1
|
Li J, Jiang F, Pi C, Bao T, Gao L, Wu X. Multi-omic profiling of a novel Myrothecium species reveals its potential mechanism of lignin degradation. Int J Biol Macromol 2024; 282:137134. [PMID: 39486701 DOI: 10.1016/j.ijbiomac.2024.137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Lignin utilization is one of the key challenges in the valorziation of lignocellulose. Filamentous fungi are promising candidates for lignin degradation and mineralization. However, novel lignin-degrading species are underexplored and the mechanism of lignin degradation is not fully understood. Here we isolated and characterized a novel species, Myrothecium wuxin, capable of utilizing lignosulfonate as the sole carbon source. To understand the mechanism of lignin degradation, genomic, transcriptomic and metabolic analyses were performed. The genome was sequenced, and assembled to a size of 48.55 Mb, with a contig N50 size of 5.67Mb. A total of 14,221 protein-coding genes were predicted, including a high number of potential ligninolytic enzymes. Transcriptomic analysis revealed a pronounced effect of lignosulfonate on gene expression profiles. More than twenty intermediate aromatic metabolites were identified during lignosulfonate utilization. Through genomic annotation, the genes potentially involved in lignin degradation were identified, and more than nine metabolic pathways of lignin-derived aromatic intermediates were predicted, including the homogentisate pathway, benzoic acid pathway, as well as the tree-branched β-ketoadipate pathway. The genomic information will provide a valuable resource for lignin degradation, while the elucidated catabolic pathways and associated enzymes provide exciting biotechnological opportunities for lignin valorization and production of valuable chemicals.
Collapse
Affiliation(s)
- Jinyang Li
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Fangting Jiang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Changyu Pi
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tongtong Bao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Le Gao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Xin Wu
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
2
|
Martin-Vicente A, Souza ACO, Guruceaga X, Thorn HI, Xie J, Nywening AV, Ge W, Fortwendel JR. A conserved fungal morphogenetic kinase regulates pathogenic growth in response to carbon source diversity. Nat Commun 2024; 15:8945. [PMID: 39414804 PMCID: PMC11484838 DOI: 10.1038/s41467-024-53358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Fungal pathogens must exhibit strong nutritional plasticity, effectively sensing and utilizing diverse nutrients to support virulence. How the signals generated by nutritional sensing are efficiently translated to the morphogenetic machinery for optimal growth and support of virulence remains incompletely understood. Here, we show that the conserved morphogenesis-related kinase, CotA, imparts isoform-specific control over Aspergillus fumigatus invasive growth in host-mimicking environments and during infection. CotA-mediated invasive growth is responsive to exogenous carbon source quality, with only preferred carbon sources supporting hyphal morphogenesis in a mutant lacking one of two identified protein isoforms. Strikingly, we find that the CotA protein does not regulate, nor is cotA gene expression regulated by, the carbon catabolite repression system. Instead, we show that CotA partially mediates invasive growth in specific carbon sources and virulence through the conserved downstream effector and translational repressor, SsdA. Therefore, A. fumigatus CotA accomplishes its conserved morphogenetic functions to drive pathogenic growth by translating host-relevant carbon source quality signals into morphogenetic outputs for efficient tissue invasive growth.
Collapse
Affiliation(s)
- Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ana Camila Oliveira Souza
- Department of Pharmacy and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Harrison I Thorn
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Jinhong Xie
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Ashley V Nywening
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Wenbo Ge
- Department of Pharmacy and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
3
|
Ferreyra-Suarez D, García-Depraect O, Castro-Muñoz R. A review on fungal-based biopesticides and biofertilizers production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116945. [PMID: 39222612 DOI: 10.1016/j.ecoenv.2024.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The escalating use of inorganic fertilizers and pesticides to boost crop production has led to the depletion of natural resources, contamination of water sources, and environmental crises. In response, the scientific community is exploring eco-friendly alternatives, such as fungal-based biofertilizers and biopesticides, which have proven effectiveness in enhancing plant health and growth while sustainably managing plant diseases and pests. This review article examines the production methodologies of these bioproducts, highlighting their role in sustainable agriculture and advancing our understanding of soil microorganisms. Despite their increasing demand, their global market presence remains limited compared to traditional chemical counterparts. The article addresses: 1) the production of biofertilizers and biopesticides, 2) their contribution to crop productivity, 3) their environmental impact and regulations, and 4) current production technologies. This comprehensive approach aims to promote the transition towards more sustainable agricultural practices.
Collapse
Affiliation(s)
- Dante Ferreyra-Suarez
- Pilgrim's Pride, S. de R.L. de C.V., Carretera a Cd. Juarez km 20.5, Gomez Palacio, Durango, Mexico
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
4
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Jakab Á, Csillag K, Antal K, Boczonádi I, Kovács R, Pócsi I, Emri T. Total transcriptome response for tyrosol exposure in Aspergillus nidulans. Fungal Biol 2024; 128:1664-1674. [PMID: 38575239 DOI: 10.1016/j.funbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/27/2023] [Accepted: 01/12/2024] [Indexed: 04/06/2024]
Abstract
Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary; Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary.
| | - Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly Catholic University, 3300, Eger, Hungary
| | - Imre Boczonádi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary; HUN-REN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary; HUN-REN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Santiago KAA, Wong WC, Goh YK, Tey SH, Ting ASY. Pathogenicity of monokaryotic and dikaryotic mycelia of Ganoderma boninense revealed via LC-MS-based metabolomics. Sci Rep 2024; 14:5330. [PMID: 38438519 PMCID: PMC10912678 DOI: 10.1038/s41598-024-56129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
This study compared the pathogenicity of monokaryotic (monokaryon) and dikaryotic (dikaryon) mycelia of the oil palm pathogen Ganoderma boninense via metabolomics approach. Ethyl acetate crude extracts of monokaryon and dikaryon were analysed by liquid chromatography quadrupole/time-of-flight-mass spectrometry (LC-Q/TOF-MS) coupled with multivariate data analysis using MetaboAnalyst. The mummichog algorithm was also used to identify the functional activities of monokaryon and dikaryon without a priori identification of all their secondary metabolites. Results revealed that monokaryon produced lesser fungal metabolites than dikaryon, suggesting that monokaryon had a lower possibility of inducing plant infection. These findings were further supported by the identified functional activities. Monokaryon exhibits tyrosine, phenylalanine, and tryptophan metabolism, which are important for fungal growth and development and to produce toxin precursors. In contrast, dikaryon exhibits the metabolism of cysteine and methionine, arginine and proline, and phenylalanine, which are important for fungal growth, development, virulence, and pathogenicity. As such, monokaryon is rendered non-pathogenic as it produces growth metabolites and toxin precursors, whereas dikaryon is pathogenic as it produces metabolites that are involved in fungal growth and pathogenicity. The LC-MS-based metabolomics approach contributes significantly to our understanding of the pathogenesis of Ganoderma boninense, which is essential for disease management in oil palm plantations.
Collapse
Affiliation(s)
- Krystle Angelique A Santiago
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Wei Chee Wong
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - You Keng Goh
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Seng Heng Tey
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Okal EJ, Heng G, Magige EA, Khan S, Wu S, Ge Z, Zhang T, Mortimer PE, Xu J. Insights into the mechanisms involved in the fungal degradation of plastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115202. [PMID: 37390726 DOI: 10.1016/j.ecoenv.2023.115202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.
Collapse
Affiliation(s)
- Eyalira Jacob Okal
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui Heng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Ephie A Magige
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sehroon Khan
- Department of Biotechnology, Faculty of Natural Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Shixi Wu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Zhiqiang Ge
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Tianfu Zhang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, Hubei, China
| | - Peter E Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
9
|
Arentshorst M, Reijngoud J, van Tol DJC, Reid ID, Arendsen Y, Pel HJ, van Peij NNME, Visser J, Punt PJ, Tsang A, Ram AFJ. Utilization of ferulic acid in Aspergillus niger requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II) 2Cys 6 domain. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:978845. [PMID: 37746181 PMCID: PMC10512302 DOI: 10.3389/ffunb.2022.978845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 09/26/2023]
Abstract
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
Collapse
Affiliation(s)
- Mark Arentshorst
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jos Reijngoud
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Daan J. C. van Tol
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Yvonne Arendsen
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | - Herman J. Pel
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | | | - Jaap Visser
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Fungal Genetics and Technology Consultancy, Wageningen, AJ, Netherlands
| | - Peter J. Punt
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F. J. Ram
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
10
|
Wang W, Zhao Y, Bai N, Zhang KQ, Yang J. AMPK Is Involved in Regulating the Utilization of Carbon Sources, Conidiation, Pathogenicity, and Stress Response of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0222522. [PMID: 35916406 PMCID: PMC9431048 DOI: 10.1128/spectrum.02225-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric complex, can sense energy and nutritional status in eukaryotic cells, thereby participating in the regulation of multiple cellular processes. In this study, we characterized the function of the catalytic α-subunit (SNF1) and the two regulatory β- and γ-subunits (GAL83 and SNF4) of AMPK in a representative nematode-trapping fungus, Arthrobotrys oligospora, by gene knockout, phenotypic analysis, and RNA sequencing. The ability of the AMPK complex mutants (including ΔAosnf1, ΔAogal83, and ΔAosnf4) to utilize a nonfermentable carbon source (glycerol) was reduced, and the spore yields and trap formation were remarkably decreased. Moreover, AMPK plays an important role in regulating stress response and nematode predation efficiency. Transcriptomic profiling between the wild-type strain and ΔAosnf1 showed that differentially expressed genes were enriched for peroxisome, endocytosis, fatty acid degradation, and multilipid metabolism (sphingolipid, ether lipid, glycerolipid, and glycerophospholipid). Meanwhile, a reduced lipid droplet accumulation in ΔAosnf1, ΔAogal83, and ΔAosnf4 mutants was observed, and more vacuoles appeared in the mycelia of the ΔAosnf1 mutant. These results highlight the important regulatory role of AMPK in the utilization of carbon sources and lipid metabolism, as well as providing novel insights into the regulatory mechanisms of the mycelia development, conidiation, and trap formation of nematode-trapping (NT) fungi. IMPORTANCE NT fungi are widely distributed in various ecosystems and are important factors in the control of nematode populations in nature; their trophic mycelia can form unique infectious devices (traps) for capturing nematodes. Arthrobotrys oligospora is a representative NT fungi which can develop complex three-dimensional networks (adhesive networks) for nematode predation. Here, we demonstrated that AMPK plays an important role in the glycerol utilization, conidiation, trap formation, and nematode predation of A. oligospora, which was further confirmed by transcriptomic analysis of the wild-type and mutant strains. In particular, our analysis indicated that AMPK is required for lipid metabolism, which is primarily associated with energy regulation and is essential for trap formation. Therefore, this study extends the functional study of AMPK in NT fungi and helps to elucidate the molecular mechanism of the regulation of trap development, as well as laying the foundation for the development of efficient nematode biocontrol agents.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
11
|
Seenivasagan R, Babalola OO. Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. BIOLOGY 2021; 10:1111. [PMID: 34827104 PMCID: PMC8614680 DOI: 10.3390/biology10111111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Farmers are now facing a reduction in agricultural crop yield, due to the infertility of soils and poor farming. The application of chemical fertilizers distresses soil fertility and also human health. Inappropriate use of chemical fertilizer leads to the rapid decline in production levels in most parts of the world, and hence requires the necessary standards of good cultivation practice. Biofertilizers and biopesticides have been used in recent years by farmers worldwide to preserve natural soil conditions. Biofertilizer, a replacement for chemical fertilizer, is cost-effective and prevents environmental contamination to the atmosphere, and is a source of renewable energy. In contrast to chemical fertilizers, biofertilizers are cost-effective and a source of renewable energy that preserves long-term soil fertility. The use of biofertilizers is, therefore, inevitable to increase the earth's productivity. A low-input scheme is feasible to achieve farm sustainability through the use of biological and organic fertilizers. This study investigates the use of microbial inoculants as biofertilizers to increase crop production.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| |
Collapse
|
12
|
Abstract
Aspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilization of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolized via different pathways in A. fumigatus and that acetate utilization is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilization is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, antifungal drugs, and human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilization in A. fumigatus, and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of antifungal strategies. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion. This work shows that A. fumigatus metabolizes acetate via different pathways, a process that is dependent on the transcription factor FacB. Furthermore, the type and concentration of the extracellular available carbon source were determined to shape A. fumigatus virulence determinants such as secondary metabolite secretion and cell wall composition. Subsequently, interactions with immune cells are altered in a carbon source-specific manner. FacB is required for A. fumigatus in vivo virulence in both insect and mammalian models of invasive aspergillosis. This is the first report that characterizes acetate utilization in A. fumigatus and highlights the importance of available host-specific carbon sources in shaping virulence traits and potentially subsequent disease outcome.
Collapse
|
13
|
Transcription Factors in the Fungus Aspergillus nidulans: Markers of Genetic Innovation, Network Rewiring and Conflict between Genomics and Transcriptomics. J Fungi (Basel) 2021; 7:jof7080600. [PMID: 34436139 PMCID: PMC8396895 DOI: 10.3390/jof7080600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Gene regulatory networks (GRNs) are shaped by the democratic/hierarchical relationships among transcription factors (TFs) and associated proteins, together with the cis-regulatory sequences (CRSs) bound by these TFs at target promoters. GRNs control all cellular processes, including metabolism, stress response, growth and development. Due to the ability to modify morphogenetic and developmental patterns, there is the consensus view that the reorganization of GRNs is a driving force of species evolution and differentiation. GRNs are rewired through events including the duplication of TF-coding genes, their divergent sequence evolution and the gain/loss/modification of CRSs. Fungi (mainly Saccharomycotina) have served as a reference kingdom for the study of GRN evolution. Here, I studied the genes predicted to encode TFs in the fungus Aspergillus nidulans (Pezizomycotina). The analysis of the expansion of different families of TFs suggests that the duplication of TFs impacts the species level, and that the expansion in Zn2Cys6 TFs is mainly due to dispersed duplication events. Comparison of genomic annotation and transcriptomic data suggest that a significant percentage of genes should be re-annotated, while many others remain silent. Finally, a new regulator of growth and development is identified and characterized. Overall, this study establishes a novel theoretical framework in synthetic biology, as the overexpression of silent TF forms would provide additional tools to assess how GRNs are rewired.
Collapse
|
14
|
Zuriegat Q, Zheng Y, Liu H, Wang Z, Yun Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2021; 22:882-895. [PMID: 33969616 PMCID: PMC8232035 DOI: 10.1111/mpp.13068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Fusarium oxysporum is a well-known soilborne plant pathogen that causes severe vascular wilt in economically important crops worldwide. During the infection process, F. oxysporum not only secretes various virulence factors, such as cell wall-degrading enzymes (CWDEs), effectors, and mycotoxins, that potentially play important roles in fungal pathogenicity but it must also respond to extrinsic abiotic stresses from the environment and the host. Over 700 transcription factors (TFs) have been predicted in the genome of F. oxysporum, but only 26 TFs have been functionally characterized in various formae speciales of F. oxysporum. Among these TFs, a total of 23 belonging to 10 families are required for pathogenesis through various mechanisms and pathways, and the zinc finger TF family is the largest family among these 10 families, which consists of 15 TFs that have been functionally characterized in F. oxysporum. In this review, we report current research progress on the 26 functionally analysed TFs in F. oxysporum and sort them into four groups based on their roles in F. oxysporum pathogenicity. Furthermore, we summarize and compare the biofunctions, involved pathways, putative targets, and homologs of these TFs and analyse the relationships among them. This review provides a systematic analysis of the regulation of virulence-related genes and facilitates further mechanistic analysis of TFs important in F. oxysporum virulence.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuru Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Institute for Food and Drug Quality ControlFuzhouChina
| | - Hong Liu
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
15
|
Mannan AA, Bates DG. Designing an irreversible metabolic switch for scalable induction of microbial chemical production. Nat Commun 2021; 12:3419. [PMID: 34103495 PMCID: PMC8187666 DOI: 10.1038/s41467-021-23606-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.
Collapse
Affiliation(s)
- Ahmad A Mannan
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Declan G Bates
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
16
|
Tanaka M, Gomi K. Induction and Repression of Hydrolase Genes in Aspergillus oryzae. Front Microbiol 2021; 12:677603. [PMID: 34108952 PMCID: PMC8180590 DOI: 10.3389/fmicb.2021.677603] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The filamentous fungus Aspergillus oryzae, also known as yellow koji mold, produces high levels of hydrolases such as amylolytic and proteolytic enzymes. This property of producing large amounts of hydrolases is one of the reasons why A. oryzae has been used in the production of traditional Japanese fermented foods and beverages. A wide variety of hydrolases produced by A. oryzae have been used in the food industry. The expression of hydrolase genes is induced by the presence of certain substrates, and various transcription factors that regulate such expression have been identified. In contrast, in the presence of glucose, the expression of the glycosyl hydrolase gene is generally repressed by carbon catabolite repression (CCR), which is mediated by the transcription factor CreA and ubiquitination/deubiquitination factors. In this review, we present the current knowledge on the regulation of hydrolase gene expression, including CCR, in A. oryzae.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Shizuoka, Japan
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Yang S, Zhou H, Dai W, Xiong J, Chen F. Effect of Static Magnetic Field on Monascus ruber M7 Based on Transcriptome Analysis. J Fungi (Basel) 2021; 7:256. [PMID: 33808107 PMCID: PMC8066190 DOI: 10.3390/jof7040256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
The effects of a static magnetic field (SMF) on Monascus ruber M7 (M. ruber M7) cultured on potato dextrose agar (PDA) plates under SMF treatment at different intensities (5, 10, and 30 mT) were investigated in this paper. The results revealed that, compared with the control (CK, no SMF treatment), the SMF at all tested intensities did not significantly influence the morphological characteristics of M. ruber M7, while the intracellular and extracellular Monascus pigments (MPs) and extracellular citrinin (CIT) of M. ruber M7 were increased at 10 and 30 mT SMF but there was no impact on the MPs and CIT at 5 mT SMF. The transcriptome data of M. ruber M7 cultured at 30 mT SMF on PDA for 3 and 7 d showed that the SMF could increase the transcriptional levels of some relative genes with the primary metabolism, including the carbohydrate metabolism, amino acid metabolism, and lipid metabolism, especially in the early growing period (3 d). SMF could also affect the transcriptional levels of the related genes to the biosynthetic pathways of MPs, CIT, and ergosterol, and improve the transcription of the relative genes in the mitogen-activated protein kinase (MAPK) signaling pathway of M. ruber M7. These findings provide insights into a comprehensive understanding of the effects of SMF on filamentous fungi.
Collapse
Affiliation(s)
- Shuyan Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyi Zhou
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihua Dai
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- College of Science, Huazhong Agricultural University, Wuhan 430070, China;
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China; (S.Y.); (H.Z.); (W.D.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Adigun OA, Nadeem M, Pham TH, Jewell LE, Cheema M, Thomas R. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. PLANT, CELL & ENVIRONMENT 2021; 44:1-16. [PMID: 33034375 DOI: 10.1111/pce.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens pose a significant threat to the food industry and food security accounting for 10-40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic-acquired resistance, basal resistance, hypersensitivity and the gene-for-gene concept in this context.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Rd, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| |
Collapse
|
19
|
Fatty Acid Synthase Beta Dehydratase in the Lipid Biosynthesis Pathway Is Required for Conidiogenesis, Pigmentation and Appressorium Formation in Magnaporthe oryzae S6. Int J Mol Sci 2020; 21:ijms21197224. [PMID: 33007862 PMCID: PMC7582888 DOI: 10.3390/ijms21197224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023] Open
Abstract
Lipid biosynthesis produces glycerol, which is important in fueling turgor pressure necessary for germination and penetration of plant host by fungi. As the relationship between pathogenicity and the lipid biosynthetic pathway is not fully understood, we have elucidated the role of the fatty acid synthase beta subunit dehydratase (FAS1) gene in lipid biosynthesis. The FAS1 gene was silenced through homologous double crossover in Magnaporthe oryzae strain S6 to study the effect on lipid biosynthesis. The vegetative growth of Δfas1 mutants show the highest drop on oleic acid (between 10 and 50%), while the mycelial dry weight of mutants dropped significantly on all media. Conidiation of FAS1 mutants show a ~10- and ~5-fold reduction on oatmeal and Potato Dextrose Agar (PDA), respectively. Mutants formed mycelium that were mildly pigmented, indicating that the deletion of FAS1 may have affected melanin biosynthesis. Biochemical and gene expression studies concluded that the fatty acid degradation pathway might have been interrupted by FAS1 deletion. FAS1 mutants showed no enzyme activity on glucose or olive oil, suggesting that the mutants may lack functional peroxisomes and be defective in β-oxidation of fatty acids, hence explaining the reduced lipid deposits in the spores.
Collapse
|
20
|
Quemener M, Mara P, Schubotz F, Beaudoin D, Li W, Pachiadaki M, Sehein TR, Sylvan JB, Li J, Barbier G, Edgcomb V, Burgaud G. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ Microbiol 2020; 22:3950-3967. [PMID: 32743889 DOI: 10.1111/1462-2920.15181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023]
Abstract
The lithified oceanic crust, lower crust gabbros in particular, has remained largely unexplored by microbiologists. Recently, evidence for heterogeneously distributed viable and transcriptionally active autotrophic and heterotrophic microbial populations within low-biomass communities was found down to 750 m below the seafloor at the Atlantis Bank Gabbro Massif, Indian Ocean. Here, we report on the diversity, activity and adaptations of fungal communities in the deep oceanic crust from ~10 to 780 mbsf by combining metabarcoding analyses with mid/high-throughput culturing approaches. Metabarcoding along with culturing indicate a low diversity of viable fungi, mostly affiliated to ubiquitous (terrestrial and aquatic environments) taxa. Ecophysiological analyses coupled with metatranscriptomics point to viable and transcriptionally active fungal populations engaged in cell division, translation, protein modifications and other vital cellular processes. Transcript data suggest possible adaptations for surviving in the nutrient-poor, lithified deep biosphere that include the recycling of organic matter. These active communities appear strongly influenced by the presence of cracks and veins in the rocks where fluids and resulting rock alteration create micro-niches.
Collapse
Affiliation(s)
- Maxence Quemener
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Florence Schubotz
- MARUM-Center for Marine Environmental Sciences, University Bremen, Leobener Strasse 8, Bremen, 28359, Germany
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Wei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Maria Pachiadaki
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Taylor R Sehein
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, 77845, USA
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Georges Barbier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Virginia Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Gaëtan Burgaud
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| |
Collapse
|
21
|
Wang ZL, Pan HB, Huang J, Yu XP. The zinc finger transcription factors Bbctf1α and Bbctf1β regulate the expression of genes involved in lipid degradation and contribute to stress tolerance and virulence in a fungal insect pathogen. PEST MANAGEMENT SCIENCE 2020; 76:2589-2600. [PMID: 32077581 DOI: 10.1002/ps.5797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND To initiate insect infection, entomopathogenic fungi produce diverse cuticle-degrading enzymes. Of those, lipolytic enzymes participate in epicuticular lipid hydrolysis and thus facilitate fungal penetration through the outermost cuticular barrier of the insect host. The Far/CTF1-type zinc finger transcription factors play an important role in the regulation of lipolytic activity and fungal pathogenicity in plant pathogens but remain functionally unknown in fungal insect pathogens. RESULTS Two Far/CTF1-type transcription factor Bbctf1α and Bbctf1β, which are essential for differential expression of genes involved in the fungal lipid degradation, were identified and functionally characterized in a fungal entomopathogen Beauveria bassiana. Disruption of each gene led to drastic losses of extracellular lipolytic activities under lipidic substrate-inducing conditions, followed by remarkable phenotypic defects associated with the fungal biocontrol potential. These defects mainly included severe impairments of mycelial growth and conidium formation, and drastic losses of tolerance to the stresses of oxidation and cell wall perturbation during colony growth under either normal or induction conditions. Bioassays showed that the virulence of each disruption mutant on the greater wax moth was remarkably attenuated in topical immersion. However, there was no significant difference in intrahemolymph injection when the cuticle penetration process was bypassed. CONCLUSIONS Bbctf1α and Bbctf1β are multifunctional transcription factors that play vital roles in the regulation of fungal lipid utilization and contribute to the vegetative growth, sporulation capacity, environmental fitness and pest control potential in B. bassiana. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Jue Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| |
Collapse
|
22
|
Gazengel K, Lebreton L, Lapalu N, Amselem J, Guillerm-Erckelboudt AY, Tagu D, Daval S. pH effect on strain-specific transcriptomes of the take-all fungus. PLoS One 2020; 15:e0236429. [PMID: 32730288 PMCID: PMC7392285 DOI: 10.1371/journal.pone.0236429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
The soilborne fungus Gaeumannomyces tritici (G. tritici) causes the take-all disease on wheat roots. Ambient pH has been shown to be critical in different steps of G. tritici life cycle such as survival in bulk soil, saprophytic growth, and pathogenicity on plants. There are however intra-specific variations and we previously found two types of G. tritici strains that grow preferentially either at acidic pH or at neutral/alkaline pH; gene expression involved in pH-signal transduction pathway and pathogenesis was differentially regulated in two strains representative of these types. To go deeper in the description of the genetic pathways and the understanding of this adaptative mechanism, transcriptome sequencing was achieved on two strains (PG6 and PG38) which displayed opposite growth profiles in two pH conditions (acidic and neutral). PG6, growing better at acidic pH, overexpressed in this condition genes related to cell proliferation. In contrast, PG38, which grew better at neutral pH, overexpressed in this condition genes involved in fatty acids and amino acid metabolisms, and genes potentially related to pathogenesis. This strain also expressed stress resistance mechanisms at both pH, to assert a convenient growth under various ambient pH conditions. These differences in metabolic pathway expression between strains at different pH might buffer the effect of field or soil variation in wheat fields, and explain the success of the pathogen.
Collapse
Affiliation(s)
- Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
- * E-mail:
| | | | - Nicolas Lapalu
- AgroParisTech, INRAE, Université Paris-Saclay, BIOGER, Thiverval-Grignon, France
| | - Joëlle Amselem
- INRAE, Université Paris-Saclay, URGI, Versailles, France
| | | | - Denis Tagu
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | |
Collapse
|
23
|
van Munster JM, Daly P, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Arvas M, Raulo R, Pullan ST, Delmas S, Grigoriev IV, Tucker GA, Simmons BA, Archer DB. Succession of physiological stages hallmarks the transcriptomic response of the fungus Aspergillus niger to lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:69. [PMID: 32313551 PMCID: PMC7155255 DOI: 10.1186/s13068-020-01702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Understanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed. Here we aimed to uncover the physiological responses of the biotechnological workhorse and enzyme producer Aspergillus niger over its life time to six substrates important for biofuel production. RESULTS We analysed the response of A. niger to the feedstock Miscanthus and compared it with our previous study on wheat straw, alone or in combination with hydrothermal or ionic liquid feedstock pretreatments. Conserved (substrate-independent) metabolic responses as well as those affected by pretreatment and feedstock were identified via multivariate analysis of genome-wide transcriptomics combined with targeted transcript and protein analyses and mapping to a metabolic model. Initial exposure to all substrates increased fatty acid beta-oxidation and lipid metabolism transcripts. In a strain carrying a deletion of the ortholog of the Aspergillus nidulans fatty acid beta-oxidation transcriptional regulator farA, there was a reduction in expression of selected lignocellulose degradative CAZyme-encoding genes suggesting that beta-oxidation contributes to adaptation to lignocellulose. Mannan degradation expression was wheat straw feedstock-dependent and pectin degradation was higher on the untreated substrates. In the later life stages, known and novel secondary metabolite gene clusters were activated, which are of high interest due to their potential to synthesize bioactive compounds. CONCLUSION In this study, which includes the first transcriptional response of Aspergilli to Miscanthus, we highlighted that life time as well as substrate composition and structure (via variations in pretreatment and feedstock) influence the fungal responses to lignocellulose. We also demonstrated that the fungal response contains physiological stages that are conserved across substrates and are typically found outside of the conditions with high CAZyme expression, as exemplified by the stages that are dominated by lipid and secondary metabolism.
Collapse
Affiliation(s)
- Jolanda M. van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present Address: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Matt Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Sanyasi Gaddipati
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Kerrie W. Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | | | | | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT Espoo, Finland
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Steven T. Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Present Address: Public Health England, National Infection Service, Salisbury, UK
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Present Address: Laboratory of Computational and Quantitative Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Gregory A. Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | | | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
24
|
Bastos RW, Valero C, Silva LP, Schoen T, Drott M, Brauer V, Silva-Rocha R, Lind A, Steenwyk JL, Rokas A, Rodrigues F, Resendiz-Sharpe A, Lagrou K, Marcet-Houben M, Gabaldón T, McDonnell E, Reid I, Tsang A, Oakley BR, Loures FV, Almeida F, Huttenlocher A, Keller NP, Ries LNA, Goldman GH. Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. mSphere 2020; 5:e00153-20. [PMID: 32269156 PMCID: PMC7142298 DOI: 10.1128/msphere.00153-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023] Open
Abstract
Aspergillus nidulans is an opportunistic fungal pathogen in patients with immunodeficiency, and virulence of A. nidulans isolates has mainly been studied in the context of chronic granulomatous disease (CGD), with characterization of clinical isolates obtained from non-CGD patients remaining elusive. This study therefore carried out a detailed biological characterization of two A. nidulans clinical isolates (CIs), obtained from a patient with breast carcinoma and pneumonia and from a patient with cystic fibrosis that underwent lung transplantation, and compared them to the reference, nonclinical FGSC A4 strain. Both CIs presented increased growth in comparison to that of the reference strain in the presence of physiologically relevant carbon sources. Metabolomic analyses showed that the three strains are metabolically very different from each other in these carbon sources. Furthermore, the CIs were highly susceptible to cell wall-perturbing agents but not to other physiologically relevant stresses. Genome analyses identified several frameshift variants in genes encoding cell wall integrity (CWI) signaling components. Significant differences in CWI signaling were confirmed by Western blotting among the three strains. In vivo virulence studies using several different models revealed that strain MO80069 had significantly higher virulence in hosts with impaired neutrophil function than the other strains. In summary, this study presents detailed biological characterization of two A. nidulanssensu stricto clinical isolates. Just as in Aspergillus fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits. Further studies are required to fully characterize A. nidulans strain-specific virulence traits and pathogenicity.IMPORTANCE Immunocompromised patients are susceptible to infections with opportunistic filamentous fungi from the genus Aspergillus Although A. fumigatus is the main etiological agent of Aspergillus species-related infections, other species, such as A. nidulans, are prevalent in a condition-specific manner. A. nidulans is a predominant infective agent in patients suffering from chronic granulomatous disease (CGD). A. nidulans isolates have mainly been studied in the context of CGD although infection with A. nidulans also occurs in non-CGD patients. This study carried out a detailed biological characterization of two non-CGD A. nidulans clinical isolates and compared the results to those with a reference strain. Phenotypic, metabolomic, and genomic analyses highlight fundamental differences in carbon source utilization, stress responses, and maintenance of cell wall integrity among the strains. One clinical strain had increased virulence in models with impaired neutrophil function. Just as in A. fumigatus, strain heterogeneity exists in A. nidulans clinical strains that can define virulence traits.
Collapse
Affiliation(s)
- Rafael Wesley Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taylor Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milton Drott
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Verônica Brauer
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's Associate Laboratory, Guimarães, Portugal
| | - Agustin Resendiz-Sharpe
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, Barcelona, Spain
- Life Sciences Program, Barcelona Supercomputing Centre, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Erin McDonnell
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Ian Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Flávio Vieira Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding cexA Gene in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2020; 86:AEM.01950-19. [PMID: 31862728 DOI: 10.1128/aem.01950-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The putative methyltransferase LaeA is a global regulator of metabolic and development processes in filamentous fungi. We characterized the homologous laeA genes of the white koji fungus Aspergillus luchuensis mut. kawachii (A. kawachii) to determine their role in citric acid hyperproduction. The ΔlaeA strain exhibited a significant reduction in citric acid production. Cap analysis gene expression (CAGE) revealed that laeA is required for the expression of a putative citrate exporter-encoding cexA gene, which is critical for citric acid production. Deficient citric acid production by a ΔlaeA strain was rescued by the overexpression of cexA to a level comparable with that of a cexA-overexpressing ΔcexA strain. In addition, chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis indicated that LaeA regulates the expression of cexA via methylation levels of the histones H3K4 and H3K9. These results indicate that LaeA is involved in citric acid production through epigenetic regulation of cexA in A. kawachii IMPORTANCE A. kawachii has been traditionally used for production of the distilled spirit shochu in Japan. Citric acid produced by A. kawachii plays an important role in preventing microbial contamination during the shochu fermentation process. This study characterized homologous laeA genes; using CAGE, complementation tests, and ChIP-qPCR, it was found that laeA is required for citric acid production through the regulation of cexA in A. kawachii The epigenetic regulation of citric acid production elucidated in this study will be useful for controlling the fermentation processes of shochu.
Collapse
|
26
|
Kong X, Zhang H, Wang X, van der Lee T, Waalwijk C, van Diepeningen A, Brankovics B, Xu J, Xu J, Chen W, Feng J. FgPex3, a Peroxisome Biogenesis Factor, Is Involved in Regulating Vegetative Growth, Conidiation, Sexual Development, and Virulence in Fusarium graminearum. Front Microbiol 2019; 10:2088. [PMID: 31616386 PMCID: PMC6764106 DOI: 10.3389/fmicb.2019.02088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
Peroxisomes are involved in a wide range of important cellular functions. Here, the role of the peroxisomal membrane protein PEX3 in the plant-pathogen and mycotoxin producer Fusarium graminearum was studied using knock-out and complemented strains. To fluorescently label peroxisomes’ punctate structures, GFP and RFP fusions with the PTS1 and PTS2 localization signal were transformed into the wild type PH-1 and ΔFgPex3 knock-out strains. The GFP and RFP transformants in the ΔFgPex3 background showed a diffuse fluorescence pattern across the cytoplasm suggesting the absence of mature peroxisomes. The ΔFgPex3 strain showed a minor, non-significant reduction in growth on various sugar carbon sources. In contrast, deletion of FgPex3 affected fatty acid β-oxidation in F. graminearum and significantly reduced the utilization of fatty acids. Furthermore, the ΔFgPex3 mutant was sensitive to osmotic stressors as well as to cell wall-damaging agents. Reactive oxygen species (ROS) levels in the mutant had increased significantly, which may be linked to the reduced longevity of cultured strains. The mutant also showed reduced production of conidiospores, while sexual reproduction was completely impaired. The pathogenicity of ΔFgPex3, especially during the process of systemic infection, was strongly reduced on both tomato and on wheat, while to production of deoxynivalenol (DON), an important factor for virulence, appeared to be unaffected.
Collapse
Affiliation(s)
- Xiangjiu Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Theo van der Lee
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Cees Waalwijk
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Anne van Diepeningen
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Balazs Brankovics
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Jin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jingsheng Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
27
|
Tang L, Yu X, Zhang L, Zhang L, Chen L, Zou S, Liang Y, Yu J, Dong H. Mitochondrial FgEch1 is responsible for conidiation and full virulence in Fusarium graminearum. Curr Genet 2019; 66:361-371. [PMID: 31463774 DOI: 10.1007/s00294-019-01028-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 11/26/2022]
Abstract
Enoyl-CoA hydratase (Ech) is an important and well-recognized enzyme that functions in the degradation of fatty acids by β-oxidation. However, its functions in plant pathogenic fungi are not well known. We characterized an Ech1 orthologue, FgEch1, in Fusarium graminearum. The FgEch1 deletion mutant was defective in the utilization of short-chain fatty acids and conidiation, but not in hyphal growth on glucose-rich media or in perithecium formation. The FgEch1 deletion mutant showed reduced deoxynivalenol (DON) production and virulence in plants. Deletion of FgEch1 also led to increased production of lipid droplets and autophagy. FgEch1, which was localized in the mitochondrion, required the MTS domain for mitochondrial localization and function in F. graminearum. Taken together, these data indicate that mitochondrial FgEch1 is important for conidiation, DON production, and plant infection.
Collapse
Affiliation(s)
- Lin Tang
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoyang Yu
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Zhang
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Liyuan Zhang
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Lei Chen
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Shenshen Zou
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yuancun Liang
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinfeng Yu
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hansong Dong
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
28
|
Bermúdez-García E, Peña-Montes C, Martins I, Pais J, Pereira CS, Sánchez S, Farrés A. Regulation of the cutinases expressed by Aspergillus nidulans and evaluation of their role in cutin degradation. Appl Microbiol Biotechnol 2019; 103:3863-3874. [DOI: 10.1007/s00253-019-09712-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
|
29
|
The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism. G3-GENES GENOMES GENETICS 2018; 8:2445-2463. [PMID: 29794164 PMCID: PMC6027865 DOI: 10.1534/g3.118.200411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications.
Collapse
|
30
|
Aspergillus flavus Secondary Metabolites: More than Just Aflatoxins. Food Saf (Tokyo) 2018; 6:7-32. [PMID: 32231944 DOI: 10.14252/foodsafetyfscj.2017024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 11/21/2022] Open
Abstract
Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of these secondary metabolites have been identified from A. flavus cultures, analysis of the genome has predicted the existence of at least 56 secondary metabolite gene clusters. Many of these gene clusters are not expressed during growth of the fungus on standard laboratory media. This presents researchers with a major challenge of devising novel strategies to manipulate the fungus and its genome so as to activate secondary metabolite gene expression and allow identification of associated cluster metabolites. In this review, we discuss the genetic, biochemical and bioinformatic methods that are being used to identify previously uncharacterized secondary metabolite gene clusters and their associated metabolites. It is important to identify as many of these compounds as possible to determine their bioactivity with respect to fungal development, survival, virulence and especially with respect to any potential synergistic toxic effects with aflatoxin.
Collapse
|
31
|
Shabbir Hussain M, Wheeldon I, Blenner MA. A Strong Hybrid Fatty Acid Inducible Transcriptional Sensor Built From Yarrowia lipolytica Upstream Activating and Regulatory Sequences. Biotechnol J 2017; 12. [PMID: 28731568 DOI: 10.1002/biot.201700248] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/21/2017] [Indexed: 01/24/2023]
Abstract
The engineering of Yarrowia lipolytica to accumulate lipids with high titers and productivities has been enabled with a handful of constitutive promoters for pathway engineering. However, the development of promoters that are both strong and lipid responsive could greatly benefit the bioproduction efficiency of lipid-derived oleochemicals in oleaginous yeast. In this study, a fatty acid regulated hybrid promoter for use in Y. lipolytica is engineered. A 200 bp upstream regulatory sequence in the peroxisomal acyl CoA oxidase 2 (POX2) promoter is identified. Further analysis of the promoter sequence reveal a regulatory sequence, that when used in tandem repeats, lead to a 48-fold induction of gene expression relative to glucose and fourfold higher than the native POX2 promoter. To date, this is the strongest inducible promoter reported in Y. lipolytica. Taken together, the results show that it is possible to engineer strong promoters that retain strong inducibility. These types of promoters will be useful in controlling metabolism and as fatty acid sensors.
Collapse
Affiliation(s)
| | - Ian Wheeldon
- Chemical & Environmental Engineering, University of California Riverside, Riverside, CA, USA
| | - Mark A Blenner
- Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
32
|
ANCUT2, a Thermo-alkaline Cutinase from Aspergillus nidulans and Its Potential Applications. Appl Biochem Biotechnol 2017; 182:1014-1036. [DOI: 10.1007/s12010-016-2378-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
33
|
Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum. Microbiol Res 2017; 197:1-8. [PMID: 28219521 DOI: 10.1016/j.micres.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 01/01/2023]
Abstract
Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives.
Collapse
|
34
|
Das A, Shivakumar S, Bhattacharya S, Shakya S, Swathi SS. Purification and characterization of a surfactant-compatible lipase from Aspergillus tamarii JGIF06 exhibiting energy-efficient removal of oil stains from polycotton fabric. 3 Biotech 2016; 6:131. [PMID: 28330188 PMCID: PMC4909032 DOI: 10.1007/s13205-016-0449-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022] Open
Abstract
An extracellular lipase with 23,666.66 U/ml/min activity was produced by Aspergillus tamarii JGIF06 under submerged fermentation in mineral salt medium containing coconut oil (2.5 % v/v), tryptone (2 % w/v) and ammonium chloride (2 % w/v), with initial pH of 5 ± 0.2, incubated at 25 °C for 7 days on a rotary shaker at 120 rpm. A 7.9-fold increase in lipase-specific activity was recorded after purification by DEAE Sepharose ion exchange and Sephadex G200 column chromatography. The apparent molecular mass of this enzyme was revealed as 50 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The optimal lipase activity was recorded at pH 4 and 37 °C. The enzyme revealed broad specificity towards different vegetable oils. The Km and Vmax of the lipase on olive oil was found to be 330.4 mg and 53,690 U/ml/min, respectively. The lipase activity was stable in the presence of surfactants such as cetrimonium bromide, sodium dodecyl sulphate and Tween 80, and metal ions and reagents such as Ca2+, Ba2+ and 2-mercaptoethanol. However, the activity was greatly reduced in the presence of organic solvents such as chloroform. The stain removal potential of the crude lipase was determined on polycotton fabric pieces stained with peanut oil. Lipase added to cold water alone significantly enhanced the removal of stain by 152 %. The addition of lipase also improved the stain removal efficiency of a commercially available detergent in the presence of either cold (25 ± 2 °C) or hot (65 ± 2 °C) water. The current findings suggest the potentiality of this enzyme for energy-efficient biocatalytic application.
Collapse
Affiliation(s)
- Arijit Das
- Department of Microbiology, Center for Post Graduate Studies, Jain University, 18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011, Karnataka, India.
| | - Srividya Shivakumar
- Department of Microbiology, Center for Post Graduate Studies, Jain University, 18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011, Karnataka, India
| | - Sourav Bhattacharya
- Department of Microbiology, Center for Post Graduate Studies, Jain University, 18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011, Karnataka, India
| | - Sujina Shakya
- Department of Microbiology, Center for Post Graduate Studies, Jain University, 18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011, Karnataka, India
| | - S S Swathi
- Department of Microbiology, Center for Post Graduate Studies, Jain University, 18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011, Karnataka, India
| |
Collapse
|
35
|
Sidibé A, Simao-Beaunoir AM, Lerat S, Giroux L, Toussaint V, Beaulieu C. Proteome Analyses of Soil Bacteria Grown in the Presence of Potato Suberin, a Recalcitrant Biopolymer. Microbes Environ 2016; 31:418-426. [PMID: 27795492 PMCID: PMC5158114 DOI: 10.1264/jsme2.me15195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Suberin is a complex lipidic plant polymer found in various tissues including the potato periderm. The biological degradation of suberin is attributed to fungi. Soil samples from a potato field were used to inoculate a culture medium containing suberin as the carbon source, and a metaproteomic approach was used to identify bacteria that developed in the presence of suberin over a 60-d incubation period. The normalized spectral counts of predicted extracellular proteins produced by the soil bacterial community markedly decreased from day 5 to day 20 and then slowly increased, revealing a succession of bacteria. The population of fast-growing pseudomonads declined and was replaced by species with the ability to develop in the presence of suberin. The recalcitrance of suberin was demonstrated by the emergence of auxotrophic bacteria such as Oscillatoria on the last days of the assay. Nevertheless, two putative lipases from Rhodanobacter thiooxydans (I4WGM2) and Myxococcus xanthus (Q1CWS1) were detected in the culture supernatants, suggesting that at least some bacterial species degrade suberin. When grown in suberin-containing medium, R. thiooxydans strain LCS2 and M. xanthus strain DK 1622 both produced three lipases, including I4WGM2 and Q1CWS1. These strains also produced other proteins linked to lipid metabolism, including fatty acid and lipid transporters and β-oxidation enzymes, suggesting that they participate in the degradation of suberin. However, only the R. thiooxydans strain appeared to retrieve sufficient carbon and energy from this recalcitrant polymer in order to maintain its population over an extended period of time.
Collapse
Affiliation(s)
- Amadou Sidibé
- Centre SÈVE, Département de Biologie, Université de Sherbrooke
| | | | | | | | | | | |
Collapse
|
36
|
Characterization of the Far Transcription Factor Family in Aspergillus flavus. G3-GENES GENOMES GENETICS 2016; 6:3269-3281. [PMID: 27534569 PMCID: PMC5068947 DOI: 10.1534/g3.116.032466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolism of fatty acids is a critical requirement for the pathogenesis of oil seed pathogens including the fungus Aspergillus flavus Previous studies have correlated decreased ability to grow on fatty acids with reduced virulence of this fungus on host seed. Two fatty acid metabolism regulatory transcription factors, FarA and FarB, have been described in other filamentous fungi. Unexpectedly, we find A. flavus possesses three Far homologs, FarA, FarB, and FarC, with FarA and FarC showing a greater protein similarity to each other than FarB. farA and farB are located in regions of colinearity in all Aspergillus spp. sequenced to date, whereas farC is limited to a subset of species where it is inserted in an otherwise colinear region in Aspergillus genomes. Deletion and overexpression (OE) of farA and farB, but not farC, yielded mutants with aberrant growth patterns on specific fatty acids as well as altered expression of genes involved in fatty acid metabolism. Marked differences included significant growth defects of both ∆farA and ∆farB on medium-chain fatty acids and decreased growth of OE::farA on unsaturated fatty acids. Loss of farA diminished expression of mitochondrial β-oxidation genes whereas OE::farA inhibited expression of genes involved in unsaturated fatty acid catabolism. FarA also positively regulated the desaturase genes required to generate polyunsaturated fatty acids. Aflatoxin production on toxin-inducing media was significantly decreased in the ∆farB mutant and increased in the OE::farB mutant, with gene expression data supporting a role for FarB in tying β-oxidation processes with aflatoxin accumulation.
Collapse
|
37
|
Roles of Peroxisomes in the Rice Blast Fungus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9343417. [PMID: 27610388 PMCID: PMC5004026 DOI: 10.1155/2016/9343417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity.
Collapse
|
38
|
Novodvorska M, Stratford M, Blythe MJ, Wilson R, Beniston RG, Archer DB. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth. Fungal Genet Biol 2016; 94:23-31. [PMID: 27378203 PMCID: PMC4981222 DOI: 10.1016/j.fgb.2016.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/21/2016] [Accepted: 07/01/2016] [Indexed: 01/15/2023]
Abstract
Resting conidia are demonstrated to be metabolically active. After triggering of conidial outgrowth fermentation occurs, followed by respiration. Sorbic acid inhibits O2 uptake and delays the onset of respiration.
The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25 min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1 h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration.
Collapse
Affiliation(s)
| | - Malcolm Stratford
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; Mologic Ltd, Bedford Technology Park, Thurleigh, Bedfordshire MK44 2YA, UK.
| | - Martin J Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Raymond Wilson
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Richard G Beniston
- Biological Mass Spectrometry Facility biOMICS, University of Sheffield, Brook Hill Road, Sheffield S3 7HF, UK.
| | - David B Archer
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
39
|
Thiriet-Rupert S, Carrier G, Chénais B, Trottier C, Bougaran G, Cadoret JP, Schoefs B, Saint-Jean B. Transcription factors in microalgae: genome-wide prediction and comparative analysis. BMC Genomics 2016; 17:282. [PMID: 27067009 PMCID: PMC4827209 DOI: 10.1186/s12864-016-2610-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/05/2016] [Indexed: 11/28/2022] Open
Abstract
Background Studying transcription factors, which are some of the key players in gene expression, is of outstanding interest for the investigation of the evolutionary history of organisms through lineage-specific features. In this study we performed the first genome-wide TF identification and comparison between haptophytes and other algal lineages. Results For TF identification and classification, we created a comprehensive pipeline using a combination of BLAST, HMMER and InterProScan software. The accuracy evaluation of the pipeline shows its applicability for every alga, plant and cyanobacterium, with very good PPV and sensitivity. This pipeline allowed us to identify and classified the transcription factor complement of the three haptophytes Tisochrysis lutea, Emiliania huxleyi and Pavlova sp.; the two stramenopiles Phaeodactylum tricornutum and Nannochloropsis gaditana; the chlorophyte Chlamydomonas reinhardtii and the rhodophyte Porphyridium purpureum. By using T. lutea and Porphyridium purpureum, this work extends the variety of species included in such comparative studies, allowing the detection and detailed study of lineage-specific features, such as the presence of TF families specific to the green lineage in Porphyridium purpureum, haptophytes and stramenopiles. Our comprehensive pipeline also allowed us to identify fungal and cyanobacterial TF families in the algal nuclear genomes. Conclusions This study provides examples illustrating the complex evolutionary history of algae, some of which support the involvement of a green alga in haptophyte and stramenopile evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2610-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stanislas Thiriet-Rupert
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France.
| | - Grégory Carrier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Benoît Chénais
- MicroMar, Mer Molécules Santé, IUML - FR 3473 CNRS, University of Le Mans, Le Mans, France
| | - Camille Trottier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Gaël Bougaran
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Jean-Paul Cadoret
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Benoît Schoefs
- MicroMar, Mer Molécules Santé, IUML - FR 3473 CNRS, University of Le Mans, Le Mans, France
| | - Bruno Saint-Jean
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| |
Collapse
|
40
|
Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes - An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:971-83. [PMID: 26409486 DOI: 10.1016/j.bbamcr.2015.09.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signalling and viral defense which are essential to the health and viability of the organism. In order to achieve this functional versatility peroxisomes dynamically respond to molecular cues triggered by changes in the cellular environment. Such changes elicit a corresponding response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal structure. In mammals the generation of new peroxisomes is a complex process which has clear analogies to mitochondria, with both sharing the same division machinery and undergoing a similar division process. How the regulation of this division process is integrated into the cell's response to different stimuli, the signalling pathways and factors involved, remains somewhat unclear. Here, we discuss the mechanism of peroxisomal fission, the contributions of the various division factors and examine the potential impact of post-translational modifications, such as phosphorylation, on the proliferation process. We also summarize the signalling process and highlight the most recent data linking signalling pathways with peroxisome proliferation.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK; Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Luis F Godinho
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Afsoon S Azadi
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
41
|
de Assis LJ, Ries LNA, Savoldi M, dos Reis TF, Brown NA, Goldman GH. Aspergillus nidulans protein kinase A plays an important role in cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:213. [PMID: 26690721 PMCID: PMC4683954 DOI: 10.1186/s13068-015-0401-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/30/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The production of bioethanol from lignocellulosic feedstocks is dependent on lignocellulosic biomass degradation by hydrolytic enzymes. The main component of lignocellulose is cellulose and different types of organisms are able to secrete cellulases. The filamentous fungus Aspergillus nidulans serves as a model organism to study cellulase production and the available tools allow exploring more in depth the mechanisms governing cellulase production and carbon catabolite repression. RESULTS In A. nidulans, microarray data identified the cAMP-dependent protein kinase A (PkaA) as being involved in the transcriptional modulation and the production of lignocellulolytic enzymes in the presence of cellulose. Deletion of pkaA resulted in increased hydrolytic enzyme secretion, but reduced growth in the presence of lignocellulosic components and various other carbon sources. Furthermore, genes involved in fungal development were increased in the ΔpkaA strain, probably leading to the increased hyphal branching as was observed in this strain. This would allow the secretion of higher amounts of proteins. In addition, the expression of SynA, encoding a V-SNARE synaptobrevin protein involved in secretion, was increased in the ΔpkaA mutant. Deletion of pkaA also resulted in the reduced nuclear localization of the carbon catabolite repressor CreA in the presence of glucose and in partial de-repression when grown on cellulose. PkaA is involved in the glucose signaling pathway as the absence of this protein resulted in reduced glucose uptake and lower hexokinase/glucokinase activity, directing the cell to starvation conditions. Genome-wide transcriptomics showed that the expression of genes encoding proteins involved in fatty acid metabolism, mitochondrial function and in the use of cell storages was increased. CONCLUSIONS This study shows that PkaA is involved in hydrolytic enzyme production in A. nidulans. It appears that this protein kinase blocks the glucose pathway, hence forcing the cell to change to starvation conditions, increasing hydrolytic enzyme secretion and inducing the usage of cellular storages. This work uncovered new regulatory avenues governing the tight interplay between the metabolic states of the cell, which are important for the production of hydrolytic enzymes targeting lignocellulosic biomass. Deletion of pkaA resulted in a strain with increased hydrolytic enzyme secretion and reduced biomass formation.
Collapse
Affiliation(s)
- Leandro José de Assis
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Laure Nicolas Annick Ries
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Marcela Savoldi
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Neil Andrew Brown
- />Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Gustavo Henrique Goldman
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
42
|
Zeng XQ, Chen GQ, Liu XH, Dong B, Shi HB, Lu JP, Lin F. Crosstalk between SNF1 pathway and the peroxisome-mediated lipid metabolism in Magnaporthe oryzae. PLoS One 2014; 9:e103124. [PMID: 25090011 PMCID: PMC4121083 DOI: 10.1371/journal.pone.0103124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 01/28/2023] Open
Abstract
The SNF1/AMPK pathway has a central role in response to nutrient stress in yeast and mammals. Previous studies on SNF1 function in phytopathogenic fungi mostly focused on the catalytic subunit Snf1 and its contribution to the derepression of cell wall degrading enzymes (CWDEs). However, the MoSnf1 in Magnaporthe oryzae was reported not to be involved in CWDEs regulation. The mechanism how MoSnf1 functions as a virulence determinant remains unclear. In this report, we demonstrate that MoSnf1 retains the ability to respond to nutrient-free environment via its participation in peroxisomal maintenance and lipid metabolism. Observation of GFP-tagged peroxisomal targeting signal-1 (PTS1) revealed that the peroxisomes of ΔMosnf1 were enlarged in mycelia and tended to be degraded before conidial germination, leading to the sharp decline of peroxisomal amount during appressorial development, which might impart the mutant great retard in lipid droplets mobilization and degradation. Consequently, ΔMosnf1 exhibited inability to maintain normal appressorial cell wall porosity and turgor pressure, which are key players in epidermal infection process. Exogenous glucose could partially restore the appressorial function and virulence of ΔMosnf1. Toward a further understanding of SNF1 pathway, the β-subunit MoSip2, γ-subunit MoSnf4, and two putative Snf1-activating kinases, MoSak1 and MoTos3, were additionally identified and characterized. Here we show the null mutants ΔMosip2 and ΔMosnf4 performed multiple disorders as ΔMosnf1 did, suggesting the complex integrity is essential for M. oryzae SNF1 kinase function. And the upstream kinases, MoSak1 and MoTos3, play unequal roles in SNF1 activation with a clear preference to MoSak1 over MoTos3. Meanwhile, the mutant lacking both of them exhibited a severe phenotype comparable to ΔMosnf1, uncovering a cooperative relationship between MoSak1 and MoTos3. Taken together, our data indicate that the SNF1 pathway is required for fungal development and facilitates pathogenicity by its contribution to peroxisomal maintenance and lipid metabolism in M. oryzae.
Collapse
Affiliation(s)
- Xiao-Qing Zeng
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Guo-Qing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Huan-Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Institute of CNTC, Zhengzhou, China
- * E-mail:
| |
Collapse
|
43
|
Martins I, Hartmann DO, Alves PC, Martins C, Garcia H, Leclercq CC, Ferreira R, He J, Renaut J, Becker JD, Silva Pereira C. Elucidating how the saprophytic fungus Aspergillus nidulans uses the plant polyester suberin as carbon source. BMC Genomics 2014; 15:613. [PMID: 25043916 PMCID: PMC4117967 DOI: 10.1186/1471-2164-15-613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/16/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lipid polymers in plant cell walls, such as cutin and suberin, build recalcitrant hydrophobic protective barriers. Their degradation is of foremost importance for both plant pathogenic and saprophytic fungi. Regardless of numerous reports on fungal degradation of emulsified fatty acids or cutin, and on fungi-plant interactions, the pathways involved in the degradation and utilisation of suberin remain largely overlooked. As a structural component of the plant cell wall, suberin isolation, in general, uses harsh depolymerisation methods that destroy its macromolecular structure. We recently overcame this limitation isolating suberin macromolecules in a near-native state. RESULTS Suberin macromolecules were used here to analyse the pathways involved in suberin degradation and utilisation by Aspergillus nidulans. Whole-genome profiling data revealed the complex degrading enzymatic machinery used by this saprophytic fungus. Initial suberin modification involved ester hydrolysis and ω-hydroxy fatty acid oxidation that released long chain fatty acids. These fatty acids were processed through peroxisomal β-oxidation, leading to up-regulation of genes encoding the major enzymes of these pathways (e.g. faaB and aoxA). The obtained transcriptome data was further complemented by secretome, microscopic and spectroscopic analyses. CONCLUSIONS Data support that during fungal growth on suberin, cutinase 1 and some lipases (e.g. AN8046) acted as the major suberin degrading enzymes (regulated by FarA and possibly by some unknown regulatory elements). Suberin also induced the onset of sexual development and the boost of secondary metabolism.
Collapse
Affiliation(s)
- Isabel Martins
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diego O Hartmann
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula C Alves
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Celso Martins
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- />Instituto de Biologia Experimental e Tecnológica (iBET), Av. da República, 2781-901 Oeiras, Portugal
| | - Helga Garcia
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Céline C Leclercq
- />Proteomics Platform, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
| | - Rui Ferreira
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ji He
- />Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, (previously, the Scientific Computing department, Samuel Roberts Noble Foundation, USA, 8717 Grovemont Circle, 20877 Gaithersburg, MD USA
| | - Jenny Renaut
- />Proteomics Platform, Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
| | - Jörg D Becker
- />Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Cristina Silva Pereira
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- />Instituto de Biologia Experimental e Tecnológica (iBET), Av. da República, 2781-901 Oeiras, Portugal
| |
Collapse
|
44
|
Flipphi M, Oestreicher N, Nicolas V, Guitton A, Vélot C. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle. Fungal Genet Biol 2014; 68:9-22. [DOI: 10.1016/j.fgb.2014.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
45
|
bin Yusof MT, Kershaw MJ, Soanes DM, Talbot NJ. FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaporthe oryzae. PLoS One 2014; 9:e99760. [PMID: 24949933 PMCID: PMC4064970 DOI: 10.1371/journal.pone.0099760] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/17/2014] [Indexed: 12/02/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis.
Collapse
Affiliation(s)
- Mohammad Termizi bin Yusof
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Serdang, Selangor, Malaysia
| | | | - Darren M. Soanes
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
46
|
Metabolism of Hydrophobic Carbon Sources and Regulation of It inn-Alkane-Assimilating YeastYarrowia lipolytica. Biosci Biotechnol Biochem 2014; 77:1149-54. [DOI: 10.1271/bbb.130164] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Todd RB, Zhou M, Ohm RA, Leeggangers HACF, Visser L, de Vries RP. Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics 2014; 15:214. [PMID: 24650355 PMCID: PMC3998117 DOI: 10.1186/1471-2164-15-214] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been analysed and appears to be highly variable with some regulators widely conserved and others showing narrow distribution. Although genome-scale transcription factor surveys have been performed before, no global study into the prevalence of specific regulators across the fungal kingdom has been presented. Results In this study we have analysed the number of members for 37 regulator classes in 77 ascomycete and 31 basidiomycete fungal genomes and revealed significant differences between ascomycetes and basidiomycetes. In addition, we determined the presence of 64 regulators characterised in ascomycetes across these 108 genomes. This demonstrated that overall the highest presence of orthologs is in the filamentous ascomycetes. A significant number of regulators lacked orthologs in the ascomycete yeasts and the basidiomycetes. Conversely, of seven basidiomycete regulators included in the study, only one had orthologs in ascomycetes. Conclusions This study demonstrates a significant difference in the regulatory repertoire of ascomycete and basidiomycete fungi, at the level of both regulator class and individual regulator. This suggests that the current regulatory systems of these fungi have been mainly developed after the two phyla diverged. Most regulators detected in both phyla are involved in central functions of fungal physiology and therefore were likely already present in the ancestor of the two phyla.
Collapse
Affiliation(s)
- Richard B Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Li L, Wang J, Zhang Z, Wang Y, Liu M, Jiang H, Chai R, Mao X, Qiu H, Liu F, Sun G. MoPex19, which is essential for maintenance of peroxisomal structure and woronin bodies, is required for metabolism and development in the rice blast fungus. PLoS One 2014; 9:e85252. [PMID: 24454828 PMCID: PMC3891873 DOI: 10.1371/journal.pone.0085252] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/24/2013] [Indexed: 11/19/2022] Open
Abstract
Peroxisomes are present ubiquitously and make important contributions to cellular metabolism in eukaryotes. They play crucial roles in pathogenicity of plant fungal pathogens. The peroxisomal matrix proteins and peroxisomal membrane proteins (PMPs) are synthesized in the cytosol and imported post-translationally. Although the peroxisomal import machineries are generally conserved, some species-specific features were found in different types of organisms. In phytopathogenic fungi, the pathways of the matrix proteins have been elucidated, while the import machinery of PMPs remains obscure. Here, we report that MoPEX19, an ortholog of ScPEX19, was required for PMPs import and peroxisomal maintenance, and played crucial roles in metabolism and pathogenicity of the rice blast fungus Magnaporthe oryzae. MoPEX19 was expressed in a low level and Mopex19p was distributed in the cytoplasm and newly formed peroxisomes. MoPEX19 deletion led to mislocalization of peroxisomal membrane proteins (PMPs), as well peroxisomal matrix proteins. Peroxisomal structures were totally absent in Δmopex19 mutants and woronin bodies also vanished. Δmopex19 exhibited metabolic deficiency typical in peroxisomal disorders and also abnormality in glyoxylate cycle which was undetected in the known mopex mutants. The Δmopex19 mutants performed multiple disorders in fungal development and pathogenicity-related morphogenesis, and lost completely the pathogenicity on its hosts. These data demonstrate that MoPEX19 plays crucial roles in maintenance of peroxisomal and peroxisome-derived structures and makes more contributions to fungal development and pathogenicity than the known MoPEX genes in the rice blast fungus.
Collapse
Affiliation(s)
- Ling Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Maoxin Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongyao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (FL); (GS)
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (FL); (GS)
| |
Collapse
|
49
|
Downes DJ, Davis MA, Kreutzberger SD, Taig BL, Todd RB. Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Microbiology (Reading) 2013; 159:2467-2480. [DOI: 10.1099/mic.0.071514-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Damien J. Downes
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| | - Meryl A. Davis
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Brendan L. Taig
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Richard B. Todd
- Department of Genetics, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA
| |
Collapse
|
50
|
Bravo-Ruiz G, Ruiz-Roldán C, Roncero MIG. Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1054-1067. [PMID: 23718123 DOI: 10.1094/mpmi-03-13-0082-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The lipolytic profile of Fusarium oxysporum f. sp lycopersici was studied by in silico search and biochemical enzyme activity analyses. Twenty-five structural secreted lipases were predicted based on the conserved pentapeptide Gly-X-Ser-X-Gly-, characteristic of fungal lipases, and secretion signal sequences. Moreover, a predicted lipase regulatory gene was identified in addition to the previously characterized ctf1. The transcription profile of thirteen lipase genes during tomato plant colonization revealed that lip1, lip3, and lip22 were highly induced between 21 and 96 h after inoculation. Deletion mutants in five lipase genes (lip1, lip2, lip3, lip5, and lip22) and in the regulatory genes ctf1 and ctf2 as well as a Δctf1Δctf2 double mutant were generated. Quantitative reverse transcription-polymerase chain reaction expression analyses of structural lipase genes in the Δctf1, Δctf2, and Δctf1Δctf2 mutants indicated the existence of a complex lipase regulation network in F. oxysporum. The reduction of total lipase activity, as well as the severely reduced virulence of the Δctf1, Δctf2, and Δctf1Δctf2 mutants, provides evidence for an important role of the lipolytic system of this fungus in pathogenicity.
Collapse
|