1
|
Berndsen ZT, Akhtar M, Thapa M, Vickers TJ, Schmitz A, Torres JL, Baboo S, Kumar P, Khatoon N, Sheikh A, Hamrick M, Diedrich JK, Martinez-Bartolome S, Garrett PT, Yates JR, Turner JS, Laird RM, Poly F, Porter CK, Copps J, Ellebedy AH, Ward AB, Fleckenstein JM. Repeat modules and N-linked glycans define structure and antigenicity of a critical enterotoxigenic E. coli adhesin. PLoS Pathog 2024; 20:e1012241. [PMID: 39283948 PMCID: PMC11463764 DOI: 10.1371/journal.ppat.1012241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as volunteers challenged with ETEC, diarrheal severity is significantly increased in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.
Collapse
Affiliation(s)
- Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Marjahan Akhtar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Tim J. Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Aaron Schmitz
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Nazia Khatoon
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Melissa Hamrick
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Salvador Martinez-Bartolome
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrick T. Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
| | - Renee M. Laird
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Frédéric Poly
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Chad K. Porter
- Translational and Clinical Research Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, United States of America
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, United States of America
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, United States of America
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
- Medicine Service, Infectious Diseases, Veterans Affairs Health Care System, Saint Louis, Missouri, United States of America
| |
Collapse
|
2
|
Bettin EB, Grassmann AA, Dellagostin OA, Gogarten JP, Caimano MJ. Leptospira interrogans encodes a canonical BamA and three novel noNterm Omp85 outer membrane protein paralogs. Sci Rep 2024; 14:19958. [PMID: 39198480 PMCID: PMC11358297 DOI: 10.1038/s41598-024-67772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
The Omp85 family of outer membrane proteins are ubiquitously distributed among diderm bacteria and play essential roles in outer membrane (OM) biogenesis. The majority of Omp85 orthologs are bipartite and consist of a conserved OM-embedded 16-stranded beta-barrel and variable periplasmic functional domains. Here, we demonstrate that Leptospira interrogans encodes four distinct Omp85 proteins. The presumptive leptospiral BamA, LIC11623, contains a noncanonical POTRA4 periplasmic domain that is conserved across Leptospiraceae. The remaining three leptospiral Omp85 proteins, LIC12252, LIC12254 and LIC12258, contain conserved beta-barrels but lack periplasmic domains. Two of the three 'noNterm' Omp85-like proteins were upregulated by leptospires in urine from infected mice compared to in vitro and/or following cultivation within rat peritoneal cavities. Mice infected with a L. interrogans lic11254 transposon mutant shed tenfold fewer leptospires in their urine compared to mice infected with the wild-type parent. Analyses of pathogenic and saprophytic Leptospira spp. identified five groups of noNterm Omp85 paralogs, including one pathogen- and two saprophyte-specific groups. Expanding our analysis beyond Leptospira spp., we identified additional noNterm Omp85 orthologs in bacteria isolated from diverse environments, suggesting a potential role for these previously unrecognized noNterm Omp85 proteins in physiological adaptation to harsh conditions.
Collapse
Affiliation(s)
- Everton B Bettin
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - André A Grassmann
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - Odir A Dellagostin
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA.
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA.
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
3
|
Hanson SE, Dowdy T, Larion M, Doyle MT, Bernstein HD. The patatin-like protein PlpD forms structurally dynamic homodimers in the Pseudomonas aeruginosa outer membrane. Nat Commun 2024; 15:4389. [PMID: 38782915 PMCID: PMC11116518 DOI: 10.1038/s41467-024-48756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded β-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. Pseudomonas aeruginosa PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal β-barrel domain. Challenging the current dogma, we find that the PlpD PL-domain resides exclusively in the periplasm and, unlike previously studied Omp85 proteins, PlpD forms a homodimer. Remarkably, the PL-domain contains a segment that exhibits unprecedented dynamicity by undergoing transient strand-swapping with the neighboring β-barrel domain. Our results show that the Omp85 superfamily is more structurally diverse than currently believed and suggest that the Omp85 scaffold was utilized during evolution to generate novel functions.
Collapse
Affiliation(s)
- Sarah E Hanson
- Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- Sydney Infectious Diseases Institute and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Berndsen ZT, Akhtar M, Thapa M, Vickers T, Schmitz A, Torres JL, Baboo S, Kumar P, Khatoom N, Sheikh A, Hamrick M, Diedrich JK, Martinez-Bartolome S, Garrett PT, Yates JR, Turner JS, Laird RM, Poly F, Porter CK, Copps J, Ellebedy AH, Ward AB, Fleckenstein JM. Repeat modules and N-linked glycans define structure and antigenicity of a critical enterotoxigenic E. coli adhesin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593125. [PMID: 38766097 PMCID: PMC11100705 DOI: 10.1101/2024.05.08.593125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.
Collapse
Affiliation(s)
- Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Marjahan Akhtar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Tim Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Aaron Schmitz
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Nazia Khatoom
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Melissa Hamrick
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Patrick T Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Renee M Laird
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
| | - Frédéric Poly
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
| | - Chad K Porter
- Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
- Medicine Service, Infectious Diseases, Veterans Affairs Health Care System, Saint Louis Missouri, USA
| |
Collapse
|
5
|
Luo Y, Chen Z, Lian S, Ji X, Zhu C, Zhu G, Xia P. The Love and Hate Relationship between T5SS and Other Secretion Systems in Bacteria. Int J Mol Sci 2023; 25:281. [PMID: 38203452 PMCID: PMC10778856 DOI: 10.3390/ijms25010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria have existed on Earth for billions of years, exhibiting ubiquity and involvement in various biological activities. To ensure survival, bacteria usually release and secrete effector proteins to acquire nutrients and compete with other microorganisms for living space during long-term evolution. Consequently, bacteria have developed a range of secretion systems, which are complex macromolecular transport machines responsible for transporting proteins across the bacterial cell membranes. Among them, one particular secretion system that stands out from the rest is the type V secretion system (T5SS), known as the "autotransporter". Bacterial activities mediated by T5SS include adherence to host cells or the extracellular matrix, invasion of host cells, immune evasion and serum resistance, contact-dependent growth inhibition, cytotoxicity, intracellular flow, protease activity, autoaggregation, and biofilm formation. In a bacterial body, it is not enough to rely on T5SS alone; in most cases, T5SS cooperates with other secretion systems to carry out bacterial life activities, but regardless of how good the relationship is, there is friction between the secretion systems. T5SS and T1SS/T2SS/T3SS/T6SS all play a synergistic role in the pathogenic processes of bacteria, such as nutrient acquisition, pathogenicity enhancement, and immune modulation, but T5SS indirectly inhibits the function of T4SS. This could be considered a love-hate relationship between secretion systems. This paper uses the systematic literature review methodology to review 117 journal articles published within the period from 1995 to 2024, which are all available from the PubMed, Web of Science, and Scopus databases and aim to elucidate the link between T5SS and other secretion systems, providing clues for future prevention and control of bacterial diseases.
Collapse
Affiliation(s)
- Yi Luo
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Ziyue Chen
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xingduo Ji
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225009, China;
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Elery ZK, Myers-Morales T, Phillips ED, Garcia EC. Relaxed specificity of BcpB transporters mediates interactions between Burkholderia cepacia complex contact-dependent growth inhibition systems. mSphere 2023; 8:e0030323. [PMID: 37498085 PMCID: PMC10449530 DOI: 10.1128/msphere.00303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 07/28/2023] Open
Abstract
Belonging to the two-partner secretion family of proteins, contact-dependent growth inhibition (CDI) systems mediate interbacterial antagonism among closely related Gram-negative bacteria. The toxic portion of a large surface protein, BcpA/CdiA, is delivered to the cytoplasm of neighboring cells where it inhibits growth. Translocation of the antibacterial polypeptide out of the producing cell requires an associated outer membrane transporter, BcpB/CdiB. Some bacteria, including many Burkholderia species, encode multiple distinct CDI systems, but whether there is interaction between these systems is largely unknown. Using Burkholderia cepacia complex species as a model, here we show that related BcpB transporters exhibit considerable secretion flexibility and can secrete both cognate and non-cognate BcpA substrates. We also identified an additional unique Burkholderia dolosa CDI system capable of mediating interbacterial competition and demonstrated that its BcpB transporter has similar relaxed substrate specificity. Our results showed that two BcpB transporters (BcpB-2 and BcpB-3) were able to secrete all four of the B. dolosa BcpA toxins, while one transporter (BcpB-1) appeared unable to secrete even its cognate BcpA substrate under the tested conditions. This flexibility provided a competitive advantage, as strains lacking the full repertoire of BcpB proteins had decreased CDI activity. Similar results were obtained in Burkholderia multivorans, suggesting that secretion flexibility may be a conserved feature of Burkholderia CDI systems. Together these findings suggest that the interaction between distinct CDI systems enhances the efficiency of bacterial antagonism. IMPORTANCE The Burkholderia cepacia complex (Bcc) is a group of related opportunistic bacterial pathogens that occupy a diverse range of ecological niches and exacerbate disease in patients with underlying conditions. Contact-dependent growth inhibition (CDI) system proteins, produced by Gram-negative bacteria, contain antagonistic properties that allow for intoxication of closely related neighboring bacteria via a secreted protein, BcpA. Multiple unique CDI systems can be found in the same bacterial strain, and here we show that these distinct systems interact in several Bcc species. Our findings suggest that the interaction between CDI system proteins is important for interbacterial toxicity. Understanding the mechanism of interplay between CDI systems provides further insight into the complexity of bacterial antagonism. Moreover, since many bacterial species are predicted to encode multiple CDI systems, this study suggests that interactions between these distinct systems likely contribute to the overall competitive fitness of these species.
Collapse
Affiliation(s)
- Zaria K. Elery
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | - Erica D. Phillips
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Erin C. Garcia
- University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Srinivasan K, Erramilli SK, Chakravarthy S, Gonzalez A, Kossiakoff A, Noinaj N. Characterization of synthetic antigen binding fragments targeting Toc75 for the isolation of TOC in A. thaliana and P. sativum. Structure 2023; 31:595-606.e5. [PMID: 36977410 PMCID: PMC10164082 DOI: 10.1016/j.str.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023]
Abstract
Roughly 95% of the proteins that make up the chloroplast must be imported from the cytoplasm. The machinery responsible for the translocation of these cargo proteins is called the translocon at the outer membrane of chloroplast (TOC). The TOC core consists of three proteins, Toc34, Toc75, and Toc159; no high-resolution structure has been solved of fully assembled TOC from plants. Efforts toward determining the structure of the TOC have been hindered almost entirely by difficulties in producing sufficient yields for structural studies. In this study, we introduce an innovative method that utilizes synthetic antigen binding fragments (sABs) to isolate TOC directly from wild-type plant biomass including A. thaliana and P. sativum. Binding between the sABs and the POTRA domains was characterized by size-exclusion chromatography coupled with small-angle X-ray scattering (SEC-SAXS), X-ray crystallography, and isothermal titration calorimetry. We also demonstrate the isolation of the TOC from P. sativum, laying the framework for large-scale isolation and purification of TOC for functional and structural studies.
Collapse
Affiliation(s)
- Karthik Srinivasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Adrian Gonzalez
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Anthony Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Hanson SE, Doyle MT, Bernstein HD. The patatin-like protein PlpD forms novel structurally dynamic homodimers in the Pseudomonas aeruginosa outer membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537245. [PMID: 37333265 PMCID: PMC10274916 DOI: 10.1101/2023.04.17.537245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded β-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. Pseudomonas aeruginosa PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal β-barrel domain. Challenging the current dogma, we found that the PlpD PL-domain resides exclusively in the periplasm and, unlike previously studied Omp85 proteins, PlpD forms a homodimer. Remarkably, the PL-domain contains a segment that exhibits unprecedented dynamicity by undergoing transient strand-swapping with the neighboring β-barrel domain. Our results show that the Omp85 superfamily is more structurally diverse than currently believed and suggest that the Omp85 scaffold was utilized during evolution to generate novel functions.
Collapse
Affiliation(s)
- Sarah E. Hanson
- Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
9
|
Sicoli G, Konijnenberg A, Guérin J, Hessmann S, Del Nero E, Hernandez-Alba O, Lecher S, Rouaut G, Müggenburg L, Vezin H, Cianférani S, Sobott F, Schneider R, Jacob-Dubuisson F. Large-Scale Conformational Changes of FhaC Provide Insights Into the Two-Partner Secretion Mechanism. Front Mol Biosci 2022; 9:950871. [PMID: 35936790 PMCID: PMC9355242 DOI: 10.3389/fmolb.2022.950871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane β barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein’s surface loops. Specifically, our data indicate that an amphipathic POTRA2 β hairpin can insert into the β barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.
Collapse
Affiliation(s)
- Giuseppe Sicoli
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | | | - Jérémy Guérin
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Elise Del Nero
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Sophie Lecher
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Guillaume Rouaut
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Linn Müggenburg
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Hervé Vezin
- Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Lille, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR 2048, Strasbourg, France
| | - Frank Sobott
- BAMS Research Group, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Schneider
- CNRS EMR9002 Integrative Structural Biology, Lille, France
- INSERM, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| | - Françoise Jacob-Dubuisson
- CNRS, INSERM, Institut Pasteur de Lille, Université de Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
- *Correspondence: Robert Schneider, ; Françoise Jacob-Dubuisson,
| |
Collapse
|
10
|
Doyle MT, Bernstein HD. Function of the Omp85 Superfamily of Outer Membrane Protein Assembly Factors and Polypeptide Transporters. Annu Rev Microbiol 2022; 76:259-279. [PMID: 35650668 DOI: 10.1146/annurev-micro-033021-023719] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
11
|
Filloux A. Bacterial protein secretion systems: Game of types. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35536734 DOI: 10.1099/mic.0.001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.
Collapse
Affiliation(s)
- Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Cuthbert BJ, Hayes CS, Goulding CW. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Front Mol Biosci 2022; 9:866854. [PMID: 35558562 PMCID: PMC9086364 DOI: 10.3389/fmolb.2022.866854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bacteria live in complex communities and environments, competing for space and nutrients. Within their niche habitats, bacteria have developed various inter-bacterial mechanisms to compete and communicate. One such mechanism is contact-dependent growth inhibition (CDI). CDI is found in many Gram-negative bacteria, including several pathogens. These CDI+ bacteria encode a CdiB/CdiA two-partner secretion system that delivers inhibitory toxins into neighboring cells upon contact. Toxin translocation results in the growth inhibition of closely related strains and provides a competitive advantage to the CDI+ bacteria. CdiB, an outer-membrane protein, secretes CdiA onto the surface of the CDI+ bacteria. When CdiA interacts with specific target-cell receptors, CdiA delivers its C-terminal toxin region (CdiA-CT) into the target-cell. CdiA-CT toxin proteins display a diverse range of toxic functions, such as DNase, RNase, or pore-forming toxin activity. CDI+ bacteria also encode an immunity protein, CdiI, that specifically binds and neutralizes its cognate CdiA-CT, protecting the CDI+ bacteria from auto-inhibition. In Gram-negative bacteria, toxin/immunity (CdiA-CT/CdiI) pairs have highly variable sequences and functions, with over 130 predicted divergent toxin/immunity complex families. In this review, we will discuss biochemical and structural advances made in the characterization of CDI. This review will focus on the diverse array of CDI toxin/immunity complex structures together with their distinct toxin functions. Additionally, we will discuss the most recent studies on target-cell recognition and toxin entry, along with the discovery of a new member of the CDI loci. Finally, we will offer insights into how these diverse toxin/immunity complexes could be harnessed to fight human diseases.
Collapse
Affiliation(s)
- Bonnie J. Cuthbert
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher S. Hayes
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Celia W. Goulding
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat Commun 2021; 12:7131. [PMID: 34880256 PMCID: PMC8655018 DOI: 10.1038/s41467-021-27449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins is mediated by the β-barrel assembly machinery (BAM). The mechanism employed by BAM is complex and so far- incompletely understood. Here, we report the structures of BAM in nanodiscs, prepared using polar lipids and native membranes, where we observe an outward-open state. Mutations in the barrel domain of BamA reveal that plasticity in BAM is essential, particularly along the lateral seam of the barrel domain, which is further supported by molecular dynamics simulations that show conformational dynamics in BAM are modulated by the accessory proteins. We also report the structure of BAM in complex with EspP, which reveals an early folding intermediate where EspP threads from the underside of BAM and incorporates into the barrel domain of BamA, supporting a hybrid-barrel budding mechanism in which the substrate is folded into the membrane sequentially rather than as a single unit.
Collapse
|
14
|
Xiao L, Han L, Li B, Zhang M, Zhou H, Luo Q, Zhang X, Huang Y. Structures of the β-barrel assembly machine recognizing outer membrane protein substrates. FASEB J 2021; 35:e21207. [PMID: 33368572 DOI: 10.1096/fj.202001443rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/11/2022]
Abstract
β-barrel outer membrane proteins (β-OMPs) play critical roles in nutrition acquisition, protein import/export, and other fundamental biological processes. The assembly of β-OMPs in Gram-negative bacteria is mediated by the β-barrel assembly machinery (BAM) complex, yet its precise mechanism remains elusive. Here, we report two structures of the BAM complex in detergents and in nanodisks, and two crystal structures of the BAM complex with bound substrates. Structural analysis indicates that the membrane compositions surrounding the BAM complex could modulate its overall conformations, indicating low energy barriers between different conformational states and a highly dynamic nature of the BAM complex. Importantly, structures of the BAM complex with bound substrates and the related functional analysis show that the first β-strand of the BamA β-barrel (β1BamA ) in the BAM complex is associated with the last but not the first β-strand of a β-OMP substrate via antiparallel β-strand interactions. These observations are consistent with the β-signal hypothesis during β-OMP biogenesis, and suggest that the β1BamA strand in the BAM complex may interact with the last β-strand of an incoming β-OMP substrate upon their release from the chaperone-bound state.
Collapse
Affiliation(s)
- Le Xiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Long Han
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bufan Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Manfeng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingshan Luo
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
16
|
Guérin J, Buchanan SK. Protein import and export across the bacterial outer membrane. Curr Opin Struct Biol 2021; 69:55-62. [PMID: 33901701 DOI: 10.1016/j.sbi.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 01/06/2023]
Abstract
The bacterial outer membrane forms an impermeable barrier to the environment, but a wide variety of substances must cross it without compromising the membrane. Perhaps, the most fascinating transport phenomenon is the import and export of very large protein toxins using relatively small β-barrel proteins residing in the outer membrane. Progress has been made on three systems in recent years that shed light on this process. In this review, we summarize bacteriocin (toxin) import using TonB-dependent transporters and protein secretion by autotransporters and two partner secretion systems.
Collapse
Affiliation(s)
- Jérémy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
The Two TpsB-Like Proteins in Anabaena sp. Strain PCC 7120 Are Involved in Secretion of Selected Substrates. J Bacteriol 2021; 203:JB.00568-20. [PMID: 33257527 DOI: 10.1128/jb.00568-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Gram-negative bacteria acts as an initial diffusion barrier that shields the cell from the environment. It contains many membrane-embedded proteins required for functionality of this system. These proteins serve as solute and lipid transporters or as machines for membrane insertion or secretion of proteins. The genome of Anabaena sp. strain PCC 7120 codes for two outer membrane transporters termed TpsB1 and TpsB2. They belong to the family of the two-partner secretion system proteins which are characteristic of pathogenic bacteria. Because pathogenicity of Anabaena sp. strain PCC 7120 has not been reported, the function of these two cyanobacterial TpsB proteins was analyzed. TpsB1 is encoded by alr1659, while TpsB2 is encoded by all5116 The latter is part of a genomic region containing 11 genes encoding TpsA-like proteins. However, tpsB2 is transcribed independently of a tpsA gene cluster. Bioinformatics analysis revealed the presence of at least 22 genes in Anabaena sp. strain PCC 7120 putatively coding for substrates of the TpsB system, suggesting a rather global function of the two TpsB proteins. Insertion of a plasmid into each of the two genes resulted in altered outer membrane integrity and antibiotic resistance. In addition, the expression of genes coding for the Clp and Deg proteases is dysregulated in these mutants. Moreover, for two of the putative substrates, a dependence of the secretion on functional TpsB proteins could be confirmed. We confirm the existence of a two-partner secretion system in Anabaena sp. strain PCC 7120 and predict a large pool of putative substrates.IMPORTANCE Cyanobacteria are important organisms for the ecosystem, considering their contribution to carbon fixation and oxygen production, while at the same time some species produce compounds that are toxic to their environment. As a consequence, cyanobacterial overpopulation might negatively impact the diversity of natural communities. Thus, a detailed understanding of cyanobacterial interaction with the environment, including other organisms, is required to define their impact on ecosystems. While two-partner secretion systems in pathogenic bacteria are well known, we provide a first description of the cyanobacterial two-partner secretion system.
Collapse
|
18
|
Guerin J, Botos I, Zhang Z, Lundquist K, Gumbart JC, Buchanan SK. Structural insight into toxin secretion by contact-dependent growth inhibition transporters. eLife 2020; 9:58100. [PMID: 33089781 PMCID: PMC7644211 DOI: 10.7554/elife.58100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial contact-dependent growth inhibition (CDI) systems use a type Vb secretion mechanism to export large CdiA toxins across the outer membrane by dedicated outer membrane transporters called CdiB. Here, we report the first crystal structures of two CdiB transporters from Acinetobacter baumannii and Escherichia coli. CdiB transporters adopt a TpsB fold, containing a 16-stranded transmembrane β-barrel connected to two periplasmic domains. The lumen of the CdiB pore is occluded by an N-terminal α-helix and the conserved extracellular loop 6; these two elements adopt different conformations in the structures. We identified a conserved DxxG motif located on strand β1 that connects loop 6 through different networks of interactions. Structural modifications of DxxG induce rearrangement of extracellular loops and alter interactions with the N-terminal α-helix, preparing the system for α-helix ejection. Using structural biology, functional assays, and molecular dynamics simulations, we show how the barrel pore is primed for CdiA toxin secretion.
Collapse
Affiliation(s)
- Jeremy Guerin
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, United States
| | - Istvan Botos
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, United States
| | - Zijian Zhang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Susan K Buchanan
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, United States
| |
Collapse
|
19
|
Roumia AF, Theodoropoulou MC, Tsirigos KD, Nielsen H, Bagos PG. Landscape of Eukaryotic Transmembrane Beta Barrel Proteins. J Proteome Res 2020; 19:1209-1221. [PMID: 32008325 DOI: 10.1021/acs.jproteome.9b00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Even though in the last few years several families of eukaryotic β-barrel outer membrane proteins have been discovered, their computational characterization and their annotation in public databases are far from complete. The PFAM database includes only very few characteristic profiles for these families, and in most cases, the profile hidden Markov models (pHMMs) have been trained using prokaryotic and eukaryotic proteins together. Here, we present for the first time a comprehensive computational analysis of eukaryotic transmembrane β-barrels. Twelve characteristic pHMMs were built, based on an extensive literature search, which can discriminate eukaryotic β-barrels from other classes of proteins (globular and bacterial β-barrel ones), as well as between mitochondrial and chloroplastic ones. We built eight novel profiles for the chloroplastic β-barrel families that are not present in the PFAM database and also updated the profile for the MDM10 family (PF12519) in the PFAM database and divide the porin family (PF01459) into two separate families, namely, VDAC and TOM40.
Collapse
Affiliation(s)
- Ahmed F Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| | | | - Konstantinos D Tsirigos
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Henrik Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| |
Collapse
|
20
|
Abstract
The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.
Collapse
|
21
|
Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Sci Rep 2019; 9:17606. [PMID: 31772280 PMCID: PMC6879480 DOI: 10.1038/s41598-019-53830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
Membrane-embedded proteins are critical to the establishment, survival and persistence in the host of the Lyme disease bacterium Borrelia burgdorferi (Bb), but to date, there are no solved structures of transmembrane proteins representing these attractive therapeutic targets. All available structures from the genus Borrelia represent proteins expressed without a membrane-targeting signal peptide, thus avoiding conserved pathways that modify, fold and assemble membrane protein complexes. Towards elucidating structure and function of these critical proteins, we directed translocation of eleven expression-optimized Bb virulence factors, including the signal sequence, to the Escherichia coli membrane, of which five, BBA57, HtrA, BB0238, BB0323, and DipA, were expressed with C-terminal His-tags. P66 was also expressed using the PelB signal sequence fused to maltose binding protein. Membrane-associated BBA57 lipoprotein was solubilized by non-ionic and zwitterionic detergents. We show BBA57 translocation to the outer membrane, purification at a level sufficient for structural studies, and evidence for an α-helical multimer. Previous studies showed multiple critical roles of BBA57 in transmission, joint arthritis, carditis, weakening immune responses, and regulating other Bb outer surface proteins. In describing the first purification of membrane-translocated BBA57, this work will support subsequent studies that reveal the precise mechanisms of this important Lyme disease virulence factor.
Collapse
|
22
|
Bartelli NL, Sun S, Gucinski GC, Zhou H, Song K, Hayes CS, Dahlquist FW. The Cytoplasm-Entry Domain of Antibacterial CdiA Is a Dynamic α-Helical Bundle with Disulfide-Dependent Structural Features. J Mol Biol 2019; 431:3203-3216. [PMID: 31181288 PMCID: PMC6727969 DOI: 10.1016/j.jmb.2019.05.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/01/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
Many Gram-negative bacterial species use contact-dependent growth inhibition (CDI) systems to compete with neighboring cells. CDI+ strains express cell-surface CdiA effector proteins, which carry a toxic C-terminal region (CdiA-CT) that is cleaved from the effector upon transfer into the periplasm of target bacteria. The released CdiA-CT consists of two domains. The C-terminal domain is typically a nuclease that inhibits cell growth, and the N-terminal "cytoplasm-entry" domain mediates toxin translocation into the target-cell cytosol. Here, we use NMR and circular dichroism spectroscopic approaches to probe the structure, stability, and dynamics of the cytoplasm-entry domain from Escherichia coli STEC_MHI813. Chemical shift analysis reveals that the CdiA-CTMHI813 entry domain is composed of a C-terminal helical bundle and a dynamic N-terminal region containing two disulfide linkages. Disruption of the disulfides by mutagenesis or chemical reduction destabilizes secondary structure over the N-terminus, but has no effect on the C-terminal helices. Although critical for N-terminal structure, the disulfides have only modest effects on global thermodynamic stability, and the entry domain exhibits characteristics of a molten globule. We find that the disulfides form in vivo as the entry domain dwells in the periplasm of inhibitor cells prior to target-cell recognition. CdiA-CTMHI813 variants lacking either disulfide still kill target bacteria, but disruption of both bonds abrogates growth inhibition activity. We propose that the entry domain's dynamic structural features are critical for function. In its molten globule-like state, the domain resists degradation after delivery, yet remains pliable enough to unfold for membrane translocation.
Collapse
Affiliation(s)
- Nicholas L Bartelli
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Sheng Sun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Grant C Gucinski
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Kiho Song
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
23
|
Nash ZM, Cotter PA. Bordetella Filamentous Hemagglutinin, a Model for the Two-Partner Secretion Pathway. Microbiol Spectr 2019; 7:10.1128/microbiolspec.PSIB-0024-2018. [PMID: 30927348 PMCID: PMC6443250 DOI: 10.1128/microbiolspec.psib-0024-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 01/11/2023] Open
Abstract
Bacteria use a variety of mechanisms to translocate proteins from the cytoplasm, where they are synthesized, to the cell surface or extracellular environment or directly into other cells, where they perform their ultimate functions. Type V secretion systems (T5SS) use β-barrel transporter domains to export passenger domains across the outer membranes of Gram-negative bacteria. Distinct among T5SS are type Vb or two-partner secretion (TPS) systems in which the transporter and passenger are separate proteins, necessitating a mechanism for passenger-translocator recognition in the periplasm and providing the potential for reuse of the translocator. This review describes current knowledge of the TPS translocation mechanism, using Bordetella filamentous hemagglutinin (FHA) and its transporter FhaC as a model. We present the hypothesis that the TPS pathway may be a general mechanism for contact-dependent delivery of toxins to target cells.
Collapse
Affiliation(s)
- Zachary M. Nash
- Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, NC, 27599-7290
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, NC, 27599-7290
| |
Collapse
|
24
|
Abstract
Type V, or "autotransporter," secretion is a term used to refer to several simple protein export pathways that are found in a wide range of Gram-negative bacteria. Autotransporters are generally single polypeptides that consist of an extracellular ("passenger") domain and a β barrel domain that anchors the protein to the outer membrane (OM). Although it was originally proposed that the passenger domain is secreted through a channel formed solely by the covalently linked β barrel domain, experiments performed primarily on the type Va, or "classical," autotransporter pathway have challenged this hypothesis. Several lines of evidence strongly suggest that both the secretion of the passenger domain and the membrane integration of the β barrel domain are catalyzed by the barrel assembly machinery (Bam) complex, a conserved hetero-oligomer that plays an essential role in the assembly of most integral OM proteins. The secretion reaction appears to be driven at least in part by the folding of the passenger domain in the extracellular space. Although many aspects of autotransporter biogenesis remain to be elucidated, it will be especially interesting to determine whether the different classes of proteins that fall under the type V rubric-most of which have not been examined in detail-are assembled by the same basic mechanism as classical autotransporters.
Collapse
|
25
|
Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki Haemophilus parasuis isolates. PLoS One 2018; 13:e0205700. [PMID: 30383795 PMCID: PMC6211672 DOI: 10.1371/journal.pone.0205700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer's disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.
Collapse
|
26
|
Jurnecka D, Man P, Sebo P, Bumba L. Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites. FEBS Open Bio 2018; 8:1256-1266. [PMID: 30087831 PMCID: PMC6070651 DOI: 10.1002/2211-5463.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
Filamentous hemagglutinin (FHA) mediates adherence and plays an important role in lower respiratory tract infections by pathogenic Bordetellae. The mature FHA proteins of B. pertussis (Bp‐FHA) and the B. bronchiseptica (Bb‐FHA) are generated by processing of the respective FhaB precursors by the autotransporter subtilisin‐type protease SphB1. We have used bottom‐up proteomics with differential 16O/18O labeling and show that despite high‐sequence conservation of the corresponding FhaB segments, the mature Bp‐FHA (~ 230 kDa) and Bb‐FHA (~ 243 kDa) proteins are processed at different sites of FhaB, after the Ala‐2348 and Lys‐2479 residues, respectively. Moreover, protease surface accessibility probing by on‐column (on‐line) digestion of the Bp‐FHA and Bb‐FHA proteins yielded different peptide patterns, revealing structural differences in the N‐terminal and C‐terminal domains of the Bp‐FHA and Bb‐FHA proteins. These data indicate specific structural variations between the highly homologous FHA proteins.
Collapse
Affiliation(s)
- David Jurnecka
- Laboratory of Molecular Biology of Bacterial Pathogens Institute of Microbiology Czech Academy of Sciences Prague 4 Czech Republic.,Department of Biochemistry Faculty of Science Charles University in Prague Prague 2 Czech Republic
| | - Petr Man
- Department of Biochemistry Faculty of Science Charles University in Prague Prague 2 Czech Republic.,BioCeV - Institute of Microbiology of the Czech Academy of Sciences Vestec Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens Institute of Microbiology Czech Academy of Sciences Prague 4 Czech Republic
| | - Ladislav Bumba
- Laboratory of Molecular Biology of Bacterial Pathogens Institute of Microbiology Czech Academy of Sciences Prague 4 Czech Republic
| |
Collapse
|
27
|
Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA, Kutik S, Guiard B, Hunte C, Becker T, Pfanner N, Wiedemann N. Membrane protein insertion through a mitochondrial β-barrel gate. Science 2018; 359:359/6373/eaah6834. [PMID: 29348211 DOI: 10.1126/science.aah6834] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 11/02/2022]
Abstract
The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of β-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of β-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by β-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of β-barrel proteins.
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - David A Stroud
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stephan Kutik
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
28
|
Nicoludis JM, Gaudet R. Applications of sequence coevolution in membrane protein biochemistry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:895-908. [PMID: 28993150 PMCID: PMC5807202 DOI: 10.1016/j.bbamem.2017.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Recently, protein sequence coevolution analysis has matured into a predictive powerhouse for protein structure and function. Direct methods, which use global statistical models of sequence coevolution, have enabled the prediction of membrane and disordered protein structures, protein complex architectures, and the functional effects of mutations in proteins. The field of membrane protein biochemistry and structural biology has embraced these computational techniques, which provide functional and structural information in an otherwise experimentally-challenging field. Here we review recent applications of protein sequence coevolution analysis to membrane protein structure and function and highlight the promising directions and future obstacles in these fields. We provide insights and guidelines for membrane protein biochemists who wish to apply sequence coevolution analysis to a given experimental system.
Collapse
Affiliation(s)
- John M Nicoludis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, United States.
| |
Collapse
|
29
|
Structural components involved in plastid protein import. Essays Biochem 2018; 62:65-75. [DOI: 10.1042/ebc20170093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/04/2023]
Abstract
Import of preproteins into chloroplasts is an essential process, requiring two major multisubunit protein complexes that are embedded in the outer and inner chloroplast envelope membrane. Both the translocon of the outer chloroplast membrane (Toc), as well as the translocon of the inner chloroplast membrane (Tic) have been studied intensively with respect to their individual subunit compositions, functions and regulations. Recent advances in crystallography have increased our understanding of the operation of these proteins in terms of their interactions and regulation by conformational switching. Several subdomains of components of the Toc translocon have been studied at the structural level, among them the polypeptide transport-associated (POTRA) domain of the channel protein Toc75 and the GTPase domain of Toc34. In this review, we summarize and discuss the insight that has been gained from these structural analyses. In addition, we present the crystal structure of the Toc64 tetratrico-peptide repeat (TPR) domain in complex with the C-terminal domains of the heat-shock proteins (Hsp) Hsp90 and Hsp70.
Collapse
|
30
|
|
31
|
Koutsioubas A. Low-Resolution Structure of Detergent-Solubilized Membrane Proteins from Small-Angle Scattering Data. Biophys J 2018; 113:2373-2382. [PMID: 29211991 DOI: 10.1016/j.bpj.2017.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022] Open
Abstract
Despite the ever-increasing usage of small-angle scattering as a valuable complementary method in the field of structural biology, applications concerning membrane proteins remain elusive mainly due to experimental challenges and the relative lack of theoretical tools for the treatment of scattering data. This fact adds up to general difficulties encountered also by other established methods (crystallography, NMR) for the study of membrane proteins. Following the general paradigm of ab initio methods for low-resolution restoration of soluble protein structure from small-angle scattering data, we construct a general multiphase model with a set of physical constraints, which, together with an appropriate minimization procedure, gives direct structural information concerning the different components (protein, detergent molecules) of detergent-solubilized membrane protein complexes. Assessment of the method's precision and robustness is evaluated by performing shape restorations from simulated data of a tetrameric α-helical membrane channel (Aquaporin-0) solubilized by n-Dodecyl β-D-Maltoside and from previously published small-angle neutron scattering experimental data of the filamentous hemagglutinin adhesin β-barrel protein transporter solubilized by n-Octyl β-D-glucopyranoside. It is shown that the acquisition of small-angle neutron scattering data at two different solvent contrasts, together with an estimation of detergent aggregation number around the protein, permits the reliable reconstruction of the shape of membrane proteins without the need for any prior structural information.
Collapse
Affiliation(s)
- Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Garching, Germany.
| |
Collapse
|
32
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
33
|
Hsueh YC, Flinner N, Gross LE, Haarmann R, Mirus O, Sommer MS, Schleiff E. Chloroplast outer envelope protein P39 in Arabidopsis thaliana belongs to the Omp85 protein family. Proteins 2017; 85:1391-1401. [PMID: 25401771 DOI: 10.1002/prot.24725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023]
Abstract
Proteins of the Omp85 family chaperone the membrane insertion of β-barrel-shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear-encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N-terminal polypeptide transport-associated (POTRA) domains and a C-terminal membrane-embedded β-barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β-barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75-V, which is consistent with the phylogenetic clustering of P39 in the Toc75-V rather than the Toc75-III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75-III, Toc75-V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391-1401. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Ching Hsueh
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany
| | - Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Raimund Haarmann
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Oliver Mirus
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Maik S Sommer
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany.,Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt, Germany.,Buchman Institute of Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
| |
Collapse
|
34
|
Dastvan R, Brouwer EM, Schuetz D, Mirus O, Schleiff E, Prisner TF. Relative Orientation of POTRA Domains from Cyanobacterial Omp85 Studied by Pulsed EPR Spectroscopy. Biophys J 2017; 110:2195-206. [PMID: 27224485 DOI: 10.1016/j.bpj.2016.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
Abstract
Many proteins of the outer membrane of Gram-negative bacteria and of the outer envelope of the endosymbiotically derived organelles mitochondria and plastids have a β-barrel fold. Their insertion is assisted by membrane proteins of the Omp85-TpsB superfamily. These proteins are composed of a C-terminal β-barrel and a different number of N-terminal POTRA domains, three in the case of cyanobacterial Omp85. Based on structural studies of Omp85 proteins, including the five POTRA-domain-containing BamA protein of Escherichia coli, it is predicted that anaP2 and anaP3 bear a fixed orientation, whereas anaP1 and anaP2 are connected via a flexible hinge. We challenged this proposal by investigating the conformational space of the N-terminal POTRA domains of Omp85 from the cyanobacterium Anabaena sp. PCC 7120 using pulsed electron-electron double resonance (PELDOR, or DEER) spectroscopy. The pronounced dipolar oscillations observed for most of the double spin-labeled positions indicate a rather rigid orientation of the POTRA domains in frozen liquid solution. Based on the PELDOR distance data, structure refinement of the POTRA domains was performed taking two different approaches: 1) treating the individual POTRA domains as rigid bodies; and 2) using an all-atom refinement of the structure. Both refinement approaches yielded ensembles of model structures that are more restricted compared to the conformational ensemble obtained by molecular dynamics simulations, with only a slightly different orientation of N-terminal POTRA domains anaP1 and anaP2 compared with the x-ray structure. The results are discussed in the context of the native environment of the POTRA domains in the periplasm.
Collapse
Affiliation(s)
- Reza Dastvan
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany; Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eva-Maria Brouwer
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Schuetz
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany; Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany; Molecular Cell Biology of Plants, Goethe University Frankfurt, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany; Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
35
|
The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. Proc Natl Acad Sci U S A 2017; 114:E4868-E4876. [PMID: 28559331 DOI: 10.1073/pnas.1621179114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein trafficking across membranes is an essential function in cells; however, the exact mechanism for how this occurs is not well understood. In the endosymbionts, mitochondria and chloroplasts, the vast majority of proteins are synthesized in the cytoplasm as preproteins and then imported into the organelles via specialized machineries. In chloroplasts, protein import is accomplished by the TOC (translocon on the outer chloroplast membrane) and TIC (translocon on the inner chloroplast membrane) machineries in the outer and inner envelope membranes, respectively. TOC mediates initial recognition of preproteins at the outer membrane and includes a core membrane channel, Toc75, and two receptor proteins, Toc33/34 and Toc159, each containing GTPase domains that control preprotein binding and translocation. Toc75 is predicted to have a β-barrel fold consisting of an N-terminal intermembrane space (IMS) domain and a C-terminal 16-stranded β-barrel domain. Here we report the crystal structure of the N-terminal IMS domain of Toc75 from Arabidopsis thaliana, revealing three tandem polypeptide transport-associated (POTRA) domains, with POTRA2 containing an additional elongated helix not observed previously in other POTRA domains. Functional studies show an interaction with the preprotein, preSSU, which is mediated through POTRA2-3. POTRA2-3 also was found to have chaperone-like activity in an insulin aggregation assay, which we propose facilitates preprotein import. Our data suggest a model in which the POTRA domains serve as a binding site for the preprotein as it emerges from the Toc75 channel and provide a chaperone-like activity to prevent misfolding or aggregation as the preprotein traverses the intermembrane space.
Collapse
|
36
|
Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front Cell Infect Microbiol 2017; 7:148. [PMID: 28536673 PMCID: PMC5422565 DOI: 10.3389/fcimb.2017.00148] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.
Collapse
Affiliation(s)
- Jeremy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry, Centre National de La Recherche Scientifique UMR 5086-Université Lyon 1, Institute of Biology and Chemistry of ProteinsLyon, France
| | - Robert Schneider
- NMR and Molecular Interactions, Université de Lille, Centre National de La Recherche Scientifique, UMR 8576-Unité de Glycobiologie Structurale et FonctionnelleLille, France
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Françoise Jacob-Dubuisson
- Université de Lille, Centre National de La Recherche Scientifique, Institut National de La Santé et de La Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Centre d'Infection et d'Immunité de LilleLille, France
| |
Collapse
|
37
|
Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis. mBio 2017; 8:mBio.02250-16. [PMID: 28119472 PMCID: PMC5263249 DOI: 10.1128/mbio.02250-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. IMPORTANCE The course and outcome of acute, toxigenic infections by Pseudomonas aeruginosa clinical isolates rely on the deployment of one of two virulence strategies: delivery of effectors by the well-known type III secretion system or the cytolytic activity of the recently identified two-partner secreted toxin, exolysin. Here, we characterize several features of the mammalian cell intoxication process mediated by exolysin. We found that exolysin requires the outer membrane protein ExlB for export into extracellular medium. Using in vitro recombinant protein and ex vivo assays, we demonstrated a pore-forming activity of exolysin. A cellular cytotoxicity screen of a transposon mutant library, made in an exolysin-producing clinical strain, identified type IV pili as bacterial appendages required for exolysin toxic function. This work deciphers molecular mechanisms underlying the activity of novel virulence factors used by P. aeruginosa clinical strains lacking the type III secretion system, including a requirement for the toxin-producing bacteria to be attached to the targeted cell to induce cytolysis, and defines new targets for developing antivirulence strategies.
Collapse
|
38
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
39
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
40
|
Fan E, Norell D, Müller M. An In Vitro Assay for Substrate Translocation by FhaC in Liposomes. Methods Mol Biol 2016; 1329:111-25. [PMID: 26427679 DOI: 10.1007/978-1-4939-2871-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The two-partner secretion (TPS) pathway is used by gram-negative bacteria to secrete a large family of virulence exoproteins. Its name is derived from the fact that it involves two proteins, a secreted TpsA protein and a cognate TpsB transporter in the outer membrane. A typical TPS system is represented by the filamentous hemagglutinin FhaB (TpsA protein) and its transporter FhaC (TpsB protein) of Bordetella pertussis. Results from mutational analysis and heterologous expression experiments suggested that FhaC is essential for FhaB translocation across the outer membrane of bacteria. We have devised a cell-free biochemical assay to reconstitute in vitro the translocation of FhaB into reconstituted membrane vesicles. Thereby the clearest evidence has been provided that the single β-barrel FhaC protein serves as the sole translocator to transport FhaB across the outer membrane. This is the first in vitro assay for protein secretion across the Escherichia coli outer membrane and the detailed protocol described here should be amenable to modifications and application to the analysis of related protein transport events occurring at the outer membranes of gram-negative bacteria.
Collapse
Affiliation(s)
- Enguo Fan
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Straße 17, Freiburg, 79104, Germany
| | - Derrick Norell
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Straße 17, Freiburg, 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Straße 17, Freiburg, 79104, Germany.
| |
Collapse
|
41
|
Heinz E, Stubenrauch CJ, Grinter R, Croft NP, Purcell AW, Strugnell RA, Dougan G, Lithgow T. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family. Genome Biol Evol 2016; 8:1690-705. [PMID: 27190006 PMCID: PMC4943183 DOI: 10.1093/gbe/evw112] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher J Stubenrauch
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rhys Grinter
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Richard A Strugnell
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Australia
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor Lithgow
- Department of Microbiology, Infection & Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
42
|
Structural basis for haem piracy from host haemopexin by Haemophilus influenzae. Nat Commun 2016; 7:11590. [PMID: 27188378 PMCID: PMC4873976 DOI: 10.1038/ncomms11590] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
Haemophilus influenzae is an obligate human commensal/pathogen that requires haem for survival and can acquire it from several host haemoproteins, including haemopexin. The haem transport system from haem-haemopexin consists of HxuC, a haem receptor, and the two-partner-secretion system HxuB/HxuA. HxuA, which is exposed at the cell surface, is strictly required for haem acquisition from haemopexin. HxuA forms complexes with haem-haemopexin, leading to haem release and its capture by HxuC. The key question is how HxuA liberates haem from haemopexin. Here, we solve crystal structures of HxuA alone, and HxuA in complex with the N-terminal domain of haemopexin. A rational basis for the release of haem from haem-haemopexin is derived from both in vivo and in vitro studies. HxuA acts as a wedge that destabilizes the two-domains structure of haemopexin with a mobile loop on HxuA that favours haem ejection by redirecting key residues in the haem-binding pocket of haemopexin. Haemophilus influenzae requires haem, and acquires it from host haemoproteins including haemopexin. Here, the authors examine the haem transport system consisting of HxuA, HxuB and HxuC via the structures of HxuA in complex with haemopexin.
Collapse
|
43
|
Reddy BL, Saier MH. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins. PLoS One 2016; 11:e0152733. [PMID: 27064789 PMCID: PMC4827864 DOI: 10.1371/journal.pone.0152733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications.
Collapse
Affiliation(s)
- Bhaskara L. Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Paila YD, Richardson LG, Inoue H, Parks ES, McMahon J, Inoue K, Schnell DJ. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife 2016; 5. [PMID: 26999824 PMCID: PMC4811774 DOI: 10.7554/elife.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/04/2016] [Indexed: 01/20/2023] Open
Abstract
Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI:http://dx.doi.org/10.7554/eLife.12631.001 Chloroplasts are a hallmark feature of plant cells and the sites of photosynthesis – the process in which plants harness the energy in sunlight for their own needs. The first chloroplasts arose when a photosynthetic bacterium was engulfed by another host cell, and most of the original bacterial genes have been transferred to the host cell’s nucleus during the evolution of land plants. As a result, modern chloroplasts need to import the thousands of proteins encoded by these genes from the rest of the cell. The chloroplast protein import system relies on a protein transporter in the chloroplast membrane that evolved from a family of bacterial transporters. However, the bacterial transporters were initially involved in protein export, and it was not known how the activity of these transporters adapted to move proteins in the opposite direction. Paila et al. set out to better understand the chloroplast protein import system and produced mutated forms of the transporter in the model plant Arabidopsis thaliana. These experiments revealed that a part of the transporter that is conserved in many other organisms, the “protein transport associated domains”, has been adapted for three key roles in protein import. First, this part of the transporter interacts with the other components of the import system that make the transporter more selective and control which direction the proteins are transported. Second, the domains interact with proteins during transport to help move them across the chloroplast membrane. Finally, the domains recruit other molecules called chaperones, which stop the protein from aggregating or misfolding during the transport process. These activities are similar to those for the bacterial export transporters, but clearly evolved to allow transport in the opposite direction – that is, to import proteins into chloroplasts. The next challenges are to explain how proteins destined for chloroplasts are recognized and transported through the chloroplast’s membrane. DOI:http://dx.doi.org/10.7554/eLife.12631.002
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Lynn Gl Richardson
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Hitoshi Inoue
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Elizabeth S Parks
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - James McMahon
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, United States
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
45
|
Wang Y, Andole Pannuri A, Ni D, Zhou H, Cao X, Lu X, Romeo T, Huang Y. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane. J Biol Chem 2016; 291:10046-57. [PMID: 26957546 DOI: 10.1074/jbc.m115.711762] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane.
Collapse
Affiliation(s)
- Yan Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Archana Andole Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611-0700
| | - Dongchun Ni
- Department of Cardiovascular Diseases, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Haizhen Zhou
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiou Cao
- School of Life Sciences, Peking University, Beijing 100871, China, and
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan 523325, Guangdong Province, China
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611-0700,
| | - Yihua Huang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
46
|
Hiruma-Shimizu K, Shimizu H, Thompson GS, Kalverda AP, Patching SG. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol Membr Biol 2016; 32:139-55. [DOI: 10.3109/09687688.2015.1125536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan,
| | - Gary S. Thompson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | - Arnout P. Kalverda
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | | |
Collapse
|
47
|
Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 2016; 23:192-6. [PMID: 26900875 DOI: 10.1038/nsmb.3181] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 11/09/2022]
Abstract
In Gram-negative bacteria, the assembly of β-barrel outer-membrane proteins (OMPs) requires the β-barrel-assembly machinery (BAM) complex. We determined the crystal structure of the 200-kDa BAM complex from Escherichia coli at 3.55-Å resolution. The structure revealed that the BAM complex assembles into a hat-like shape, in which the BamA β-barrel domain forms the hat's crown embedded in the outer membrane, and its five polypeptide transport-associated (POTRA) domains interact with the four lipoproteins BamB, BamC, BamD and BamE, thus forming the hat's brim in the periplasm. The assembly of the BAM complex creates a ring-like apparatus beneath the BamA β-barrel in the periplasm and a potential substrate-exit pore located at the outer membrane-periplasm interface. The complex structure suggests that the chaperone-bound OMP substrates may feed into the chamber of the ring-like apparatus and insert into the outer membrane via the potential substrate-exit pore in an energy-independent manner.
Collapse
Affiliation(s)
- Long Han
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangge Zheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanqing Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baohua Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongchun Ni
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongfang Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Abstract
The major class of integral proteins found in the outer membrane (OM) of E. coli and Salmonella adopt a β-barrel conformation (OMPs). OMPs are synthesized in the cytoplasm with a typical signal sequence at the amino terminus, which directs them to the secretion machinery (SecYEG) located in the inner membrane for translocation to the periplasm. Chaperones such as SurA, or DegP and Skp, escort these proteins across the aqueous periplasm protecting them from aggregation. The chaperones then deliver OMPs to a highly conserved outer membrane assembly site termed the Bam complex. In E. coli, the Bam complex is composed of an essential OMP, BamA, and four associated OM lipoproteins, BamBCDE, one of which, BamD, is also essential. Here we provide an overview of what we know about the process of OMP assembly and outline the various hypotheses that have been proposed to explain how proteins might be integrated into the asymmetric OM lipid bilayer in an environment that lacks obvious energy sources. In addition, we describe the envelope stress responses that ensure the fidelity of OM biogenesis and how factors, such as phage and certain toxins, have coopted this essential machine to gain entry into the cell.
Collapse
|
49
|
Abstract
The autotransporter and two-partner secretion (TPS) pathways are used by E. coli and many other Gram-negative bacteria to delivervirulence factors into the extracellular milieu.Autotransporters arecomprised of an N-terminal extracellular ("passenger") domain and a C-terminal β barrel domain ("β domain") that anchors the protein to the outer membrane and facilitates passenger domain secretion. In the TPS pathway, a secreted polypeptide ("exoprotein") is coordinately expressed with an outer membrane protein that serves as a dedicated transporter. Bothpathways are often grouped together under the heading "type V secretion" because they have many features in common and are used for the secretion of structurally related polypeptides, but it is likely that theyhave distinct evolutionary origins. Although it was proposed many years ago that autotransporterpassenger domains are transported across the outer membrane through a channel formed by the covalently linked β domain, there is increasing evidence that additional factors are involved in the translocation reaction. Furthermore, details of the mechanism of protein secretion through the TPS pathway are only beginning to emerge. In this chapter I discussour current understanding ofboth early and late steps in the biogenesis of polypeptides secreted through type V pathways and current modelsofthe mechanism of secretion.
Collapse
|
50
|
Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol 2015; 427:3754-65. [PMID: 26388411 DOI: 10.1016/j.jmb.2015.09.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
Bacteria have developed several strategies to communicate and compete with one another in complex environments. One important mechanism of inter-bacterial competition is contact-dependent growth inhibition (CDI), in which Gram-negative bacteria use CdiB/CdiA two-partner secretion proteins to suppress the growth of neighboring target cells. CdiB is an Omp85 outer-membrane protein that exports and assembles CdiA exoproteins onto the inhibitor cell surface. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into the target cell. CDI systems also encode CdiI immunity proteins, which specifically bind to the CdiA-CT and neutralize its toxin activity, thereby protecting CDI(+) cells from auto-inhibition. Remarkably, CdiA-CT sequences are highly variable between bacteria, as are the corresponding CdiI immunity proteins. Variations in CDI toxin/immunity proteins suggest that these systems function in bacterial self/non-self recognition and thereby play an important role in microbial communities. In this review, we discuss recent advances in the biochemistry, structural biology and physiology of CDI.
Collapse
|