1
|
Šimkovic F, Rossi R, Georges A, Ferrero M. Origin and fate of the pseudogap in the doped Hubbard model. Science 2024; 385:eade9194. [PMID: 39298591 DOI: 10.1126/science.ade9194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/09/2024] [Indexed: 09/22/2024]
Abstract
The relationship between the pseudogap and underlying ground-state phases has not yet been rigorously established. We investigated the doped two-dimensional Hubbard model at finite temperature using controlled diagrammatic Monte Carlo calculations, allowing for the computation of spectral properties in the infinite-size limit and with arbitrary momentum resolution. We found three distinct regimes as a function of doping and interaction strength: a weakly correlated metal, a correlated metal with strong interaction effects, and a pseudogap regime at low doping. We show that the pseudogap forms both at weak coupling, when the magnetic correlation length is large, and at strong coupling, when it is shorter. As the temperature goes to zero, the pseudogap regime extrapolates precisely to the ordered stripe phase found by ground-state methods.
Collapse
Affiliation(s)
- Fedor Šimkovic
- CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Riccardo Rossi
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- LPTMC, CNRS, Sorbonne Université, 4 place Jussieu, F-75005 Paris, France
| | - Antoine Georges
- CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
- DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Suisse
| | - Michel Ferrero
- CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
2
|
Yao H, Tanzi L, Sanchez-Palencia L, Giamarchi T, Modugno G, D'Errico C. Mott Transition for a Lieb-Liniger Gas in a Shallow Quasiperiodic Potential: Delocalization Induced by Disorder. PHYSICAL REVIEW LETTERS 2024; 133:123401. [PMID: 39373444 DOI: 10.1103/physrevlett.133.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/09/2024] [Indexed: 10/08/2024]
Abstract
Disorder or quasidisorder is known to favor localization in many-body Bose systems. Here, in contrast, we demonstrate an anomalous delocalization effect induced by incommensurability in quasiperiodic lattices. Loading ultracold atoms in two shallow periodic lattices with equal amplitude and either equal or incommensurate spatial periods, we show the onset of a Mott transition not only in the periodic case but also in the quasiperiodic case. Switching from periodic to quasiperiodic potential with the same amplitude, we find that the Mott insulator turns into a delocalized superfluid. Our experimental results agree with quantum Monte Carlo calculations, showing this anomalous delocalization induced by the interplay between the disorder and interaction.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Modugno
- Istituto Nazionale di Ottica, CNR-INO, Via Moruzzi 1, 56124 Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Università degli Studi di Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
3
|
Schindler PM, Bukov M. Counterdiabatic Driving for Periodically Driven Systems. PHYSICAL REVIEW LETTERS 2024; 133:123402. [PMID: 39373419 DOI: 10.1103/physrevlett.133.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/13/2024] [Indexed: 10/08/2024]
Abstract
Periodically driven systems have emerged as a useful technique to engineer the properties of quantum systems, and are in the process of being developed into a standard toolbox for quantum simulation. An outstanding challenge that leaves this toolbox incomplete is the manipulation of the states dressed by strong periodic drives. The state-of-the-art in Floquet control is the adiabatic change of parameters. Yet, this requires long protocols conflicting with the limited coherence times in experiments. To achieve fast control of nonequilibrium quantum matter, we generalize the notion of variational counterdiabatic driving away from equilibrium focusing on Floquet systems. We derive a nonperturbative variational principle to find local approximations to the adiabatic gauge potential for the effective Floquet Hamiltonian. It enables transitionless driving of Floquet eigenstates far away from the adiabatic regime. We discuss applications to two-level, Floquet band, and interacting periodically driven models. The developed technique allows us to capture nonperturbative photon resonances and obtain high-fidelity protocols that respect experimental limitations like the locality of the accessible control terms.
Collapse
|
4
|
Shi YH, Sun ZH, Wang YY, Wang ZA, Zhang YR, Ma WG, Liu HT, Zhao K, Song JC, Liang GH, Mei ZY, Zhang JC, Li H, Chen CT, Song X, Wang J, Xue G, Yu H, Huang K, Xiang Z, Xu K, Zheng D, Fan H. Probing spin hydrodynamics on a superconducting quantum simulator. Nat Commun 2024; 15:7573. [PMID: 39217151 PMCID: PMC11366024 DOI: 10.1038/s41467-024-52082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Characterizing the nature of hydrodynamical transport properties in quantum dynamics provides valuable insights into the fundamental understanding of exotic non-equilibrium phases of matter. Experimentally simulating infinite-temperature transport on large-scale complex quantum systems is of considerable interest. Here, using a controllable and coherent superconducting quantum simulator, we experimentally realize the analog quantum circuit, which can efficiently prepare the Haar-random states, and probe spin transport at infinite temperature. We observe diffusive spin transport during the unitary evolution of the ladder-type quantum simulator with ergodic dynamics. Moreover, we explore the transport properties of the systems subjected to strong disorder or a tilted potential, revealing signatures of anomalous subdiffusion in accompany with the breakdown of thermalization. Our work demonstrates a scalable method of probing infinite-temperature spin transport on analog quantum simulators, which paves the way to study other intriguing out-of-equilibrium phenomena from the perspective of transport.
Collapse
Affiliation(s)
- Yun-Hao Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Zheng-Hang Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Yi Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Wang
- Beijing Academy of Quantum Information Sciences, Beijing, China
- Hefei National Laboratory, Hefei, China
| | - Yu-Ran Zhang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
| | - Wei-Guo Ma
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Tian Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhao
- Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Jia-Cheng Song
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Han Liang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Yang Mei
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Chi Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Chi-Tong Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Song
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jieci Wang
- Department of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, China
| | - Guangming Xue
- Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Haifeng Yu
- Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Kaixuan Huang
- Beijing Academy of Quantum Information Sciences, Beijing, China.
| | - Zhongcheng Xiang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hefei National Laboratory, Hefei, China.
| | - Kai Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Hefei National Laboratory, Hefei, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing, China.
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hefei National Laboratory, Hefei, China
- Songshan Lake Materials Laboratory, Dongguan, China
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing, China
| | - Heng Fan
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Hefei National Laboratory, Hefei, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing, China.
| |
Collapse
|
5
|
Bharti V, Sugawa S, Kunimi M, Chauhan VS, Mahesh TP, Mizoguchi M, Matsubara T, Tomita T, de Léséleuc S, Ohmori K. Strong Spin-Motion Coupling in the Ultrafast Dynamics of Rydberg Atoms. PHYSICAL REVIEW LETTERS 2024; 133:093405. [PMID: 39270183 DOI: 10.1103/physrevlett.133.093405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/19/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
Rydberg atoms in optical lattices and tweezers is now a well-established platform for simulating quantum spin systems. However, the role of the atoms' spatial wave function has not been examined in detail experimentally. Here, we show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wave function spread. We observe its clear signature on the ultrafast many-body nanosecond-dynamics of atoms excited to a Rydberg S state, using picosecond pulses, from an unity-filling atomic Mott-insulator. We also propose an approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials. Our work provides a new direction for exploring the dynamics of strongly correlated quantum systems by adding the motional degree of freedom to the Rydberg simulation toolbox.
Collapse
Affiliation(s)
| | - S Sugawa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
- Department of Basic Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Long C, Cao L, Ge L, Li QX, Yan Y, Xu RX, Wang Y, Zheng X. Quantum neural network approach to Markovian dissipative dynamics of many-body open quantum systems. J Chem Phys 2024; 161:084105. [PMID: 39171705 DOI: 10.1063/5.0220357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Numerous variational methods have been proposed for solving quantum many-body systems, but they often face exponentially increasing computational complexity as the Hilbert space dimension grows. To address this, we introduce a novel approach using quantum neural networks to simulate the dissipative dynamics of many-body open quantum systems. This method combines neural-network quantum state representation with the time-dependent variational principle, both implemented via quantum algorithms. This results in accurate open quantum dynamics described by the Lindblad quantum master equation, exemplified by the spin-boson and transverse field Ising models. Our approach avoids the computational expense of classical algorithms and demonstrates the potential advantages of quantum computing for many-body simulations. To reduce measurement errors, we introduce a projection reset procedure, which could benefit other quantum simulations. In addition, our approach can be extended to simulate non-Markovian quantum dynamics.
Collapse
Affiliation(s)
- Cun Long
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Long Cao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwei Ge
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun-Xiang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Trifa Y, Roscilde T. Scalable Spin Squeezing in Two-Dimensional Arrays of Dipolar Large-S Spins. PHYSICAL REVIEW LETTERS 2024; 133:083601. [PMID: 39241737 DOI: 10.1103/physrevlett.133.083601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/16/2024] [Indexed: 09/09/2024]
Abstract
We theoretically show that the spin-spin interactions realized in two-dimensional Mott insulators of large-spin magnetic atoms (such as Cr, Er, or Dy) lead to scalable spin squeezing along the nonequilibrium unitary evolution initialized in a coherent spin state. An experimentally relevant perturbation to the collective squeezing dynamics is offered by a quadratic Zeeman shift, which leads instead to squeezing of individual spins. Making use of a truncated cumulant expansion for the quantum fluctuations of the spin array, we show that, for sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting model-as expected from an effective separation between collective-spin and spin-wave variables. Scalable spin squeezing is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts in the equilibrium phase diagram of the system that we reconstruct via quantum Monte Carlo and mean-field theory.
Collapse
Affiliation(s)
- Youssef Trifa
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Tommaso Roscilde
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
8
|
Hakoshima H, Endo S, Yamamoto K, Matsuzaki Y, Yoshioka N. Localized Virtual Purification. PHYSICAL REVIEW LETTERS 2024; 133:080601. [PMID: 39241702 DOI: 10.1103/physrevlett.133.080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/08/2024] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
Analog and digital quantum simulators can efficiently simulate quantum many-body systems that appear in natural phenomena. However, experimental limitations of near-term devices still make it challenging to perform the entire process of quantum simulation. The purification-based quantum simulation methods can alleviate the limitations in experiments such as the cooling temperature and noise from the environment, while this method has the drawback that it requires global entangled measurement with a prohibitively large number of measurements that scales exponentially with the system size. In this Letter, we propose that we can overcome these problems by restricting the entangled measurements to the vicinity of the local observables to be measured, when the locality of the system can be exploited. We provide theoretical guarantees that the global purification operation can be replaced with local operations under some conditions, in particular for the task of cooling and error mitigation. We furthermore give a numerical verification that the localized purification is valid even when conditions are not satisfied. Our method bridges the fundamental concept of locality with quantum simulators, and therefore is expected to open a path to unexplored quantum many-body phenomena.
Collapse
Affiliation(s)
- Hideaki Hakoshima
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | - Yuichiro Matsuzaki
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Nobuyuki Yoshioka
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Correia PS, Carvalho GD, de Oliveira TR, Vallejos RO, de Melo F. Canonical Typicality under General Quantum Channels. PHYSICAL REVIEW LETTERS 2024; 133:060401. [PMID: 39178447 DOI: 10.1103/physrevlett.133.060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/31/2024] [Accepted: 07/10/2024] [Indexed: 08/25/2024]
Abstract
With the control of increasingly complex quantum systems, the relevant degrees of freedom we are interested in may not be those traditionally addressed by statistical quantum mechanics. Here, we employ quantum channels to define generalized subsystems, capturing the pertinent degrees of freedom, and obtain their associated canonical state. We show that the generalized subsystem description from almost any microscopic pure state of the whole system will behave similarly to its corresponding canonical state. Such canonical typicality behavior depends on the entropy of the channel used to define the generalized subsystem.
Collapse
Affiliation(s)
| | - Gabriel Dias Carvalho
- Física de Materiais, Universidade de Pernambuco, 50720-001, Recife, Pernambuco, Brazil
- Instituto de Física, Universidade Federal Fluminense, Avenida Litoranea s/n, Gragoatá 24210-346, Niterói, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
10
|
Impertro A, Karch S, Wienand JF, Huh S, Schweizer C, Bloch I, Aidelsburger M. Local Readout and Control of Current and Kinetic Energy Operators in Optical Lattices. PHYSICAL REVIEW LETTERS 2024; 133:063401. [PMID: 39178442 DOI: 10.1103/physrevlett.133.063401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 08/25/2024]
Abstract
Quantum gas microscopes have revolutionized quantum simulations with ultracold atoms, allowing one to measure local observables and snapshots of quantum states. However, measurements so far were mostly carried out in the occupation basis. Here, we demonstrate how all kinetic operators, such as kinetic energy or current operators, can be measured and manipulated with single-bond resolution. Beyond simple expectation values of these observables, the single-shot measurements allow one to access full counting statistics and complex correlation functions. Our work paves the way for the implementation of efficient quantum state tomography and hybrid quantum computing protocols for itinerant particles on a lattice. In addition, we demonstrate how site-resolved programmable potentials enable a spatially selective, parallel readout in different bases as well as the engineering of arbitrary initial states.
Collapse
|
11
|
Shao HJ, Wang YX, Zhu DZ, Zhu YS, Sun HN, Chen SY, Zhang C, Fan ZJ, Deng Y, Yao XC, Chen YA, Pan JW. Antiferromagnetic phase transition in a 3D fermionic Hubbard model. Nature 2024; 632:267-272. [PMID: 38987606 DOI: 10.1038/s41586-024-07689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
The fermionic Hubbard model (FHM)1 describes a wide range of physical phenomena resulting from strong electron-electron correlations, including conjectured mechanisms for unconventional superconductivity. Resolving its low-temperature physics is, however, challenging theoretically or numerically. Ultracold fermions in optical lattices2,3 provide a clean and well-controlled platform offering a path to simulate the FHM. Doping the antiferromagnetic ground state of a FHM simulator at half-filling is expected to yield various exotic phases, including stripe order4, pseudogap5, and d-wave superfluid6, offering valuable insights into high-temperature superconductivity7-9. Although the observation of antiferromagnetic correlations over short10 and extended distances11 has been obtained, the antiferromagnetic phase has yet to be realized as it requires sufficiently low temperatures in a large and uniform quantum simulator. Here we report the observation of the antiferromagnetic phase transition in a three-dimensional fermionic Hubbard system comprising lithium-6 atoms in a uniform optical lattice with approximately 800,000 sites. When the interaction strength, temperature and doping concentration are finely tuned to approach their respective critical values, a sharp increase in the spin structure factor is observed. These observations can be well described by a power-law divergence, with a critical exponent of 1.396 from the Heisenberg universality class12. At half-filling and with optimal interaction strength, the measured spin structure factor reaches 123(8), signifying the establishment of an antiferromagnetic phase. Our results provide opportunities for exploring the low-temperature phase diagram of the FHM.
Collapse
Affiliation(s)
- Hou-Ji Shao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
| | - Yu-Xuan Wang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
| | - De-Zhi Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
| | - Yan-Song Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
| | - Hao-Nan Sun
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
| | - Si-Yuan Chen
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
| | - Chi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
| | - Zhi-Jie Fan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Youjin Deng
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Xing-Can Yao
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China.
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| | - Yu-Ao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China.
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| | - Jian-Wei Pan
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei, China.
- Shanghai Research Center for Quantum Science and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
12
|
Luo A, Zheng YG, Zhang WY, He MG, Shen YC, Zhu ZH, Yuan ZS, Pan JW. Microscopic Study on Superexchange Dynamics of Composite Spin-1 Bosons. PHYSICAL REVIEW LETTERS 2024; 133:043401. [PMID: 39121402 DOI: 10.1103/physrevlett.133.043401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 08/11/2024]
Abstract
We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site- and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We further probed the nonequilibrium spin dynamics driven by the superexchange and single-ion anisotropy terms, unveiling the linear expansion of the spin-spin correlations, which is limited by the Lieb-Robinson bound. Based on the superexchange process, we prepared and verified the entangled qutrits pairs with these composite spin-1 bosons, potentially being applied in qutrit-based quantum information processing.
Collapse
|
13
|
Lamb C, Tang Y, Davis R, Roy A. Ising meson spectroscopy on a noisy digital quantum simulator. Nat Commun 2024; 15:5901. [PMID: 39003326 PMCID: PMC11246482 DOI: 10.1038/s41467-024-50206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Quantum simulation has the potential to be an indispensable technique for the investigation of non-perturbative phenomena in strongly-interacting quantum field theories (QFTs). In the modern quantum era, with Noisy Intermediate Scale Quantum (NISQ) simulators widely available and larger-scale quantum machines on the horizon, it is natural to ask: what non-perturbative QFT problems can be solved with the existing quantum hardware? We show that existing noisy quantum machines can be used to analyze the energy spectrum of several strongly-interacting 1+1D QFTs, which exhibit non-perturbative effects like 'quark confinement' and 'false vacuum decay'. We perform quench experiments on IBM's quantum simulators to compute the energy spectrum of 1+1D quantum Ising model with a longitudinal field. Our results demonstrate that digital quantum simulation in the NISQ era has the potential to be a viable alternative to numerical techniques such as density matrix renormalization group or the truncated conformal space methods for analyzing QFTs.
Collapse
Affiliation(s)
- Christopher Lamb
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
| | - Yicheng Tang
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
| | - Robert Davis
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
| | - Ananda Roy
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
14
|
Yao Y, Xiang L. Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium. ENTROPY (BASEL, SWITZERLAND) 2024; 26:592. [PMID: 39056954 PMCID: PMC11275873 DOI: 10.3390/e26070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emerged to simulate nonequilibrium quantum many-body dynamics that are challenging for classical computers. Here, we review the basic concepts of superconducting quantum simulation and their recent experimental progress in exploring exotic nonequilibrium quantum phenomena emerging in strongly interacting many-body systems, e.g., many-body localization, quantum many-body scars, and discrete time crystals. We further discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
Collapse
Affiliation(s)
- Yunyan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Physics, Zhejiang University, Hangzhou 311200, China
| | | |
Collapse
|
15
|
Tao R, Ammenwerth M, Gyger F, Bloch I, Zeiher J. High-Fidelity Detection of Large-Scale Atom Arrays in an Optical Lattice. PHYSICAL REVIEW LETTERS 2024; 133:013401. [PMID: 39042791 DOI: 10.1103/physrevlett.133.013401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 07/25/2024]
Abstract
Recent advances in quantum simulation based on neutral atoms have largely benefited from high-resolution, single-atom sensitive imaging techniques. A variety of approaches have been developed to achieve such local detection of atoms in optical lattices or optical tweezers. For alkaline-earth and alkaline-earth-like atoms, the presence of narrow optical transitions opens up the possibility of performing novel types of Sisyphus cooling, where the cooling mechanism originates from the capability to spatially resolve the differential optical level shifts in the trap potential. Up to now, it has been an open question whether high-fidelity imaging could be achieved in a "repulsive Sisyphus" configuration, where the trap depth of the ground state exceeds that of the excited state involved in cooling. Here, we demonstrate high-fidelity (99.971(1)%) and high-survival (99.80(5)%) imaging of strontium atoms using repulsive Sisyphus cooling. We use an optical lattice as a pinning potential for atoms in a large-scale tweezer array with up to 399 tweezers and show repeated, high-fidelity lattice-tweezer-lattice transfers. We furthermore demonstrate loading the lattice with approximately 10 000 atoms directly from the MOT and scalable imaging over >10 000 lattice sites with a combined survival probability and classification fidelity better than 99.2%. Our lattice thus serves as a locally addressable and sortable reservoir for continuous refilling of optical tweezer arrays in the future.
Collapse
|
16
|
Bigagli N, Yuan W, Zhang S, Bulatovic B, Karman T, Stevenson I, Will S. Observation of Bose-Einstein condensation of dipolar molecules. Nature 2024; 631:289-293. [PMID: 38831053 DOI: 10.1038/s41586-024-07492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Ensembles of particles governed by quantum mechanical laws exhibit intriguing emergent behaviour. Atomic quantum gases1,2, liquid helium3,4 and electrons in quantum materials5-7 all exhibit distinct properties because of their composition and interactions. Quantum degenerate samples of ultracold dipolar molecules promise the realization of new phases of matter and new avenues for quantum simulation8 and quantum computation9. However, rapid losses10, even when reduced through collisional shielding techniques11-13, have so far prevented evaporative cooling to a Bose-Einstein condensate (BEC). Here we report on the realization of a BEC of dipolar molecules. By strongly suppressing two- and three-body losses via enhanced collisional shielding, we evaporatively cool sodium-caesium molecules to quantum degeneracy and cross the phase transition to a BEC. The BEC reveals itself by a bimodal distribution when the phase-space density exceeds 1. BECs with a condensate fraction of 60(10)% and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 s. This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far, promising the creation of exotic dipolar droplets14, self-organized crystal phases15 and dipolar spin liquids in optical lattices16.
Collapse
Affiliation(s)
- Niccolò Bigagli
- Department of Physics, Columbia University, New York, NY, USA
| | - Weijun Yuan
- Department of Physics, Columbia University, New York, NY, USA
| | - Siwei Zhang
- Department of Physics, Columbia University, New York, NY, USA
| | - Boris Bulatovic
- Department of Physics, Columbia University, New York, NY, USA
| | - Tijs Karman
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Ian Stevenson
- Department of Physics, Columbia University, New York, NY, USA
| | - Sebastian Will
- Department of Physics, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Bornet G, Emperauger G, Chen C, Machado F, Chern S, Leclerc L, Gély B, Chew YT, Barredo D, Lahaye T, Yao NY, Browaeys A. Enhancing a Many-Body Dipolar Rydberg Tweezer Array with Arbitrary Local Controls. PHYSICAL REVIEW LETTERS 2024; 132:263601. [PMID: 38996299 DOI: 10.1103/physrevlett.132.263601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We implement and characterize a protocol that enables arbitrary local controls in a dipolar atom array, where the degree of freedom is encoded in a pair of Rydberg states. Our approach relies on a combination of local addressing beams and global microwave fields. Using this method, we directly prepare two different types of three-atom entangled states, including a W state and a state exhibiting finite chirality. We verify the nature of the underlying entanglement by performing quantum state tomography. Finally, leveraging our ability to measure multibasis, multibody observables, we explore the adiabatic preparation of low-energy states in a frustrated geometry consisting of a pair of triangular plaquettes. By using local addressing to tune the symmetry of the initial state, we demonstrate the ability to prepare correlated states distinguished only by correlations of their chirality (a fundamentally six-body observable). Our protocol is generic, allowing for rotations on arbitrary sub-groups of atoms within the array at arbitrary times during the experiment; this extends the scope of capabilities for quantum simulations of the dipolar XY model.
Collapse
|
18
|
Klüsener V, Pucher S, Yankelev D, Trautmann J, Spriestersbach F, Filin D, Porsev SG, Safronova MS, Bloch I, Blatt S. Long-Lived Coherence on a μHz Scale Optical Magnetic Quadrupole Transition. PHYSICAL REVIEW LETTERS 2024; 132:253201. [PMID: 38996237 DOI: 10.1103/physrevlett.132.253201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024]
Abstract
We report on the coherent excitation of the ultranarrow ^{1}S_{0}-^{3}P_{2} magnetic quadrupole transition in ^{88}Sr. By confining atoms in a state insensitive optical lattice, we achieve excitation fractions of 97(1)% and observe linewidths as narrow as 58(1) Hz. With Ramsey spectroscopy, we find coherence times of 14(1) ms, which can be extended to 266(36) ms using a spin-echo sequence. We determine the lifetime of the ^{3}P_{2} level for spontaneous emission of magnetic quadrupole radiation to be 110(31) min, confirming long-standing theoretical predictions. These results establish an additional clock transition in strontium and pave the way for applications of the metastable ^{3}P_{2} state in quantum computing and quantum simulations.
Collapse
|
19
|
Ge ZY, Zhang YR, Nori F. Nonmesonic Quantum Many-Body Scars in a 1D Lattice Gauge Theory. PHYSICAL REVIEW LETTERS 2024; 132:230403. [PMID: 38905688 DOI: 10.1103/physrevlett.132.230403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
We investigate the meson excitations (particle-antiparticle bound states) in quantum many-body scars of a 1D Z_{2} lattice gauge theory coupled to a dynamical spin-1/2 chain as a matter field. By introducing a string representation of the physical Hilbert space, we express a scar state |Ψ_{n,l}⟩ as a superposition of all string bases with an identical string number n and a total length l. For the small-l scar state |Ψ_{n,l}⟩, the gauge-invariant spin exchange correlation function of the matter field hosts an exponential decay as the distance increases, indicating the existence of stable mesons. However, for large l, the correlation function exhibits a power-law decay, signaling the emergence of nonmesonic excitations. Furthermore, we show that this mesonic-nonmesonic crossover can be detected by the quench dynamics, starting from two low-entangled initial states, respectively, which are experimentally feasible in quantum simulators. Our results expand the physics of quantum many-body scars in lattice gauge theories and reveal that the nonmesonic state can also manifest ergodicity breaking.
Collapse
Affiliation(s)
- Zi-Yong Ge
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Yu-Ran Zhang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama 351-0198, Japan
- Quantum Information Physics Theory Research Team, Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
20
|
Yamamoto D, Morita K. Engineering of a Low-Entropy Quantum Simulator for Strongly Correlated Electrons Using Cold Atoms with SU(N)-Symmetric Interactions. PHYSICAL REVIEW LETTERS 2024; 132:213401. [PMID: 38856247 DOI: 10.1103/physrevlett.132.213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/02/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
An advanced cooling scheme, incorporating entropy engineering, is vital for isolated artificial quantum systems designed to emulate the low-temperature physics of strongly correlated electron systems. This study theoretically demonstrates a cooling method employing multicomponent Fermi gases with SU(N)-symmetric interactions, focusing on the case of ^{173}Yb atoms in a two-dimensional optical lattice. Adiabatically introducing a nonuniform state-selective laser gives rise to two distinct subsystems: a central low-entropy region, exclusively composed of two specific spin components, acts as a quantum simulator for strongly correlated electron systems, while the surrounding N-component mixture retains a significant portion of the entropy of the system. The total particle numbers for each component are good quantum numbers, creating a sharp boundary for the two-component region. The cooling efficiency is assessed through extensive finite-temperature Lanczos calculations. The results lay the foundation for quantum simulations of two-dimensional systems of Hubbard or Heisenberg type, offering crucial insights into intriguing low-temperature phenomena in condensed-matter physics.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | - Katsuhiro Morita
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
21
|
Huang TS, Lunts P, Hafezi M. Nonbosonic Moiré Excitons. PHYSICAL REVIEW LETTERS 2024; 132:186202. [PMID: 38759194 DOI: 10.1103/physrevlett.132.186202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Optical excitations in moiré transition metal dichalcogenide bilayers lead to the creation of excitons, as electron-hole bound states, that are generically considered within a Bose-Hubbard framework. Here, we demonstrate that these composite particles obey an angular momentum commutation relation that is generally nonbosonic. This emergent spin description of excitons indicates a limitation to their occupancy on each site, which is substantial in the weak electron-hole binding regime. The effective exciton theory is accordingly a spin Hamiltonian, which further becomes a Hubbard model of emergent bosons subject to an occupancy constraint after a Holstein-Primakoff transformation. We apply our theory to three commonly studied bilayers (MoSe_{2}/WSe_{2}, WSe_{2}/WS_{2}, and WSe_{2}/MoS_{2}) and show that in the relevant parameter regimes their allowed occupancies never exceed three excitons. Our systematic theory provides guidelines for future research on the many-body physics of moiré excitons.
Collapse
Affiliation(s)
- Tsung-Sheng Huang
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Peter Lunts
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mohammad Hafezi
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
22
|
Kang M, Nuomin H, Chowdhury SN, Yuly JL, Sun K, Whitlow J, Valdiviezo J, Zhang Z, Zhang P, Beratan DN, Brown KR. Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat Rev Chem 2024; 8:340-358. [PMID: 38641733 DOI: 10.1038/s41570-024-00595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.
Collapse
Affiliation(s)
- Mingyu Kang
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ke Sun
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
| | - Jacob Whitlow
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jesús Valdiviezo
- Kenneth S. Pitzer Theory Center, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - David N Beratan
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University, Durham, NC, USA.
| | - Kenneth R Brown
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Adelhardt P, Koziol JA, Langheld A, Schmidt KP. Monte Carlo Based Techniques for Quantum Magnets with Long-Range Interactions. ENTROPY (BASEL, SWITZERLAND) 2024; 26:401. [PMID: 38785650 PMCID: PMC11120707 DOI: 10.3390/e26050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics. In particular, the control of quantum-optical platforms promises to gain deep insights into quantum-critical properties induced by the long-range nature of interactions. From a theoretical perspective, long-range interactions are notoriously complicated to treat. Here, we give an overview of recent advancements to investigate quantum magnets with long-range interactions focusing on two techniques based on Monte Carlo integration. First, the method of perturbative continuous unitary transformations where classical Monte Carlo integration is applied within the embedding scheme of white graphs. This linked-cluster expansion allows extracting high-order series expansions of energies and observables in the thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo integration enables calculations on large finite systems. Finite-size scaling can then be used to determine the physical properties of the infinite system. In recent years, both techniques have been applied successfully to one- and two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg interactions on various bipartite and non-bipartite lattices. Here, we summarise the obtained quantum-critical properties including critical exponents for all these systems in a coherent way. Further, we review how long-range interactions are used to study quantum phase transitions above the upper critical dimension and the scaling techniques to extract these quantum critical properties from the numerical calculations.
Collapse
Affiliation(s)
| | | | | | - Kai P. Schmidt
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; (P.A.); (J.A.K.); (A.L.)
| |
Collapse
|
24
|
Singh H, Kolodrubetz MH, Gopalakrishnan S, Vasseur R. Tunable Superdiffusion in Integrable Spin Chains Using Correlated Initial States. PHYSICAL REVIEW LETTERS 2024; 132:176303. [PMID: 38728724 DOI: 10.1103/physrevlett.132.176303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
Although integrable spin chains host only ballistically propagating particles, they can still feature diffusive charge transfer. This diffusive charge transfer originates from quasiparticle charge fluctuations inherited from the initial state's magnetization Gaussian fluctuations. We show that ensembles of initial states with quasi-long-range correlations lead to superdiffusive charge transfer with a tunable dynamical exponent. We substantiate our prediction with numerical simulations and discuss how finite time and finite size effects might cause deviations.
Collapse
Affiliation(s)
- Hansveer Singh
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Michael H Kolodrubetz
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Sarang Gopalakrishnan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Romain Vasseur
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
25
|
Pucher S, Klüsener V, Spriestersbach F, Geiger J, Schindewolf A, Bloch I, Blatt S. Fine-Structure Qubit Encoded in Metastable Strontium Trapped in an Optical Lattice. PHYSICAL REVIEW LETTERS 2024; 132:150605. [PMID: 38682987 DOI: 10.1103/physrevlett.132.150605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
We demonstrate coherent control of the fine-structure qubit in neutral strontium atoms. This qubit is encoded in the metastable ^{3}P_{2} and ^{3}P_{0} states, coupled by a Raman transition. Using a magnetic quadrupole transition, we demonstrate coherent state initialization of this THz qubit. We show Rabi oscillations with more than 60 coherent cycles and single-qubit rotations on the μs scale. With spin echo, we demonstrate coherence times of tens of ms. Our results pave the way for fast quantum information processors and highly tunable quantum simulators with two-electron atoms.
Collapse
Affiliation(s)
- S Pucher
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - V Klüsener
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - F Spriestersbach
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - J Geiger
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - A Schindewolf
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - I Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - S Blatt
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology, 80799 München, Germany
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany
| |
Collapse
|
26
|
Baldelli N, Cabrera CR, Julià-Farré S, Aidelsburger M, Barbiero L. Frustrated Extended Bose-Hubbard Model and Deconfined Quantum Critical Points with Optical Lattices at the Antimagic Wavelength. PHYSICAL REVIEW LETTERS 2024; 132:153401. [PMID: 38682994 DOI: 10.1103/physrevlett.132.153401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
The study of geometrically frustrated many-body quantum systems is of central importance to uncover novel quantum mechanical effects. We design a scheme where ultracold bosons trapped in a one-dimensional state-dependent optical lattice are modeled by a frustrated Bose-Hubbard Hamiltonian. A derivation of the Hamiltonian parameters based on Cesium atoms, further show large tunability of contact and nearest-neighbor interactions. For pure contact repulsion, we discover the presence of two phases peculiar to frustrated quantum magnets: the bond-order-wave insulator with broken inversion symmetry and a chiral superfluid. When the nearest-neighbor repulsion becomes sizable, a further density-wave insulator with broken translational symmetry can appear. We show that the phase transition between the two spontaneously symmetry-broken phases is continuous, thus representing a one-dimensional deconfined quantum critical point not captured by the Landau-Ginzburg-Wilson symmetry-breaking paradigm. Our results provide a solid ground to unveil the novel quantum physics induced by the interplay of nonlocal interactions, geometrical frustration, and quantum fluctuations.
Collapse
Affiliation(s)
- Niccolò Baldelli
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Cesar R Cabrera
- Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sergi Julià-Farré
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Monika Aidelsburger
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Ludwig-Maximilians-Universität München, Schellingstr. 4, D-80799 Munich, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 Munich, Germany
| | - Luca Barbiero
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| |
Collapse
|
27
|
Labeyrie G, Walker JGM, Robb GRM, Kaiser R, Ackemann T. Spontaneously Sliding Multipole Spin Density Waves in Cold Atoms. PHYSICAL REVIEW LETTERS 2024; 132:143402. [PMID: 38640397 DOI: 10.1103/physrevlett.132.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/21/2024]
Abstract
We report on the observation of spontaneously drifting coupled spin and quadrupolar density waves in the ground state of laser driven Rubidium atoms. These laser-cooled atomic ensembles exhibit spontaneous magnetism via light mediated interactions when submitted to optical feedback by a retroreflecting mirror. Drift direction and chirality of the waves arise from spontaneous symmetry breaking. The observations demonstrate a novel transport process in out-of-equilibrium magnetic systems.
Collapse
Affiliation(s)
- G Labeyrie
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - J G M Walker
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - G R M Robb
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - R Kaiser
- Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - T Ackemann
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| |
Collapse
|
28
|
Shaw AL, Chen Z, Choi J, Mark DK, Scholl P, Finkelstein R, Elben A, Choi S, Endres M. Benchmarking highly entangled states on a 60-atom analogue quantum simulator. Nature 2024; 628:71-77. [PMID: 38509372 PMCID: PMC10990925 DOI: 10.1038/s41586-024-07173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Quantum systems have entered a competitive regime in which classical computers must make approximations to represent highly entangled quantum states1,2. However, in this beyond-classically-exact regime, fidelity comparisons between quantum and classical systems have so far been limited to digital quantum devices2-5, and it remains unsolved how to estimate the actual entanglement content of experiments6. Here, we perform fidelity benchmarking and mixed-state entanglement estimation with a 60-atom analogue Rydberg quantum simulator, reaching a high-entanglement entropy regime in which exact classical simulation becomes impractical. Our benchmarking protocol involves extrapolation from comparisons against an approximate classical algorithm, introduced here, with varying entanglement limits. We then develop and demonstrate an estimator of the experimental mixed-state entanglement6, finding our experiment is competitive with state-of-the-art digital quantum devices performing random circuit evolution2-5. Finally, we compare the experimental fidelity against that achieved by various approximate classical algorithms, and find that only the algorithm we introduce is able to keep pace with the experiment on the classical hardware we use. Our results enable a new model for evaluating the ability of both analogue and digital quantum devices to generate entanglement in the beyond-classically-exact regime, and highlight the evolving divide between quantum and classical systems.
Collapse
Affiliation(s)
- Adam L Shaw
- California Institute of Technology, Pasadena, CA, USA.
| | - Zhuo Chen
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA, USA
| | - Joonhee Choi
- California Institute of Technology, Pasadena, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Daniel K Mark
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pascal Scholl
- California Institute of Technology, Pasadena, CA, USA
| | | | - Andreas Elben
- California Institute of Technology, Pasadena, CA, USA
| | - Soonwon Choi
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Manuel Endres
- California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
29
|
Hu J, Lorchat E, Chen X, Watanabe K, Taniguchi T, Heinz TF, Murthy PA, Chervy T. Quantum control of exciton wave functions in 2D semiconductors. SCIENCE ADVANCES 2024; 10:eadk6369. [PMID: 38507493 PMCID: PMC10954220 DOI: 10.1126/sciadv.adk6369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Excitons-bound electron-hole pairs-play a central role in light-matter interaction phenomena and are crucial for wide-ranging applications from light harvesting and generation to quantum information processing. A long-standing challenge in solid-state optics has been to achieve precise and scalable control over excitonic motion. We present a technique using nanostructured gate electrodes to create tailored potential landscapes for excitons in 2D semiconductors, enabling in situ wave function shaping at the nanoscale. Our approach forms electrostatic traps for excitons in various geometries, such as quantum dots, rings, and arrays thereof. We show independent spectral tuning of spatially separated quantum dots, achieving degeneracy despite material disorder. Owing to the strong light-matter coupling of excitons in 2D semiconductors, we observe unambiguous signatures of confined exciton wave functions in optical reflection and photoluminescence measurements. This work unlocks possibilities for engineering exciton dynamics and interactions at the nanometer scale, with implications for optoelectronic devices, topological photonics, and quantum nonlinear optics.
Collapse
Affiliation(s)
- Jenny Hu
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Etienne Lorchat
- NTT Research, Inc. Physics & Informatics Laboratories, 940 Stewart Dr, Sunnyvale, CA 94085, USA
| | - Xueqi Chen
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tony F. Heinz
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Puneet A. Murthy
- Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Thibault Chervy
- NTT Research, Inc. Physics & Informatics Laboratories, 940 Stewart Dr, Sunnyvale, CA 94085, USA
| |
Collapse
|
30
|
Kuwahara T, Vu TV, Saito K. Effective light cone and digital quantum simulation of interacting bosons. Nat Commun 2024; 15:2520. [PMID: 38514614 PMCID: PMC10957968 DOI: 10.1038/s41467-024-46501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The speed limit of information propagation is one of the most fundamental features in non-equilibrium physics. The region of information propagation by finite-time dynamics is approximately restricted inside the effective light cone that is formulated by the Lieb-Robinson bound. To date, extensive studies have been conducted to identify the shape of effective light cones in most experimentally relevant many-body systems. However, the Lieb-Robinson bound in the interacting boson systems, one of the most ubiquitous quantum systems in nature, has remained a critical open problem for a long time. This study reveals a tight effective light cone to limit the information propagation in interacting bosons, where the shape of the effective light cone depends on the spatial dimension. To achieve it, we prove that the speed for bosons to clump together is finite, which in turn leads to the error guarantee of the boson number truncation at each site. Furthermore, we applied the method to provide a provably efficient algorithm for simulating the interacting boson systems. The results of this study settle the notoriously challenging problem and provide the foundation for elucidating the complexity of many-body boson systems.
Collapse
Affiliation(s)
- Tomotaka Kuwahara
- Analytical quantum complexity RIKEN Hakubi Research Team, RIKEN Center for Quantum Computing (RQC), Wako, Saitama, 351-0198, Japan.
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama, 351-0198, Japan.
- PRESTO, Japan Science and Technology (JST), Kawaguchi, Saitama, 332-0012, Japan.
| | - Tan Van Vu
- Analytical quantum complexity RIKEN Hakubi Research Team, RIKEN Center for Quantum Computing (RQC), Wako, Saitama, 351-0198, Japan
| | - Keiji Saito
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
31
|
Henriques J, Ferri-Cortés M, Fernández-Rossier J. Designer Spin Models in Tunable Two-Dimensional Nanographene Lattices. NANO LETTERS 2024; 24:3355-3360. [PMID: 38427975 PMCID: PMC10958603 DOI: 10.1021/acs.nanolett.3c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Motivated by recent experimental breakthroughs, we propose a strategy for designing two-dimensional spin-lattices with competing interactions that lead to nontrivial emergent quantum states. We consider S = 1/2 nanographenes with C3 symmetry as building blocks, and we leverage the potential to control both the sign and the strength of exchange with first neighbors to build a family of spin models. Specifically, we consider the case of a Heisenberg model in a triangle-decorated honeycomb lattice with competing ferromagnetic and antiferromagnetic interactions whose ratio can be varied in a wide range. On the basis of the exact diagonalization of both Fermionic and spin models, we predict a quantum phase transition between a valence bond crystal of spin singlets with triplon excitations living in a Kagomé lattice and a Néel phase of effective S = 3/2 in the limit of dominant ferromagnetic interactions.
Collapse
Affiliation(s)
- João Henriques
- International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
- Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mar Ferri-Cortés
- Departamento
de Física Aplicada, Universidad de
Alicante, 03690 San Vicente del Raspeig, Spain
| | - Joaquín Fernández-Rossier
- International
Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
32
|
Fauseweh B. Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges. Nat Commun 2024; 15:2123. [PMID: 38459040 PMCID: PMC10923891 DOI: 10.1038/s41467-024-46402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
Simulating quantum many-body systems is a key application for emerging quantum processors. While analog quantum simulation has already demonstrated quantum advantage, its digital counterpart has recently become the focus of intense research interest due to the availability of devices that aim to realize general-purpose quantum computers. In this perspective, we give a selective overview of the currently pursued approaches, review the advances in digital quantum simulation by comparing non-variational with variational approaches and identify hardware and algorithmic challenges. Based on this review, the question arises: What are the most promising problems that can be tackled with digital quantum simulation? We argue that problems of a qualitative nature are much more suitable for near-term devices then approaches aiming purely for a quantitative accuracy improvement.
Collapse
Affiliation(s)
- Benedikt Fauseweh
- Institute for Software Technology, German Aerospace Center (DLR), Linder Höhe, 51147, Cologne, Germany.
- Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44227, Dortmund, Germany.
| |
Collapse
|
33
|
Marković D, Čubrović M. Chaos and anomalous transport in a semiclassical Bose-Hubbard chain. Phys Rev E 2024; 109:034213. [PMID: 38632756 DOI: 10.1103/physreve.109.034213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
We study chaotic dynamics and anomalous transport in a Bose-Hubbard chain in the semiclassical regime (the limit when the number of particles goes to infinity). We find that the system has mixed phase space with both regular and chaotic dynamics, even for long chains with up to 100 wells. The consequence of the mixed phase space is strongly anomalous diffusion in the space of occupation numbers, with a discrete set of transport exponents. After very long times the system crosses over to the hydrodynamic regime with normal diffusion. Anomalous transport is quite universal and almost completely independent of the parameters of the model (Coulomb interaction and chemical potential): It is mainly determined by the initial distribution of particles along the chain. We corroborate our findings by analytical arguments: scaling analysis for the anomalous regime and the Langevin equation for the normal diffusion regime.
Collapse
Affiliation(s)
- Dragan Marković
- Department of Physics, University of Belgrade, 11000 Belgrade, Republic of Serbia
- Center for the Study of Complex Systems, Institute of Physics Belgrade, 11080 Belgrade, Republic of Serbia
| | - Mihailo Čubrović
- Center for the Study of Complex Systems, Institute of Physics Belgrade, 11080 Belgrade, Republic of Serbia
| |
Collapse
|
34
|
Pasqualetti G, Bettermann O, Darkwah Oppong N, Ibarra-García-Padilla E, Dasgupta S, Scalettar RT, Hazzard KRA, Bloch I, Fölling S. Equation of State and Thermometry of the 2D SU(N) Fermi-Hubbard Model. PHYSICAL REVIEW LETTERS 2024; 132:083401. [PMID: 38457712 DOI: 10.1103/physrevlett.132.083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
We characterize the equation of state (EoS) of the SU(N>2) Fermi-Hubbard Model (FHM) in a two-dimensional single-layer square optical lattice. We probe the density and the site occupation probabilities as functions of interaction strength and temperature for N=3, 4, and 6. Our measurements are used as a benchmark for state-of-the-art numerical methods including determinantal quantum Monte Carlo and numerical linked cluster expansion. By probing the density fluctuations, we compare temperatures determined in a model-independent way by fitting measurements to numerically calculated EoS results, making this a particularly interesting new step in the exploration and characterization of the SU(N) FHM.
Collapse
Affiliation(s)
- G Pasqualetti
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - O Bettermann
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - N Darkwah Oppong
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - E Ibarra-García-Padilla
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics, University of California, Davis, California 95616, USA
- Department of Physics and Astronomy, San José State University, San José, California 95192, USA
| | - S Dasgupta
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005-1892, USA
| | - R T Scalettar
- Department of Physics, University of California, Davis, California 95616, USA
| | - K R A Hazzard
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics, University of California, Davis, California 95616, USA
| | - I Bloch
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - S Fölling
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| |
Collapse
|
35
|
Yan Z, Patel PB, Mukherjee B, Vale CJ, Fletcher RJ, Zwierlein MW. Thermography of the superfluid transition in a strongly interacting Fermi gas. Science 2024; 383:629-633. [PMID: 38330124 DOI: 10.1126/science.adg3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Heat transport can serve as a fingerprint identifying different states of matter. In a normal liquid, a hotspot diffuses, whereas in a superfluid, heat propagates as a wave called "second sound." Direct imaging of heat transport is challenging, and one usually resorts to detecting secondary effects. In this study, we establish thermography of a strongly interacting atomic Fermi gas, whose radio-frequency spectrum provides spatially resolved thermometry with subnanokelvin resolution. The superfluid phase transition was directly observed as the sudden change from thermal diffusion to second-sound propagation and is accompanied by a peak in the second-sound diffusivity. This method yields the full heat and density response of the strongly interacting Fermi gas and therefore all defining properties of Landau's two-fluid hydrodynamics.
Collapse
Affiliation(s)
- Zhenjie Yan
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parth B Patel
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Biswaroop Mukherjee
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chris J Vale
- Optical Science Centre and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne 3122, Australia
| | - Richard J Fletcher
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin W Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Kwon S, Jung H, Lee S, Cho GY, Kong K, Won C, Cheong SW, Yeom HW. Dual Higgs modes entangled into a soliton lattice in CuTe. Nat Commun 2024; 15:984. [PMID: 38302482 PMCID: PMC10834594 DOI: 10.1038/s41467-024-45354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Recently discovered Higgs particle is a key element in the standard model of elementary particles and its analogue in materials, massive Higgs mode, has elucidated intriguing collective phenomena in a wide range of materials with spontaneous symmetry breaking such as antiferromagnets, cold atoms, superconductors, superfluids, and charge density waves (CDW). As a straightforward extension beyond the standard model, multiple Higgs particles have been considered theoretically but not yet for Higgs modes. Here, we report the real-space observations, which suggest two Higgs modes coupled together with a soliton lattice in a solid. Our scanning tunneling microscopy reveals the 1D CDW state of an anisotropic transition metal monochalcogenide crystal CuTe is composed of two distinct but degenerate CDW structures by the layer inversion symmetry broken. More importantly, the amplitudes of each CDW structure oscillate in an out-of-phase fashion to result in a regular array of alternating domains with repeating phase-shift domain walls. This unusual finding is explained by the extra degeneracy in CDWs within the standard Landau theory of the free energy. The multiple and entangled Higgs modes demonstrate how novel collective modes can emerge in systems with distinct symmetries broken simultaneously.
Collapse
Affiliation(s)
- SeongJin Kwon
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hyunjin Jung
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - SangJin Lee
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Gil Young Cho
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - KiJeong Kong
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Korea
| | - ChoongJae Won
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Korea
- Laboatory for Pohang Emergent Materials, POSTECH, Pohang, 37673, Korea
- MPPC-CPM, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, Korea
| | - Sang-Wook Cheong
- Laboatory for Pohang Emergent Materials, POSTECH, Pohang, 37673, Korea
- MPPC-CPM, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, Korea
- Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Piscataway, NJ, 08854, USA
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Korea.
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
37
|
Kitamura T, Daido A, Yanase Y. Spin-Triplet Superconductivity from Quantum-Geometry-Induced Ferromagnetic Fluctuation. PHYSICAL REVIEW LETTERS 2024; 132:036001. [PMID: 38307086 DOI: 10.1103/physrevlett.132.036001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
We show that quantum geometry induces ferromagnetic fluctuation resulting in spin-triplet superconductivity. The criterion for ferromagnetic fluctuation is clarified by analyzing contributions from the effective mass and quantum geometry. When the non-Kramers band degeneracy is present near the Fermi surface, the Fubini-Study quantum metric strongly favors ferromagnetic fluctuation. Solving the linearized gap equation with the effective interaction obtained by the random phase approximation, we show that the spin-triplet superconductivity is mediated by quantum-geometry-induced ferromagnetic fluctuation.
Collapse
Affiliation(s)
- Taisei Kitamura
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akito Daido
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Youichi Yanase
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
38
|
Di Carli A, Parsonage C, La Rooij A, Koehn L, Ulm C, Duncan CW, Daley AJ, Haller E, Kuhr S. Commensurate and incommensurate 1D interacting quantum systems. Nat Commun 2024; 15:474. [PMID: 38212298 PMCID: PMC10784295 DOI: 10.1038/s41467-023-44610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes. Key to their great versatility as quantum simulators is the ability to use engineered light potentials at the microscopic level. Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms. Such incommensurate systems are analogous to doped insulating states that exhibit atom transport and compressibility. Initially, a commensurate system with unit filling and fixed atom number is prepared between two potential barriers. We deterministically create an incommensurate system by dynamically changing the position of the barriers such that the number of available lattice sites is reduced while retaining the atom number. Our systems are characterised by measuring the distribution of particles and holes as a function of the lattice filling, and interaction strength, and we probe the particle mobility by applying a bias potential. Our work provides the foundation for preparation of low-entropy states with controlled filling in optical-lattice experiments.
Collapse
Affiliation(s)
- Andrea Di Carli
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Christopher Parsonage
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Arthur La Rooij
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Lennart Koehn
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Clemens Ulm
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Callum W Duncan
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Andrew J Daley
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Elmar Haller
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Stefan Kuhr
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom.
| |
Collapse
|
39
|
Fraxanet J, Dauphin A, Lewenstein M, Barbiero L, González-Cuadra D. Higher-Order Topological Peierls Insulator in a Two-Dimensional Atom-Cavity System. PHYSICAL REVIEW LETTERS 2023; 131:263001. [PMID: 38215379 DOI: 10.1103/physrevlett.131.263001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
In this work, we investigate a two-dimensional system of ultracold bosonic atoms inside an optical cavity, and show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state. The latter corresponds to a 2D Peierls transition, generalizing the spontaneous bond dimerization driven by phonon-electron interactions in the 1D Su-Schrieffer-Heeger (SSH) model. Here the bosonic nature of the atoms plays a crucial role to generate the phase, as similar generalizations with fermionic matter do not lead to a plaquette structure. Similar to the SSH model, we show how this pattern opens a nontrivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states, that we characterize by means of a many-body topological invariant and through its entanglement structure. Finally, we demonstrate how this higher-order topological Peierls insulator can be readily prepared in atomic experiments through adiabatic protocols. Our work thus shows how atomic quantum simulators can be harnessed to investigate novel strongly correlated topological phenomena beyond those observed in natural materials.
Collapse
Affiliation(s)
- Joana Fraxanet
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Alexandre Dauphin
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA, Passeig de Lluís Companys 23, ES-08010 Barcelona, Spain
| | - Luca Barbiero
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| | - Daniel González-Cuadra
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| |
Collapse
|
40
|
Wang XQ, Luo GQ, Liu JY, Huang GH, Li ZX, Wu C, Hemmerich A, Xu ZF. Evidence for Quantum Stripe Ordering in a Triangular Optical Lattice. PHYSICAL REVIEW LETTERS 2023; 131:226001. [PMID: 38101378 DOI: 10.1103/physrevlett.131.226001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Understanding strongly correlated quantum materials, such as high-T_{c} superconductors, iron-based superconductors, and twisted bilayer graphene systems, remains as one of the outstanding challenges in condensed matter physics. Quantum simulation with ultracold atoms in particular optical lattices, which provide orbital degrees of freedom, is a powerful tool to contribute new insights to this endeavor. Here, we report the experimental realization of an unconventional Bose-Einstein condensate of ^{87}Rb atoms populating degenerate p orbitals in a triangular optical lattice, exhibiting remarkably long coherence times. Using time-of-flight spectroscopy, we observe that this state spontaneously breaks the rotational symmetry and its momentum spectrum agrees with the theoretically predicted coexistence of exotic stripe and loop-current orders. Like certain strongly correlated electronic systems with intertwined orders, such as high-T_{c} cuprate superconductors, twisted bilayer graphene, and the recently discovered chiral density-wave state in kagome superconductors AV_{3}Sb_{5} (A=K, Rb, Cs), the newly demonstrated quantum state, in spite of its markedly different energy scale and the bosonic quantum statistics, exhibits multiple symmetry breakings at ultralow temperatures. These findings hold the potential to enhance our comprehension of the fundamental physics governing these intricate quantum materials.
Collapse
Affiliation(s)
- Xiao-Qiong Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guang-Quan Luo
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin-Yu Liu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guan-Hua Huang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zi-Xiang Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Congjun Wu
- New Cornerstone Science Laboratory, Department of Physics, School of Science, Westlake University, 310024 Hangzhou, China
- Institute for Theoretical Sciences, Westlake University, 310024 Hangzhou, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Andreas Hemmerich
- Institute of Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zhi-Fang Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
41
|
Zeybek Z, Mukherjee R, Schmelcher P. Quantum Phases from Competing Van der Waals and Dipole-Dipole Interactions of Rydberg Atoms. PHYSICAL REVIEW LETTERS 2023; 131:203003. [PMID: 38039461 DOI: 10.1103/physrevlett.131.203003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/02/2023] [Indexed: 12/03/2023]
Abstract
Competing short- and long-range interactions represent distinguished ingredients for the formation of complex quantum many-body phases. Their study is hard to realize with conventional quantum simulators. In this regard, Rydberg atoms provide an exception as their excited manifold of states have both density-density and exchange interactions whose strength and range can vary considerably. Focusing on one-dimensional systems, we leverage the Van der Waals and dipole-dipole interactions of the Rydberg atoms to obtain the zero-temperature phase diagram for a uniform chain and a dimer model. For the uniform chain, we can influence the boundaries between ordered phases and a Luttinger liquid phase. For the dimerized case, a new type of bond-order-density-wave phase is identified. This demonstrates the versatility of the Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.
Collapse
Affiliation(s)
- Zeki Zeybek
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Rick Mukherjee
- Zentrum für Optische Quantentechnologien, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Peter Schmelcher
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
42
|
Lizama NZ, Carrasco SC, Rogan J, Valdivia JA. Three-dimensional non-approximate Coulomb interaction between two trapped quantum particles. Sci Rep 2023; 13:18210. [PMID: 37875521 PMCID: PMC10598207 DOI: 10.1038/s41598-023-45234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
The two trapped quantum particles interacting problem is generalized to three dimensions, and the exact Coulomb potential is used. The system is solved by expanding the wavefunction in terms of the isotropic harmonic oscillator eigenfunctions and Hydrogen atom eigenfunctions independently, showing that each one results in a prime approximation for different domains of the normalized coupling constant of the relative interactions, suggesting that the combination of the basis is enough to build a well-suited base for the non-approximate problem. The results are compared to previous works that use a model of approximate finite-rage soft-core interaction model of the problem to give insights into the many-body states of strongly correlated ultracold bosons and fermions. We conclude that the proposed three-dimensional approach facilitates the distinction between bosons and fermions while the solutions given by the expansions better define the behavior of the particles for repulsive potentials. In addition, we discuss the substantial differences between our work and the previous approximate model.
Collapse
Affiliation(s)
- Nicolás Z Lizama
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, 7800024, Santiago, Chile.
| | - Sebastián C Carrasco
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, 7800024, Santiago, Chile
- Now at the DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - José Rogan
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, 7800024, Santiago, Chile
- Centro para la Nanociencia y la Nanotecnolgía, CEDENNA, Santiago, 9170124, Chile
| | - Juan Alejandro Valdivia
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, 7800024, Santiago, Chile
- Centro para la Nanociencia y la Nanotecnolgía, CEDENNA, Santiago, 9170124, Chile
| |
Collapse
|
43
|
Roscilde T, Comparin T, Mezzacapo F. Entangling Dynamics from Effective Rotor-Spin-Wave Separation in U(1)-Symmetric Quantum Spin Models. PHYSICAL REVIEW LETTERS 2023; 131:160403. [PMID: 37925736 DOI: 10.1103/physrevlett.131.160403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 11/07/2023]
Abstract
The nonequilibrium dynamics of quantum spin models is a most challenging topic, due to the exponentiality of Hilbert space, and it is central to the understanding of the many-body entangled states that can be generated by state-of-the-art quantum simulators. A particularly important class of evolutions is the one governed by U(1)-symmetric Hamiltonians, initialized in a state that breaks the U(1) symmetry-the paradigmatic example being the evolution of the so-called one-axis-twisting (OAT) model, featuring infinite-range interactions between spins. In this Letter, we show that the dynamics of the OAT model can be closely reproduced by systems with power-law-decaying interactions, thanks to an effective separation between the zero-momentum degrees of freedom, associated with the so-called Anderson tower of states, and reconstructing an OAT model, as well as finite-momentum ones, associated with spin-wave excitations. This mechanism explains quantitatively the recent numerical observation of spin squeezing and Schrödinger cat-state generation in the dynamics of dipolar Hamiltonians, and it paves the way for the extension of this observation to a much larger class of models of immediate relevance for quantum simulations.
Collapse
Affiliation(s)
- Tommaso Roscilde
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Tommaso Comparin
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Fabio Mezzacapo
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
44
|
McGinley M, Fava M. Shadow Tomography from Emergent State Designs in Analog Quantum Simulators. PHYSICAL REVIEW LETTERS 2023; 131:160601. [PMID: 37925705 DOI: 10.1103/physrevlett.131.160601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
We introduce a method that allows one to infer many properties of a quantum state-including nonlinear functions such as Rényi entropies-using only global control over the constituent degrees of freedom. In this protocol, the state of interest is first entangled with a set of ancillas under a fixed global unitary, before projective measurements are made. We show that when the unitary is sufficiently entangling, a universal relationship between the statistics of the measurement outcomes and properties of the state emerges, which can be connected to the recently discovered phenomeonon of emergent quantum state designs in chaotic systems. Thanks to this relationship, arbitrary observables can be reconstructed using the same number of experimental repetitions that would be required in classical shadow tomography [Huang et al., Nat. Phys. 16, 1050 (2020)NPAHAX1745-247310.1038/s41567-020-0932-7]. Unlike previous approaches to shadow tomography, our protocol can be implemented using only global Hamiltonian evolution, as opposed to qubit-selective logic gates, which makes it particularly well suited to analog quantum simulators, including ultracold atoms in optical lattices and arrays of Rydberg atoms.
Collapse
Affiliation(s)
- Max McGinley
- Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
- T.C.M. Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Michele Fava
- Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
- Philippe Meyer Institute, Physics Department, École Normale Supérieure (ENS), Université PSL, 24 rue Lhomond, F-75231 Paris, France
| |
Collapse
|
45
|
Su L, Douglas A, Szurek M, Groth R, Ozturk SF, Krahn A, Hébert AH, Phelps GA, Ebadi S, Dickerson S, Ferlaino F, Marković O, Greiner M. Dipolar quantum solids emerging in a Hubbard quantum simulator. Nature 2023; 622:724-729. [PMID: 37880438 DOI: 10.1038/s41586-023-06614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023]
Abstract
In quantum mechanical many-body systems, long-range and anisotropic interactions promote rich spatial structure and can lead to quantum frustration, giving rise to a wealth of complex, strongly correlated quantum phases1. Long-range interactions play an important role in nature; however, quantum simulations of lattice systems have largely not been able to realize such interactions. A wide range of efforts are underway to explore long-range interacting lattice systems using polar molecules2-5, Rydberg atoms2,6-8, optical cavities9-11 or magnetic atoms12-15. Here we realize novel quantum phases in a strongly correlated lattice system with long-range dipolar interactions using ultracold magnetic erbium atoms. As we tune the dipolar interaction to be the dominant energy scale in our system, we observe quantum phase transitions from a superfluid into dipolar quantum solids, which we directly detect using quantum gas microscopy with accordion lattices. Controlling the interaction anisotropy by orienting the dipoles enables us to realize a variety of stripe-ordered states. Furthermore, by transitioning non-adiabatically through the strongly correlated regime, we observe the emergence of a range of metastable stripe-ordered states. This work demonstrates that novel strongly correlated quantum phases can be realized using long-range dipolar interactions in optical lattices, opening the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
Collapse
Affiliation(s)
- Lin Su
- Department of Physics, Harvard University, Cambridge, MA, USA.
| | | | - Michal Szurek
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Robin Groth
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - S Furkan Ozturk
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aaron Krahn
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Anne H Hébert
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Sepehr Ebadi
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Francesca Ferlaino
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
| | - Ognjen Marković
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
46
|
Casagrande HP, Xing B, Dalmonte M, Rodriguez A, Balachandran V, Poletti D. Complexity of spin configuration dynamics due to unitary evolution and periodic projective measurements. Phys Rev E 2023; 108:044128. [PMID: 37978657 DOI: 10.1103/physreve.108.044128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023]
Abstract
We study the Hamiltonian dynamics of a many-body quantum system subjected to periodic projective measurements, which leads to probabilistic cellular automata dynamics. Given a sequence of measured values, we characterize their dynamics by performing a principal component analysis (PCA). The number of principal components required for an almost complete description of the system, which is a measure of complexity we refer to as PCA complexity, is studied as a function of the Hamiltonian parameters and measurement intervals. We consider different Hamiltonians that describe interacting, noninteracting, integrable, and nonintegrable systems, including random local Hamiltonians and translational invariant random local Hamiltonians. In all these scenarios, we find that the PCA complexity grows rapidly in time before approaching a plateau. The dynamics of the PCA complexity can vary quantitatively and qualitatively as a function of the Hamiltonian parameters and measurement protocol. Importantly, the dynamics of PCA complexity present behavior that is considerably less sensitive to the specific system parameters for models which lack simple local dynamics, as is often the case in nonintegrable models. In particular, we point out a figure of merit that considers the local dynamics and the measurement direction to predict the sensitivity of the PCA complexity dynamics to the system parameters.
Collapse
Affiliation(s)
- Heitor P Casagrande
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Bo Xing
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Marcello Dalmonte
- Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Alex Rodriguez
- Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Vinitha Balachandran
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
- Institute of High-Performance Computing, Agency for Science, Technology, and Research (A*STAR), 138632, Singapore
| | - Dario Poletti
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
- Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- EPD Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| |
Collapse
|
47
|
Mark DK, Choi J, Shaw AL, Endres M, Choi S. Benchmarking Quantum Simulators Using Ergodic Quantum Dynamics. PHYSICAL REVIEW LETTERS 2023; 131:110601. [PMID: 37774308 DOI: 10.1103/physrevlett.131.110601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2023] [Indexed: 10/01/2023]
Abstract
We propose and analyze a sample-efficient protocol to estimate the fidelity between an experimentally prepared state and an ideal target state, applicable to a wide class of analog quantum simulators without advanced spatiotemporal control. Our protocol relies on universal fluctuations emerging from generic Hamiltonian dynamics, which we discover in the present work. It does not require fine-tuned control over state preparation, quantum evolution, or readout capability, while achieving near optimal sample complexity: a percent-level precision is obtained with ∼10^{3} measurements, independent of system size. Furthermore, the accuracy of our fidelity estimation improves exponentially with increasing system size. We numerically demonstrate our protocol in a variety of quantum simulator platforms, including quantum gas microscopes, trapped ions, and Rydberg atom arrays. We discuss applications of our method for tasks such as multiparameter estimation of quantum states and processes.
Collapse
Affiliation(s)
- Daniel K Mark
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Joonhee Choi
- California Institute of Technology, Pasadena, California 91125, USA
| | - Adam L Shaw
- California Institute of Technology, Pasadena, California 91125, USA
| | - Manuel Endres
- California Institute of Technology, Pasadena, California 91125, USA
| | - Soonwon Choi
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
48
|
Rao J, Wang CY, Yao B, Chen ZJ, Zhao KX, Lu W. Meterscale Strong Coupling between Magnons and Photons. PHYSICAL REVIEW LETTERS 2023; 131:106702. [PMID: 37739385 DOI: 10.1103/physrevlett.131.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
We experimentally realize a meterscale strong coupling effect between magnons and photons at room temperature, with a coherent coupling of ∼20 m and a dissipative coupling of ∼7.6 m. To this end, we integrate a saturable gain into a microwave cavity and then couple this active cavity to a magnon mode via a long coaxial cable. The gain compensates for the cavity dissipation, but preserves the cavity radiation that mediates the indirect photon-magnon coupling. It thus enables the long-range strong photon-magnon coupling. With full access to traveling waves, we demonstrate a remote control of photon-magnon coupling by modulating the phase and amplitude of traveling waves, rather than reconfiguring subsystems themselves. Our method for realizing long-range strong coupling in cavity magnonics provides a general idea for other physical systems. Our experimental achievements may promote the construction of information networks based on cavity magnonics.
Collapse
Affiliation(s)
- Jinwei Rao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - C Y Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bimu Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Z J Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - K X Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| |
Collapse
|
49
|
Huang HJ, Fang YH, Chen CL, Liang HC, Chen YF. Compact continuous-wave solid-state Raman lasers at 707 and 714 nm for laser trapping and cooling of atomic strontium and radium. OPTICS LETTERS 2023; 48:4645-4648. [PMID: 37656576 DOI: 10.1364/ol.498851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Two compact laser sources at 707 and 714 nm are realized efficiently by using a diode-pumped a-cut Nd:YVO4 laser with intracavity stimulated Raman scattering and sum-frequency generation (SFG). The fundamental wave at 1342 nm is generated by the 4F3/2 → 4I13/2 transition in Nd:YVO4 crystal. The Raman Stokes waves at 1496 and 1526 nm were obtained by placing the c-axis of the Nd:YVO4 crystal along the Ng and Nm axes of an Np-cut KGW crystal, respectively. LBO crystals with critical phase matching are used to perform the intracavity SFG of fundamental and Stokes waves. At a pump power of 36 W, the maximum output powers at 707 and 714 nm can reach 2.72 and 3.14 W, corresponding to light-to-light conversion efficiencies of 7.5% and 8.7%, respectively. The developed 707 and 714 nm laser sources are practically useful in laser trapping and cooling related to atomic strontium and radium.
Collapse
|
50
|
Eckner WJ, Darkwah Oppong N, Cao A, Young AW, Milner WR, Robinson JM, Ye J, Kaufman AM. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 2023; 621:734-739. [PMID: 37648865 DOI: 10.1038/s41586-023-06360-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 09/01/2023]
Abstract
Neutral-atom arrays trapped in optical potentials are a powerful platform for studying quantum physics, combining precise single-particle control and detection with a range of tunable entangling interactions1-3. For example, these capabilities have been leveraged for state-of-the-art frequency metrology4,5 as well as microscopic studies of entangled many-particle states6-11. Here we combine these applications to realize spin squeezing-a widely studied operation for producing metrologically useful entanglement-in an optical atomic clock based on a programmable array of interacting optical qubits. In this demonstration of Rydberg-mediated squeezing with a neutral-atom optical clock, we generate states that have almost four decibels of metrological gain. In addition, we perform a synchronous frequency comparison between independent squeezed states and observe a fractional-frequency stability of 1.087(1) × 10-15 at one-second averaging time, which is 1.94(1) decibels below the standard quantum limit and reaches a fractional precision at the 10-17 level during a half-hour measurement. We further leverage the programmable control afforded by optical tweezer arrays to apply local phase shifts to explore spin squeezing in measurements that operate beyond the relative coherence time with the optical local oscillator. The realization of this spin-squeezing protocol in a programmable atom-array clock will enable a wide range of quantum-information-inspired techniques for optimal phase estimation and Heisenberg-limited optical atomic clocks12-16.
Collapse
Affiliation(s)
- William J Eckner
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Nelson Darkwah Oppong
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Alec Cao
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Aaron W Young
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - William R Milner
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - John M Robinson
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Jun Ye
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Adam M Kaufman
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|