory of dual radiation action (TDRA), and we propose the novel Bomb model as a general framework for describing NP-related radiosensitization. When triggered by an ionization event, the Bomb model considers the NPs that are close to a radiation sensitive cellular target, generates dense secondary electrons and kills the cells according to a probability distribution, acting like a “bomb.” TDRA plus a distance model were used as the theoretical basis for calculating the change in α of the linear-quadratic survival model and the relative biological effectiveness (RBE). We calculated these quantities for SQ20B and Hela human cancer cells under 250 kVp X-ray irradiation with the presence of gadolinium-based NPs (AGuIXTM), and 220 kVp X-ray irradiation with the presence of 50 nm gold NPs (AuNPs), respectively, and compared with existing experimental data. Geant4-based Monte Carlo (MC) simulations were used to (1) generate the electron spectrum and the phase space data of photons entering the NPs and (2) calculate the proximity functions and other related parameters for the TDRA and the Bomb model. The Auger cascade electrons had a greater proximity function than photoelectric and Compton electrons in water by up to 30%, but the resulting increases in α were smaller than those derived from experimental data. The calculated RBEs cannot explain the experimental findings. The relative increase in α predicted by TDRA was lower than the experimental result by a factor of at least 45 for SQ20B cells with AGuIX under 250 kVp X-ray irradiation, and at least four for Hela cells with AuNPs under 220 kVp X-ray irradiation. The application of the Bomb model to Hela cells with AuNPs under 220 kVp X-ray irradiation indicated that a single ionization event for NPs caused by higher energy photons has a higher probability of killing a cell. NPs that are closer to the cell nucleus are more effective for radiosensitization. Microdosimetric calculations of the RBE for cell death of the Auger electron cascade cannot explain the experimentally observed radiosensitization by AGuIX or AuNP, while the proposed Bomb model is a potential candidate for describing NP-related radiosensitization at low NP concentrations.
Collapse
Affiliation(s)
- Huagang Yan
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China;
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - David J. Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ramin Abolfath
- Department of Radiation Physics and Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 75031, USA;
- Department of Radiation Oncology, New Jersey Urology, West Orange, NJ 07052, USA
| | - Wu Liu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
30
|
Monte Carlo Calculation of linear attenuation coefficients and photon scattering properties of novel concretes loaded with Osmium, Iridium and Barite nanoparticles. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Recent studies have shown that the use of high-density nanoparticles (NPs) in concrete composition improves its radiation shielding properties. In the present study, the linear attenuation coefficients and photon scattering properties of newly developed high-density Nano-concretes have been calculated using the MCNPX Monte Carlo code.
Material and methods: The shielding properties of Nano-concretes containing 10%, 20%, and 30% weight percentage of Osmium, Iridium and Barite NPs (100 nm) as well as ordinary concrete were investigated. The 6 and 18 MV photon beams of Varian Linac and 60
Co photons were used for simulation. Photon scattering flux was calculated for all Nano-concretes with 30 wt% of NPs and ordinary concrete at different angles.
Results: In general, by adding Iridium, Osmium and Barite NPs to ordinary concrete, the linear attenuation coefficients increased. Despite a lower density relative to Iridium and Osmium, Nano-concretes containing Barite exhibited a higher linear attenuation coefficient due to their higher electron density.
Conclusions: The results revealed a dependence between the scattered photon flux and the effective atomic number of Nano-concretes. With increasing the atomic number of fillers, the intensity of the scattered photon flux enlarged. Also, the scattered flux was higher for all types of concretes at 180 degrees relative to other angles.
Collapse
|
31
|
Rijken J, Towns S, Healy B. The need to update NCRP 151 data for 10 MV linear accelerator bunker shielding based on new measurements and Monte Carlo simulations. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:842-852. [PMID: 34624879 DOI: 10.1088/1361-6498/ac2e0b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Linear accelerator bunker shielding protocols such as NCRP 151 have previously been tested against a large sample of measured data from real bunkers and machines but differences in per-energy concrete penetration (TVLs) for 10 MV has not yet been resolved. These differences are likely due to historical beam data and can potentially result in over-exposure of radiation workers and the public. This study examines a cohort of clinical linac bunker survey measurements and compares them to popular shielding protocols. Differences were investigated using contemporary beam data for both Monte Carlo simulation and in analytical equations. For primary barriers, NCRP 151 underestimates the dose rate through concrete by on average a factor of 2 with secondary barriers and maze entrance doses having much better agreement. Use of contemporary beam data in Monte Carlo simulation and an analytical equation yielded TVL values much closer to the measured values compared to NCRP 151. The TVL data in NCRP 151 is outdated and needs to be updated based upon the energy spectra of modern linear accelerators. Until then, physicists should use the TVL values shown in this study instead.
Collapse
Affiliation(s)
- J Rijken
- Icon Cancer Centre, Windsor Gardens, SA, Australia
| | - S Towns
- Icon Cancer Centre, Moreland, VIC, Australia
| | - B Healy
- Icon Cancer Centre, South Brisbane, QLD, Australia
| |
Collapse
|
32
|
Ben Kacem M, Benadjaoud MA, Dos Santos M, Buard V, Tarlet G, Le Guen B, François A, Guipaud O, Milliat F, Paget V. Variation of 4 MV X-ray dose rate in fractionated irradiation strongly impacts biological endothelial cell response in vitro. Int J Radiat Biol 2021; 98:50-59. [PMID: 34705615 DOI: 10.1080/09553002.2022.1998703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Even though X-ray beams are widely used in medical diagnosis or radiotherapy, the comparisons of their dose rates are scarce. We have recently demonstrated in vitro (clonogenic assay, cell viability, cell cycle, senescence) and in vivo (weight follow-up of animals and bordering epithelium staining of lesion), that for a single dose of irradiation, the relative biological effectiveness (RBE) deviates from 1 (up to twofold greater severe damage at the highest dose rate depending on the assay) when increasing the dose rate of high energy X-ray beams. MATERIAL AND METHODS To further investigate the impact of the dose rate on RBE, in this study, we performed in vitro fractionated irradiations by using the same two dose rates (0.63 and 2.5 Gy.min-1) of high-energy X-rays (both at 4 MV) on normal endothelial cells (HUVECs). We investigated the viability/mortality, characterized radiation-induced senescence by using flow cytometry and measured gene analysis deregulations on custom arrays. RESULTS The overall results enlighten that, in fractionated irradiations when varying the dose rate of high-energy X-rays, the RBE of photons deviates from 1 (up to 2.86 for viability/mortality experiments performed 21 days postirradiation). CONCLUSION These results strengthen the interest of multiparametric analysis approaches in providing an accurate evaluation of the outcomes of irradiated cells in support of clonogenic assays, especially when such assays are not feasible.
Collapse
Affiliation(s)
- Mariam Ben Kacem
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Mohamed A Benadjaoud
- Department of RAdiobiology and regenerative MEDicine (SERAMED), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc), Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | | | - A François
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - O Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - F Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| |
Collapse
|
33
|
Guo K, Ingleby H, Van Uytven E, Elbakri I, Van Beek T, McCurdy B. Performance optimization of a tri-hybrid method for estimation of patient scatter into the EPID. J Appl Clin Med Phys 2021; 22:99-114. [PMID: 34697889 PMCID: PMC8598147 DOI: 10.1002/acm2.13439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/29/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
On‐treatment EPID images are contaminated with patient‐generated scattered photons. If this component can be accurately estimated, its effect can be removed, and therefore a corresponding in vivo patient dose estimate will be more accurate. Our group previously developed a "tri‐hybrid" (TH) algorithm to provide fast but accurate estimates of patient‐generated photon scatter. The algorithm uses an analytical method to solve for singly‐scattered photon fluence, a modified Monte Carlo hybrid method to solve for multiply‐scattered photon fluence, and a pencil beam scatter kernel method to solve for electron interaction generated scattered photon fluence. However, for efficient clinical implementation, spatial and energy sampling must be optimized for speed while maintaining overall accuracy. In this work, the most significant sampling issues were examined, including spatial sampling settings for the patient voxel size, the number of Monte Carlo histories used in the modified hybrid MC method, scatter order sampling for the hybrid method, and also a range of energy spectrum sampling (i.e., energy bin sizes). The total predicted patient‐scattered photon fluence entering the EPID was compared with full MC simulation (EGSnrc) for validation. Three phantoms were tested with 6 and 18 MV beam energies, field sizes of 4 × 4, 10 × 10, and 20 × 20 cm2, and source‐to‐imager distance of 140 cm to develop a set of optimal sampling settings. With the recommended sampling, accuracy and precision of the total‐scattered energy fluence of the TH patient scatter prediction method are within 0.9% and 1.2%, respectively, for all test cases compared with full MC simulation results. For the mean energy spectrum across the imaging plane, comparison of TH with full MC simulation showed 95% overlap. This study has optimized sampling settings so that they have minimal impact on patient scatter prediction accuracy while maintaining maximum execution speed, a critical step for future clinical implementation.
Collapse
Affiliation(s)
- Kaiming Guo
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harry Ingleby
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric Van Uytven
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Idris Elbakri
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Timothy Van Beek
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Boyd McCurdy
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
Park H, Paganetti H, Schuemann J, Jia X, Min CH. Monte Carlo methods for device simulations in radiation therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac1d1f. [PMID: 34384063 PMCID: PMC8996747 DOI: 10.1088/1361-6560/ac1d1f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Monte Carlo (MC) simulations play an important role in radiotherapy, especially as a method to evaluate physical properties that are either impossible or difficult to measure. For example, MC simulations (MCSs) are used to aid in the design of radiotherapy devices or to understand their properties. The aim of this article is to review the MC method for device simulations in radiation therapy. After a brief history of the MC method and popular codes in medical physics, we review applications of the MC method to model treatment heads for neutral and charged particle radiation therapy as well as specific in-room devices for imaging and therapy purposes. We conclude by discussing the impact that MCSs had in this field and the role of MC in future device design.
Collapse
Affiliation(s)
- Hyojun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Xun Jia
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
35
|
Efficiency analysis of multiple detector effects on MCNP 6.2 simulations. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Skin dose assessment at diagnostic and therapeutic photon energies: A Monte Carlo study on TLDs. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Ahmadi M, Ramezani Anarestani M, Hariri Tabrizi S, Azma Z. Manufacturing and evaluation of a multi-purpose Iranian head and neck anthropomorphic phantom called MIHAN. Med Biol Eng Comput 2021; 59:1611-1620. [PMID: 34268670 DOI: 10.1007/s11517-021-02394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/13/2021] [Indexed: 11/25/2022]
Abstract
A new multi-purpose Iranian head and neck (MIHAN) anthropomorphic phantom was designed and manufactured to be used in diagnostic and therapeutic applications. Geometry of MIHAN phantom was determined based on the average dimensions acquired by CT scans of twenty patients without any medical problems in their head and neck site. Because the phantom was expected to be used with different modalities with a wide range of photon energies, attenuation coefficients of some selected materials were determined using Monte Carlo simulation. Based on analytical and simulation results, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) were found suitable choices for soft and bony tissues, respectively. They were used in the 3D printer to build the phantom. The suitability of the materials was checked by CT number value comparison between the organs included in the phantom and the corresponding body tissues and also film dosimetry of a typical intensity-modulated radiation therapy (IMRT) plan.. Hounsfield Unit agreement and 95% ± 2% pass rate for the IMRT plan verification proved the suitability of material selection. Also, the film dosimetry showed feasibility of using MIHAN in radiotherapy plan verification workflow. In addition, PLA was introduced as a spongy bone tissue substitute for the first time.
Collapse
Affiliation(s)
- Mohammad Ahmadi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Sanaz Hariri Tabrizi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Zohreh Azma
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
38
|
Krim DE, Bakari D, Zerfaoui M, Rrhioua A. Implementation of a new virtual source model in Gate 9.0 package to simulate Elekta Synergy MLCi2 6 MV accelerator. Biomed Phys Eng Express 2021; 7. [PMID: 34193645 DOI: 10.1088/2057-1976/ac1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022]
Abstract
Monte Carlo simulation is appreciated as an extraordinary technique to investigate particle physic processes in Radiation Therapy. This task offers a new Virtual Source Model (VSM) based on an innovative reconstruction method to extract energy and angular distribution from the Python phase space output data. Extensive comparisons of dose distributions are performed to evaluate VSM simulation precision. Four squared field configurations extending from 3 × 3 to 20 × 20 cm2are chosen for dose calculation to test field size and symmetry influences. To evaluate simulation accuracy, the beam quality parameters (such asD10(%),dmax(cm),d80(cm), andTPR(20/10)) also validation tests (gamma index formalism for 2%/2 mm criteria, Distance To Agreement DTA, and the estimator standard error (ϵ,ϵmax)) are determined. Good agreement is achieved in terms of beam quality parameters and validation tests for each evaluated beam size, within a computation time of 58 hours and 17 hours on 20 nodes (presents 160 CPUs) of the full simulation and the VSM, respectively. This advanced VSM generated for the Elekta Synergy MLCi2 platform displays an uncomplicated approach. It is a great example of reconstructing different x-ray beams of various linac accelerators to facilitate its integration in cancer treatment.
Collapse
Affiliation(s)
- Deae-Eddine Krim
- Laboratory of Physics of Matter and Radiation Faculty of Sciences, Mohammed first University Oujda, Morocco
| | - Dikra Bakari
- National School of Applied Sciences, Mohammed first University, Oujda, Morocco
| | - Mustapha Zerfaoui
- Laboratory of Physics of Matter and Radiation Faculty of Sciences, Mohammed first University Oujda, Morocco
| | - Abdeslem Rrhioua
- Laboratory of Physics of Matter and Radiation Faculty of Sciences, Mohammed first University Oujda, Morocco
| |
Collapse
|
39
|
Teimoori Khandan L, Kashian S, Rezaeian P, Yousefi Diba A. Calculating the Medium Correction Factor for the PTW-30013 Ionization Chamber. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Hachemi T, Chaoui ZEA, Khoudri S. PENELOPE simulations and experiment for 6 MV clinac iX accelerator for standard and small static fields. Appl Radiat Isot 2021; 174:109749. [PMID: 33940355 DOI: 10.1016/j.apradiso.2021.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
The goal of this work was to produce accurate data for use as a 'gold standard' and a valid tool for measurements in reference dosimetry for standard/small static field sizes from 0.5 × 0.5 to 10 × 10 cm2. It is based on the accuracy of the phase space files (PSFs) as a key quantity. Because the IAEA general public database provides few PSFs for the Varian iX, we simulated the head through Monte Carlo (MC) simulations and calculated validated PSFs for 12 square field sizes including seven for small static fields. The resulting dosimetric calculations allowed us to reach a good level of agreement in comparison to our relative and absolute dose measurements performed on a Varian iX in water phantom. Measured and MC calculated output factors were investigated for different detectors. Based on the TRS 483 formalism and MC (PENELOPE/penEasy), we calculated output correction factors for the unshielded Diode-E (T60017) and the PinPoint-3D (T31016) micro-chamber according to manufacturers' blueprints. Our MC results were in agreement with the recommended data; they compete with recent measurements and MC simulations and in particular the TRS 483 MC data obtained from similar simulations. Moreover, our MC results provide supplemental data in comparison to TRS 483 data in particular for the PinPoint-3D (T31016). We suggest our MC output correction factors as new datasets for future TRS compilations. The work was substantial, used different robust MC strategies depending on the scoring regions, and led in most cases to uncertainties of less than 1%.
Collapse
Affiliation(s)
- Taha Hachemi
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria.
| | - Zine-El-Abidine Chaoui
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria
| | - Saad Khoudri
- Physics Department, Faculty of Sciences, Laboratory of Optoelectronic and Devices, University Ferhat Abbas Sétif 1, Algeria; Centre de Lutte Contre le Cancer de Sétif, Algeria
| |
Collapse
|
41
|
Vedelago J, Chacón D, Romero M, Venencia D, Mattea F, Valente M. Dose-response of Fricke- and PAGAT-dosimetry gels in kilovoltage and megavoltage photon beams: Impact of LET on sensitivity. Phys Med 2021; 84:41-49. [PMID: 33838531 DOI: 10.1016/j.ejmp.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Dosimetry of ionizing radiation quantifies the energy deposited by an incident beam to the medium. This study presents the relative response of two types of gel dosimeters describing their differences by estimating radiation chemical yields produced in water radiolysis. METHODS Two types of gel dosimeter were used, namely an acid ferrous ion solution infused with xylenol orange known as Fricke gel and a polymer gel based on acrylamide and N,N'-methylenebis(acrylamide) known as PAGAT. Samples were irradiated using two photon beam energies, one from a conventional X-ray tube operated at 44 kV and the other one from a LINAC operated at 6 MV. The dosimeters were analyzed by optical absorbance and magnetic resonance imaging. Additionally, the linear energy transfer of each beam was calculated using Monte Carlo simulations for further estimation of the radiation chemical yields produced during water radiolysis. RESULTS Obtained results for both gel dosimeters indicate that their response at 44 kV and 6 MV are different, regardless of the read-out technique. On average, the sensitivity at 44 kV was found to be 65 % of the response at 6 MV. The calculated radiation chemical yields are in agreement with the observed experimental results. CONCLUSIONS The main reason for the difference in the response of the dosimeters may be related to the linear energy transfer of each photon beam, which varies the production of primary chemical species during water radiolysis.
Collapse
Affiliation(s)
- José Vedelago
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, Argentina; Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X, FAMAF-UNC, Córdoba, Argentina.
| | - David Chacón
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X, FAMAF-UNC, Córdoba, Argentina; Departamento de Fśica, Universidad Nacional, Heredia, Costa Rica
| | - Marcelo Romero
- Departamento de Química Orgánica, FCQ-UNC, Córdoba, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina
| | - Daniel Venencia
- Instituto Zunino - Fundación Marie Curie, Córdoba, Argentina
| | - Facundo Mattea
- Departamento de Química Orgánica, FCQ-UNC, Córdoba, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina
| | - Mauro Valente
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, Argentina; Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X, FAMAF-UNC, Córdoba, Argentina; Centro de Física e Ingeniería en Medicina - CFIM & Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
42
|
Catusso L, Santos WS, da Silva RMV, Valença JVB. Mobile shielding evaluation on the fetal dose during a breast radiotherapy using Monte Carlo simulation. Phys Med 2021; 84:24-32. [PMID: 33826997 DOI: 10.1016/j.ejmp.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Evaluation of the out-of-field dose is an important aspect in radiotherapy. Due to the fetus radiosensitivity, this evaluation becomes even more conclusive when the patient is pregnant. In this work, a linear accelerator Varian Clinac 2100c operating at 6 MV, a pregnant anthropomorphic phantom (Maria), and different shields added above the abdominal region of the phantom were used for the analysis based on MCNPX. METHODS The simulations were performed for the medial and lateral projections, using either an open field collimation (10×16cm2) or a multileaf collimator. The added shields (M1 and M2) were designed based on models proposed by Stovall et al. [1], intending to reduce the deposited dose on the fetus and related structures. RESULTS The presence of the shields showed to be effective in reducing the doses on the fetus, amniotic sac, and placenta, for example. A reduction of about 43% was found in the dose on the fetus when M2 was added, using the open field collimation, in comparison with the situation with no shield, being the lateral projection the main responsible for the dose. The use of MLC significatively reduced the doses in different structures, including on the fetus and amniotic sac, for example, in comparison to the open field situation. A slight increment on the dose in organs such as the eyes, thyroid and brain was found in both collimation systems, due to the presence of the shields. The contribution of the leakage radiation from the tube head of the linear accelerator was found to be in the order of µGy, being reduced by the presence of the M2 shield. CONCLUSION Using the shields showed to be an essential feature in order to reduce the dose not only on the fetus, but also in important structures responsible to its development.
Collapse
Affiliation(s)
- Leonardo Catusso
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - William S Santos
- Federal University of Uberlândia (INFIS/UFU), Uberlândia, MG, Brazil
| | | | - João V B Valença
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
43
|
Brivio D, Sajo E, Zygmanski P. Gold nanoparticle detection and quantification in therapeutic MV beams via pair production. Phys Med Biol 2021; 66:064004. [PMID: 33412535 DOI: 10.1088/1361-6560/abd954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE We propose a new detection method of gold nanoparticles (AuNP) in therapeutic megavoltage (MV) x-ray beams by means of coincidence counting of annihilation photons following pair production in gold. METHODS The proposed MV x-ray induced positron emission (MVIPE) imaging technique is studied by radiation transport computations using MCNP6 (3D) and CEPXS/ONEDANT (1D) codes for two water phantoms: a 35 cm slab and a similarly sized cylinder, both having a 5 cm AuNP filled region in the center. MVIPE is compared to the standard x-ray fluorescence computed tomography (XFCT). MVIPE adopts MV x-ray sources (Co-60, 2 MV, 6 MV, 6 MV with closed MLC and 15 MV) and relies on the detection of 511 keV photon-pairs. XFCT uses kilovoltage sources (100 kVp, 120 kVp and 150 kVp) and imaging is characterized by analysis of k α1,2 Au characteristic lines. Three levels of AuNP concentration were studied: 0.1%, 1% and 10% by weight. RESULTS Annihilation photons in the MVIPE technique originate both in the AuNP and in water along the x-ray beam path with significantly larger production in the AuNP-loaded region. MVIPE signal from AuNP is linearly increasing with AuNP concentration up to 10%wt, while XFCT signal reaches saturation due to self-absorption within AuNP. The production of annihilation photons is proportional to the MV source energy. MVIPE technique using a 15 MV pencil beam and 10 wt% AuNP detects about 4.5 × 103 511 keV-photons cm-2 at 90° w/r to the incident beam per 109 source photons cm-2; 500 of these come from AuNP. In contrast, the XFCT technique using 150 kVp detects only about 100 k α1-photons cm-2 per 109 source photons cm-2. CONCLUSIONS In MVIPE, the number of annihilation photons produced for different MV-beam energies and AuNP concentrations is significantly greater than the k α1 photons generated in XFCT. Coincidence counting in MVIPE allows to avoid collimation, which is a major limiting factor in XFCT. MVIPE challenges include the filtering of Compton scatter and annihilation photons originating in water.
Collapse
Affiliation(s)
- D Brivio
- Brigham & Woman's Hospital, Boston, MA, Dana Farber Cancer Institute, Boston, MA, Harvard Medical School, United States of America
| | | | | |
Collapse
|
44
|
Takata T, Shiraishi K, Kumagai S, Arai N, Kobayashi T, Oba H, Okamoto T, Kotoku J. Calculating and estimating second cancer risk from breast radiotherapy using Monte Carlo code with internal body scatter for each out-of-field organ. J Appl Clin Med Phys 2020; 21:62-73. [PMID: 33128332 PMCID: PMC7769416 DOI: 10.1002/acm2.13060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Out-of-field organs are not commonly designated as dose calculation targets during radiation therapy treatment planning, but they might entail risks of second cancer. Risk components include specific internal body scatter, which is a dominant source of out-of-field doses, and head leakage, which can be reduced by external shielding. Our simulation study quantifies out-of-field organ doses and estimates second cancer risks attributable to internal body scatter in whole-breast radiotherapy (WBRT) with or without additional regional nodal radiotherapy (RNRT), respectively, for right and left breast cancer using Monte Carlo code PHITS. Simulations were conducted using a complete whole-body female model. Second cancer risk was estimated using the calculated doses with a concept of excess absolute risk. Simulation results revealed marked differences between WBRT alone and WBRT plus RNRT in out-of-field organ doses. The ratios of mean doses between them were as large as 3.5-8.0 for the head and neck region and about 1.5-6.6 for the lower abdominal region. Potentially, most out-of-field organs had excess absolute risks of less than 1 per 10,000 persons-year. Our study surveyed the respective contributions of internal body scatter to out-of-field organ doses and second cancer risks in breast radiotherapy on this intact female model.
Collapse
Affiliation(s)
- Takeshi Takata
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Kenshiro Shiraishi
- Department of RadiologyTeikyo University School of Medicine2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Shinobu Kumagai
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Norikazu Arai
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Takenori Kobayashi
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Hiroshi Oba
- Department of RadiologyTeikyo University School of Medicine2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Takahide Okamoto
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Jun’ichi Kotoku
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| |
Collapse
|
45
|
Computational evaluation of dose distribution for BNCT treatment combined with X-ray therapy or proton beam therapy. Appl Radiat Isot 2020; 165:109295. [DOI: 10.1016/j.apradiso.2020.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022]
|
46
|
Phantom dosimetry and cancer risks estimation undergoing 6 MV photon beam by an Elekta SL-25 linac. Appl Radiat Isot 2020; 163:109232. [PMID: 32561064 DOI: 10.1016/j.apradiso.2020.109232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/25/2020] [Accepted: 05/17/2020] [Indexed: 01/15/2023]
Abstract
The High-energy linear accelerator (linac) is a valuable tool and the most commonly used devices for external beam radiation treatments in subjects suffer from cancer. To estimate the dose deposited in several organs of a female patient due to pelvic irradiation by an Elekta SL-25 linac in 6 MV photon beam mode, the MCNPX code is used considering the most details of linac. The equivalent dose in different organs is computed according to the face down position (prone) of MIRD and UFRO phantoms. The data obtained using MCNPX show that the received dose in all commons organs of MIRD and UFRO phantoms is 535.73 and 433.09 mSv/Gyx, respectively. The risks of second cancer incidence and mortality during radiotherapy treatment are compared between MIRD and UFRO phantoms. The results indicated that bladder has the maximum risk of secondary cancer incidence risk of 142.85 and 135.34 per 105 persons based on MIRD and UFRO phantoms, respectively; while the total risk is about 1 in 163 and about 1 in 101 in these phantoms.
Collapse
|
47
|
Ohira S, Takegawa H, Miyazaki M, Koizumi M, Teshima T. Monte Carlo Modeling of the Agility MLC for IMRT and VMAT Calculations. In Vivo 2020; 34:2371-2380. [PMID: 32871762 DOI: 10.21873/invivo.12050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The Purpose of this study was to develop a Monte Carlo (MC) model for the Agility multileaf collimator (MLC) mounted and to validate its accuracy. MATERIALS AND METHODS To describe the Agility MLC in the BEAMnrc MC code, an existing component module code was modified to include its characteristics. The leaf characterization of the MC model was validated by comparing the calculated interleaf transmission and tongue-and-groove effect with EBT2 film and diode measurements and IMRT and VMAT calculations with film measurements. RESULTS Agreement between mean calculated and measured leaf transmissions was within 0.1%. The discrepancy between MC calculation and measurement in a static irregular field was less than 2%/2 mm. Gamma analysis of the comparison of MC and EBT2 film measurements in IMRT and VMAT fields yielded pass rates of 99.1% and 99.5% with 3%/3 mm criteria, respectively. CONCLUSION Our findings demonstrate the accuracy of the MC model using an adapted BEAMnrc component module for the Agility MLC.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan .,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Takegawa
- Department of Radiation Oncology, Kansai Medical University Hospital, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
48
|
Apaza Veliz DG, Wilches Visbal JH, Abrego FC, Vega Ramírez JL. Monte Carlo Calculation of the Energy Spectrum of a 6 MeV Electron Beam using PENetration and Energy Loss of Positrons and Electrons Code. J Med Phys 2020; 45:116-122. [PMID: 32831494 PMCID: PMC7416870 DOI: 10.4103/jmp.jmp_104_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 11/11/2022] Open
Abstract
Background: The limited bibliographic existence of research works on the use of Monte Carlo simulation to determine the energy spectra of electron beams compared to the information available regarding photon beams is a scientific task that should be resolved. Aims: In this work, Monte Carlo simulation was performed through the PENELOPE code of the Sinergy Elekta accelerator head to obtain the spectrum of a 6 MeV electron beam and its characteristic dosimetric parameters. Materials and Methods: The central-axis energy spectrum and the percentage depth dose curve of a 6 MeV electron beam of an Elekta Synergy linear accelerator were obtained by using Monte Carlo PENELOPE code v2014. For this, the linear accelerator head geometry, electron applicators, and water phantom were simplified. Subsequently, the interaction process between the electron beam and head components was simulated in a time of 86.4x104 s. Results: From this simulation, the energy spectrum at the linear accelerator exit window and the surface of the phantom was obtained, as well as the associated percentage depth dose curves. The validation of the Monte Carlo simulation was performed by comparing the simulated and the measured percentage depth dose curves via the gamma index criterion. Measured percentage depth- dose was determined by using a Markus electron ionization chamber, type T23343. Characteristic parameters of the beam related with the PDD curves such as the maximum dose depth (R100), 90% dose depth (R90), 90% dose depth or therapeutic range (R85), half dose depth (R50), practical range (Rp), maximum range (Rmax), surface dose (Ds), normalized dose gradient (G0) and photon contamination dose (Dx) were determined. Parameters related with the energy spectrum, namely, the most probable energy of electrons at the surface (Ep,0) and electron average energy (E– 0) were also determined. Conclusion: It was demonstrated that PENELOPE is an attractive and accurate tool for the obtaining of dosimetric parameters of a medical linear accelerator since it can reliably reproduce important clinical data such as the energy spectrum, depth dose, and dose profile.
Collapse
Affiliation(s)
- Danny Giancarlo Apaza Veliz
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Brazil.,Department of Physics, National University of San Agustín, Arequipa, Peru
| | - Jorge Homero Wilches Visbal
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, University of Magdalena, Santa Marta, Colombia
| | - Felipe Chen Abrego
- Center for Natural and Human Sciences, Federal University of ABC, Brazil
| | | |
Collapse
|
49
|
Mahl A, Miller B, Miften M, Jones BL. Optimizing Coded Aperture Imaging techniques to allow for online tracking of fiducial markers with high-energy scattered radiation from treatment beam. Med Phys 2020; 47:4428-4438. [PMID: 32609886 DOI: 10.1002/mp.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Real-time visualization of target motion using fiducial markers during radiation therapy treatment will allow for more accurate dose delivery. The purpose of this study was to optimize techniques for online fiducial marker tracking by detecting the scattered treatment beam through coded aperture imaging (CAI). Coded aperture imaging is a novel imaging technique that can allow target tracking in real time during treatment, and do so without adding any additional radiation dose, by making use of the scattered treatment beam radiation. METHODS Radiotherapy beams of various energies, incident on phantoms containing gold fiducial markers were modeled using MCNP6.2 Monte Carlo transport code. Orthogonal scatter radiographs were collected through a CAI geometry. After decoding the simulated radiograph data, the centroid location and FWHM/SNR of the fiducial signals were analyzed. The effects of properties related to the CA (rank, pattern, and physical dimensions), detector (dimensions and pixel count), position (CA and phantom), and the incident beam (spectrum and direction) were investigated. These variables were evaluated by quantifying the positional accuracy, resolution, and SNR of the fiducials' signal. The effects of phantom scatter and decoding artifacts were reduced via Fourier filtering to avoid treatment interruption and physical interaction with the coded mask. RESULTS The method was able to accurately localize the markers to within 1 pixel of a simulated radiograph. A 10 × 10 × 2 cm tungsten mask was chosen to attenuate >99 % of incident scatter through opaque elements, while minimizing collimation artifacts which arise from vignetting of the coded radiograph. Clear separation of centroids from fiducial signals with 2.5 mm separation was maintained, and initial optimization of parameters has produced an aperture which decodes the location of multiple fiducial markers inside a human phantom properly with a high SNR in the final radiograph image. CONCLUSION Current results show a proof of concept for a novel real-time imaging method. Coded aperture imaging is a promising technique for extracting the fiducial scatter signal from a broader Compton-scatter background. These results can be used to further optimize the CAI parameter space and guide fabrication and testing of a clinical device.
Collapse
Affiliation(s)
- Adam Mahl
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brian Miller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bernard L Jones
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
50
|
Collection and analysis of photon beam data for Varian C-series linear accelerators: a potential reference beam data set. Phys Eng Sci Med 2020; 43:889-901. [PMID: 32514848 DOI: 10.1007/s13246-020-00885-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to collect and analyze photon beam data for the Varian C-series linear accelerators (Varian Medical Systems, Palo Alto, CA, USA). We evaluated the potential of the average data to be used as reference beam data for the radiotherapy treatment planning system commissioning verification. We collected 20 data sets for 4 and 6 MV photon beams, and 40 data sets for a 10 MV photon beam generated by the Varian C-series machines, which contained the percent depth dose (PDD), off-center ratio (OCR), and output factor (OPF) from 20 institutions. The average for each of the data types was calculated across the 20 machines. Dose differences from the average for PDD at the dose fall-off region were less than 1.0%. Relative differences from the average for the OPF data were almost within 1.0% for all energies and field sizes. For OCR data in the flat regions, the standard deviation of the dose differences from the average was within 1.0%, excluding that of the 30 × 30 mm2 field size being approximately 1.5%. For all energies and field sizes, the distance to agreement from the average in the OCR penumbra regions was less than 1.0 mm. The average data except for the small field size found in this study can be used as reference beam data for verifying users' commissioning results.
Collapse
|