1
|
Ho K, Harshey RM. Clustering of rRNA operons in E. coli is disrupted by σ H. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614170. [PMID: 39345417 PMCID: PMC11429968 DOI: 10.1101/2024.09.20.614170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Chromosomal organization in E. coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or 'clustering' of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies - fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
2
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
3
|
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar Drugs 2024; 22:299. [PMID: 39057408 PMCID: PMC11277574 DOI: 10.3390/md22070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| |
Collapse
|
4
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Pope MA, Curtis RM, Gull H, Horadigala Gamage MA, Abeyrathna SS, Abeyrathna NS, Fahrni CJ, Meloni G. Fluorescence-Based Proteoliposome Methods to Monitor Redox-Active Transition Metal Transmembrane Translocation by Metal Transporters. Methods Mol Biol 2024; 2839:77-97. [PMID: 39008249 PMCID: PMC11411439 DOI: 10.1007/978-1-0716-4043-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transmembrane transition metal transporter proteins are central gatekeepers in selectively controlling vectorial metal cargo uptake and extrusion across cellular membranes in all living organisms, thus playing key roles in essential and toxic metal homeostasis. Biochemical characterization of transporter-mediated translocation events and transport kinetics of redox-active metals, such as iron and copper, is challenged by the complexity in generating reconstituted systems in which vectorial metal transport can be studied in real time. We present fluorescence-based proteoliposome methods to monitor redox-active metal transmembrane translocation upon reconstitution of purified metal transporters in artificial lipid bilayers. By encapsulating turn-on/-off iron or copper-dependent sensors in the proteoliposome lumen and conducting real-time transport assays using small unilamellar vesicles (SUVs), in which selected purified Fe(II) and Cu(I) transmembrane importer and exporter proteins have been reconstituted, we provide a platform to monitor metal translocation events across lipid bilayers in real time. The strategy is modular and expandable toward the study of different transporter families featuring diverse metal substrate selectivity and promiscuity.
Collapse
Affiliation(s)
- Mitchell A Pope
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Rose M Curtis
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Humera Gull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | | | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Christoph J Fahrni
- Petit Institute for Bioengineering and Bioscience, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
6
|
Abstract
TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| |
Collapse
|
7
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|
8
|
Mateos G, Martínez-Bonilla A, Martínez JM, Amils R. Vitamin B 12 Auxotrophy in Isolates from the Deep Subsurface of the Iberian Pyrite Belt. Genes (Basel) 2023; 14:1339. [PMID: 37510244 PMCID: PMC10378866 DOI: 10.3390/genes14071339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Vitamin B12 is an enzymatic cofactor that is essential for both eukaryotes and prokaryotes. The development of life in extreme environments depends on cofactors such as vitamin B12 as well. The genomes of twelve microorganisms isolated from the deep subsurface of the Iberian Pyrite Belt have been analyzed in search of enzymatic activities that require vitamin B12 or are involved in its synthesis and import. Results have revealed that vitamin B12 is needed by these microorganisms for several essential enzymes such as ribonucleotide reductase, methionine synthase and epoxyqueosine reductase. Isolate Desulfosporosinus sp. DEEP is the only analyzed genome that holds a set core of proteins that could lead to the production of vitamin B12. The rest are dependent on obtaining it from the subsurface oligotrophic environment in which they grow. Sought proteins involved in the import of vitamin B12 are not widespread in the sample. The dependence found in the genomes of these microorganisms is supported by the production of vitamin B12 by microorganisms such as Desulfosporosinus sp. DEEP, showing that the operation of deep subsurface biogeochemical cycles is dependent on cofactors such as vitamin B12.
Collapse
Affiliation(s)
- Guillermo Mateos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Adrián Martínez-Bonilla
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - José M Martínez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Astrobiología (CAB-INTA), 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
9
|
Chan DCK, Josts I, Koteva K, Wright GD, Tidow H, Burrows LL. Interactions of TonB-dependent transporter FoxA with siderophores and antibiotics that affect binding, uptake, and signal transduction. Proc Natl Acad Sci U S A 2023; 120:e2221253120. [PMID: 37043535 PMCID: PMC10120069 DOI: 10.1073/pnas.2221253120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.
Collapse
Affiliation(s)
- Derek C. K. Chan
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Lori L. Burrows
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
10
|
Multiple Mechanisms for Copper Uptake by Methylosinus trichosporium OB3b in the Presence of Heterologous Methanobactin. mBio 2022; 13:e0223922. [PMID: 36129259 PMCID: PMC9601215 DOI: 10.1128/mbio.02239-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophs require copper for their activity as it plays a critical role in the oxidation of methane to methanol. To sequester copper, some methanotrophs secrete a copper-binding compound termed methanobactin (MB). MB, after binding copper, is reinternalized via a specific outer membrane TonB-dependent transporter (TBDT). Methylosinus trichosporium OB3b has two such TBDTs (MbnT1 and MbnT2) that enable M. trichosporium OB3b to take up not only its own MB (MB-OB3b) but also heterologous MB produced from other methanotrophs, e.g., MB of Methylocystis sp. strain SB2 (MB-SB2). Here, we show that uptake of copper in the presence of heterologous MB-SB2 can either be achieved by initiating transcription of mbnT2 or by using its own MB-OB3b to extract copper from MB-SB2. Transcription of mbnT2 is mediated by the N-terminal signaling domain of MbnT2 together with an extracytoplasmic function sigma factor and an anti-sigma factor encoded by mbnI2 and mbnR2, respectively. Deletion of mbnI2R2 or excision of the N-terminal region of MbnT2 abolished induction of mbnT2. However, copper uptake from MB-SB2 was still observed in M. trichosporium OB3b mutants that were defective in MbnT2 induction/function, suggesting another mechanism for uptake copper-loaded MB-SB2. Additional deletion of MB-OB3b synthesis genes in the M. trichosporium OB3b mutants defective in MbnT2 induction/function disrupted their ability to take up copper in the presence of MB-SB2, indicating a role of MB-OB3b in copper extraction from MB-SB2.
Collapse
|
11
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
12
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
13
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Camporesi G, Minzoni A, Morasso L, Ciurli S, Musiani F. Nickel import and export in the human pathogen Helicobacter pylori, perspectives from molecular modelling. Metallomics 2021; 13:6427379. [PMID: 34791340 DOI: 10.1093/mtomcs/mfab066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022]
Abstract
The uptake of essential metal ions and the ability to extrude them when their excess causes toxicity are crucial processes for all living beings. Nickel is a virulence factor for several human pathogens and in particular for the human gastric pathogen Helicobacter pylori because of its crucial role in the catalytic activity of two Ni-dependent enzymes, urease and hydrogenase. H. pylori requires efficient uptake mechanisms to import Ni(II) because of its scarcity in the human body, but the molecular details of Ni(II) homeostasis are not fully known. Here we offer a structural framework for the machinery of Ni(II) import/export in H. pylori, obtained through comparative modelling and macromolecular docking. The model structures reported in this perspective are initial steps towards the understanding of these processes at the molecular level and in the direction to exploit them to eradicate infections caused by this family of pathogens. The differences between the structural models obtained by using both the recently released neural network-based approach implemented in AlphaFold2 and a more classical user-driven modelling procedure are also discussed.
Collapse
Affiliation(s)
- Giulia Camporesi
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy
| | - Arianna Minzoni
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy
| | - Luca Morasso
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy
| |
Collapse
|
15
|
Larson MR, Biddle K, Gorman A, Boutom S, Rosenshine I, Saper MA. Escherichia coli O127 group 4 capsule proteins assemble at the outer membrane. PLoS One 2021; 16:e0259900. [PMID: 34780538 PMCID: PMC8592465 DOI: 10.1371/journal.pone.0259900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli O127 is encapsulated by a protective layer of polysaccharide made of the same strain specific O-antigen as the serotype lipopolysaccharide. Seven genes encoding capsule export functions comprise the group 4 capsule (gfc) operon. Genes gfcE, etk and etp encode homologs of the group 1 capsule secretion system but the upstream gfcABCD genes encode unknown functions specific to group 4 capsule export. We have developed an expression system for the large-scale production of the outer membrane protein GfcD. Contrary to annotations, we find that GfcD is a non-acylated integral membrane protein. Circular dichroism spectroscopy, light-scattering data, and the HHomp server suggested that GfcD is a monomeric β-barrel with 26 β-strands and an internal globular domain. We identified a set of novel protein-protein interactions between GfcB, GfcC, and GfcD, both in vivo and in vitro, and quantified the binding properties with isothermal calorimetry and biolayer interferometry. GfcC and GfcB form a high-affinity heterodimer with a KD near 100 nM. This heterodimer binds to GfcD (KD = 28 μM) significantly better than either GfcB or GfcC alone. These gfc proteins may form a complex at the outer membrane for group 4 capsule secretion or for a yet unknown function.
Collapse
Affiliation(s)
- Matthew R. Larson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kassia Biddle
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adam Gorman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah Boutom
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ilan Rosenshine
- Dept of Microbiology and Molecular Genetics, Hebrew University Faculty of Medicine, Ein Kerem, Jerusalem, Israel
| | - Mark A. Saper
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
16
|
Duran GN, Özbil M. Structural rearrangement of Neisseria meningitidis transferrin binding protein A (TbpA) prior to human transferrin protein (hTf) binding. Turk J Chem 2021; 45:1146-1154. [PMID: 34707440 PMCID: PMC8517614 DOI: 10.3906/kim-2102-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacterium Neisseria meningitidis, responsible for human infectious disease meningitis, acquires the iron (Fe3+) ion needed for its survival from human transferrin protein (hTf). For this transport, transferrin binding proteins TbpA and TbpB are facilitated by the bacterium. The transfer cannot occur without TbpA, while the absence of TbpB only slows down the transfer. Thus, understanding the TbpA-hTf binding at the atomic level is crucial for the fight against bacterial meningitis infections. In this study, atomistic level of mechanism for TbpA-hTf binding is elucidated through 100 ns long all-atom classical MD simulations on free (uncomplexed) TbpA. TbpA protein underwent conformational change from ‘open’ state to ‘closed’ state, where two loop domains, loops 5 and 8, were very close to each other. This state clearly cannot accommodate hTf in the cleft between these two loops. Moreover, the helix finger domain, which might play a critical role in Fe3+ ion uptake, also shifted downwards leading to unfavorable Tbp-hTf binding. Results of this study indicated that TbpA must switch between ‘closed’ state to ‘open’ state, where loops 5 and 8 are far from each other creating a cleft for hTf binding. The atomistic level of understanding to conformational switch is crucial for TbpA-hTf complex inhibition strategies. Drug candidates can be designed to prevent this conformational switch, keeping TbpA locked in ‘closed’ state.
Collapse
Affiliation(s)
- Gizem Nur Duran
- Department of Chemistry, Marmara University, İstanbul Turkey
| | - Mehmet Özbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli Turkey
| |
Collapse
|
17
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
18
|
Yokoyama T, Niinae T, Tsumagari K, Imami K, Ishihama Y, Hizukuri Y, Akiyama Y. The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR. J Biol Chem 2021; 296:100673. [PMID: 33865858 PMCID: PMC8144685 DOI: 10.1016/j.jbc.2021.100673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli RseP, a member of the site-2 protease family of intramembrane proteases, is involved in the activation of the σE extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP. Our data showed that the levels of several Fec system proteins encoded by the fecABCDE operon (fec operon) were significantly decreased in an RseP-deficient strain. The Fec system is responsible for the uptake of ferric citrate, and the transcription of the fec operon is controlled by FecI, an alternative sigma factor, and its regulator FecR, a single-pass transmembrane protein. Assays with a fec operon expression reporter demonstrated that the proteolytic activity of RseP is essential for the ferric citrate-dependent upregulation of the fec operon. Analysis using the FecR protein and FecR-derived model proteins showed that FecR undergoes sequential processing at the membrane and that RseP participates in the last step of this sequential processing to generate the N-terminal cytoplasmic fragment of FecR that participates in the transcription of the fec operon with FecI. A shortened FecR construct was not dependent on RseP for activation, confirming this cleavage step is the essential and sufficient role of RseP. Our study unveiled that E. coli RseP performs the intramembrane proteolysis of FecR, a novel physiological role that is essential for regulating iron uptake by the ferric citrate transport system.
Collapse
Affiliation(s)
- Tatsuhiko Yokoyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoya Niinae
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuya Tsumagari
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Tan Z, Lu P, Adewole D, Diarra M, Gong J, Yang C. Iron requirement in the infection of Salmonella and its relevance to poultry health. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
20
|
Chwastyk M, Panek EA, Malinowski J, Jaskólski M, Cieplak M. Properties of Cavities in Biological Structures-A Survey of the Protein Data Bank. Front Mol Biosci 2020; 7:591381. [PMID: 33240933 PMCID: PMC7677499 DOI: 10.3389/fmolb.2020.591381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
We performed a PDB-wide survey of proteins to assess their cavity content, using the SPACEBALL algorithm to calculate the cavity volumes. In addition, we determined the hydropathy character of the cavities. We demonstrate that the cavities of most proteins are hydrophilic, but smaller proteins tend to have cavities with hydrophobic walls. We propose criteria for distinguishing between cavities and pockets, and single out proteins with the largest cavities.
Collapse
Affiliation(s)
- Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa A Panek
- Department of Biometry, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jan Malinowski
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mariusz Jaskólski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.,Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
FusB Energizes Import across the Outer Membrane through Direct Interaction with Its Ferredoxin Substrate. mBio 2020; 11:mBio.02081-20. [PMID: 33109756 PMCID: PMC7593965 DOI: 10.1128/mbio.02081-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phytopathogenic Pectobacterium spp. import ferredoxin into the periplasm for proteolytic processing and iron release via the ferredoxin uptake system. Although the ferredoxin receptor FusA and the processing protease FusC have been identified, the mechanistic basis of ferredoxin import is poorly understood. In this work, we demonstrate that protein translocation across the outer membrane is dependent on the TonB-like protein FusB. In contrast to the loss of FusC, loss of FusB or FusA abolishes ferredoxin transport to the periplasm, demonstrating that FusA and FusB work in concert to transport ferredoxin across the outer membrane. In addition to an interaction with the "TonB box" region of FusA, FusB also forms a complex with the ferredoxin substrate, with complex formation required for substrate transport. These data suggest that ferredoxin transport requires energy transduction from the cytoplasmic membrane via FusB both for removal of the FusA plug domain and for substrate translocation through the FusA barrel.IMPORTANCE The ability to acquire iron is key to the ability of bacteria to cause infection. Plant-pathogenic Pectobacterium spp. are able to acquire iron from plants by transporting the iron-containing protein ferredoxin into the cell from proteolytic processing. In this work, we show that the TonB-like protein FusB plays a key role in transporting ferredoxin across the bacterial outer membrane by directly energizing its transport into the cell. The direct interaction of the TonB-like protein with substrate is unprecedented and explains the requirement for the system-specific TonB homologue in the ferredoxin uptake system. Since multiple genes encoding TonB-like proteins are commonly found in the genomes of Gram-negative bacteria, this may be a common mechanism for the uptake of atypical substrates via TonB-dependent receptors.
Collapse
|
22
|
Grinter R, Lithgow T. The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site. Acta Crystallogr D Struct Biol 2020; 76:484-495. [PMID: 32355044 PMCID: PMC7193533 DOI: 10.1107/s2059798320004398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is highly impermeable to hydrophilic molecules of larger than 600 Da, protecting these bacteria from toxins present in the environment. In order to transport nutrients across this impermeable membrane, Gram-negative bacteria utilize a diverse family of outer-membrane proteins called TonB-dependent transporters. The majority of the members of this family transport iron-containing substrates. However, it is becoming increasingly clear that TonB-dependent transporters target chemically diverse substrates. In this work, the structure and phylogenetic distribution of the TonB-dependent transporter YncD are investigated. It is shown that while YncD is present in some enteropathogens, including Escherichia coli and Salmonella spp., it is also widespread in Gammaproteobacteria and Betaproteobacteria of environmental origin. The structure of YncD was determined, showing that despite a distant evolutionary relationship, it shares structural features with the ferric citrate transporter FecA, including a compact positively charged substrate-binding site. Despite these shared features, it is shown that YncD does not contribute to the growth of E. coli in pure culture under iron-limiting conditions or with ferric citrate as an iron source. Previous studies of transcriptional regulation in E. coli show that YncD is not induced under iron-limiting conditions and is unresponsive to the ferric uptake regulator (Fur). These observations, combined with the data presented here, suggest that YncD is not responsible for the transport of an iron-containing substrate.
Collapse
Affiliation(s)
- Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
23
|
Abstract
The transcription initiation signal elicited by the binding of ferric citrate to the outer membrane FecA protein is transmitted by the FecR protein across the cytoplasmic membrane to the FecI extracytoplasmic function (ECF) sigma factor. In this issue of Journal of Bacteriology, I. J. Passmore, J. M. Dow, F. Coll, J. Cuccui, et al. (J Bacteriol 202:e00541-19, 2020, https://doi.org/10.1128/JB.00541-19) report that the FecR sequence contains both the twin-arginine signal motif and the secretory (Sec) avoidance motif typical of proteins secreted by the twin-arginine translocation (TAT) system. The same study shows that FecR is indeed secreted by Tat and represents a new class of bitopic Tat-dependent membrane proteins.
Collapse
|
24
|
Majumdar A, Trinh V, Moore KJ, Smallwood CR, Kumar A, Yang T, Scott DC, Long NJ, Newton SM, Klebba PE. Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport. J Biol Chem 2020; 295:4974-4984. [PMID: 32098871 DOI: 10.1074/jbc.ra119.011850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/14/2020] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent β-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane β-barrel (inter-N-C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [59Fe]Ent binding and uptake experiments, and fluorescence decoy sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N-C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.
Collapse
Affiliation(s)
- Aritri Majumdar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Vy Trinh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Kyle J Moore
- Department of Chemistry, Physics and Engineering, Cameron University, Lawton, Oklahoma 73505
| | | | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Daniel C Scott
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Noah J Long
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Salete M Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
25
|
Perruchon C, Vasileiadis S, Papadopoulou ES, Karpouzas DG. Genome-Based Metabolic Reconstruction Unravels the Key Role of B12 in Methionine Auxotrophy of an Ortho-Phenylphenol-Degrading Sphingomonas haloaromaticamans. Front Microbiol 2020; 10:3009. [PMID: 31998277 PMCID: PMC6970198 DOI: 10.3389/fmicb.2019.03009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Auxotrophy to amino acids and vitamins is a common feature in the bacterial world shaping microbial communities through cross-feeding relations. The amino acid auxotrophy of pollutant-degrading bacteria could hamper their bioremediation potential, however, the underlying mechanisms of auxotrophy remain unexplored. We employed genome sequence-based metabolic reconstruction to identify potential mechanisms driving the amino acid auxotrophy of a Sphingomonas haloaromaticamans strain degrading the fungicide ortho-phenylphenol (OPP) and provided further verification for the identified mechanisms via in vitro bacterial assays. The analysis identified potential gaps in the biosynthesis of isoleucine, phenylalanine and tyrosine, while methionine biosynthesis was potentially effective, relying though in the presence of B12. Supplementation of the bacterium with the four amino acids in all possible combinations rescued its degrading capacity only with methionine. Genome sequence-based metabolic reconstruction and analysis suggested that the bacterium was incapable of de novo biosynthesis of B12 (missing genes for the construction of the corrin ring) but carried a complete salvage pathway for corrinoids uptake from the environment, transmembrane transportation and biosynthesis of B12. In line with this the bacterium maintained its degrading capacity and growth when supplied with environmentally relevant B12 concentrations (i.e., 0.1 ng ml–1). Using genome-based metabolic reconstruction and in vitro testing we unraveled the mechanism driving the auxotrophy of a pesticide-degrading S. haloaromaticamans. Further studies will investigate the corrinoids preferences of S. haloaromaticamans for optimum growth and OPP degradation.
Collapse
Affiliation(s)
- Chiara Perruchon
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Sotirios Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Evangelia S Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
26
|
Genetic and structural determinants on iron assimilation pathways in the plant pathogen Xanthomonas citri subsp. citri and Xanthomonas sp. Braz J Microbiol 2019; 51:1219-1231. [PMID: 31848911 DOI: 10.1007/s42770-019-00207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
Abstract
Iron is a vital nutrient to bacteria, not only in the basal metabolism but also for virulent species in infection and pathogenicity at their hosts. Despite its relevance, the role of iron in Xanthomonas citri infection, the etiological agent of citrus canker disease, is poorly understood in contrast to other pathogens, including other members of the Xanthomonas genus. In this review, we present iron assimilation pathways in X. citri including the ones for siderophore production and siderophore-iron assimilation, proven to be key factors to virulence in many organisms like Escherichia coli and Xanthomonas campestris. Based on classical iron-related proteins previously characterized in E. coli, Pseudomonas aeruginosa, and also Xanthomonadaceae, we identified orthologs in X. citri and evaluated their sequences, structural characteristics such as functional motifs, and residues that support their putative functions. Among the identified proteins are TonB-dependent receptors, periplasmic-binding proteins, active transporters, efflux pumps, and cytoplasmic enzymes. The role of each protein for the bacterium was analyzed and complemented with proteomics data previously reported. The global view of different aspects of iron regulation and nutrition in X. citri virulence and pathogenesis may help guide future investigations aiming the development of new drug targets against this important phytopathogen.
Collapse
|
27
|
Allaka TR, Anireddy JS. Novel 7-substituted Fluoroquinolone Citrate Conjugates as Powerful Antibacterial and Anticancer Agents: Synthesis and Molecular Docking Studies. CURR ORG CHEM 2019. [DOI: 10.2174/1877946809666191007125408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the synthesis and evaluation of norfloxacin analogues of dimethyl citrate conjugates were described and their antibacterial and anticancer activities were assessed. The cognate 7-substituted norfloxacin citrate conjugates are active against various strains of bacteria, including MRSA (methicillin-resistant Staphylococcus aureus) with higher activity than ciprofloxacin. Screening results indicated that compound 10 possessed good antibacterial activity against several microorganisms, with MIC values in the range of 0.16-0.35 mg/mL and MBCs in the range of 0.55-0.84 mg/mL. Experiments indicated that 9 demonstrated the most significant activity towards the HCT-15 cell line with IC50 value 8.2 ± 0.139 and against the HT-29 cell line with IC50 8.9 ± 0.122. The title compounds were also evaluated for determining the molecular and pharmacokinetic properties and drug-likeness model scores by using the Molinspiration-2008 and MolSoft-2007 softwares. The region isomeric conjugates followed the Lipinski’s rule of five can be considered as potential antibacterial and anticancer bioavailable oral leads. Compounds 9 and 10 possessed maximum drug-likeness scores. The docking pose interactions of target compounds with the active site of enzyme PDB: 2ZCS of Staphylococcus aureus were estimated by using Autodock 4.2, to calculate the affinity, binding orientation of the ligand with the target protein and to explore the finest conformations. The target compounds, 7, 8, 9, 10, with protein, were loaded separately into Auto dock tools (ADT) and evaluated. The citrate conjugates, 8, 9, showed better docking scores with amino acids Lys17, Ser21, Val268, Lys273 and Arg171, Arg265, Val268, Val273 with the binding energy -5.70, -5.57 kcal/mol and dissociation constant 66.62, 82.13 µM respectively.
Collapse
Affiliation(s)
- Tejeswara R. Allaka
- Centre for Chemical Sciences and Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Jaya S. Anireddy
- Centre for Chemical Sciences and Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| |
Collapse
|
28
|
Grinter R, Lithgow T. The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism. J Biol Chem 2019; 294:19523-19534. [PMID: 31712312 PMCID: PMC6926462 DOI: 10.1074/jbc.ra119.011018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The ferric iron uptake (Fiu) transporter from Escherichia coli functions in the transport of iron–catecholate complexes across the bacterial outer membrane, providing the bacterium with iron, which is essential for growth. Recently it has become clear that Fiu also represents a liability for E. coli because its activity allows import of antimicrobial compounds that mimic catecholate. This inadvertent import suggests the potential utility of antimicrobial catechol siderophore mimetics in managing bacterial infections. However, to fully exploit these compounds, a detailed understanding of the mechanism of transport through Fiu and related transporters is required. To address this question, we determined the crystal structure of Fiu at 2.1–2.9 Å and analyzed its function in E. coli. Through analysis of the Fiuo crystal structure, in combination with in silico docking and mutagenesis, we provide insight into how Fiu and related transporters bind catecholate in a surface-exposed cavity. Moreover, through determination of the structure of Fiu in multiple crystal states, we revealed the presence of a large, selectively gated cavity in the interior of this transporter. This chamber is large enough to accommodate the Fiu substrate and may allow import of substrates via a two-step mechanism. This would avoid channel formation through the transporter and inadvertent import of toxic molecules. As Fiu and its homologs are the targets of substrate-mimicking antibiotics, these results may assist in the development of these compounds.
Collapse
Affiliation(s)
- Rhys Grinter
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia .,Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800 Victoria, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|
29
|
Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, Naismith JH. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat Commun 2019; 10:3673. [PMID: 31413254 PMCID: PMC6694100 DOI: 10.1038/s41467-019-11508-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
Bacteria use small molecules called siderophores to scavenge iron. Siderophore-Fe3+ complexes are recognised by outer-membrane transporters and imported into the periplasm in a process dependent on the inner-membrane protein TonB. The siderophore enterobactin is secreted by members of the family Enterobacteriaceae, but many other bacteria including Pseudomonas species can use it. Here, we show that the Pseudomonas transporter PfeA recognises enterobactin using extracellular loops distant from the pore. The relevance of this site is supported by in vivo and in vitro analyses. We suggest there is a second binding site deeper inside the structure and propose that correlated changes in hydrogen bonds link binding-induced structural re-arrangements to the structural adjustment of the periplasmic TonB-binding motif.
Collapse
Affiliation(s)
- Lucile Moynié
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Gaëtan L A Mislin
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Etienne Baco
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | | | - Malcolm G P Page
- Department of Life Sciences & Chemistry, Campus Ring 1, Bremen, 28759, Germany
| | - Isabelle J Schalk
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK.
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK.
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK.
| |
Collapse
|
30
|
Josts I, Veith K, Tidow H. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. eLife 2019; 8:48528. [PMID: 31385808 PMCID: PMC6699858 DOI: 10.7554/elife.48528] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/05/2019] [Indexed: 01/27/2023] Open
Abstract
Many microbes and fungi acquire the essential ion Fe3+ through the synthesis and secretion of high-affinity chelators termed siderophores. In Gram-negative bacteria, these ferric-siderophore complexes are actively taken up using highly specific TonB-dependent transporters (TBDTs) located in the outer bacterial membrane (OM). However, the detailed mechanism of how the inner-membrane protein TonB connects to the transporters in the OM as well as the interplay between siderophore- and TonB-binding to the transporter is still poorly understood. Here, we present three crystal structures of the TBDT FoxA from Pseudomonas aeruginosa (containing a signalling domain) in complex with the siderophore ferrioxamine B and TonB and combine them with a detailed analysis of binding constants. The structures show that both siderophore and TonB-binding is required to form a translocation-competent state of the FoxA transporter in a two-step TonB-binding mechanism. The complex structure also indicates how TonB-binding influences the orientation of the signalling domain.
Collapse
Affiliation(s)
- Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Katharina Veith
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
31
|
Moraleda-Muñoz A, Marcos-Torres FJ, Pérez J, Muñoz-Dorado J. Metal-responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. Mol Microbiol 2019; 112:385-398. [PMID: 31187912 PMCID: PMC6851896 DOI: 10.1111/mmi.14328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 01/02/2023]
Abstract
In order to survive, bacteria must adapt to multiple fluctuations in their environment, including coping with changes in metal concentrations. Many metals are essential for viability, since they act as cofactors of indispensable enzymes. But on the other hand, they are potentially toxic because they generate reactive oxygen species or displace other metals from proteins, turning them inactive. This dual effect of metals forces cells to maintain homeostasis using a variety of systems to import and export them. These systems are usually inducible, and their expression is regulated by metal sensors and signal‐transduction mechanisms, one of which is mediated by extracytoplasmic function (ECF) sigma factors. In this review, we have focused on the metal‐responsive ECF sigma factors, several of which are activated by iron depletion (FecI, FpvI and PvdS), while others are activated by excess of metals such as nickel and cobalt (CnrH), copper (CarQ and CorE) or cadmium and zinc (CorE2). We focus particularly on their physiological roles, mechanisms of action and signal transduction pathways.
Collapse
Affiliation(s)
- Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| |
Collapse
|
32
|
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and premature mortality and represents a significant global public health issue. Underlying this burden are the many complications of CKD, including mineral and bone disorders, anemia, and accelerated cardiovascular disease. Hyperphosphatemia and elevated levels of fibroblast growth factor 23 (FGF23) have been identified as key independent risk factors for the adverse cardiovascular outcomes that frequently occur in patients with CKD. Auryxia® (ferric citrate; Keryx Biopharmaceuticals, Inc., Boston, MA, USA) is an iron-based compound with distinctive chemical characteristics and a mechanism of action that render it dually effective as a therapy in patients with CKD; it has been approved as a phosphate binder for the control of serum phosphate levels in adult CKD patients treated with dialysis and as an iron replacement product for the treatment of iron deficiency anemia in adult CKD patients not treated with dialysis. This review focuses on Auryxia, its mechanism of action, and the clinical attributes that differentiate it from other, non-pharmaceutical-grade, commercially available forms of ferric citrate and from other commonly used phosphate binder and iron supplement therapies for patients with CKD. Consistent with the chemistry and mechanism of action of Auryxia, multiple clinical studies have demonstrated its efficacy in both lowering serum phosphate levels and improving iron parameters in patients with CKD. Levels of FGF23 decrease significantly with Auryxia treatment, but the effects associated with the cardiovascular system remain to be evaluated in longer-term studies.
Collapse
Affiliation(s)
- Tomas Ganz
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- CHS 47-200J, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
- CHS 47-200J, Department of Pathology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
| | - Avi Bino
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isidro B Salusky
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Moynié L, Serra I, Scorciapino MA, Oueis E, Page MG, Ceccarelli M, Naismith JH. Preacinetobactin not acinetobactin is essential for iron uptake by the BauA transporter of the pathogen Acinetobacter baumannii. eLife 2018; 7:42270. [PMID: 30558715 PMCID: PMC6300358 DOI: 10.7554/elife.42270] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/02/2018] [Indexed: 01/05/2023] Open
Abstract
New strategies are urgently required to develop antibiotics. The siderophore uptake system has attracted considerable attention, but rational design of siderophore antibiotic conjugates requires knowledge of recognition by the cognate outer-membrane transporter. Acinetobacter baumannii is a serious pathogen, which utilizes (pre)acinetobactin to scavenge iron from the host. We report the structure of the (pre)acinetobactin transporter BauA bound to the siderophore, identifying the structural determinants of recognition. Detailed biophysical analysis confirms that BauA recognises preacinetobactin. We show that acinetobactin is not recognised by the protein, thus preacinetobactin is essential for iron uptake. The structure shows and NMR confirms that under physiological conditions, a molecule of acinetobactin will bind to two free coordination sites on the iron preacinetobactin complex. The ability to recognise a heterotrimeric iron-preacinetobactin-acinetobactin complex may rationalize contradictory reports in the literature. These results open new avenues for the design of novel antibiotic conjugates (trojan horse) antibiotics.
Collapse
Affiliation(s)
- Lucile Moynié
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Oxford, England.,Research Complex at Harwell, Rutherford Laboratory, Didcot, England
| | - Ilaria Serra
- Department of Physics, University of Cagliari, Cagliari, Italy.,Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Mariano A Scorciapino
- Department of Physics, University of Cagliari, Cagliari, Italy.,Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Emilia Oueis
- Biomedical Sciences Research Complex, The University of St Andrews, Scotland, United Kingdom
| | - Malcolm Gp Page
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | | | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Oxford, England.,Research Complex at Harwell, Rutherford Laboratory, Didcot, England.,The Rosalind Franklin Institute, Didcot, England
| |
Collapse
|
34
|
Zhang P, Zhang N, Li Z, Yean S, Li H, Shipley HJ, Kan AT, Chen W, Tomson MB. Identification of a new high-molecular-weight Fe-citrate species at low citrate-to-Fe molar ratios: Impact on arsenic removal with ferric hydroxide. CHEMOSPHERE 2018; 212:50-55. [PMID: 30138855 DOI: 10.1016/j.chemosphere.2018.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Ferric hydroxide precipitation and flocculation is the most commonly used method for the removal of arsenic in water treatment. However, citrate often interrupts the precipitation of ferric hydroxides and thus affects arsenic removal. To date, the mechanisms controlling the effects of citrate on arsenic removal with ferric hydroxide flocculation and precipitation at very low citrate-to-Fe molar ratios are not well understood. Herein, we report a new mechanism by which citrate inhibits arsenic removal using ferric hydroxide. At a substoichiometric citrate-to-Fe molar ratio of 0.28, citrate forms a high-molecular-weight Fe-citrate (Fe4Cit) species. The optimized structure of the Fe4Cit species was obtained by the density functional theory calculation. To the best of our knowledge, this study is the first to report the formation and to identify the structure of dominant Fe-citrate species at a very low citrate-to-Fe molar ratio.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China.
| | - Nan Zhang
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Zhejun Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Sujin Yean
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Hualin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Heather J Shipley
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Amy T Kan
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, USA
| | - Wei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Mason B Tomson
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
35
|
Braun V. The Outer Membrane Took Center Stage. Annu Rev Microbiol 2018; 72:1-24. [PMID: 30200853 DOI: 10.1146/annurev-micro-090817-062156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My interest in membranes was piqued during a lecture series given by one of the founders of molecular biology, Max Delbrück, at Caltech, where I spent a postdoctoral year to learn more about protein chemistry. That general interest was further refined to my ultimate research focal point-the outer membrane of Escherichia coli-through the influence of the work of Wolfhard Weidel, who discovered the murein (peptidoglycan) layer and biochemically characterized the first phage receptors of this bacterium. The discovery of lipoprotein bound to murein was completely unexpected and demonstrated that the protein composition of the outer membrane and the structure and function of proteins could be unraveled at a time when nothing was known about outer membrane proteins. The research of my laboratory over the years covered energy-dependent import of proteinaceous toxins and iron chelates across the outer membrane, which does not contain an energy source, and gene regulation by iron, including transmembrane transcriptional regulation.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
36
|
Avisar S, Bogoslavsky B, Bino A. Fusion of ferric citrate and zirconium hexafluoride: Synthesis, structure and magnetic properties of [Fe 6 O 2 Zr 2 F 6 (cit) 4 (H 2 O) 10 ]. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Bacterial iron acquisition mediated by outer membrane translocation and cleavage of a host protein. Proc Natl Acad Sci U S A 2018; 115:6840-6845. [PMID: 29891657 PMCID: PMC6042079 DOI: 10.1073/pnas.1800672115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is a highly impermeable barrier to a range of toxic chemicals and is responsible for the resistance of these bacteria to important classes of antibiotics. In this work, we show that plant pathogenic Pectobacterium spp. acquire iron from the small, stable, and abundant iron-containing plant protein ferredoxin by transporting ferredoxin across the outer membrane for intracellular processing by a highly specific protease, which induces iron release. The presence of homologous uptake and processing proteins in a range of important animal and plant pathogens suggests an exploitable route through which large molecules can penetrate the outer membrane of Gram-negative bacteria. Iron is an essential micronutrient for most bacteria and is obtained from iron-chelating siderophores or directly from iron-containing host proteins. For Gram-negative bacteria, classical iron transport systems consist of an outer membrane receptor, a periplasmic binding protein, and an inner membrane ABC transporter, which work in concert to deliver iron from the cell surface to the cytoplasm. We recently showed that Pectobacterium spp. are able to acquire iron from ferredoxin, a small and stable 2Fe-2S iron sulfur cluster containing protein and identified the ferredoxin receptor, FusA, a TonB-dependent receptor that binds ferredoxin on the cell surface. The genetic context of fusA suggests an atypical iron acquisition system, lacking a periplasmic binding protein, although the mechanism through which iron is extracted from the captured ferredoxin has remained unknown. Here we show that FusC, an M16 family protease, displays a highly targeted proteolytic activity against plant ferredoxin, and that growth enhancement of Pectobacterium due to iron acquisition from ferredoxin is FusC-dependent. The periplasmic location of FusC indicates a mechanism in which ferredoxin is imported into the periplasm via FusA before cleavage by FusC, as confirmed by the uptake and accumulation of ferredoxin in the periplasm in a strain lacking fusC. The existence of homologous uptake systems in a range of pathogenic bacteria suggests that protein uptake for nutrient acquisition may be widespread in bacteria and shows that, similar to their endosymbiotic descendants mitochondria and chloroplasts, bacteria produce dedicated protein import systems.
Collapse
|
38
|
Huta BP, Miller NH, Robertson EL, Doyle RP. Metal-citrate complex transport in Kineococcus radiotolerans. J Basic Microbiol 2017; 58:209-216. [PMID: 29226973 DOI: 10.1002/jobm.201700427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/23/2017] [Accepted: 11/19/2017] [Indexed: 11/07/2022]
Abstract
The growth of an organism is highly dependent on the acquisition of carbon and metals, and availability of these nutrients in the environment affects its survival. Organisms can obtain both nutrients simultaneously through proteins of the CitMHS superfamily. Bioinformatic studies suggested a CitMHS gene (Accession number ABS03965.1) in Kineococcus radiotolerans. Radio flux assays following 14-C radiolabelled citrate, either free or complexed to a variety of metal ions, in K. radiotolerans demonstrated internalization of the citrate when bound to select metal ions only, primarily in the form of calcium-citrate. A pH response was also observed, consistent with a permease (ATP independent) mechanism as noted for other CitMHS family members, with greater uptake at pH 7 compared to pH 10. These results confirm the ability of K. radiotolerans to transport complexed citrate.
Collapse
Affiliation(s)
- Brian P Huta
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Nigel H Miller
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | | | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York, USA.,Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
39
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
40
|
Putz I, Brock O. Elastic network model of learned maintained contacts to predict protein motion. PLoS One 2017; 12:e0183889. [PMID: 28854238 PMCID: PMC5576689 DOI: 10.1371/journal.pone.0183889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
We present a novel elastic network model, lmcENM, to determine protein motion even for localized functional motions that involve substantial changes in the protein's contact topology. Existing elastic network models assume that the contact topology remains unchanged throughout the motion and are thus most appropriate to simulate highly collective function-related movements. lmcENM uses machine learning to differentiate breaking from maintained contacts. We show that lmcENM accurately captures functional transitions unexplained by the classical ENM and three reference ENM variants, while preserving the simplicity of classical ENM. We demonstrate the effectiveness of our approach on a large set of proteins covering different motion types. Our results suggest that accurately predicting a "deformation-invariant" contact topology offers a promising route to increase the general applicability of ENMs. We also find that to correctly predict this contact topology a combination of several features seems to be relevant which may vary slightly depending on the protein. Additionally, we present case studies of two biologically interesting systems, Ferric Citrate membrane transporter FecA and Arachidonate 15-Lipoxygenase.
Collapse
Affiliation(s)
- Ines Putz
- Robotics and Biology Laboratory, Department of Computer Science and Electrical Engineering, Technische Universität Berlin, Berlin, Berlin, Germany
| | - Oliver Brock
- Robotics and Biology Laboratory, Department of Computer Science and Electrical Engineering, Technische Universität Berlin, Berlin, Berlin, Germany
| |
Collapse
|
41
|
Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat Commun 2017; 8:14804. [PMID: 28429713 PMCID: PMC5413942 DOI: 10.1038/ncomms14804] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Membrane proteins play vital roles in inside-out and outside-in signal transduction by responding to inputs that include mechanical stimuli. Mechanical gating may be mediated by the membrane or by protein(s) but evidence for the latter is scarce. Here we use force spectroscopy, protein engineering and bacterial growth assays to investigate the effects of force on complexes formed between TonB and TonB-dependent transporters (TBDT) from Gram-negative bacteria. We confirm the feasibility of protein-only mediated mechanical gating by demonstrating that the interaction between TonB and BtuB (a TBDT) is sufficiently strong under force to create a channel through the TBDT. In addition, by comparing the dimensions of the force-induced channel in BtuB and a second TBDT (FhuA), we show that the mechanical properties of the interaction are perfectly tuned to their function by inducing formation of a channel whose dimensions are tailored to the ligand.
Collapse
Affiliation(s)
- Samuel J Hickman
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rachael E M Cooper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro, 12-56127 Pisa, Italy
| | - Emanuele Paci
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Xia W. Competition for Iron Between Host and Pathogen: A Structural Case Study on Helicobacter pylori. Methods Mol Biol 2017; 1535:65-75. [PMID: 27914073 DOI: 10.1007/978-1-4939-6673-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly successful bacterial pathogen, which colonizes the stomach of more than half of the world's population. To colonize and survive in such an acidic and inhospitable niche, H. pylori cells have evolved complex mechanisms to acquire nutrients from human hosts, including iron, an essential nutrient for both the pathogens and host cells. However, human cells also utilize diverse strategies in withholding of irons to prevent the bacterial outgrowth. The competition for iron is the central battlefield between pathogen and host. This mini-review summarizes the updated scenarios of the battle for iron between H. pylori and human host from a structural biology perspective.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China.
| |
Collapse
|
43
|
TonB-dependent ligand trapping in the BtuB transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3105-3112. [DOI: 10.1016/j.bbamem.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
|
44
|
Banerjee S, Paul S, Nguyen LT, Chu BCH, Vogel HJ. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. Metallomics 2016; 8:125-33. [PMID: 26600288 DOI: 10.1039/c5mt00218d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Subrata Paul
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Byron C H Chu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
45
|
An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 2016; 29:551-71. [PMID: 27457587 DOI: 10.1007/s10534-016-9949-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Siderophores are iron-chelating molecules produced by microbes when intracellular iron concentrations are low. Low iron triggers a cascade of gene activation, allowing the cell to survive due to the synthesis of important proteins involved in siderophore synthesis and transport. Generally, siderophores are classified by their functional groups as catecholates, hydroxamates and hydroxycarboxylates. Although other chemical structural modifications and functional groups can be found. The functional groups participate in the iron-chelating process when the ferri-siderophore complex is formed. Classified as acidophiles, alkaliphiles, halophiles, thermophiles, psychrophiles, piezophiles, extremophiles have particular iron requirements depending on the environmental conditions in where they grow. Most of the work done in siderophore production by extremophiles is based in siderophore concentration and/or genomic studies determining the presence of siderophore synthesis and transport genes. Siderophores produced by extremophiles are not well known and more work needs to be done to elucidate chemical structures and their role in microorganism survival and metal cycling in extreme environments.
Collapse
|
46
|
Wang R, Xu H, Du L, Chou SH, Liu H, Liu Y, Liu F, Qian G. A TonB-dependent receptor regulates antifungal HSAF biosynthesis in Lysobacter. Sci Rep 2016; 6:26881. [PMID: 27241275 PMCID: PMC4886534 DOI: 10.1038/srep26881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 11/25/2022] Open
Abstract
Lysobacter species are Gram-negative bacteria that are emerging as new sources of antibiotics, including HSAF (Heat Stable Antifungal Factor), which was identified from L. enzymogenes with a new mode of action. LesR, a LuxR solo, was recently shown to regulate the HSAF biosynthesis via an unidentified mechanism in L. enzymogenes OH11. Here, we used a comparative proteomic approach to identify the LesR targets and found that LesR influenced the expression of 33 proteins belonging to 10 functional groups, with 9 proteins belonging to the TBDR (TonB-Dependent Receptor) family. The fundamental role of bacterial TBDR in nutrient uptake motivates us to explore their potential regulation on HSAF biosynthesis which is also modulated by nutrient condition. Six out of 9 TBDR coding genes were individually in-frame deleted. Phenotypic and gene-expression assays showed that TBDR7, whose level was lower in a strain overexpressing lesR, was involved in regulating HSAF yield. TBDR7 was not involved in the growth, but played a vital role in transcribing the key HSAF biosynthetic gene. Taken together, the current lesR-based proteomic study provides the first report that TBDR7 plays a key role in regulating antibiotic (HSAF) biosynthesis, a function which has never been found for TBDRs in bacteria.
Collapse
Affiliation(s)
- Ruping Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huiyong Xu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hongxia Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
47
|
Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 2016; 29:377-88. [PMID: 27146331 DOI: 10.1007/s10534-016-9935-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways.
Collapse
|
48
|
Abstract
The rotational surveillance and energy transfer (ROSET) model of TonB action suggests a mechanism by which the electrochemical proton gradient across the Gram-negative bacterial inner membrane (IM) promotes the transport of iron through ligand-gated porins (LGP) in the outer membrane (OM). TonB associates with the IM by an N-terminal hydrophobic helix that forms a complex with ExbBD. It also contains a central extended length of rigid polypeptide that spans the periplasm and a dimeric C-terminal-ββαβ-domain (CTD) with LysM motifs that binds the peptidoglycan (PG) layer beneath the OM bilayer. The TonB CTD forms a dimer with affinity for both PG- and TonB-independent OM proteins (e.g., OmpA), localizing it near the periplasmic interface of the OM bilayer. Porins and other OM proteins associate with PG, and this general affinity allows the TonB CTD dimer to survey the periplasmic surface of the OM bilayer. Energized rotational motion of the TonB N terminus in the fluid IM bilayer promotes the lateral movement of the TonB-ExbBD complex in the IM and of the TonB CTD dimer across the inner surface of the OM. When it encounters an accessible TonB box of a (ligand-bound) LGP, the monomeric form of the CTD binds and recruits it into a 4-stranded β-sheet. Because the CTD is rotating, this binding reaction transfers kinetic energy, created by the electrochemical proton gradient across the IM, through the periplasm to the OM protein. The equilibration of the TonB C terminus between the dimeric and monomeric forms that engage in different binding reactions allows the identification of iron-loaded LGP and then the internalization of iron through their trans-outer membrane β-barrels. Hence, the ROSET model postulates a mechanism for the transfer of energy from the IM to the OM, triggering iron uptake.
Collapse
|
49
|
Abstract
Nickel supports the growth of microbes from a variety of very different growth environments that affect nickel speciation. The mechanisms of nickel uptake and the molecular bases for the selectivity of this process are emerging. The recent surge of Ni-importer protein structures provides an understanding of Ni-recognition in the initial binding step of the import process. This review compares the structural basis for Ni-recognition in the complexes (ABC and ECF-type) that dominate primary (ATP-dependent) transport, with a focus on how the structures suggest mechanisms for Ni selectivity. The structures raise key questions about the mechanisms of nickel-transfer reactions involved in import. There is also a discussion of key experimental approaches necessary to help establish the physiological importance of these structures.
Collapse
Affiliation(s)
- Peter T Chivers
- Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham, UK.
| |
Collapse
|
50
|
Smallwood CR, Jordan L, Trinh V, Schuerch DW, Gala A, Hanson M, Hanson M, Shipelskiy Y, Majumdar A, Newton SMC, Klebba PE. Concerted loop motion triggers induced fit of FepA to ferric enterobactin. ACTA ACUST UNITED AC 2015; 144:71-80. [PMID: 24981231 PMCID: PMC4076525 DOI: 10.1085/jgp.201311159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The loops of the bacterial outer membrane iron transporter FepA move at different rates to adsorb and grasp the substrate ferric enterobactin before transporting it into the periplasm. Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles.
Collapse
Affiliation(s)
- Chuck R Smallwood
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Lorne Jordan
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Vy Trinh
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Daniel W Schuerch
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amparo Gala
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mathew Hanson
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | | | - Yan Shipelskiy
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Aritri Majumdar
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Salete M C Newton
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Phillip E Klebba
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|