1
|
Yu Z, Xie C, Zhang Z, Huang Z, Zhou J, Wang C. Microbial fermentation and black soldier fly feeding to enhance maize straw degradation. CHEMOSPHERE 2024; 353:141498. [PMID: 38382720 DOI: 10.1016/j.chemosphere.2024.141498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
This study used an innovative synergistic microbial and insect approach to treat maize straw and kitchen waste substrates, including cyclic microbial fermentation and feeding of black soldier fly larvae (BSFL) using the fermented substrate. Increasing cycle numbers led to significantly increased cellulose, hemicellulose, and lignin degradation rates (DR) in the maize straw, which increased by 68.28%, 81.43% and 99.95%, respectively, compared to those in the blank group without frass addition. Moreover, according to the experimental results, it was revealed that the structure of lignocellulose, the composition and structure of the bacterial community in the BSFL gut and frass changed significantly after the addition of the previous cycle of frass treatment. Moreover, the differences in amplicon sequence variants (ASVs) between the gut and frass further increased. The relative abundances of Enterococcus and Actinobacteria in the gut and Gammaproteobacteria_unclassified and Dysgonomonas in the frass increased significantly, which may play a more positive role in lignocellulose degradation. In conclusion, this study showed that frass fermentation + BSFL feeding to degrade straw is a promising method and that frass fermentation is beneficial for the whole cycle. Furthermore, these findings underscore the beneficial impact of frass fermentation on the entire cycle.
Collapse
Affiliation(s)
- Zuojian Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Chenyang Xie
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhiyi Zhang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zezhao Huang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Junfeng Zhou
- School of Resources and Safety Engineering, Xingfa School of Mining Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China.
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| |
Collapse
|
2
|
Kumar A, Pandit S, Sharma K, Mathuriya AS, Prasad R. Evaluation of bamboo derived biochar as anode catalyst in microbial fuel cell for xylan degradation utilizing microbial co-culture. BIORESOURCE TECHNOLOGY 2023; 390:129857. [PMID: 37852505 DOI: 10.1016/j.biortech.2023.129857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
This study aimed to examine the microbial degradation of xylan through Bacillus sp. isolated from wastewater. Co-culture of Bacillus licheniformis strain and MTCC-8104 strain of Shewanella putrefaciens were employed in a microbial fuel cell (MFC) to facilitate energy production simultaneous xylan degradation under optimum conditions. Electrochemical properties of MFC and degradation analysis were used to validate xylan degradation throughout various experimental parameters. Degradation of the optimal xylan concentration using co-culture, resulting in a power density of 7.8 W/m3, the anode surface was modified with bamboo-derived biochar in order to increase power density under the same operational condition. Under optimum circumstances, increasing the anode's surface area boosted electron transport and electro-active biofilm growth, resulting in a higher power density of 12.9 W/m3. Co-culture of hydrolyzing and electro-active bacteria was found beneficial for xylan degradation and anode modifications enhance power output while microbial degradation.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Kalpana Sharma
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Abhilasha Singh Mathuriya
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Jor Bagh, New Delhi 110003, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India.
| |
Collapse
|
3
|
Ramanaiah SV, Chandrasekhar K, Cordas CM, Potoroko I. Bioelectrochemical systems (BESs) for agro-food waste and wastewater treatment, and sustainable bioenergy-A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121432. [PMID: 36907238 DOI: 10.1016/j.envpol.2023.121432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Producing food by farming and subsequent food manufacturing are central to the world's food supply, accounting for more than half of all production. Production is, however, closely related to the creation of large amounts of organic wastes or byproducts (agro-food waste or wastewater) that negatively impact the environment and the climate. Global climate change mitigation is an urgent need that necessitates sustainable development. For that purpose, proper agro-food waste and wastewater management are essential, not only for waste reduction but also for resource optimization. To achieve sustainability in food production, biotechnology is considered as key factor since its continuous development and broad implementation will potentially benefit ecosystems by turning polluting waste into biodegradable materials; this will become more feasible and common as environmentally friendly industrial processes improve. Bioelectrochemical systems are a revitalized, promising biotechnology integrating microorganisms (or enzymes) with multifaceted applications. The technology can efficiently reduce waste and wastewater while recovering energy and chemicals, taking advantage of their biological elements' specific redox processes. In this review, a consolidated description of agro-food waste and wastewater and its remediation possibilities, using different bioelectrochemical-based systems is presented and discussed together with a critical view of the current and future potential applications.
Collapse
Affiliation(s)
- S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation.
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Cristina M Cordas
- Laboratório Associado para a Química Verde | Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Irina Potoroko
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| |
Collapse
|
4
|
Hemdan BA, El-Taweel GE, Naha S, Goswami P. Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell. Sci Rep 2023; 13:1255. [PMID: 36690637 PMCID: PMC9871009 DOI: 10.1038/s41598-023-27795-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of electrogenic microbial biofilm on the electrode is critical for harvesting electrical power from wastewater in microbial biofuel cells (MFCs). Although the knowledge of bacterial community structures in the biofilm is vital for the rational design of MFC electrodes, an in-depth study on the subject is still awaiting. Herein, we attempt to address this issue by creating electrogenic biofilm on modified graphite anodes assembled in an air-cathode MFC. The modification was performed with reduced graphene oxide (rGO), polyaniline (PANI), and carbon nanotube (CNTs) separately. To accelerate the growth of the biofilm, soybean-potato composite (plant) powder was blended with these conductive materials during the fabrication of the anodes. The MFC fabricated with PANI-based anode delivered the current density of 324.2 mA cm-2, followed by CNTs (248.75 mA cm-2), rGO (193 mA cm-2), and blank (without coating) (151 mA cm-2) graphite electrodes. Likewise, the PANI-based anode supported a robust biofilm growth containing maximum bacterial cell densities with diverse shapes and sizes of the cells and broad metabolic functionality. The alpha diversity of the biofilm developed over the anode coated with PANI was the loftiest operational taxonomic unit (2058 OUT) and Shannon index (7.56), as disclosed from the high-throughput 16S rRNA sequence analysis. Further, within these taxonomic units, exoelectrogenic phyla comprising Proteobacteria, Firmicutes, and Bacteroidetes were maximum with their corresponding level (%) 45.5, 36.2, and 9.8. The relative abundance of Gammaproteobacteria, Clostridia, and Bacilli at the class level, while Pseudomonas, Clostridium, Enterococcus, and Bifidobacterium at the genus level were comparatively higher in the PANI-based anode.
Collapse
Affiliation(s)
- Bahaa A Hemdan
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Gamila E El-Taweel
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Sunandan Naha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
5
|
Vidhyeswari D, Surendhar A, Bhuvaneshwari S. General aspects and novel PEMss in microbial fuel cell technology: A review. CHEMOSPHERE 2022; 309:136454. [PMID: 36167209 DOI: 10.1016/j.chemosphere.2022.136454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The current scenario of energy production is mostly shifted towards sustainable renewable energy sources. Other than the energy production from natural resources such as sun, wind and water, microbial fuel cell system (MFC) has earned attraction in recent times. These microbial fuel cell systems are bioelectrochemical cell that possesses a unique ability to generate power as well as treats wastewater simultaneously. In this paper, an overview of the microbial fuel cell system and the effect of significant components on the performance of microbial fuel cell systems are reviewed. Firstly, the importance of the MFC system in power generation, its components, the working principle and various configurations of the MFC were briefly introduced. Biofilm plays a major role in the MFC system. Thus the importance of bio film, bio film formation and characterization techniques are summarised. Further, the review mainly addresses the mechanism of conventional and novel membrane materials on the performance of the MFC system. In addition, special emphasis on ceramic-based materials in the MFC system is presented. Finally, recent applications of the MFC systems are discussed.
Collapse
Affiliation(s)
- D Vidhyeswari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| | - A Surendhar
- Department of Food Technology, TKM Institute of Technology, Kollam, India.
| | - S Bhuvaneshwari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| |
Collapse
|
6
|
Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review. ENERGIES 2022. [DOI: 10.3390/en15155616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
High-energy consumption globally has raised questions about the low environmentally friendly and high-cost processes used until now for energy production. Microbial fuel cells (MFCs) may support alternative more economically and environmentally favorable ways of bioenergy production based on their advantage of using waste. MFCs work as bio-electrochemical devices that consume organic substrates in order for the electrogenic bacteria and/or enzyme cultures to produce electricity and simultaneously lower the environmental hazardous value of waste such as COD. The utilization of organic waste as fuels in MFCs has opened a new research path for testing a variety of by-products from several industry sectors. This review presents several organic waste substrates that can be employed as fuels in MFCs for bioenergy generation and the effect of their usage on power density, COD (chemical oxygen demand) removal, and Coulombic efficiency enhancement. Moreover, a demonstration and comparison of the different types of mixed waste regarding their efficiency for energy generation via MFCs are presented. Future perspectives for manufacturing and cost analysis plans can support scale-up processes fulfilling waste-treatment efficiency and energy-output densities.
Collapse
|
7
|
Liu SH, Lee KY. Performance of a packed-bed anode bio-electrochemical reactor for power generation and for removal of gaseous acetone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115062. [PMID: 35436710 DOI: 10.1016/j.jenvman.2022.115062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The packed anode bioelectrochemical system (Pa-BES) developed in this study is a type of BES that introduces waste gas into a cathode and then into an anode, thereby providing the cathode with sufficient oxygen and reducing the amount of oxygen to the anode to promote the output of electricity. When the empty-bed residence time was 45 s and the liquid flowrate was 35 mL/s, the system achieved optimal performance. Under these conditions, removal efficiency, mineralization efficiency, voltage output, and power density were 93.86%, 93.37%, 296.3 mV, and 321.12 mW/m3, respectively. The acetone in the waste gas was almost completely converted into carbon dioxide, indicating that Pa-BES can effectively remove acetone and has the potential to be used in practical situations. A cyclic voltammetry analysis revealed that the packings exhibited clear redox peaks, indicating that the Pa-BES has outstanding biodegradation and power generation abilities. Through microbial community dynamics, numerous organics degraders, electrochemically active bacteria, nitrifying and denitrifying bacteria were found, and the spatial distribution of these microbes were identified. Among them, Xanthobacter, Bryobacter, Mycobacteriums and Terrimonawas were able to decompose acetone or other organic substances, with Xanthobacter dominating. Bacterium_OLB10 and Ferruginibacter are the electrochemically active bacteria in Pa-BES, while Ferruginibacter is the most abundant in the main anode, which is responsible for electron collection and transfer.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC.
| | - Kun-Yan Lee
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| |
Collapse
|
8
|
Wang J, Li Y, Wang W, Wu H, Kong F, Wang S. Enhancement of wastewater treatment under low temperature using novel electrochemical active biofilms constructed wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114913. [PMID: 35306418 DOI: 10.1016/j.jenvman.2022.114913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
A novel electrochemical active biofilms constructed wetland (NEAB-CW) was built to enhance the treatment efficiency for domestic sewage under low temperature environment (0-15 °C). In NEAB-CW, the traditional matrixes were replaced with conductive layer, in which laid stainless steel mesh tubes (SSMT) and added slow-release oxygen matrixes (SROM) and zero-valent iron rod (IR) were used to build a bioelectrochemical activity biofilms system. According to the results of 180 d experiment, the removal efficiencies of COD, NH4+-N and TP of NEAB-CW were 1.52 and 2.21, 2.97 and 1.68, 3.95 and 1.76 times higher than the CW without SROM and IR at 10-20 and 0-10 °C, respectively. The transverse and longitudinal electric potential (EP) variations in NEAB-CW improved microbial activities under low temperature by enhancing the electron transfer efficiency, resulting in higher and stable EP and electron currents density, as well as protein-like contents secreted from biofilms. The pollutant-degrading microorganisms (e.g., Clostridia, Simplicispira), low temperature-resistant microorganisms (e.g., Psychrobacter, Acinetobacter), and electrochemical active microorganisms (e.g., Negativicutes, Gammaproteobacteria) obviously accumulated in NEAB-CW under low temperature environment to generate electricity and degrade pollutants. The results provided a good choice to treat domestic sewage at 0-15 °C by using NEAB-CW.
Collapse
Affiliation(s)
- Junru Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Huazhen Wu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Sonu K, Sogani M, Syed Z, Rajvanshi J. The Effects of Wheat and Rice Straw as a Substrate on the Treatment of Reverse Osmosis Reject Wastewater in a Single Chamber Microbial Fuel Cell. ChemistrySelect 2022. [DOI: 10.1002/slct.202103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kumar Sonu
- Department of Mechanical Engineering Kashi Institute of Technology Varanasi Uttar Pradesh 221307 India
| | - Monika Sogani
- Department of Biosciences Manipal University Jaipur Rajasthan 303007 India
| | - Zainab Syed
- Department of Biosciences Manipal University Jaipur Rajasthan 303007 India
| | - Jayana Rajvanshi
- Department of Biosciences Manipal University Jaipur Rajasthan 303007 India
| |
Collapse
|
10
|
Single-Chamber Microbial Fuel Cell with Multiple Plates of Bamboo Charcoal Anode: Performance Evaluation. Processes (Basel) 2021. [DOI: 10.3390/pr9122194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, three single-chamber microbial fuel cells (MFCs), each having Pt-coated carbon cloth as a cathode and four bamboo charcoal (BC) plates as an anode, were run in a fed-batch mode, individually and in series. Simulated potato-processing wastewater was used as a substrate for supporting the growth of a mixed bacterial culture. The maximum power output increased from 0.386 mW with one MFC to 1.047 mW with three MFCs connected in series. The maximum power density, however, decreased from 576 mW/m2 (normalized to the cathode area) with one MFC to 520 mW/m2 with three MFCs in series. The experimental results showed that power can be increased by connecting the MFCs in series; however, choosing low resistance BC is crucial for increasing power density.
Collapse
|
11
|
Performance of Yeast Microbial Fuel Cell Integrated with Sugarcane Bagasse Fermentation for COD Reduction and Electricity Generation. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.9739.446-458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
12
|
Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. FERMENTATION 2021. [DOI: 10.3390/fermentation7030169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a significant accumulation of waste in the environment, and it is expected that this accumulation may increase in the years to come. Waste disposal has massive effects on the environment and can cause serious environmental problems. Thus, the development of a waste treatment system is of major importance. Agro-industrial wastewater and waste residues are mainly rich in organic substances, lignocellulose, hemicellulose, lignin, and they have a relatively high amount of energy. As a result, an effective agro-waste treatment system has several benefits, including energy recovery and waste stabilization. To reduce the impact of the consumption of fossil energy sources on our planet, the exploitation of renewable sources has been relaunched. All over the world, efforts have been made to recover energy from agricultural waste, considering global energy security as the final goal. To attain this objective, several technologies and recovery methods have been developed in recent years. The microbial fuel cell (MFC) is one of them. This review describes the power generation using various types of agro-industrial wastewaters and agricultural residues utilizing MFC. It also highlights the techno-economics and lifecycle assessment of MFC, its commercialization, along with challenges.
Collapse
|
13
|
Dai S, Korth B, Vogt C, Harnisch F. Microbial Electrochemical Oxidation of Anaerobic Digestion Effluent From Treating HTC Process Water. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.652445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrothermal carbonization (HTC) is a promising technology for chemical and material synthesis. However, HTC produces not only valuable solid coal-materials but also yields process water (PW) with high chemical oxygen demand (COD) that requires extensive treatment. Anaerobic digestion (AD) has been used for initial treatment of HTC-PW, but the AD effluent is still high in COD and particles. Here, we show that microbial electrochemical technologies (MET) can be applied for COD removal from AD effluent of HTC-PW. Bioelectrochemical systems (BES) treating different shares of AD effluent from HTC-PW exhibited similar trends for current production. Thereby, maximum current densities of 0.24 mA cm−2 and COD removal of 65.4 ± 4.4% were reached (n = 3). Microbial community analysis showed that the genus Geobacter dominated anode biofilm and liquid phase of all reactors indicating its central role for COD oxidation and current generation.
Collapse
|
14
|
Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107003] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. BIORESOUR BIOPROCESS 2021; 8:14. [PMID: 38650218 PMCID: PMC10992463 DOI: 10.1186/s40643-021-00365-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Biomass is one of the most abundant renewable energy resources on the earth, which is also considered as one of the most promising alternatives to traditional fuel energy. In recent years, microbial fuel cell (MFC) which can directly convert the chemical energy from organic compounds into electric energy has been developed. By using MFC, biomass energy could be directly harvested with the form of electricity, the most convenient, wide-spread, and clean energy. Therefore, MFC was considered as another promising way to harness the sustainable energies in biomass and added new dimension to the biomass energy industry. In this review, the pretreatment methods for biomass towards electricity harvesting with MFC, and the microorganisms utilized in biomass-fueled MFC were summarized. Further, strategies for improving the performance of biomass-fueled MFC as well as future perspectives were highlighted.
Collapse
Affiliation(s)
- Jamile Mohammadi Moradian
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
16
|
Tahir K, Miran W, Jang J, Maile N, Shahzad A, Moztahida M, Ghani AA, Kim B, Lee DS. MnCo 2O 4 coated carbon felt anode for enhanced microbial fuel cell performance. CHEMOSPHERE 2021; 265:129098. [PMID: 33272661 DOI: 10.1016/j.chemosphere.2020.129098] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
A highly efficient anode is very crucial for an improved microbial fuel cell (MFC) performance. In this study, a binder-free manganese cobalt oxide (MnCo2O4@CF) anode was synthesized using a conventional carbon felt (CF) by a facile hydrothermal method. A large electrochemically active and rough electrode surface area of MnCo2O4@CF anode improved the substrate fluxes and microbial adhesion/growth. Furthermore, the electrochemical tests on the synthesized anode confirmed the superior bioelectrochemical activity, reduced ion transfer resistance, and excellent capacitance. This resulted in an improved power density (945 mW/m2), which was 3.8 times higher than that of CF anode. The variable valence state, high stability and biocompatibility of MnCo2O4@CF resulted in continuous current density performance for five MFC cycles. High-throughput biofilm analysis revealed the enrichment of electricity producing phylum of Proteobacteria and Bacteroidetes (∼90.0%), which signified that the modified MnCo2O4 anode accelerated the enrichment of electro-active microbes.
Collapse
Affiliation(s)
- Khurram Tahir
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Nagesh Maile
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Asif Shahzad
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Mokrema Moztahida
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ahsan Adul Ghani
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Bolam Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
17
|
Bridges CM, Gage DJ. Development and application of aerobic, chemically defined media for Dysgonomonas. Anaerobe 2020; 67:102302. [PMID: 33271360 DOI: 10.1016/j.anaerobe.2020.102302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 12/25/2022]
Abstract
Members of Dysgonomonas are Gram-stain-negative, non-motile, facultatively anaerobic coccobacilli originally described in relation to their isolation from stool and wounds of human patients (CDC group DF-3). More recently, Dysgonomonas have been found to be widely distributed in terrestrial environments and are particularly enriched in insect systems. Their prevalence in xylophagous insects such as termites and wood-feeding cockroaches, as well as in soil-fed microbial fuel cells, elicit interest in lignocellulose degradation and biofuel production, respectively. Their occurrence in mosquito and fruit fly have implications relating to symbiosis, host immunology and developmental biology. Additionally, their presence in termite, mosquito and nematode present novel opportunities for pest and vector control. Currently, the absolute growth requirements of Dysgonomonas are unknown, and they are commonly cultured under anaerobic conditions on complex media containing blood, peptones, tryptones, and yeast, plant or meat extracts. Restrictive and undefined culturing conditions preclude physiological and genetic studies, and thus further understanding of their metabolic potential. Here we describe the requirements for growth of termite-derived Dysgonomonas isolates and create parallel complex, defined and minimal media that permit vigorous and reliable aerobic growth. Furthermore, we show that these media can be used to easily enrich for Dysgonomonas isolates from densely-colonized and microbially-diverse environmental samples.
Collapse
Affiliation(s)
- Charles M Bridges
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Daniel J Gage
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
18
|
Plant secondary metabolites induced electron flux in microbial fuel cell: investigation from laboratory-to-field scale. Sci Rep 2020; 10:17185. [PMID: 33057031 PMCID: PMC7560832 DOI: 10.1038/s41598-020-74092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Wastewater treatment coupled with electricity recovery in microbial fuel cell (MFC) prefer mixed anaerobic sludge as inoculum in anodic chamber than pure stain of electroactive bacteria (EAB), due to robustness and syntrophic association. Genetic modification is difficult to adopt for mixed sludge microbes for enhancing power production of MFC. Hence, we demonstrated use of eco-friendly plant secondary metabolites (PSM) with sub-lethal concentrations to enhance the rate of extracellular electron transfer between EAB and anode and validated it in both bench-scale as well as pilot-scale MFCs. The PSMs contain tannin, saponin and essential oils, which are having electron shuttling properties and their addition to microbes can cause alteration in cell morphology, electroactive behaviour and shifting in microbial population dynamics depending upon concentrations and types of PSM used. Improvement of 2.1-times and 3.8-times in power densities was observed in two different MFCs inoculated with Eucalyptus-extract pre-treated mixed anaerobic sludge and pure culture of Pseudomonas aeruginosa, respectively, as compared to respective control MFCs operated without adding Eucalyptus-extract to inoculum. When Eucalyptus-extract-dose was spiked to anodic chamber (125 l) of pilot-scale MFC, treating septage, the current production was dramatically improved. Thus, PSM-dosing to inoculum holds exciting promise for increasing electricity production of field-scale MFCs.
Collapse
|
19
|
Sima W, Ma R, Yin F, Zou H, Li H, Ai H, Ai T. Prompt nitrogen removal by controlling the oxygen concentration in sediment microbial fuel cell systems: the electrons allocation and its microbial mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1209-1220. [PMID: 32597407 DOI: 10.2166/wst.2020.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been proved that the nitrogen can be removed from the sediment in a sediment microbial fuel cell system (SMFCs), but the competition between nitrate and oxygen for electrons would be a key factor that would affect the removal efficiency, and its mechanism is not clear. Based on organic sediment fuel, an SMFC was constructed, and the influence of dissolved oxygen (DO) on nitrogen transformation and cathodic microbial communities was investigated. The results showed that the best total nitrogen removal efficiency of 60.55% was achieved at DO level of 3 mg/L. High DO concentration affected the removal efficiency through the electrons' competition with nitrate, while low DO concentration suppressed the nitrification. Comamonas, Diaphorobacter and Brevundimonas were the three dominant genera responsible for denitrification at DO concentration of 3 mg/L in this study. The establishment of SMFCs for nitrogen removal by regulating DO level would offer a promising method for sediment treatment.
Collapse
Affiliation(s)
- Weiping Sima
- Department of Civil Engineering, Sichuan University of Science and Engineering, Zigong 400045, China
| | - Ruixiang Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Feixian Yin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Haodong Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Tao Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| |
Collapse
|
20
|
Hassan SH, el Nasser A. Zohri A, Kassim RM. Electricity generation from sugarcane molasses using microbial fuel cell technologies. ENERGY 2019; 178:538-543. [DOI: 10.1016/j.energy.2019.04.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
21
|
Jenol MA, Ibrahim MF, Kamal Bahrin E, Kim SW, Abd-Aziz S. Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell. Molecules 2019; 24:molecules24132397. [PMID: 31261835 PMCID: PMC6651009 DOI: 10.3390/molecules24132397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022] Open
Abstract
Microbial fuel cells offer a technology for simultaneous biomass degradation and biological electricity generation. Microbial fuel cells have the ability to utilize a wide range of biomass including carbohydrates, such as starch. Sago hampas is a starchy biomass that has 58% starch content. With this significant amount of starch content in the sago hampas, it has a high potential to be utilized as a carbon source for the bioelectricity generation using microbial fuel cells by Clostridium beijerinckii SR1. The maximum power density obtained from 20 g/L of sago hampas was 73.8 mW/cm2 with stable cell voltage output of 211.7 mV. The total substrate consumed was 95.1% with the respect of 10.7% coulombic efficiency. The results obtained were almost comparable to the sago hampas hydrolysate with the maximum power density 56.5 mW/cm2. These results demonstrate the feasibility of solid biomass to be utilized for the power generation in fuel cells as well as high substrate degradation efficiency. Thus, this approach provides a promising way to exploit sago hampas for bioenergy generation.
Collapse
Affiliation(s)
- Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Ezyana Kamal Bahrin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Korea
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| |
Collapse
|
22
|
Thapa BS, T.S. C. Kluyvera georgiana MCC 3673: A Novel Electrogen Enriched in Microbial Fuel Cell Fed with Oilseed Cake. Curr Microbiol 2019; 76:650-657. [DOI: 10.1007/s00284-019-01673-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/19/2019] [Indexed: 11/30/2022]
|
23
|
Li F, An X, Wu D, Xu J, Chen Y, Li W, Cao Y, Guo X, Lin X, Li C, Liu S, Song H. Engineering Microbial Consortia for High-Performance Cellulosic Hydrolyzates-Fed Microbial Fuel Cells. Front Microbiol 2019; 10:409. [PMID: 30936852 PMCID: PMC6432859 DOI: 10.3389/fmicb.2019.00409] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Microbial fuel cells (MFCs) are eco-friendly bio-electrochemical reactors that use exoelectrogens as biocatalyst for electricity harvest from organic biomass, which could also be used as biosensors for long-term environmental monitoring. Glucose and xylose, as the primary ingredients from cellulose hydrolyzates, is an appealing substrate for MFC. Nevertheless, neither xylose nor glucose can be utilized as carbon source by well-studied exoelectrogens such as Shewanella oneidensis. In this study, to harvest the electricity by rapidly harnessing xylose and glucose from corn stalk hydrolysate, we herein firstly designed glucose and xylose co-fed engineered Klebsiella pneumoniae-S. oneidensis microbial consortium, in which K. pneumoniae as the fermenter converted glucose and xylose into lactate to feed the exoelectrogens (S. oneidensis). To produce more lactate in K. pneumoniae, we eliminated the ethanol and acetate pathway via deleting pta (phosphotransacetylase gene) and adhE (alcohol dehydrogenase gene) and further constructed a synthesis and delivery system through expressing ldhD (lactate dehydrogenase gene) and lldP (lactate transporter gene). To facilitate extracellular electron transfer (EET) of S. oneidensis, a biosynthetic flavins pathway from Bacillus subtilis was expressed in a highly hydrophobic S. oneidensis CP-S1, which not only improved direct-contacted EET via enhancing S. oneidensis adhesion to the carbon electrode but also accelerated the flavins-mediated EET via increasing flavins synthesis. Furthermore, we optimized the ratio of glucose and xylose concentration to provide a stable carbon source supply in MFCs for higher power density. The glucose and xylose co-fed MFC inoculated with the recombinant consortium generated a maximum power density of 104.7 ± 10.0 mW/m2, which was 7.2-folds higher than that of the wild-type consortium (12.7 ± 8.0 mW/m2). Lastly, we used this synthetic microbial consortium in the corn straw hydrolyzates-fed MFC, obtaining a power density 23.5 ± 6.0 mW/m2.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Systems Bioengineering (MOE), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xingjuan An
- Key Laboratory of Systems Bioengineering (MOE), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Renhuai, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Xu
- Key Laboratory of Systems Bioengineering (MOE), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Chen
- Key Laboratory of Systems Bioengineering (MOE), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenchao Li
- Key Laboratory of Systems Bioengineering (MOE), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Key Laboratory of Systems Bioengineering (MOE), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xuewu Guo
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Sixin Liu
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (MOE), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Ebadinezhad B, Ebrahimi S, Shokrkar H. Evaluation of microbial fuel cell performance utilizing sequential batch feeding of different substrates. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Li H, Qu Y, Tian Y, Feng Y. The plant-enhanced bio-cathode: Root exudates and microbial community for nitrogen removal. J Environ Sci (China) 2019; 77:97-103. [PMID: 30573110 DOI: 10.1016/j.jes.2018.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 06/09/2023]
Abstract
A plant bio-electrochemical system (PBES) was constructed for organic pollutant removal and power generation. The bio-cathode, composed of granular activated carbon (GAC), stainless wire mesh and a plant species (Triticum aestivum L.), was able to catalyze cathodic reactions without any requirement for aeration or power input. During the 60-day-long operation, an average voltage of 516 mV (1000 Ω) and maximum power density (Pmax) of 0.83 W/m3 were obtained in the PBES. The total nitrogen removal and total organic carbon removal in the PBES were 85% and 97%, respectively. Microbial community analyses indicated that bacteria associated with power generation and organic removal were the predominant species in the bio-cathode, and plant-growth-promoting rhizobacteria were also found in the PBES. The results suggested that the coupling of plants with the GAC cathode may enhance the organic-matter degradation and energy generation from wastewater and therefore provide a new method for bio-cathode design and promote energy efficiency.
Collapse
Affiliation(s)
- Henan Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youpeng Qu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Yan Tian
- Heilongjiang Academy of Chemical Engineering, Harbin 150028, China; Harbin FengGe Ecological Environmental Science and Technology Company, Harbin 150028, China
| | - Yujie Feng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
26
|
Zhuang L, Tang Z, Ma J, Yu Z, Wang Y, Tang J. Enhanced Anaerobic Biodegradation of Benzoate Under Sulfate-Reducing Conditions With Conductive Iron-Oxides in Sediment of Pearl River Estuary. Front Microbiol 2019; 10:374. [PMID: 30881355 PMCID: PMC6406033 DOI: 10.3389/fmicb.2019.00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Anaerobic biodegradation of aromatic compounds under sulfate-reducing conditions is important to marine sediments. Sulfate respiration by a single bacterial strain and syntrophic metabolism by a syntrophic bacterial consortium are primary strategies for sulfate-dependent biodegradation of aromatic compounds. The objective of this study was to investigate the potential of conductive iron oxides to facilitate the degradation of aromatic compounds under sulfate-reducing conditions in marine sediments, using benzoate as a model aromatic compound. Here, in anaerobic incubations of sediments from the Pearl River Estuary, the addition of hematite or magnetite (20 mM as Fe atom) enhanced the rates of sulfate-dependent benzoate degradation by 81.8 and 91.5%, respectively, compared with control incubations without iron oxides. Further experiments demonstrated that the rate of sulfate-dependent benzoate degradation accelerated with increased magnetite concentration (5, 10, and 20 mM). The detection of acetate as an intermediate product implied syntrophic benzoate degradation pathway, which was also supported by the abundance of putative acetate- or/and H2-utilizing sulfate reducers from microbial community analysis. Microbial reduction of iron oxides under sulfate-reducing conditions only accounted for 2–11% of electrons produced by benzoate oxidation, thus the stimulatory effect of conductive iron oxides on sulfate-dependent benzoate degradation was not mainly due to an increased pool of terminal electron acceptors. The enhanced rates of syntrophic benzoate degradation by the presence of conductive iron oxides probably resulted from the establishment of a direct interspecies electron transfer (DIET) between syntrophic partners. In the presence of magnetite, Bacteroidetes and Desulfobulbaceae with potential function of extracellular electron transfer might be involved in syntrophic benzoate degradation. Results from this study will contribute to the development of new strategies for in situ bioremediation of anaerobic sediments contaminated with aromatic compounds, and provide a new perspective for the natural attenuation of aromatic compounds in iron-rich marine sediments.
Collapse
Affiliation(s)
- Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Ziyang Tang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Jinlian Ma
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Zhen Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Yueqiang Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Jia Tang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| |
Collapse
|
27
|
Electro-autotrophs induced the growth of exoelectrogens on the anode in a microbial fuel cell. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Wu X, Xiong X, Owens G, Brunetti G, Zhou J, Yong X, Xie X, Zhang L, Wei P, Jia H. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift. BIORESOURCE TECHNOLOGY 2018; 270:11-19. [PMID: 30199701 DOI: 10.1016/j.biortech.2018.08.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
In this study, carbon cloth anodes were modified using biogenic gold nanoparticles (BioAu) and nanohybrids of multi-walled carbon nanotubes blended with BioAu (BioAu/MWCNT) to improve the performance of microbial fuel cells (MFCs). The results demonstrated that BioAu modification significantly enhanced the electricity generation of MFCs. In particular, BioAu/MWCNT nanohybrids as the modifier displayed a better performance. The MFC with the BioAu/MWCNT electrode had the shortest start-up time (6.74 d) and highest power density (178.34 ± 4.79 mW/m2), which were 141.69% shorter and 56.11% higher compared with those of the unmodified control, respectively. These improvements were attributed to the excellent electrocatalytic activity and strong affinity towards exoelectrogens of the BioAu/MWCNT nanohybrids on the electrode. High throughput sequencing analysis indicated that the relative abundance of electroactive bacteria in the biofilm community, mostly from the classes of Gammaproteobacteria and Negativicutes, increased after anode modification.
Collapse
Affiliation(s)
- Xiayuan Wu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaomin Xiong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gianluca Brunetti
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinxin Xie
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijuan Zhang
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
29
|
Zeng X, Borole AP, Pavlostathis SG. Processes and electron flow in a microbial electrolysis cell bioanode fed with furanic and phenolic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35981-35989. [PMID: 29558790 DOI: 10.1007/s11356-018-1747-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Furanic and phenolic compounds are problematic compounds resulting from the pretreatment of lignocellulosic biomass for biofuel production. Microbial electrolysis cell (MEC) is a promising technology to convert furanic and phenolic compounds to renewable H2. The objective of the research presented here was to elucidate the processes and electron equivalents flow during the conversion of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA) compounds in the MEC bioanode. Cyclic voltammograms of the bioanode demonstrated that purely electrochemical reactions in the biofilm attached to the electrode were negligible. Instead, microbial reactions related to the biotransformation of the five parent compounds (i.e., fermentation followed by exoelectrogenesis) were the primary processes resulting in the electron equivalents flow in the MEC bioanode. A mass-based framework of substrate utilization and electron flow was developed to quantify the distribution of the electron equivalents among the bioanode processes, including biomass growth for each of the five parent compounds. Using input parameters of anode efficiency and biomass observed yield coefficients, it was estimated that more than 50% of the SA, FF, and HMF electron equivalents were converted to current. In contrast, only 12 and 9% of VA and HBA electron equivalents, respectively, resulted in current production, while 76 and 79% remained as fermentation end products not further utilized in exoelectrogenesis. For all five compounds, it was estimated that 10% of the initially added electron equivalents were used for fermentative biomass synthesis, while 2 to 13% were used for exoelectrogenic biomass synthesis. The proposed mass-based framework provides a foundation for the simulation of bioanode processes to guide the optimization of MECs converting biomass-derived waste streams to renewable H2.
Collapse
Affiliation(s)
- Xiaofei Zeng
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA
| | - Abhijeet P Borole
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA.
| |
Collapse
|
30
|
Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review. ENERGIES 2018. [DOI: 10.3390/en11112951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Bioelectrochemical systems (BESs) are emerging energy-effective and environment-friendly technologies. Different applications of BESs are able to effectively minimize wastes and treat wastewater while simultaneously recovering electricity, biohydrogen and other value-added chemicals via specific redox reactions. Although there are many studies that have greatly advanced the performance of BESs over the last decade, research and reviews on agriculture-relevant applications of BESs are very limited. Considering the increasing demand for food, energy and water due to human population expansion, novel technologies are urgently needed to promote productivity and sustainability in agriculture. Methodology: This review study is based on an extensive literature search regarding agriculture-related BES studies mainly in the last decades (i.e., 2009–2018). The databases used in this review study include Scopus, Google Scholar and Web of Science. The current and future applications of bioelectrochemical technologies in agriculture have been discussed. Findings/Conclusions: BESs have the potential to recover considerable amounts of electric power and energy chemicals from agricultural wastes and wastewater. The recovered energy can be used to reduce the energy input into agricultural systems. Other resources and value-added chemicals such as biofuels, plant nutrients and irrigation water can also be produced in BESs. In addition, BESs may replace unsustainable batteries to power remote sensors or be designed as biosensors for agricultural monitoring. The possible applications to produce food without sunlight and remediate contaminated soils using BESs have also been discussed. At the same time, agricultural wastes can also be processed into construction materials or biochar electrodes/electrocatalysts for reducing the high costs of current BESs. Future studies should evaluate the long-term performance and stability of on-farm BES applications.
Collapse
|
31
|
Zhao N, Jiang Y, Alvarado-Morales M, Treu L, Angelidaki I, Zhang Y. Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass. Bioelectrochemistry 2018; 123:145-149. [DOI: 10.1016/j.bioelechem.2018.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
|
32
|
Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 2018; 36:1316-1327. [DOI: 10.1016/j.biotechadv.2018.04.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
33
|
Kokko M, Epple S, Gescher J, Kerzenmacher S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 258:376-389. [PMID: 29548640 DOI: 10.1016/j.biortech.2018.01.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given.
Collapse
Affiliation(s)
- Marika Kokko
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Stefanie Epple
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany.
| |
Collapse
|
34
|
Analysis of functional genomes from metagenomes: Revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition. Bioelectrochemistry 2018; 119:59-67. [DOI: 10.1016/j.bioelechem.2017.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/19/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022]
|
35
|
|
36
|
Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism. Bioelectrochemistry 2017. [DOI: 10.1016/j.bioelechem.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Jadhav DA, Ghosh Ray S, Ghangrekar MM. Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2017. [DOI: 10.1016/j.rser.2017.03.096] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Liu J, Vipulanandan C. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 66:169-177. [PMID: 28404510 DOI: 10.1016/j.wasman.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/09/2017] [Accepted: 04/02/2017] [Indexed: 05/27/2023]
Abstract
In this study, metallic nanoparticles (Fe, Ni, and Fe/Ni) were used as cathode catalysts to enhance power production and to improve the anode performance of a two-chambered microbial fuel cell (MFC). The metallic nanoparticles were rod-shaped and produced by the precipitation/co-precipitation method. A biosurfactant was produced in the anode chamber of the MFC from used vegetable oil by the bacteria Serratia sp. Overall cell voltage, power density, bacterial growth, and biosurfactant production were studied by applying different types of metallic nanoparticles to the cathode electrode. The influence of various types of nanoparticles on the impedance of the MFC was also investigated by electrochemical impedance spectroscopy (EIS), including analyses of anode impedance, cathode impedance, anode solution resistance, cathode solution resistance, and membrane resistance. The nanoparticles improved MFC performance in the following order: Fe>Ni>Fe/Ni. The addition of 1.5mg/cm2 Fe nanoparticles to the cathode surface enhanced power production by over 500% to 66.4mW/m3, promoted bacterial growth and biosurfactant production in the anode solution by 132.5% and 32.0%, respectively, and reduced anode impedance, cathode impedance, and membrane resistance by 26.8%, 81.6%, and 33.8% to 159.00Ω, 7.69Ω, and 261.09Ω, respectively. For the first time, biosurfacant production in the anode chamber of the MFC was promoted by using the metallic nanoparticles as cathode catalysts. By improving the cathode properties, this study showed a new way to manipulated the performance of the anode chamber of the MFC.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Environmental Engineering, College of Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA; Department of Civil and Environmental Engineering, Cullen College of Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA.
| | - Cumaraswamy Vipulanandan
- Department of Civil and Environmental Engineering, Cullen College of Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX 77204, USA
| |
Collapse
|
39
|
Effect of cathode environment on bioelectricity generation using a novel consortium in anode side of a microbial fuel cell. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
A Pilot-scale Benthic Microbial Electrochemical System (BMES) for Enhanced Organic Removal in Sediment Restoration. Sci Rep 2017; 7:39802. [PMID: 28059105 PMCID: PMC5216391 DOI: 10.1038/srep39802] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/25/2016] [Indexed: 11/25/2022] Open
Abstract
A benthic microbial electrochemical systems (BMES) of 195 L (120 cm long, 25 cm wide and 65 cm height) was constructed for sediment organic removal. Sediment from a natural river (Ashi River) was used as test sediments in the present research. Three-dimensional anode (Tri-DSA) with honeycomb structure composed of carbon cloth and supporting skeleton was employed in this research for the first time. The results demonstrated that BMES performed good in organic-matter degradation and energy generation from sediment and could be considered for river sediments in situ restoration as novel method. Community analysis from the soil and anode using 16S rDNA gene sequencing showed that more electrogenic functional bacteria was accumulated in anode area when circuit connected than control system.
Collapse
|
41
|
Tian Y, Mei X, Liang Q, Wu D, Ren N, Xing D. Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells. RSC Adv 2017. [DOI: 10.1039/c6ra27385h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The syntrophic interactions between polysaccharide-degrading bacteria and exoelectrogens drove simultaneous alternative energy production and degradation of potato pulp waste in microbial fuel cells.
Collapse
Affiliation(s)
- Yushi Tian
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Xiaoxue Mei
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Qing Liang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Di Wu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
- College of Life Science
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| |
Collapse
|
42
|
Wang YZ, Shen Y, Gao L, Liao ZH, Sun JZ, Yong YC. Improving the extracellular electron transfer of Shewanella oneidensis MR-1 for enhanced bioelectricity production from biomass hydrolysate. RSC Adv 2017. [DOI: 10.1039/c7ra04106c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Direct electricity production from biomass hydrolysate by microbial fuel cells (MFC) holds great promise for the development of the sustainable biomass industry.
Collapse
Affiliation(s)
- Yan-Zhai Wang
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yu Shen
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 401122
| | - Lu Gao
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Zhi-Hong Liao
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jian-Zhong Sun
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yang-Chun Yong
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
43
|
Yang Y, Tang F, Su X, Yin H, Ge F. Identification and evaluation of a dominant alga from municipal wastewater in removal of nutrients. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2727-2735. [PMID: 27973377 DOI: 10.2166/wst.2016.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To access better removal of nutrients with algae-based techniques, a dominant alga from real municipal wastewater was identified and its capacity in removing low concentrations of nitrogen (NH+4 or NO-3) and phosphorus (PO3-4) was evaluated. Results showed that Oedogonium brevicingulatum, a filamentous green alga, was confirmed as the dominant alga in the secondary effluent of a municipal wastewater treatment plant by polymerase chain reaction-denaturing gradient gel electrophoresis. Low concentrations of NH+4 or NO-3 (≤5 mg N L-1) and PO3-4 (≤0.5 mg P L-1) were 100% removed by the algae in a 7-d test. The maximum nutrient removal rate (Vmax) and the half-saturation constant (Km) for NH+4 (10.03 ± 0.95 mg g-1d-1 and 0.19 ± 0.03 mg L-1) and NO-3 (8.43 ± 0.21 mg g-1 d-1 and 0.27 ± 0.11 mg L-1) indicated the uptake capability for NH+4 is higher than that for NO-3. Meanwhile, it showed higher affinity for PO3-4 (Vmax: 1.42 ± 0.02 mg g-1 d-1; Km: 0.02 ± 0.00 mg L-1) with NH+4 as nitrogen source than that (Vmax: 1.24 ± 0.15 mg g-1 d-1; Km: 0.06 ± 0.03 mg L-1) with NO-3 as nitrogen source. Moreover, nutrient removal efficiencies were observed steady when nitrogen/phosphorus ratio ranged from 5:1 to 20:1. These results suggest that the dominant algae from municipal wastewater have potentials to be applied in nutrient removal.
Collapse
Affiliation(s)
- Yixuan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fei Tang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China E-mail:
| | - Xiaoling Su
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China E-mail:
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China E-mail:
| |
Collapse
|
44
|
Fraiwan A, Kwan L, Choi S. A disposable power source in resource-limited environments: A paper-based biobattery generating electricity from wastewater. Biosens Bioelectron 2016; 85:190-197. [DOI: 10.1016/j.bios.2016.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/28/2023]
|
45
|
Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification. Appl Biochem Biotechnol 2016; 181:1123-1139. [DOI: 10.1007/s12010-016-2273-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
46
|
Zhao Z, Zhang Y, Ma W, Sun J, Sun S, Quan X. Enriching functional microbes with electrode to accelerate the decomposition of complex substrates during anaerobic digestion of municipal sludge. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Jablonska MA, Rybarczyk MK, Lieder M. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells. BIORESOURCE TECHNOLOGY 2016; 208:117-122. [PMID: 26930033 DOI: 10.1016/j.biortech.2016.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis.
Collapse
Affiliation(s)
- Milena A Jablonska
- Gdansk University of Technology, Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Maria K Rybarczyk
- Gdansk University of Technology, Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Marek Lieder
- Gdansk University of Technology, Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
48
|
Miran W, Nawaz M, Jang J, Lee DS. Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:197-205. [PMID: 26780146 DOI: 10.1016/j.scitotenv.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/29/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Microorganisms have the potential to become a game-changer in sustainable energy production in the coming generations. Microbial fuel cells (MFCs) as an alternative renewable technology can capture bioenergy (electricity) from carbon-based sources by utilizing microorganisms as biocatalysts. This study demonstrated that MFC technology can be explored for bioelectricity production from orange peel waste (OPW), an agricultural byproduct and an organic substrate, without any chemical pretreatment or the addition of extra mediators. A maximum voltage generation of 0.59 ± 0.02 V (at 500 Ω) was achieved in a dual chamber MFC during stable voltage generation stages. The maximum power density and current density obtained were 358.8 ± 15.6 mW/m(2) and 847 ± 18.4 mA/m(2), respectively. Key components of OPW, namely pectin and cellulose, were also tested in their pure form, with pectin giving a stable current, while no significant current generation was achieved using cellulose alone as the substrate, thus demonstrating the absence of cellulose-degrading bacteria. Maximum pectinase and polygalacturonase enzyme activities of 18.55 U/g and 9.04 U/g (per gram of substrate), respectively were achieved during orange peel degradation in MFCs. Bacterial identification using 16S rRNA analysis of the initial inoculum fed to the MFC, the biofilm attached to the anode, and the anode suspension, showed significant diversity in community composition. A well-known exoelectrogen, Pseudomonas, was present among the predominant genera in the anode biofilm.
Collapse
Affiliation(s)
- Waheed Miran
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Mohsin Nawaz
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
49
|
Sun G, Rodrigues DDS, Thygesen A, Daniel G, Fernando D, Meyer AS. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Sun M, Zhai LF, Li WW, Yu HQ. Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev 2016; 45:2847-70. [DOI: 10.1039/c5cs00903k] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Energy generated from wastes by using MFC technology could be effectively stored and utilized for real-world applications.
Collapse
Affiliation(s)
- Min Sun
- Department of Chemical Engineering
- Hefei University of Technology
- Hefei
- China
- CAS Key Laboratory of Urban Pollutant Conversion
| | - Lin-Feng Zhai
- Department of Chemical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science & Technology of China
- Hefei
- China
| |
Collapse
|