1
|
Tuytschaever T, Faille C, Raes K, Sampers I. Influence of slope, material, and temperature on Listeria monocytogenes and Pseudomonas aeruginosa mono- and dual-species biofilms. BIOFOULING 2024; 40:467-482. [PMID: 39054784 DOI: 10.1080/08927014.2024.2380410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Understanding factors influencing Listeria monocytogenes biofilms aid in developing more effective elimination/prevention strategies. This study examined the effect of temperature (4 °C, 21 °C, 30 °C), materials (stainless steel 316 L with 2B and 2 R finishes, glass, and polypropylene), and slope (0°/horizontal or 90°/vertical) on mono- and dual-species biofilms using two L. monocytogenes strains and one Pseudomonas aeruginosa strain. All biofilms were grown in 10% TSB for 24 h and analyzed using culture-based methods. Additionally, the architecture of monospecies biofilms was studied using fluorescence microscopy. Overall, P. aeruginosa showed higher biofilm formation potential (6.2 log CFU/cm2) than L. monocytogenes (4.0 log CFU/cm2). Temperature greatly influenced P. aeruginosa and varied for L. monocytogenes. The slope predominantly influenced L. monocytogenes monospecies biofilms, with cell counts increasing by up to 2 log CFU/cm2. Surface material had little impact on biofilm formation. The study highlights the varying effects of different parameters on multispecies biofilms and the importance of surface geometry.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Kortrijk, Belgium
| | - Christine Faille
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Kortrijk, Belgium
| |
Collapse
|
2
|
Bejder BS, Monda F, Gless BH, Bojer MS, Ingmer H, Olsen CA. A short-lived peptide signal regulates cell-to-cell communication in Listeria monocytogenes. Commun Biol 2024; 7:942. [PMID: 39097633 PMCID: PMC11297923 DOI: 10.1038/s42003-024-06623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Quorum sensing (QS) is a mechanism that regulates group behavior in bacteria, and in Gram-positive bacteria, the communication molecules are often cyclic peptides, called autoinducing peptides (AIPs). We recently showed that pentameric thiolactone-containing AIPs from Listeria monocytogenes, and from other species, spontaneously undergo rapid rearrangement to homodetic cyclopeptides, which hampers our ability to study the activity of these short-lived compounds. Here, we developed chemically modified analogues that closely mimic the native AIPs while remaining structurally intact, by introducing N-methylation or thioester-to-thioether substitutions. The stabilized AIP analogues exhibit strong QS agonism in L. monocytogenes and allow structure-activity relationships to be studied. Our data provide evidence to suggest that the most potent AIP is in fact the very short-lived thiolactone-containing pentamer. Further, we find that the QS system in L. monocytogenes is more promiscuous with respect to the structural diversity allowed for agonistic AIPs than reported for the more extensively studied QS systems in Staphylococcus aureus and Staphylococcus epidermidis. The developed compounds will be important for uncovering the biology of L. monocytogenes, and the design principles should be broadly applicable to the study of AIPs in other species.
Collapse
Affiliation(s)
- Benjamin S Bejder
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabrizio Monda
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Nuevolution A/S, Amgen Research Copenhagen, Copenhagen, Denmark
| | - Bengt H Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Martin S Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Melian C, Ploper D, Chehín R, Vignolo G, Castellano P. Impairment of Listeria monocytogenes biofilm developed on industrial surfaces by Latilactobacillus curvatus CRL1579 bacteriocin. Food Microbiol 2024; 121:104491. [PMID: 38637093 DOI: 10.1016/j.fm.2024.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 04/20/2024]
Abstract
The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by ∼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Diego Ploper
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Rosana Chehín
- IMMCA (Instituto de Investigación en Medicina Molecular y Celular Aplicada, CONICET-Universidad Nacional de Tucumán-Ministerio de Salud Pública, Gobierno de Tucumán, Pje. Dorrego 1080, San Miguel de Tucumán, 4000, Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina.
| |
Collapse
|
4
|
Yammine J, Doulgeraki AI, O'Byrne CP, Gharsallaoui A, Chihib NE, Karam L. The impact of different acidic conditions and food substrates on Listeria monocytogenes biofilms development and removal using nanoencapsulated carvacrol. Int J Food Microbiol 2024; 416:110676. [PMID: 38507974 DOI: 10.1016/j.ijfoodmicro.2024.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.
Collapse
Affiliation(s)
- Jina Yammine
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Agapi I Doulgeraki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science & Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Nour-Eddine Chihib
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
West KHJ, Ma SV, Pensinger DA, Tucholski T, Tiambeng TN, Eisenbraun EL, Yehuda A, Hayouka Z, Ge Y, Sauer JD, Blackwell HE. Characterization of an Autoinducing Peptide Signal Reveals Highly Efficacious Synthetic Inhibitors and Activators of Quorum Sensing and Biofilm Formation in Listeria monocytogenes. Biochemistry 2023; 62:2878-2892. [PMID: 37699554 PMCID: PMC10676741 DOI: 10.1021/acs.biochem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bacteria can use chemical signals to assess their local population density in a process called quorum sensing (QS). Many of these bacteria are common pathogens, including Gram-positive bacteria that utilize agr QS systems regulated by macrocyclic autoinducing peptide (AIP) signals. Listeria monocytogenes, an important foodborne pathogen, uses an agr system to regulate a variety of virulence factors and biofilm formation, yet little is known about the specific roles of agr in Listeria infection and its persistence in various environments. Herein, we report synthetic peptide tools that will enable the study of QS in Listeria. We identified a 6-mer AIP signal in L. monocytogenes supernatants and selected it as a scaffold around which a collection of non-native AIP mimics was designed and synthesized. These peptides were evaluated in cell-based agr reporter assays to generate structure-activity relationships for AIP-based agonism and antagonism in L. monocytogenes. We discovered synthetic agonists with increased potency relative to native AIP and a synthetic antagonist capable of reducing agr activity to basal levels. Notably, the latter peptide was able to reduce biofilm formation by over 90%, a first for a synthetic QS modulator in wild-type L. monocytogenes. The lead agr agonist and antagonist in L. monocytogenes were also capable of antagonizing agr signaling in the related pathogen Staphylococcus aureus, further extending their utility and suggesting different mechanisms of agr activation in these two pathogens. This study represents an important first step in the application of chemical methods to modulate QS and concomitant virulence outcomes in L. monocytogenes.
Collapse
Affiliation(s)
- Korbin H J West
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Stella V Ma
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Daniel A Pensinger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Emma L Eisenbraun
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Finn L, Onyeaka H, O’Neill S. Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma. Foods 2023; 12:3339. [PMID: 37761048 PMCID: PMC10529182 DOI: 10.3390/foods12183339] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a bacterial pathogen responsible for listeriosis, a foodborne illness associated with high rates of mortality (20-30%) and hospitalisation. It is particularly dangerous among vulnerable groups, such as newborns, pregnant women and the elderly. The persistence of this organism in food-associated environments for months to years has been linked to several devastating listeriosis outbreaks. It may also result in significant costs to food businesses and economies. Currently, the mechanisms that facilitate LM persistence are poorly understood. Unravelling the enigma of what drives listerial persistence will be critical for developing more targeted control and prevention strategies. One prevailing hypothesis is that persistent strains exhibit stronger biofilm production on abiotic surfaces in food-associated environments. This review aims to (i) provide a comprehensive overview of the research on the relationship between listerial persistence and biofilm formation from phenotypic and whole-genome sequencing (WGS) studies; (ii) to highlight the ongoing challenges in determining the role biofilm development plays in persistence, if any; and (iii) to propose future research directions for overcoming these challenges.
Collapse
Affiliation(s)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
7
|
Quendera AP, Pinto SN, Pobre V, Antunes W, Bonifácio VDB, Arraiano CM, Andrade JM. The ribonuclease PNPase is a key regulator of biofilm formation in Listeria monocytogenes and affects invasion of host cells. NPJ Biofilms Microbiomes 2023; 9:34. [PMID: 37286543 PMCID: PMC10247797 DOI: 10.1038/s41522-023-00397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Biofilms provide an environment that protects microorganisms from external stresses such as nutrient deprivation, antibiotic treatments, and immune defences, thereby creating favorable conditions for bacterial survival and pathogenesis. Here we show that the RNA-binding protein and ribonuclease polynucleotide phosphorylase (PNPase) is a positive regulator of biofilm formation in the human pathogen Listeria monocytogenes, a major responsible for food contamination in food-processing environments. The PNPase mutant strain produces less biofilm biomass and exhibits an altered biofilm morphology that is more susceptible to antibiotic treatment. Through biochemical assays and microscopical analysis, we demonstrate that PNPase is a previously unrecognized regulator of the composition of the biofilm extracellular matrix, greatly affecting the levels of proteins, extracellular DNA, and sugars. Noteworthy, we have adapted the use of the fluorescent complex ruthenium red-phenanthroline for the detection of polysaccharides in Listeria biofilms. Transcriptomic analysis of wild-type and PNPase mutant biofilms reveals that PNPase impacts many regulatory pathways associated with biofilm formation, particularly by affecting the expression of genes involved in the metabolism of carbohydrates (e.g., lmo0096 and lmo0783, encoding PTS components), of amino acids (e.g., lmo1984 and lmo2006, encoding biosynthetic enzymes) and in the Agr quorum sensing-like system (lmo0048-49). Moreover, we show that PNPase affects mRNA levels of the master regulator of virulence PrfA and PrfA-regulated genes, and these results could help to explain the reduced bacterial internalization in human cells of the ΔpnpA mutant. Overall, this work demonstrates that PNPase is an important post-transcriptional regulator for virulence and adaptation to the biofilm lifestyle of Gram-positive bacteria and highlights the expanding role of ribonucleases as critical players in pathogenicity.
Collapse
Affiliation(s)
- Ana Patrícia Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Sandra Nunes Pinto
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory-Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - Wilson Antunes
- Laboratório de Imagem, Nanomorfologia e Espectroscopia de Raios-X (Linx) da Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Instituto Universitário Militar, Centro de Investigação, Inovação e Desenvolvimento da Academia Militar, Av. Dr Alfredo Bensaúde, 1100-471, Lisboa, Portugal
| | - Vasco D B Bonifácio
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory-Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal
| | - José Marques Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Avenida da República, 2780-901, Oeiras, Portugal.
| |
Collapse
|
8
|
Felton S, Armstrong C, Chen CY, He Y, Lee J, Reed S, Akula N, Walker S, Berger BW, Capobianco J. Enhancing detection of Listeria monocytogenes in food products using an enzyme. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Klopper KB, Bester E, Wolfaardt GM. Listeria monocytogenes Biofilms Are Planktonic Cell Factories despite Peracetic Acid Exposure under Continuous Flow Conditions. Antibiotics (Basel) 2023; 12:antibiotics12020209. [PMID: 36830120 PMCID: PMC9952409 DOI: 10.3390/antibiotics12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Listeria monocytogenes biofilms are ubiquitous in the food-processing environment, where they frequently show resistance against treatment with disinfectants such as peracetic acid (PAA) due to sub-lethal damage resulting in biofilm persistence or the formation of secondary biofilms. L. monocytogenes serovar ½a EGD-e biofilms were cultivated under continuous flow conditions at 10 °C, 22 °C, and 37 °C and exposed to industrially relevant PAA concentrations. The effect of PAA on biofilm metabolic activity and biomass was monitored in real-time using the CEMS-BioSpec system, in addition to daily measurement of biofilm-derived planktonic cell production. Biofilm-derived planktonic cell yields proved to be consistent with high yields during biofilm establishment (≥106 CFU.mL-1). The exposure of biofilms to the minimum inhibitory PAA concentration (0.16%) resulted in only a brief disruption in whole-biofilm metabolic activity and biofilm biomass accumulation. The recovered biofilm accumulated more biomass and greater activity, but cell yields remained similar. Increasing concentrations of PAA (0.50%, 1.5%, and 4.0%) had a longer-lasting inhibitory effect. Only the maximum dose resulted in a lasting inhibition of biofilm activity and biomass-a factor that needs due consideration in view of dilution in industrial settings. Better disinfection monitoring tools and protocols are required to adequately address the problem of Listeria biofilms in the food-processing environment, and more emphasis should be placed on biofilms serving as a "factory" for cell proliferation rather than only a survival mechanism.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elanna Bester
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Gideon M. Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Correspondence:
| |
Collapse
|
10
|
Fulano AM, Elbakush AM, Chen LH, Gomelsky M. The Listeria monocytogenes exopolysaccharide significantly enhances colonization and survival on fresh produce. Front Microbiol 2023; 14:1126940. [PMID: 37180237 PMCID: PMC10172500 DOI: 10.3389/fmicb.2023.1126940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Fresh produce contaminated with Listeria monocytogenes has caused major listeriosis outbreaks in the last decades. Our knowledge about components of the listerial biofilms formed on fresh produce and their roles in causing foodborne illness remains incomplete. Here, we investigated, for the first time, the role of the listerial Pss exopolysaccharide (EPS) in plant surface colonization and stress tolerance. Pss is the main component of L. monocytogenes biofilms synthesized at elevated levels of the second messenger c-di-GMP. We developed a new biofilm model, whereby L. monocytogenes EGD-e and its derivatives are grown in the liquid minimal medium in the presence of pieces of wood or fresh produce. After 48-h incubation, the numbers of colony forming units of the Pss-synthesizing strain on pieces of wood, cantaloupe, celery and mixed salads were 2-12-fold higher, compared to the wild-type strain. Colonization of manmade materials, metals and plastics, was largely unaffected by the presence of Pss. The biofilms formed by the EPS-synthesizing strain on cantaloupe rind were 6-16-fold more tolerant of desiccation, which resembles conditions of whole cantaloupe storage and transportation. Further, listeria in the EPS-biofilms survived exposure to low pH, a condition encountered by bacteria on the contaminated produce during passage through the stomach, by 11-116-fold better than the wild-type strain. We surmise that L. monocytogenes strains synthesizing Pss EPS have an enormous, 102-104-fold, advantage over the non-synthesizing strains in colonizing fresh produce, surviving during storage and reaching small intestines of consumers where they may cause disease. The magnitude of the EPS effect calls for better understanding of factors inducing Pss synthesis and suggests that prevention of listerial EPS-biofilms may significantly enhance fresh produce safety.
Collapse
Affiliation(s)
- Alex M. Fulano
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Li-Hong Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Mark Gomelsky,
| |
Collapse
|
11
|
Melian C, Bentencourt E, Castellano P, Ploper D, Vignolo G, Mendoza LM. Biofilm genes expression of Listeria monocytogenes exposed to Latilactobacillus curvatus bacteriocins at 10 °C. Int J Food Microbiol 2022; 370:109648. [DOI: 10.1016/j.ijfoodmicro.2022.109648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
12
|
Janež N, Škrlj B, Sterniša M, Klančnik A, Sabotič J. The role of the Listeria monocytogenes surfactome in biofilm formation. Microb Biotechnol 2021; 14:1269-1281. [PMID: 34106516 PMCID: PMC8313260 DOI: 10.1111/1751-7915.13847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.
Collapse
Affiliation(s)
- Nika Janež
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| | - Blaž Škrlj
- Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Meta Sterniša
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Anja Klančnik
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Jerica Sabotič
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| |
Collapse
|
13
|
Abstract
Bacteriophages and bacterial biofilms are widely present in natural environments, a fact that has accelerated the evolution of phages and their bacterial hosts in these particular niches. Phage-host interactions in biofilm communities are rather complex, where phages are not always merely predators but also can establish symbiotic relationships that induce and strengthen biofilms. In this review we provide an overview of the main features affecting phage-biofilm interactions as well as the currently available methods of studying these interactions. In addition, we address the applications of phages for biofilm control in different contexts.
Collapse
Affiliation(s)
- Diana P Pires
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
14
|
Harada AM, Nascimento MS. Efficacy of dry sanitizing methods on Listeria monocytogenes biofilms. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Haddad S, Elliot M, Savard T, Deschênes L, Smith T, Ells T. Variations in biofilms harbouring Listeria monocytogenes in dual and triplex cultures with Pseudomonas fluorescens and Lactobacillus plantarum produced under a model system of simulated meat processing conditions, and their resistance to benzalkonium chloride. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
17
|
Kıran F, Akoğlu A, Çakır İ. Control of
Listeria monocytogenes
biofilm on industrial surfaces by cell
‐
free extracts of
Lactobacillus plantarum. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fadime Kıran
- Faculty of Science, Department of Biology Ankara University Ankara Turkey
| | - Aylin Akoğlu
- Faculty of Health Sciences, Department of Nutrition and Dietetics Bolu Abant Izzet Baysal University Bolu Turkey
| | - İbrahim Çakır
- Faculty of Engineering, Department of Food Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| |
Collapse
|
18
|
Confocal Laser Microscopy Analysis of Listeria monocytogenes Biofilms and Spatially Organized Communities. Methods Mol Biol 2020. [PMID: 32975771 DOI: 10.1007/978-1-0716-0982-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The behavior of Listeria monocytogenes communities in the food chain is closely associated with their spatial organization. Whether as biofilms on industrial surfaces or as microcolonies in food matrices, the resulting physiological diversification combined with the presence of extracellular polymeric substances (EPS) triggers emergent community functions involved in the pathogen survival and persistence (e.g., tolerance to dehydration, biocides, or preservatives). In this contribution, we present a noninvasive confocal laser microscopy (CLM) protocol allowing exploration of the spatial organization of L. monocytogenes communities on various inert or nutritive materials relevant for the food industry.
Collapse
|
19
|
Ripolles‐Avila C, Ríos‐Castillo AG, Fontecha‐Umaña F, Rodríguez‐Jerez JJ. Removal of
Salmonella enterica
serovar Typhimurium and
Cronobacter sakazakii
biofilms from food contact surfaces through enzymatic catalysis. J Food Saf 2020. [DOI: 10.1111/jfs.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carolina Ripolles‐Avila
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Abel G. Ríos‐Castillo
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Fabio Fontecha‐Umaña
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - José J. Rodríguez‐Jerez
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| |
Collapse
|
20
|
Lee BH, Cole S, Badel-Berchoux S, Guillier L, Felix B, Krezdorn N, Hébraud M, Bernardi T, Sultan I, Piveteau P. Biofilm Formation of Listeria monocytogenes Strains Under Food Processing Environments and Pan-Genome-Wide Association Study. Front Microbiol 2019; 10:2698. [PMID: 31824466 PMCID: PMC6882377 DOI: 10.3389/fmicb.2019.02698] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Concerns about food contamination by Listeria monocytogenes are on the rise with increasing consumption of ready-to-eat foods. Biofilm production of L. monocytogenes is presumed to be one of the ways that confer its increased resistance and persistence in the food chain. In this study, a collection of isolates from foods and food processing environments (FPEs) representing persistent, prevalent, and rarely detected genotypes was evaluated for biofilm forming capacities including adhesion and sessile biomass production under diverse environmental conditions. The quantity of sessile biomass varied according to growth conditions, lineage, serotype as well as genotype but association of clonal complex (CC) 26 genotype with biofilm production was evidenced under cold temperature. In general, relative biofilm productivity of each strain varied inconsistently across growth conditions. Under our experimental conditions, there were no clear associations between biofilm formation efficiency and persistent or prevalent genotypes. Distinct extrinsic factors affected specific steps of biofilm formation. Sudden nutrient deprivation enhanced cellular adhesion while a prolonged nutrient deficiency impeded biofilm maturation. Salt addition increased biofilm production, moreover, nutrient limitation supplemented by salt significantly stimulated biofilm formation. Pan-genome-wide association study (Pan-GWAS) assessed genetic composition with regard to biofilm phenotypes for the first time. The number of reported genes differed depending on the growth conditions and the number of common genes was low. However, a broad overview of the ontology contents revealed similar patterns regardless of the conditions. Functional analysis showed that functions related to transformation/competence and surface proteins including Internalins were highly enriched.
Collapse
Affiliation(s)
- Bo-Hyung Lee
- École Doctorale des Sciences de la Vie, Santé, Agronomie, Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
- BioFilm Control SAS, Biopôle Clermont Limagne, Saint-Beauzire, France
- GenXPro GmbH, Frankfurt am Main, Germany
| | - Sophie Cole
- BioFilm Control SAS, Biopôle Clermont Limagne, Saint-Beauzire, France
| | | | - Laurent Guillier
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Benjamin Felix
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | | | - Michel Hébraud
- UMR MEDiS, Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Thierry Bernardi
- BioFilm Control SAS, Biopôle Clermont Limagne, Saint-Beauzire, France
| | - Ibrahim Sultan
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pascal Piveteau
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
21
|
Gómez-Basurto F, Vital-Jácome M, Gómez-Acata ES, Thalasso F, Luna-Guido M, Dendooven L. Microbial community dynamics during aerobic granulation in a sequencing batch reactor (SBR). PeerJ 2019; 7:e7152. [PMID: 31528503 PMCID: PMC6717656 DOI: 10.7717/peerj.7152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
Microorganisms in aerobic granules formed in sequencing batch reactors (SBR) remove contaminants, such as xenobiotics or dyes, from wastewater. The granules, however, are not stable over time, decreasing the removal of the pollutant. A better understanding of the granule formation and the dynamics of the microorganisms involved will help to optimize the removal of contaminants from wastewater in a SBR. Sequencing the 16S rRNA gene and internal transcribed spacer PCR amplicons revealed that during the acclimation phase the relative abundance of Acinetobacter reached 70.8%. At the start of the granulation phase the relative abundance of Agrobacterium reached 35.9% and that of Dipodascus 89.7% during the mature granule phase. Fluffy granules were detected on day 43. The granules with filamentous overgrowth were not stable and they lysed on day 46 resulting in biomass wash-out. It was found that the reactor operation strategy resulted in stable aerobic granules for 46 days. As the reactor operations remained the same from the mature granule phase to the end of the experiment, the disintegration of the granules after day 46 was due to changes in the microbial community structure and not by the reactor operation.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| |
Collapse
|
22
|
Tiensuu T, Guerreiro DN, Oliveira AH, O’Byrne C, Johansson J. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer. Microbiology (Reading) 2019; 165:819-833. [DOI: 10.1099/mic.0.000808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Teresa Tiensuu
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ana H. Oliveira
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Jörgen Johansson
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, Becker A. Phenotypic Heterogeneity in Bacterial Quorum Sensing Systems. J Mol Biol 2019; 431:4530-4546. [PMID: 31051177 DOI: 10.1016/j.jmb.2019.04.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Quorum sensing is usually thought of as a collective behavior in which all members of a population partake. However, over the last decade, several reports of phenotypic heterogeneity in quorum sensing-related gene expression have been put forward, thus challenging this view. In the respective systems, cells of isogenic populations did not contribute equally to autoinducer production or target gene activation, and in some cases, the fraction of contributing cells was modulated by environmental factors. Here, we look into potential origins of these incidences and into how initial cell-to-cell variations might be amplified to establish distinct phenotypic heterogeneity. We furthermore discuss potential functions heterogeneity in bacterial quorum sensing systems could serve: as a preparation for environmental fluctuations (bet hedging), as a more cost-effective way of producing public goods (division of labor), as a loophole for genotypic cooperators when faced with non-contributing mutants (cheat protection), or simply as a means to fine-tune the output of the population as a whole (output modulation). We illustrate certain aspects of these recent developments with the model organisms Sinorhizobium meliloti, Sinorhizobium fredii and Bacillus subtilis, which possess quorum sensing systems of different complexity, but all show phenotypic heterogeneity therein.
Collapse
Affiliation(s)
- Vera Bettenworth
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| | - Benedikt Steinfeld
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Hilke Duin
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Ilka Bischofs
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| |
Collapse
|
24
|
Biofilm formation of Listeria monocytogenes and its resistance to quaternary ammonium compounds in a simulated salmon processing environment. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Zetzmann M, Bucur FI, Crauwels P, Borda D, Nicolau AI, Grigore-Gurgu L, Seibold GM, Riedel CU. Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing. Microbiologyopen 2019; 8:e00826. [PMID: 30843349 PMCID: PMC6741131 DOI: 10.1002/mbo3.826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a food‐borne human pathogen and a serious concern in food production and preservation. Previous studies have shown that biofilm formation of L. monocytogenes and presence of extracellular DNA (eDNA) in the biofilm matrix varies with environmental conditions and may involve agr peptide sensing. Experiments in normal and diluted (hypoosmotic) complex media at different temperatures revealed reduced biofilm formation of L. monocytogenes EGD‐e ΔagrD, a mutant deficient in agr peptide sensing, specifically in diluted Brain Heart Infusion at 25°C. This defect was not related to reduced sensitivity to DNase treatment suggesting sufficient levels of eDNA. Re‐analysis of a previously published transcriptional profiling indicated that a total of 132 stress‐related genes, that is 78.6% of the SigB‐dependent stress regulon, are differentially expressed in the ΔagrD mutant. Additionally, a number of genes involved in flagellar motility and a large number of other surface proteins including internalins, peptidoglycan binding and cell wall modifying proteins showed agr‐dependent gene expression. However, survival of the ΔagrD mutant in hypoosmotic conditions or following exposure to high hydrostatic pressure was comparable to the wild type. Also, flagellar motility and surface hydrophobicity were not affected. However, the ΔagrD mutant displayed a significantly reduced viability upon challenge with lysozyme. These results suggest that the biofilm phenotype of the ΔagrD mutant is not a consequence of reduced resistance to hypoosmotic or high pressure stress, motility or surface hydrophobicity. Instead, agr peptide sensing seems to be required for proper regulation of biosynthesis, structure and function of the cell envelope, adhesion to the substratum, and/or interaction of bacteria within a biofilm.
Collapse
Affiliation(s)
- Marion Zetzmann
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
26
|
Oxaran V, Dittmann KK, Lee SHI, Chaul LT, Fernandes de Oliveira CA, Corassin CH, Alves VF, De Martinis ECP, Gram L. Behavior of Foodborne Pathogens Listeria monocytogenes and Staphylococcus aureus in Mixed-Species Biofilms Exposed to Biocides. Appl Environ Microbiol 2018; 84:e02038-18. [PMID: 30291117 PMCID: PMC6275347 DOI: 10.1128/aem.02038-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
In nature and man-made environments, microorganisms reside in mixed-species biofilms, in which the growth and metabolism of an organism are different from these behaviors in single-species biofilms. Pathogenic microorganisms may be protected against adverse treatments in mixed-species biofilms, leading to health risk for humans. Here, we developed two mixed five-species biofilms that included one or the other of the foodborne pathogens Listeria monocytogenes and Staphylococcus aureus The five species, including the pathogen, were isolated from a single food-processing environmental sample, thus mimicking the environmental community. In mature mixed five-species biofilms on stainless steel, the two pathogens remained at a constant level of ∼105 CFU/cm2 The mixed five-species biofilms as well as the pathogens in monospecies biofilms were exposed to biocides to determine any pathogen-protective effect of the mixed biofilm. Both pathogens and their associate microbial communities were reduced by peracetic acid treatments. S. aureus decreased by 4.6 log cycles in monospecies biofilms, but the pathogen was protected in the five-species biofilm and decreased by only 1.1 log cycles. Sessile cells of L. monocytogenes were affected to the same extent when in a monobiofilm or as a member of the mixed-species biofilm, decreasing by 3 log cycles when exposed to 0.0375% peracetic acid. When the pathogen was exchanged in each associated microbial community, S. aureus was eradicated, while there was no significant effect of the biocide on L. monocytogenes or the mixed community. This indicates that particular members or associations in the community offered the protective effect. Further studies are needed to clarify the mechanisms of biocide protection and to identify the species playing the protective role in microbial communities of biofilms.IMPORTANCE This study demonstrates that foodborne pathogens can be established in mixed-species biofilms and that this can protect them from biocide action. The protection is not due to specific characteristics of the pathogen, here S. aureus and L. monocytogenes, but likely caused by specific members or associations in the mixed-species biofilm. Biocide treatment and resistance are a challenge for many industries, and biocide efficacy should be tested on microorganisms growing in biofilms, preferably mixed systems, mimicking the application environment.
Collapse
Affiliation(s)
- Virginie Oxaran
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karen Kiesbye Dittmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sarah H I Lee
- FZEA/USP, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Luíza Toubas Chaul
- FF/UFG, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | | | - Carlos Humberto Corassin
- FZEA/USP, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Pinheiro J, Lisboa J, Pombinho R, Carvalho F, Carreaux A, Brito C, Pöntinen A, Korkeala H, dos Santos NM, Morais-Cabral JH, Sousa S, Cabanes D. MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Res 2018; 46:9338-9352. [PMID: 30011022 PMCID: PMC6182135 DOI: 10.1093/nar/gky624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes (Lm) causes invasive infection in susceptible animals and humans. To survive and proliferate within hosts, this facultative intracellular pathogen tightly coordinates the expression of a complex regulatory network that controls the expression of virulence factors. Here, we identified and characterized MouR, a novel virulence regulator of Lm. Through RNA-seq transcriptomic analysis, we determined the MouR regulon and demonstrated how MouR positively controls the expression of the Agr quorum sensing system (agrBDCA) of Lm. The MouR three-dimensional structure revealed a dimeric DNA-binding transcription factor belonging to the VanR class of the GntR superfamily of regulatory proteins. We also showed that by directly binding to the agr promoter region, MouR ultimately modulates chitinase activity and biofilm formation. Importantly, we demonstrated by in vitro cell invasion assays and in vivo mice infections the role of MouR in Lm virulence.
Collapse
Affiliation(s)
- Jorge Pinheiro
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Johnny Lisboa
- Group of Fish Immunology & Vaccinology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Rita Pombinho
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Filipe Carvalho
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Alexis Carreaux
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- SDV - UFR Sciences Du Vivant: Université Paris Diderot-Paris 7, Paris 75013, France
| | - Cláudia Brito
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Nuno M S dos Santos
- Group of Fish Immunology & Vaccinology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - João H Morais-Cabral
- Group of Structural Biochemistry, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| |
Collapse
|
28
|
Puga CH, Dahdouh E, SanJose C, Orgaz B. Listeria monocytogenes Colonizes Pseudomonas fluorescens Biofilms and Induces Matrix Over-Production. Front Microbiol 2018; 9:1706. [PMID: 30108564 PMCID: PMC6080071 DOI: 10.3389/fmicb.2018.01706] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 12/26/2022] Open
Abstract
In food facilities, biofilms or their debris might act as helpers for attracting free floating microorganisms. In this sense, Pseudomonas fluorescens, a dense biofilm producer frequently isolated from food contact surfaces, could be a good candidate for sheltering other microorganisms, such as Listeria monocytogenes. The main objective of this work was to evaluate the ability of L. monocytogenes to colonize pre-established Pseudomonas biofilms. For this, the movement throughout mature Pseudomonas biofilms of a green fluorescent protein (GFP) - tagged strain of L. monocytogenes was tracked for 24 h by confocal laser scanning microscopy (CLSM). Moreover, in order to check the effect of the incorporation of Listeria on the overall matrix production, attached populations of both microorganisms and total biomass (cells + matrix) of the resulting biofilms were measured over time. Planktonic cells of L. monocytogenes efficiently migrated to preformed P. fluorescens biofilms. Moreover, they moved preferentially toward the bottom layers of these structures, suggesting some kind of tropism. When preformed P. fluorescens biofilms were conditioning the surfaces, the L. monocytogenes attached population was on average, 1-2 Log higher than when this organism grew on bare coupons. Furthermore, the arrival of L. monocytogenes to the already established P. fluorescens biofilms led to a matrix over-production. Indeed, biomass values [optical density (OD595nm)] of the resulting biofilms were double those of the ordinary L. monocytogenes-P. fluorescens mixed biofilms (1.40 vs. 0.6). The fact that L. monocytogenes cells accumulate in the bottom layers of preformed biofilms provides this microorganism an extra protection toward physical-chemical damages. This might partly explain why this microorganism can persist in food industry environments.
Collapse
Affiliation(s)
- Carmen H. Puga
- Department of Food Science and Technology, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| | - Elias Dahdouh
- Department of Animal Health, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| | - Carmen SanJose
- Department of Food Science and Technology, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| | - Belen Orgaz
- Department of Food Science and Technology, Faculty of Veterinary, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
29
|
Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Balsa-Canto E, Vilas C, López-Núñez A, Mosquera-Fernández M, Briandet R, Cabo ML, Vázquez C. Modeling Reveals the Role of Aging and Glucose Uptake Impairment in L1A1 Listeria monocytogenes Biofilm Life Cycle. Front Microbiol 2017; 8:2118. [PMID: 29163410 PMCID: PMC5671982 DOI: 10.3389/fmicb.2017.02118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen that can persist in food processing plants by forming biofilms on abiotic surfaces. The benefits that bacteria can gain from living in a biofilm, i.e., protection from environmental factors and tolerance to biocides, have been linked to the biofilm structure. Different L. monocytogenes strains build biofilms with diverse structures, and the underlying mechanisms for that diversity are not yet fully known. This work combines quantitative image analysis, cell counts, nutrient uptake data and mathematical modeling to provide a mechanistic insight into the dynamics of the structure of biofilms formed by L. monocytogenes L1A1 (serotype 1/2a) strain. Confocal laser scanning microscopy (CLSM) and quantitative image analysis were used to characterize the structure of L1A1 biofilms throughout time. L1A1 forms flat, thick structures; damaged or dead cells start appearing early in deep layers of the biofilm and rapidly and massively loss biomass after 4 days. We proposed several reaction-diffusion models to explain the system dynamics. Model candidates describe biomass and nutrients evolution including mechanisms of growth and cell spreading, nutrients diffusion and uptake and biofilm decay. Data fitting was used to estimate unknown model parameters and to choose the most appropriate candidate model. Remarkably, standard reaction-diffusion models could not describe the biofilm dynamics. The selected model reveals that biofilm aging and glucose impaired uptake play a critical role in L1A1 L. monocytogenes biofilm life cycle.
Collapse
Affiliation(s)
- Eva Balsa-Canto
- (Bio)Process Engineering Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | - Carlos Vilas
- (Bio)Process Engineering Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | | | - Maruxa Mosquera-Fernández
- (Bio)Process Engineering Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
- Microbiology Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Massy, France
| | - Marta L. Cabo
- Microbiology Group, IIM-CSIC Spanish National Research Council, Vigo, Spain
| | - Carlos Vázquez
- Mathematics Department, ITMATI, CITIC, University of A Coruña, A Coruña, Spain
| |
Collapse
|
31
|
Sadekuzzaman M, Yang S, Mizan MFR, Kim HS, Ha SD. Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.056] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Costa AM, Mergulhão FJ, Briandet R, Azevedo NF. It is all about location: how to pinpoint microorganisms and their functions in multispecies biofilms. Future Microbiol 2017; 12:987-999. [PMID: 28745517 DOI: 10.2217/fmb-2017-0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multispecies biofilms represent the dominant mode of life for the vast majority of microorganisms. Bacterial spatial localization in such biostructures governs ecological interactions between different populations and triggers the overall community functions. Here, we discuss the pros and cons of fluorescence-based techniques used to decipher bacterial species patterns in biofilms at single cell level, including fluorescence in situ hybridization and the use of genetically modified bacteria that express fluorescent proteins, reporting the significant improvements of those techniques. The development of tools for spatial and temporal study of multispecies biofilms will allow live imaging and spatial localization of cells in naturally occurring biofilms coupled with metabolic information, increasing insight of microbial community and the relation between its structure and functions.
Collapse
Affiliation(s)
- Angela M Costa
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.,INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Filipe J Mergulhão
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Cherifi T, Jacques M, Quessy S, Fravalo P. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System. Front Microbiol 2017; 8:864. [PMID: 28567031 DOI: 10.3389/fmicb.2017.00864] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/28/2017] [Indexed: 12/19/2022] Open
Abstract
Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.
Collapse
Affiliation(s)
- Tamazight Cherifi
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Mario Jacques
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Réseau canadien de recherche sur la mammite bovine et la qualité du lait, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Sylvain Quessy
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| |
Collapse
|
34
|
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation. Sci Rep 2017; 7:637. [PMID: 28377579 PMCID: PMC5429642 DOI: 10.1038/s41598-017-00753-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) and mounting antibiotic resistance requires innovative treatment strategies. S. aureus uses secreted cyclic autoinducing peptides (AIPs) and the accessory gene regulator (agr) operon to coordinate expression of virulence factors required for invasive infection. Of the four agr alleles (agr types I-IV and corresponding AIPs1-4), agr type I isolates are most frequently associated with invasive infection. Cyclization via a thiolactone bond is essential for AIP function; therefore, recognition of the cyclic form of AIP1 may be necessary for antibody-mediated neutralization. However, the small sizes of AIPs and labile thiolactone bond have hindered vaccine development. To overcome this, we used a virus-like particle (VLP) vaccine platform (PP7) for conformationally-restricted presentation of a modified AIP1 amino acid sequence (AIP1S). Vaccination with PP7-AIP1S elicited AIP1-specific antibodies and limited agr-activation in vivo. Importantly, in a murine SSTI challenge model with a highly virulent agr type I S. aureus isolate, PP7-AIP1S vaccination reduced pathogenesis and increased bacterial clearance compared to controls, demonstrating vaccine efficacy. Given the contribution of MRSA agr type I isolates to human disease, vaccine targeting of AIP1-regulated virulence could have a major clinical impact in the fight against antibiotic resistance.
Collapse
|
35
|
Lee Y, Wang C. Morphological Change and Decreasing Transfer Rate of Biofilm-Featured Listeria monocytogenes EGDe. J Food Prot 2017; 80:368-375. [PMID: 28199146 DOI: 10.4315/0362-028x.jfp-16-226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes , a lethal foodborne pathogen, has the ability to resist the hostile food processing environment and thus frequently contaminates ready-to-eat foods during processing. It is commonly accepted that the tendency of L. monocytogenes ' to generate biofilms on various surfaces enhances its resistance to the harshness of the food processing environment. However, the role of biofilm formation in the transferability of L. monocytogenes EGDe remains controversial. We examined the growth of Listeria biofilms on stainless steel surfaces and their effect on the transferability of L. monocytogenes EGDe. The experiments were a factorial 2 × 2 design with at least three biological replicates. Through scanning electron microscopy, a mature biofilm with intensive aggregates of cells was observed on the surface of stainless steel after 3 or 5 days of incubation, depending on the initial level of inoculation. During biofilm development, L. monocytogenes EGDe carried out binary fission vigorously before a mature biofilm was formed and subsequently changed its cellular morphology from rod shaped to sphere shaped. Furthermore, static biofilm, which was formed after 3 days of incubation at 25°C, significantly inhibited the transfer rate of L. monocytogenes EGDe from stainless steel blades to 15 bologna slices. During 7 days of storage at 4°C, however, bacterial growth rate was not significantly impacted by whether bacteria were transferred from biofilm and the initial concentrations of transferred bacteria on the slice. In conclusion, this study is the first to report a distinct change in morphology of L. monocytogenes EGDe at the late stage of biofilm formation. More importantly, once food is contaminated by L. monocytogenes EGDe, contamination proceeds independently of biofilm development and the initial level of contamination when food is stored at 4°C, even if contamination with L. monocytogenes EGDe was initially undetectable before storage.
Collapse
Affiliation(s)
- Yuejia Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
36
|
Bolocan AS, Pennone V, O'Connor PM, Coffey A, Nicolau AI, McAuliffe O, Jordan K. Inhibition of Listeria monocytogenes biofilms by bacteriocin-producing bacteria isolated from mushroom substrate. J Appl Microbiol 2016; 122:279-293. [PMID: 27797439 DOI: 10.1111/jam.13337] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/15/2016] [Accepted: 10/26/2016] [Indexed: 11/28/2022]
Abstract
AIMS This study was designed to investigate the ability of naturally occurring bacteria isolated from mushroom substrate to prevent biofilm formation by Listeria monocytogenes or to remove existing biofilms in mushroom production facilities. METHODS AND RESULTS It is generally recognized that L. monocytogenes forms biofilms that can facilitate its survival in food-processing environments. Eleven bacteriocin-producing isolates were identified and the bacteriocins characterized based on heat and enzyme inactivation studies. Further characterization was undertaken by MALDI-TOF mass spectrometry, PCR and sequencing. Production of nisin Z (by Lactococcus lactis isolates), subtilomycin (by Bacillus subtilis isolates) and lichenicidin (by Bacillus licheniformis and Bacillus sonorensis isolates) was detected. In co-culture with L. monocytogenes, the bacteriocin-producing strains could prevent biofilm formation and reduce pre-formed biofilms. CONCLUSIONS Mushroom substrate can be a source of bacteriocin-producing bacteria that can antagonize L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY The results highlight the potential of bacteriocin-producing strains from mushroom substrate to reduce L. monocytogenes biofilm in food production environments, contributing to a reduction in the risk of food contamination from the environment.
Collapse
Affiliation(s)
- A S Bolocan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - V Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - P M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - A Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - A I Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - O McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - K Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
37
|
Green fluorescent protein labeling of food pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis. J Microbiol Methods 2016; 132:21-26. [PMID: 27838541 DOI: 10.1016/j.mimet.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
Abstract
Labeling of bacteria with marker genes, such as green fluorescent protein, is a useful and practicable tool for tracking and enumerating bacterial cells in a complex environment e.g. discrimination from the indigenous background population. In this study, novel TurboGFP prokaryotic expression vector was utilized for labeling of Yersinia species. Y. enterocolitica biovar 1A, biovar 2, biovar 4 and Y. pseudotuberculosis were successfully transformed with the vector and expressed bright green fluorescence that was even detectable visually by eye. No adverse effects were observed in growth behavior of the labeled strains compared to wild type (parental) strains and vector maintenance for longer time periods could be achieved for Y. enterocolitica biovar 1A, Y. enterocolitica biovar 2 and Y. pseudotuberculosis.
Collapse
|
38
|
Mosquera-Fernández M, Sanchez-Vizuete P, Briandet R, Cabo M, Balsa-Canto E. Quantitative image analysis to characterize the dynamics of Listeria monocytogenes biofilms. Int J Food Microbiol 2016; 236:130-7. [DOI: 10.1016/j.ijfoodmicro.2016.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 07/09/2016] [Indexed: 01/24/2023]
|
39
|
Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:4456-4469. [PMID: 27208112 DOI: 10.1128/aem.00714-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).
Collapse
|
40
|
Colagiorgi A, Di Ciccio P, Zanardi E, Ghidini S, Ianieri A. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix. Microorganisms 2016; 4:E22. [PMID: 27681916 PMCID: PMC5039582 DOI: 10.3390/microorganisms4030022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS's). In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM) of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.
Collapse
Affiliation(s)
- Angelo Colagiorgi
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Pierluigi Di Ciccio
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Emanuela Zanardi
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Sergio Ghidini
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Adriana Ianieri
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| |
Collapse
|
41
|
Puga CH, Orgaz B, SanJose C. Listeria monocytogenes Impact on Mature or Old Pseudomonas fluorescens Biofilms During Growth at 4 and 20°C. Front Microbiol 2016; 7:134. [PMID: 26913024 PMCID: PMC4753298 DOI: 10.3389/fmicb.2016.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022] Open
Abstract
Changes in spatial organization, as observed by confocal laser scanning microscopy (CLSM), viable cell content, biovolume, and substratum surface coverage of the biofilms formed on glass by Pseudomonas fluorescens resulting from co-culture with Listeria monocytogenes, were examined. Two strains of L. monocytogenes, two culture temperatures and two biofilm developmental stages were investigated. Both L. monocytogenes strains, a persistently sampled isolate (collected repeatedly along 3 years from a meat factory) and Scott A, induced shrinkage in matrix volume, both at 20°C and 4°C, in mature or old biofilms, without loss of P. fluorescens cell count per surface unit. The nearly homogeneous pattern of surface coverage shown by mono-species P. fluorescens biofilms, turned into more irregular layouts in co-culture with L. monocytogenes. The upper layer of both mono and dual-species biofilms turned to predominantly consist of matrix, with plenty of viable cells underneath, in old biofilms cultured at 20°C, but not in those grown at 4°C. Between 15 and 56% of the substratum area was covered by biofilm, the extent depending on temperature, time and L. monocytogenes strain. Real biofilms in food-related surfaces may thus be very heterogeneous regarding their superficial components, i.e., those more accessible to disinfectants. It is therefore a hygienic challenge to choose an adequate agent to disrupt them.
Collapse
Affiliation(s)
| | - Belen Orgaz
- Department of Nutrition, Food Science and Technology, Faculty of Veterinary, Complutense University of MadridMadrid, Spain
| | | |
Collapse
|
42
|
Randazzo W, Jiménez-Belenguer A, Settanni L, Perdones A, Moschetti M, Palazzolo E, Guarrasi V, Vargas M, Germanà MA, Moschetti G. Antilisterial effect of citrus essential oils and their performance in edible film formulations. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Zetzmann M, Okshevsky M, Endres J, Sedlag A, Caccia N, Auchter M, Waidmann MS, Desvaux M, Meyer RL, Riedel CU. DNase-Sensitive and -Resistant Modes of Biofilm Formation by Listeria monocytogenes. Front Microbiol 2015; 6:1428. [PMID: 26733972 PMCID: PMC4686886 DOI: 10.3389/fmicb.2015.01428] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is able to form biofilms on various surfaces and this ability is thought to contribute to persistence in the environment and on contact surfaces in the food industry. Extracellular DNA (eDNA) is a component of the biofilm matrix of many bacterial species and was shown to play a role in biofilm establishment of L. monocytogenes. In the present study, the effect of DNaseI treatment on biofilm formation of L. monocytogenes EGD-e was investigated under static and dynamic conditions in normal or diluted complex medium at different temperatures. Biofilm formation was quantified by crystal violet staining or visualized by confocal laser scanning microscopy. Biomass of surface-attached L. monocytogenes varies depending on temperature and dilution of media. Interestingly, L. monocytogenes EGD-e forms DNase-sensitive biofilms in diluted medium whereas in full strength medium DNaseI treatment had no effect. In line with these observations, eDNA is present in the matrix of biofilms grown in diluted but not full strength medium and supernatants of biofilms grown in diluted medium contain chromosomal DNA. The DNase-sensitive phenotype could be clearly linked to reduced ionic strength in the environment since dilution of medium in PBS or saline abolished DNase sensitivity. Several other but not all species of the genus Listeria display DNase-sensitive and -resistant modes of biofilm formation. These results indicate that L. monocytogenes biofilms are DNase-sensitive especially at low ionic strength, which might favor bacterial lysis and release of chromosomal DNA. Since low nutrient concentrations with increased osmotic pressure are conditions frequently found in food processing environments, DNaseI treatment represents an option to prevent or remove Listeria biofilms in industrial settings.
Collapse
Affiliation(s)
- Marion Zetzmann
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| | - Mira Okshevsky
- Interdisciplinary Nanoscience Center and Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Jasmin Endres
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| | - Anne Sedlag
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| | - Nelly Caccia
- INRA, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Marc Auchter
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| | - Mark S Waidmann
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center and Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| |
Collapse
|
44
|
Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Abstract
Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies.
Collapse
Affiliation(s)
- Joke Donné
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
46
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Whitehead KA, Verran J. Formation, architecture and functionality of microbial biofilms in the food industry. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Xayarath B, Alonzo F, Freitag NE. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathog 2015; 11:e1004707. [PMID: 25822753 PMCID: PMC4379056 DOI: 10.1371/journal.ppat.1004707] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/26/2015] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol.
Collapse
Affiliation(s)
- Bobbi Xayarath
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Guilbaud M, Piveteau P, Desvaux M, Brisse S, Briandet R. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Appl Environ Microbiol 2015; 81:1813-9. [PMID: 25548046 PMCID: PMC4325147 DOI: 10.1128/aem.03173-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/22/2014] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes is involved in food-borne illness with a high mortality rate. The persistence of the pathogen along the food chain can be associated with its ability to form biofilms on inert surfaces. While most of the phenotypes associated with biofilms are related to their spatial organization, most published data comparing biofilm formation by L. monocytogenes isolates are based on the quantitative crystal violet assay, which does not give access to structural information. Using a high-throughput confocal-imaging approach, the aim of this work was to decipher the structural diversity of biofilms formed by 96 L. monocytogenes strains isolated from various environments. Prior to large-scale analysis, an experimental design was created to improve L. monocytogenes biofilm formation in microscopic-grade microplates, with special emphasis on the growth medium composition. Microscopic analysis of biofilms formed under the selected conditions by the 96 isolates revealed only weak correlation between the genetic lineages of the isolates and the structural properties of the biofilms. However, a gradient in their geometric descriptors (biovolume, mean thickness, and roughness), ranging from flat multilayers to complex honeycomb-like structures, was shown. The dominant honeycomb-like morphotype was characterized by hollow voids hosting free-swimming cells and localized pockets containing mixtures of dead cells and extracellular DNA (eDNA).
Collapse
Affiliation(s)
- Morgan Guilbaud
- INRA, UMR 1319 MICALIS, Jouy-en-Josas, France AgroParisTech, UMR MICALIS, Massy, France
| | - Pascal Piveteau
- Université de Bourgogne, UMR 1229, Dijon, France INRA, UMR 1347, Dijon, France
| | | | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR 3525, Paris, France
| | - Romain Briandet
- INRA, UMR 1319 MICALIS, Jouy-en-Josas, France AgroParisTech, UMR MICALIS, Massy, France
| |
Collapse
|
50
|
Remuzgo-Martínez S, Lázaro-Díez M, Padilla D, Vega B, El Aamri F, Icardo JM, Acosta F, Ramos-Vivas J. New aspects in the biology of Photobacterium damselae subsp. piscicida: pili, motility and adherence to solid surfaces. Vet Microbiol 2014; 174:247-54. [PMID: 25263496 DOI: 10.1016/j.vetmic.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
We describe for the first time the presence of pilus-like structures on the surface of Photobacterium damselae subsp. piscicida (Phdp). The hint to this discovery was the ability of one strain to hemagglutinate human erythrocytes. Further analysis of several Phdp strains ultrastructure by electron microscopy revealed the presence of long, thin fibers, similar to pili of other Gram-negative bacteria. These appendages were also observed and photographed by scanning, transmission electron microscopy and immunofluorescence. Although this fish pathogen has been described as non-motile, all strains tested exhibit twitching motility, a flagella-independent type IV-dependent form of bacterial translocation over surfaces. As far as we are aware, the movement of Phdp bacteria on semi-solid or solid surfaces has not been described previously. Moreover, we speculate that Phdp twitching motility may be involved in biofilm formation. Microscopic examination of Phdp biofilms by microscopy revealed that Phdp biofilm architecture display extensive cellular chaining and also bacterial mortality during biofilm formation in vitro. Based on our results, standardized analyses of Phdp surface appendages, biofilms, motility and their impact on Phdp survival, ecology and pathobiology are now feasible.
Collapse
Affiliation(s)
- Sara Remuzgo-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla IDIVAL, Santander, Cantabria, Spain
| | - María Lázaro-Díez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla IDIVAL, Santander, Cantabria, Spain
| | - Daniel Padilla
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Belinda Vega
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Fátima El Aamri
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - José Manuel Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Félix Acosta
- Instituto Universitario de Sanidad Animal, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - José Ramos-Vivas
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla IDIVAL, Santander, Cantabria, Spain.
| |
Collapse
|