1
|
Zhu Z, Zhu Z, Shi Z, Wang C, Chen F. Kaempferol Remodels Liver Monocyte Populations and Treats Hepatic Fibrosis in Mice by Modulating Intestinal Flora and Metabolic Reprogramming. Inflammation 2024:10.1007/s10753-024-02184-2. [PMID: 39531210 DOI: 10.1007/s10753-024-02184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Changes in gut flora are associated with liver fibrosis. The interactions of host with intestinal flora are still unknown, with little research investigating such interactions with comprehensive multi-omics data. The present work analyzed and integrated large-scale multi-omics transcriptomics, microbiome, metabolome, and single-cell RNA-sequencing datasets from Kaempferol-treated and untreated control groups by advanced bioinformatics methods. This study concludes that kaempferol dose-dependently improved serum markers (like AST, ALT, TBil, Alb, and PT) and suppressed fibrosis markers (including HA, PC III, LN, α-SMA, and Collagen I), while kaempferol also increased body weight. Mechanistically, kaempferol improved the metabolic levels of intestinal flora dysbiosis and associated lipids. This was achieved by increasing the abundance of g__Robinsoniella, g__Erysipelotrichaceae_UCG-003, g__Coriobacteriaceae_UCG-002, and 5-Methylcytidine, all-trans-5,6- Epoxyretinoic acid, LPI (18:0), LPI (20:4), etc. to achieve this. Kaemferol exerts anti-inflammatory and immune-enhancing effects by down-regulating the Th17/IL-17 signaling pathway in PDGF-induced LX2 cells. In addition, kaempferol administration remarkably elevated CD4 + T and CD8 + T cellular proportions, thereby activating immune cells for protecting the body and controlling inflammatory conditions. The combined interaction of multiple data may explain how Kaempferol modulates the intestinal flora thereby remodeling the hepatocyte population and alleviating liver fibrosis.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Zhenyi Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical & Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, 10 Southern Medical University, Guangzhou, China
| | - Chen Wang
- The Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
2
|
Verma A, Inslicht SS, Bhargava A. Gut-Brain Axis: Role of Microbiome, Metabolomics, Hormones, and Stress in Mental Health Disorders. Cells 2024; 13:1436. [PMID: 39273008 PMCID: PMC11394554 DOI: 10.3390/cells13171436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The influence of gut microbiome, metabolites, omics, hormones, and stress on general and mental health is increasingly being recognized. Ancient cultures recognized the importance of diet and gut health on the overall health of an individual. Western science and modern scientific methods are beginning to unravel the foundations and mechanisms behind some of the ancient beliefs and customs. The gut microbiome, an organ itself, is now thought to influence almost all other organs, ranging from the brain to the reproductive systems. Gut microbiome, metabolites, hormones, and biological sex also influence a myriad of health conditions that range from mental health disorders, obesity, gastrointestinal disorders, and cardiovascular diseases to reproductive health. Here, we review the history and current understanding of the gut-brain axis bidirectional talk in various mental health disorders with special emphasis on anxiety and depressive disorders, whose prevalence has increased by over 50% in the past three decades with COVID-19 pandemic being the biggest risk factor in the last few years. The vagal nerve is an important contributor to this bidirectional talk, but other pathways also contribute, and most remain understudied. Probiotics containing Lactobacillus and Bifidobacterium species seem to have the most impact on improvement in mental health symptoms, but the challenge appears to be maintaining sustained levels, especially since neither Lactobacillus nor Bifidobacterium can permanently colonize the gut. Ancient endogenous retroviral DNA in the human genome is also linked to several psychiatric disorders, including depression. These discoveries reveal the complex and intricately intertwined nature of gut health with mental health disorders.
Collapse
Affiliation(s)
- Ankita Verma
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Sabra S Inslicht
- San Francisco VA Health Care System, San Francisco, CA 94121, USA
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Han Z, Ran Y, Li J, Zhang X, Yang H, Liu J, Dong S, Jia H, Yang Z, Li Y, Guo L, Zhou S, Bao S, Yuan W, Wang B, Zhou L. Association of gut microbiota with lactose intolerance and coeliac disease: a two-sample Mendelian randomization study. Front Nutr 2024; 11:1395801. [PMID: 39166131 PMCID: PMC11333455 DOI: 10.3389/fnut.2024.1395801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Background and objectives Lactose intolerance and coeliac disease are common clinical nutrient malabsorption disorders, with an unclear pathogenesis and limited therapeutic options. It is widely believed that the gut microbiota plays an important role in many digestive disorders, but its role in lactose intolerance and coeliac disease is not yet clear. This study aimed to investigate the correlation between gut microbiota and lactose intolerance and coeliac disease. Materials and methods This study utilized the genome-wide association study database to investigate the association between gut microbiota and lactose intolerance and coeliac disease using Mendelian randomization (MR). The robustness of our findings was confirmed through subsequent analyses including Cochrane's Q statistic, MR-Egger Intercept Regression, MR-PRESSO Global Test and Leave-one-out methods. Results By employing the inverse variance weighted method, we identified that family Veillonellaceae, genus Oxalobacter and Senegalimassilia were protective against lactose intolerance, whereas genus Anaerotruncus, Eubacterium rectale group and Ruminococcus2 were found to be risk factors for lactose intolerance. Regarding coeliac disease, class Bacilli and Gammaproteobacteria, family FamilyXIII and Veillonellaceae, genus Eisenbergiella, Lachnoclostridium, RuminococcaceaeUCG014 and Ruminococcus2 were identified as protective factors, while class Betaproteobacteria, genus Eubacterium xylanophilum group and Blautia were risk factors. Furthermore, reverse the MR analysis did not reveal any evidence of a causal relationship between lactose intolerance or coeliac disease and the bacteria identified in our study. Conclusion This study provides novel insights into exploring the role of gut microbiota in lactose intolerance and coeliac disease; however, further experiments investigations are required to elucidate the specific underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
5
|
Fan Y, Wang Y, Xiao H, Sun H. Advancements in understanding the role of intestinal dysbacteriosis mediated mucosal immunity in IgA nephropathy. BMC Nephrol 2024; 25:203. [PMID: 38907188 PMCID: PMC11191200 DOI: 10.1186/s12882-024-03646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
IgA nephropathy, presently recognized as the foremost primary glomerular disorder, emerges as a principal contributor to renal failure globally, with its pathogenesis yet to be fully elucidated. Extensive research has highlighted the critical role of gut microbiome in the onset and progression of IgA nephropathy, underscoring its importance in accurately delineating the disease's etiology. For example, gut microbiome dysbacteriosis can lead to the production of nephritogenic IgA1 antibodies, which form immune complexes that deposit in the kidneys, causing inflammation and damage. The gut microbiome, a source of numerous bioactive compounds, interacts with the host and plays a regulatory role in gut-immune axis modulation, earning it the moniker of the "second brain." Recent investigations have particularly emphasized a significant correlation between IgA nephropathy and gut microbiome dysbacteriosis. This article offers a detailed overview of the pathogenic mechanisms of IgA nephropathy, specifically focusing on elucidating how alterations in the gut microbiome are associated with anomalies in the intestinal mucosal system in IgA nephropathy. Additionally, it describes the possible influence of gut microbiome on recurrent IgA nephropathy following kidney transplantation. Furthermore, it compiles potential therapeutic interventions, offering both theoretical and practical foundations for the management of IgA nephropathy. Lastly, the challenges currently faced in the therapeutic approaches to IgA nephropathy are discussed.
Collapse
Affiliation(s)
- Yitao Fan
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hui Sun
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu, China.
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
6
|
Verma S, Dufort MJ, Olsen TM, Kimmel S, Labuda JC, Scharffenberger S, McGuire AT, Harrison OJ. Antigen-level resolution of commensal-specific B cell responses can be enabled by phage display screening coupled with B cell tetramers. Immunity 2024; 57:1428-1441.e8. [PMID: 38723638 PMCID: PMC11168869 DOI: 10.1016/j.immuni.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.
Collapse
Affiliation(s)
- Sheenam Verma
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Tayla M Olsen
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Samantha Kimmel
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jasmine C Labuda
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Sam Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2024:S2090-1232(24)00092-4. [PMID: 38462039 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Yang Q, Liu H, Jafari H, Liu B, Wang Z, Su J, Wang F, Yang G, Sun M, Cheng J, Dong B, Li M, Gen M, Yu J. Metabolic changes before and after weaning in Dezhou donkey foals in relation to gut microbiota. Front Microbiol 2024; 14:1306039. [PMID: 38282742 PMCID: PMC10812615 DOI: 10.3389/fmicb.2023.1306039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Weaning is undoubtedly one of the most crucial stages in the growth and development of all mammalian animals, including donkey foals. Weaning is a dynamic and coordinated process of the body, which is closely associated with the health, nutrition, and metabolism of the host. Many studies have shown that the intestinal microbiota and serum metabolites of mammals exhibit different changes during lactation, weaning, and postweaning. However, the alterations in serum metabolites in donkey foals before and postweaning and the correlation between serum metabolites and intestinal microbiota are largely unknown. This study is based on the fecal 16S rRNA and serum metabolomes of Dezhou donkey foals. In total, 10 samples (fecal and serum) were collected during the following three stages: before weaning (F.M.1), during weaning (F.M.3), and postweaning (F.M.6). To study the alterations in intestinal microflora, serum metabolites, and their correlation before and postweaning. We found that with the growth and weaning progress of donkey foals, the intestinal microbiota of donkey foals underwent obvious changes, and the diversity of fecal bacteria increased (Chao1 and Shannon indexes). The main intestinal microbial flora of donkey foals include Bacteroides and Firmicutes. We found many microbiota that are associated with immunity and digestion in the postweaning group, such as Verrucomicrobiales, Clostridia, Oscillospiraceae, Akkermansia, and Rikenellaceae, which can be considered microbial markers for the transition from liquid milk to solid pellet feed. Clostridia and Oscillospiraceae can produce organic acids, including butyric acid and acetic acid, which are crucial for regulating the intestinal microecological balance of donkeys. Furthermore, the metabolome showed that the serum metabolites enriched before and postweaning were mainly related to arachidonic acid metabolism and riboflavin metabolism. Riboflavin was associated with the development of the small intestine and affected the absorption of the small intestine. We also found that the changes in the gut microbiome of the foals were significantly correlated with changes in serum metabolites, including lysophosphatidylcholine (LPC; 12,0) and positively correlated with Lachnoclostridium and Roseburia. To summarize, this study provides theoretical data for the changes in the intestinal microbiome and serum metabolism during the entire weaning period of donkey foals.
Collapse
Affiliation(s)
- Qiwen Yang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Haibing Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Halima Jafari
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiangtian Su
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Minhao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jie Cheng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Boying Dong
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Min Li
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Mingjian Gen
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| | - Jie Yu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e County, Shandong, China
| |
Collapse
|
9
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
White Z, Cabrera I, Kapustka I, Sano T. Microbiota as key factors in inflammatory bowel disease. Front Microbiol 2023; 14:1155388. [PMID: 37901813 PMCID: PMC10611514 DOI: 10.3389/fmicb.2023.1155388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by prolonged inflammation of the gastrointestinal tract, which is thought to occur due to dysregulation of the immune system allowing the host's cells to attack the GI tract and cause chronic inflammation. IBD can be caused by numerous factors such as genetics, gut microbiota, and environmental influences. In recent years, emphasis on commensal bacteria as a critical player in IBD has been at the forefront of new research. Each individual harbors a unique bacterial community that is influenced by diet, environment, and sanitary conditions. Importantly, it has been shown that there is a complex relationship among the microbiome, activation of the immune system, and autoimmune disorders. Studies have shown that not only does the microbiome possess pathogenic roles in the progression of IBD, but it can also play a protective role in mediating tissue damage. Therefore, to improve current IBD treatments, understanding not only the role of harmful bacteria but also the beneficial bacteria could lead to attractive new drug targets. Due to the considerable diversity of the microbiome, it has been challenging to characterize how particular microorganisms interact with the host and other microbiota. Fortunately, with the emergence of next-generation sequencing and the increased prevalence of germ-free animal models there has been significant advancement in microbiome studies. By utilizing human IBD studies and IBD mouse models focused on intraepithelial lymphocytes and innate lymphoid cells, this review will explore the multifaceted roles the microbiota plays in influencing the immune system in IBD.
Collapse
Affiliation(s)
| | | | | | - Teruyuki Sano
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
12
|
Di Martino L, Osme A, Ghannoum M, Cominelli F. A Novel Probiotic Combination Ameliorates Crohn's Disease-Like Ileitis by Increasing Short-Chain Fatty Acid Production and Modulating Essential Adaptive Immune Pathways. Inflamm Bowel Dis 2023; 29:1105-1117. [PMID: 36715169 PMCID: PMC10320237 DOI: 10.1093/ibd/izac284] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Crohn's disease (CD) represents a significant public health challenge. We identified a combination of beneficial probiotic strains (Saccharomyces boulardii, Lactobacillus rhamnosus, Lactobacillus acidophilus, and Bifidobacterium breve) and amylase that may antagonize elevated bacterial pathogens in the inflamed gut. Our aim was to characterize the effect(s) of this novel probiotic supplement in SAMP1/YitFc (SAMP) mice with CD-like ileitis. METHODS Three groups of 7-week-old SAMP mice were used in this study. The first experimental group was administered 1 dose of the probiotic supplement (probiotic strains + amylase) diluted in sterile phosphate-buffered saline (PBS) (0.25 mg in 100 µL of PBS) every day for 56 days through the gavage technique, the second group had a probiotic supplement (probiotic strains without amylase), and the third group was a control group in which animals were administered sterile PBS. At the end of the treatment, mice were sacrificed and ilea were collected for histological scoring of ileitis and NanoString analysis. Stool samples were evaluated by 16S ribosomal RNA and gas chromatography-mass spectrometry analyses. RESULTS Histology scores showed that mice treated with probiotics + amylase had a significant decrease of ileitis severity compared with the other 2 groups. 16S ribosomal RNA and gas chromatography-mass spectrometry analysis showed that abundance of species belonging to genus Lachnoclostridium and Mucispirillum schaedleri were significantly increased compared with the other 2 groups, and this increase was associated with augmented production of short-chain fatty acids. NanoString data showed that 21 genes involved in B memory cell development and T cell infiltration were significantly upregulated in probiotic-treated mice and that 3 genes were significantly downregulated. CONCLUSIONS Our data provide experimental proof for a beneficial effect of the designed probiotic formulation on the severity of CD-like ileitis in the SAMP mouse model, involving both alteration of intestinal genetic pathways and microbial rearrangements. Thus, we propose that this novel probiotic mixture should be further tested as an adjuvant therapy in the treatment of biofilm-associated disorders such as CD, in which it has been proven that polymicrobial imbalance plays a critical role in dysbiosis and gut inflammation.
Collapse
Affiliation(s)
- Luca Di Martino
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, OH, USA
| | - Abdullah Osme
- Department of Pathology, Case Western University School of Medicine, Cleveland, OH, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Fabio Cominelli
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, OH, USA
- Department of Pathology, Case Western University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
13
|
Banzragch M, Sanli K, Stensvold CR, Kurt O, Ari S. Metabarcoding of colonic cleansing fluid reveals unique bacterial members of mucosal microbiota associated with Inflammatory Bowel Disease. Scand J Gastroenterol 2023; 58:1253-1263. [PMID: 37337895 DOI: 10.1080/00365521.2023.2223708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) is a group of chronic idiopathic inflammatory diseases of the gastrointestinal (GI) tract associated with the dysbiosis of gut microbiota. Metabarcoding-based profiling of the gut microbiota of IBD patients is generally based on the stool samples collected from individual patients which rarely represent the mucosa-associated microbiota. The ideal sampling strategy for routine monitoring of the mucosal component of IBD has yet to be determined. METHODS We hereby compare the microbiota composition of the colonic cleansing fluid (CCF) collected during colonoscopy with stool samples from IBD patients. The relationship between IBD and gut microbiota was revealed through the application of the 16S rRNA amplicon sequencing-based metabarcoding approach. CCF and stool samples were collected from IBD patients with Crohn's disease and ulcerative colitis. RESULTS The present study shows significant differences in the microbial composition of CCF samples, presumably indicating changes in the mucosal microbiota of IBD patients as compared to the control group. Short-chain fatty acid-producing bacteria under the family Lachnospiraceae, the actinobacterial genus Bifidobacterium, the proteobacterial Sutterella and Raoultella are found to contribute to the microbial dysbiosis of the mucosal flora in IBD patients. CONCLUSIONS CCF microbiota has the capacity to distinguish IBD patients from healthy controls and, thus, may constitute an alternative analysis strategy for the early diagnosis and disease progression in IBD biomarker research.
Collapse
Affiliation(s)
| | - Kemal Sanli
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Life Sciences, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institute, Copenhagen, Denmark
| | - Ozgur Kurt
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sule Ari
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Yu T, Yang W, Yao S, Yu Y, Wakamiya M, Golovko G, Cong Y. STING Promotes Intestinal IgA Production by Regulating Acetate-producing Bacteria to Maintain Host-microbiota Mutualism. Inflamm Bowel Dis 2023; 29:946-959. [PMID: 36661414 PMCID: PMC10233729 DOI: 10.1093/ibd/izac268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intestinal Immunoglobulin A (IgA) is crucial in maintaining host-microbiota mutualism and gut homeostasis. It has been shown that many species of gut bacteria produce cyclic dinucleotides, along with an abundance of microbiota-derived DNA present within the intestinal lumen, which triggers the tonic activation of the cytosolic cGAS-STING pathway. However, the role of STING in intestinal IgA remains poorly understood. We further investigated whether and how STING affects intestinal IgA response. METHODS Intestinal IgA was determined between wild-type (WT) mice and Sting-/- mice in steady conditions and upon enteric Citrobacter rodentium infection. STING agonists were used to stimulating B cells or dendritic cells in vitro. Gut microbiota composition was examined by 16S ribosomal RNA gene sequencing. Bacteria metabolomics functional analyses was performed by PICRUSt2. Fecal short-chain fatty acid (SCFA) was determined by Mass spectrometry and Cedex Bio Analyzer. Gut bacteria from WT mice and Sting-/- mice were transferred into germ-free mice and antibiotic-pretreated mice. RESULTS Intestinal IgA response was impaired in Sting-/- mice. However, STING agonists did not directly stimulate B cells or dendritic cells to induce IgA. Interestingly, Sting-/- mice displayed altered gut microbiota composition with decreased SCFA-producing bacteria and downregulated SCFA fermentation pathways. Transfer of fecal bacteria from Sting-/- mice induced less IgA than that from WT mice in germ-free mice and antibiotic-pretreated mice, which is mediated by GPR43. Acetate, the dominant SCFA, was decreased in Sting-/- mice, and supplementation of acetate restored intestinal IgA production in Sting-/- mice. CONCLUSIONS STING promotes intestinal IgA by regulating acetate-producing gut bacteria.
Collapse
Affiliation(s)
- Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maki Wakamiya
- Germ-free Mouse Facility, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
15
|
Zeng F, Wang L, Zhen H, Guo C, Liu A, Xia X, Pei H, Dong C, Ding J. Nanoplastics affect the growth of sea urchins (Strongylocentrotus intermedius) and damage gut health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161576. [PMID: 36640870 DOI: 10.1016/j.scitotenv.2023.161576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are abundant and widespread throughout the ocean, not only causing severe environmental pollution, but also worsening the aquatic organisms. To elucidate the mechanism of biological toxic effects underlying the responses of marine invertebrates to NPs, Strongylocentrotus intermedius was stressed with three different NPs concentrations (0 particles/L, 102 particles/L and 104 particles/L). Specific growth rates, enzyme activity, gut tissue section observation and structural characteristics of the gut bacterial community were analyzed. After 28 days of exposure, the specific growth rate of S. intermedius decreased significantly with NPs groups. Further, both lysozyme, pepsin, lipase and amylase activities decreased, while the superoxide dismutase activity increased, indicating that NPs negatively affected digestive enzyme and immune enzyme activity. The analysis of gut tissue sections revealed that NPs caused atrophy and cytoplasmic reduction in the epithelial cells of the S. intermedius intestine. Moreover, the structural characterization of the gut bacterial community indicated significant changes in the abundances of members from Campylobacterota, Chlamydiae, and Firmicutes. Members from Arcobacteraceae, Christensenellaceae and Clostridia were endemic to the NPs treatment. The KEGG database analysis demonstrated that the metabolic pathways specific to the NPs treatment group were significantly associated with growth, energy metabolism, and immunity. In summary, NPs have negatively affected on physiological response and altered gut microecological environment.
Collapse
Affiliation(s)
- Fanshuang Zeng
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Hao Zhen
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Anzheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xinglong Xia
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Honglin Pei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Changkun Dong
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
16
|
Ratiner K, Fachler-Sharp T, Elinav E. Small Intestinal Microbiota Oscillations, Host Effects and Regulation-A Zoom into Three Key Effector Molecules. BIOLOGY 2023; 12:142. [PMID: 36671834 PMCID: PMC9855434 DOI: 10.3390/biology12010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
The gut microbiota features a unique diurnal rhythmicity which contributes to modulation of host physiology and homeostasis. The composition and activity of the microbiota and its secreted molecules influence the intestinal milieu and neighboring organs, such as the liver. Multiple immune-related molecules have been linked to the diurnal microbiota-host interaction, including Reg3γ, IgA, and MHCII, which are secreted or expressed on the gut surface and directly interact with intestinal bacteria. These molecules are also strongly influenced by dietary patterns, such as high-fat diet and time-restricted feeding, which are already known to modulate microbial rhythms and peripheral clocks. Herein, we use Reg3γ, IgA, and MHCII as test cases to highlight the divergent effects mediated by the diurnal activity of the gut microbiota and their downstream host effects. We further highlight current challenges and conflicts, remaining questions, and perspectives toward a holistic understanding of the microbiome's impacts on circadian human behavior.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
| | - Tahel Fachler-Sharp
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem 9987500, Israel
| | - Eran Elinav
- Systems Immunology Department, Weisman Institute of Science, Rehovot 7610001, Israel
- Microbiota & Cancer Division, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Grenda T, Grenda A, Domaradzki P, Krawczyk P, Kwiatek K. Probiotic Potential of Clostridium spp.-Advantages and Doubts. Curr Issues Mol Biol 2022; 44:3118-3130. [PMID: 35877439 PMCID: PMC9315758 DOI: 10.3390/cimb44070215] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium spp. is a large genus of obligate anaerobes and is an extremely heterogeneous group of bacteria that can be classified into 19 clusters. Genetic analyses based on the next-generation sequencing of 16S rRNA genes and metagenome analyses conducted on human feces, mucosal biopsies, and luminal content have shown that the three main groups of strict extremophile anaerobes present in the intestines are Clostridium cluster IV (also known as the Clostridium leptum group), Clostridium cluster XIVa (also known as the Clostridium coccoides group) and Bacteroides. In addition to the mentioned clusters, some C. butyricum strains are also considered beneficial for human health. Moreover, this bacterium has been widely used as a probiotic in Asia (particularly in Japan, Korea, and China). The mentioned commensal Clostridia are involved in the regulation and maintenance of all intestinal functions. In the literature, the development processes of new therapies are described based on commensal Clostridia activity. In addition, some Clostridia are associated with pathogenic processes. Some C. butyricum strains detected in stool samples are involved in botulism cases and have also been implicated in severe diseases such as infant botulism and necrotizing enterocolitis in preterm neonates. The aim of this study is to review reports on the possibility of using Clostridium strains as probiotics, consider their positive impact on human health, and identify the risks associated with the expression of their pathogenic properties.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
- Correspondence: ; Tel.: +48-81-889-3191
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Piotr Domaradzki
- Department of Commodity Science and Animal Raw Materials Processing, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
| |
Collapse
|
18
|
Watanabe Y, Mizushima T, Okumura R, Fujino S, Ogino T, Miyoshi N, Takahashi H, Uemura M, Matsuda C, Yamamoto H, Takeda K, Doki Y, Eguchi H. Fecal Stream Diversion Changes Intestinal Environment, Modulates Mucosal Barrier, and Attenuates Inflammatory Cells in Crohn's Disease. Dig Dis Sci 2022; 67:2143-2157. [PMID: 34041649 DOI: 10.1007/s10620-021-07060-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The intestinal environment plays important roles in mucosal barrier homeostasis and intestinal inflammation, as clarified in studies using experimental animals but not in humans. AIMS We investigated whether environmental changes in the fecal stream cause phenotypic changes in the human mucosal barrier. METHODS We obtained human ileal samples after fecal stream diversions in patients with rectal cancer or Crohn's disease. We investigated the bacterial load and diversity in the human defunctioned ileum, defined as the anal side of the ileum relative to the ileostomy. We also examined the epithelium and lamina propria cell phenotypes in the defunctioned ileum. RESULTS After fecal stream diversion, bacterial loads decreased significantly in the defunctioned ileum. Based on the Chao1, Shannon, and observed species indices, the diversity of mucosa-associated microbiota was lower in the defunctioned ileum than in the functional ileum. Moreover, the healthy defunctioned ileum showed reductions in villous height, goblet cell numbers, and Ki-67+ cell numbers. Additionally, interferon-γ+, interleukin-17+, and immunoglobulin A+ cell abundance in the lamina propria decreased. After the intestinal environment was restored with an ileostomy closure, the impaired ileal homeostasis recovered. The defunctioned ileum samples from patients with Crohn's disease also showed reductions in interferon-γ+ and interleukin-17+ cell numbers. CONCLUSIONS Fecal stream diversion reduced the abundance and diversity of intestinal bacteria. It also altered the intestinal mucosal barrier, similar to the alterations observed in germ-free animals. In patients with Crohn's disease, Th1 and Th17 cell numbers were attenuated, which suggests that the host-microbiome interaction is important in disease pathogenesis.
Collapse
Affiliation(s)
- Yoshifumi Watanabe
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Therapeutics for Inflammatory Bowel Diseases, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Japan.
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shiki Fujino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Takeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Liepman RS, Swink JM, Habing GG, Boyaka PN, Caddey B, Costa M, Gomez DE, Toribio RE. Effects of Intravenous Antimicrobial Drugs on the Equine Fecal Microbiome. Animals (Basel) 2022; 12:1013. [PMID: 35454258 PMCID: PMC9030835 DOI: 10.3390/ani12081013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alterations in the gastrointestinal microbiota after antimicrobial therapy in horses can result in loss of colonization resistance and changes in bacterial metabolic function. It is hypothesized that these changes facilitate gastrointestinal inflammation, pathogen expansion and the development of diarrhea. The objectives of this study were to determine the effect of intravenous administration of antimicrobial drugs (ceftiofur, enrofloxacin, oxytetracycline) on equine fecal bacterial communities over time, to investigate whether those changes are detectable after 5 days of treatment and whether they persist over time (30 days). Sixteen horses were randomly assigned into 4 treatment groups: group 1 (enrofloxacin, n = 4); group 2 (ceftiofur sodium, n = 4); group 3 (oxytetracycline, n = 4); group 4 (0.9% saline solution, placebo, n = 4). Antimicrobial therapy was administered for 5 days. Fecal samples were obtained before (day 0) and at 3, 5 and 30 days of the study period. Bacterial DNA was amplified using specific primers to the hypervariable region V1−V3 of the 16S rRNA gene using a 454 FLX-Titanium pyrosequencer. Antimicrobial therapy failed to cause any changes in physical examination parameters, behavior, appetite or fecal output or consistency throughout the study in any horse. There was a significant effect of treatment on alpha diversity indices (richness) over the treatment interval for ceftiofur on days 0 vs. 3 (p < 0.05), but not for other antimicrobials (p > 0.05). Microbial composition was significantly different (p < 0.05) across treatment group and day, but not for interactions between treatment and day, regardless of taxonomic level and beta-diversity distance metric. The most significant antimicrobial effects on relative abundance were noted after intravenous administration of ceftiofur and enrofloxacin. The relative abundance of Fibrobacteres was markedly lower on day 3 compared to other days in the ceftiofur and enrofloxacin treatment groups. There was an increase in Clostridia and Lachnospiraceae from day 0 to days 3 and 5 in ceftiofur and enrofloxacin treated groups. These findings showed the negative effect of antimicrobial drugs on bacterial communities associated with gut health (Fibrobacteres and Lachnospiraceae) and indicate that changes in specific taxa could predispose horses to gastrointestinal inflammation and the development of diarrhea.
Collapse
Affiliation(s)
- Rachel S. Liepman
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Jacob M. Swink
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Greg G. Habing
- Department of Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Benjamin Caddey
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, Faculté de Médecine Vétérinaire, University of Montreal, Saint Hyacinthe, QC J2S 2M2, Canada;
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ramiro E. Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| |
Collapse
|
20
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Impact of dietary fructooligosaccharides (FOS) on murine gut microbiota and intestinal IgA secretion. 3 Biotech 2022; 12:56. [PMID: 35186653 PMCID: PMC8811108 DOI: 10.1007/s13205-022-03116-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/11/2022] [Indexed: 02/03/2023] Open
Abstract
Fructooligosaccharides (FOS) are considered as prebiotics and are well known for their health-promoting properties, including antitumor, allergy-preventive, and infection-protective effects. They exert these effects by modulating the gut microbial composition and dynamics. In the present study, we performed a comparative whole metagenome shotgun sequencing analysis (WMGS) to elucidate the gut microbiota and secretary Immunoglobulin A (SIgA) dynamics as a result of 5% (w/w) FOS supplementation over a period of 7 days (fecal samples were collected every day). A number of taxa including Bacteroides, Lactobacillus, Roseburia, Clostridia, Faecalibaculum, and Enterorhabdus were found to be modulated with SIgA production in the murine gut. The process of SIgA production from FOS metabolization was found to be carried out via the production of short-chain fatty acids in the gut. Species of Bacteroides and Roseburia; namely, B. caccae, B. finegoldii, B. ovatus, B. thetaiotamicron, and Roseburia intestinalis, respectively, are predominantly responsible for FOS metabolization in the murine gut. The abundances of these bacterial species and their corresponding functions involved in FOS metabolization decreased over time even though these prebiotics were administered continuously for seven days. This suggests that there is a decrease in FOS metabolization over time. In addition, the present analysis suggests that the administration of FOS may help to reduce the pathogenic bacteria from the gut via SIgA production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03116-3.
Collapse
|
22
|
Abujamel TS, Al-Otaibi NM, Abuaish S, AlHarbi RH, Assas MB, Alzahrani SA, Alotaibi SM, El-Ansary A, Aabed K. Different Alterations in Gut Microbiota between Bifidobacterium longum and Fecal Microbiota Transplantation Treatments in Propionic Acid Rat Model of Autism. Nutrients 2022; 14:nu14030608. [PMID: 35276971 PMCID: PMC8838423 DOI: 10.3390/nu14030608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders (ASD) consist of a range of neurodevelopmental conditions accompanied by dysbiosis of gut microbiota. Therefore, a number of microbiota manipulation strategies were developed to restore their balance. However, a comprehensive comparison of the various methods on gut microbiota is still lacking. Here, we evaluated the effect of Bifidobacterium (BF) treatment and fecal microbiota transplantation (FT) on gut microbiota in a propionic acid (PPA) rat model of autism using 16S rRNA sequencing. Following PPA treatment, gut microbiota showed depletion of Bacteroidia and Akkermansia accompanied by a concomitant increase of Streptococcus, Lachnospiraceae, and Paraeggerthella. The dysbiosis was predicted to cause increased levels of porphyrin metabolism and impairments of acyl-CoA thioesterase and ubiquinone biosynthesis. On the contrary, BF and FT treatments resulted in a distinct increase of Clostridium, Bifidobacterium, Marvinbryantia, Butyricicoccus, and Dorea. The taxa in BF group positively correlated with vitamin B12 and flagella biosynthesis, while FT mainly enriched flagella biosynthesis. In contrast, BF and FT treatments negatively correlated with succinate biosynthesis, pyruvate metabolism, nitrogen metabolism, beta-Lactam resistance, and peptidoglycan biosynthesis. Therefore, the present study demonstrated that BF and FT treatments restored the PPA-induced dysbiosis in a treatment-specific manner.
Collapse
Affiliation(s)
- Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-504-545-472
| | - Norah M. Al-Otaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.M.A.-O.); (S.A.A.); (S.M.A.); (K.A.)
| | - Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Rahaf H. AlHarbi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mushref B. Assas
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Saleha Ahmad Alzahrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.M.A.-O.); (S.A.A.); (S.M.A.); (K.A.)
| | - Sohailah Masoud Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.M.A.-O.); (S.A.A.); (S.M.A.); (K.A.)
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P.O. Box 22452, Riyadh 11472, Saudi Arabia;
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.M.A.-O.); (S.A.A.); (S.M.A.); (K.A.)
| |
Collapse
|
23
|
The Multifaceted Effects of Gut Microbiota on the Immune System of the Intestinal Mucosa. IMMUNO 2021. [DOI: 10.3390/immuno1040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota has diverse microbial components, including bacteria, viruses, and fungi. The interaction between gut microbiome components and immune responses has been studied extensively over the last decade. Several studies have reported the potential role of the gut microbiome in maintaining gut homeostasis and the development of disease. The commensal microbiome can preserve the integrity of the mucosal barrier by acting on the host immune system. Contrastingly, dysbiosis-induced inflammation can lead to the initiation and progression of several diseases through inflammatory processes and oxidative stress. In this review, we describe the multifaceted effects of the gut microbiota on several diseases from the perspective of mucosal immunological responses.
Collapse
|
24
|
Connell S, Kawashima M, Nakamura S, Imada T, Yamamoto H, Tsubota K, Fukuda S. Lactoferrin Ameliorates Dry Eye Disease Potentially through Enhancement of Short-Chain Fatty Acid Production by Gut Microbiota in Mice. Int J Mol Sci 2021; 22:ijms222212384. [PMID: 34830266 PMCID: PMC8624394 DOI: 10.3390/ijms222212384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022] Open
Abstract
Lactoferrin is a glycoprotein found at high concentrations within exocrine secretions, including tears. Low levels of lactoferrin have been implicated in the loss of tear secretion and ageing. Furthermore, lactoferrin possesses a range of functionalities, including anti-inflammatory properties and the ability to modulate the gut microbiota. Expanding evidence demonstrates a crucial role of the gut microbiota in immune regulation and development. The specific composition of bacterial species of the gut has a profound influence on local and systemic inflammation, leading to a protective capacity against a number of inflammatory diseases, potentially by the induction of regulatory immune cells. In this study, we demonstrated that oral administration of lactoferrin maintains tear secretion in a restraint and desiccating stress induced mouse model of dry eye disease. Furthermore, we revealed that lactoferrin induces the reduction of inflammatory cytokines, modulates gut microbiota, and induces short-chain fatty acid production. Whereas, the antibiotic vancomycin abrogates the effects of lactoferrin on dry eye disease and significantly reduces short-chain fatty acid concentrations. Therefore, this protective effect of LF against a mice model of DED may be explained by our observations of an altered gut microbiota and an enhanced production of immunomodulatory short-chain fatty acids.
Collapse
Affiliation(s)
- Samuel Connell
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Hiromitsu Yamamoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan;
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
- Correspondence: (K.T.); (S.F.)
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan;
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki 210-0821, Kanagawa, Japan
- Correspondence: (K.T.); (S.F.)
| |
Collapse
|
25
|
Li Z, Tang L, Liu N, Zhang F, Liu X, Jiang Q, Chen J, Ma X. Comparative Effects of Compound Enzyme and Antibiotics on Growth Performance, Nutrient Digestibility, Blood Biochemical Index, and Intestinal Health in Weaned Pigs. Front Microbiol 2021; 12:768767. [PMID: 34777322 PMCID: PMC8586506 DOI: 10.3389/fmicb.2021.768767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
This experiment aims to explore the effects of compound enzyme preparation substituting chlortetracycline on growth performance, serum immune markers, and antioxidant capacity and intestinal health in weaned piglets. A total of twenty-four 28-day-old “Duroc × Landrace × Yorkshire” weaned piglets with an average initial weight of 7.25 ± 0.25 kg were randomly divided into three groups according to their body weight, with eight replicates in each group and one pig in each replicate. The three dietary treatments were basal diet (CON), basal diet + 1,000 mg/kg compound enzyme preparation (cellulase 4,000 IU/g, α-amylase 1,000 IU/g, β-glucanase 150 IU/g, and neutral protease 3,000 IU/g, CE), and basal diet + 75 mg/kg chlortetracycline (CTC). The animal experiment lasted for 28 days and was divided into two stages: the early stage (0–14 days) and the late stage (15–28 days). The results showed that (1) compared with the CON, the CE and CTC significantly increased the ADG of weaned piglets during the early and whole period of experiment (p < 0.05), decreased the F:G in the whole experiment period (p < 0.05), and diarrhea rate in the early stage (p < 0.01). (2) Compared with the CON, the apparent total tract digestibility of ADF and NDF was significantly increased in pigs fed the CE diet in the early and late stages of experiment (p < 0.05) with no significant difference compared with the CTC. (3) Compared with the CON, the concentrations of serum IgA and SOD in weaned piglets were significantly increased in the CE group in the early stage of the experiment (p < 0.05). (4) Compared with the CON group, the acetic acid, propionic acid, and total VFA contents in cecum and colon segments were elevated in the CE group (p < 0.05) with no significant difference compared with the CTC. (5) Compared with the CON group, the villus height of duodenum and jejunum and the ratio of villus height to recess depth of ileum were increased in the CE and CTC group (p < 0.05). (6) Compared with the CON group, the abundance of Lactobacillus significantly increased (p < 0.01) while the abundance of Escherichia coli decreased in the CE group and CTC group (p < 0.01). In conclusion, CE preparation instead of CTC can significantly improve the nutrient digestibility, the immunity, antioxidant capacity, and intestinal health of pigs, which may contribute to the improved growth performance of piglets.
Collapse
Affiliation(s)
- Zhiqing Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lizi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Nian Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Glowacki RWP, Engelhart MJ, Ahern PP. Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Front Microbiol 2021; 12:735562. [PMID: 34646255 PMCID: PMC8503645 DOI: 10.3389/fmicb.2021.735562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
The profound impact of the gut microbiome on host health has led to a revolution in biomedical research, motivating researchers from disparate fields to define the specific molecular mechanisms that mediate host-beneficial effects. The advent of genomic technologies allied to the use of model microbiomes in gnotobiotic mouse models has transformed our understanding of intestinal microbial ecology and the impact of the microbiome on the host. However, despite incredible advances, our understanding of the host-microbiome dialogue that shapes host physiology is still in its infancy. Progress has been limited by challenges associated with developing model systems that are both tractable enough to provide key mechanistic insights while also reflecting the enormous complexity of the gut ecosystem. Simplified model microbiomes have facilitated detailed interrogation of transcriptional and metabolic functions of the microbiome but do not recapitulate the interactions seen in complex communities. Conversely, intact complex communities from mice or humans provide a more physiologically relevant community type, but can limit our ability to uncover high-resolution insights into microbiome function. Moreover, complex microbiomes from lab-derived mice or humans often do not readily imprint human-like phenotypes. Therefore, improved model microbiomes that are highly defined and tractable, but that more accurately recapitulate human microbiome-induced phenotypic variation are required to improve understanding of fundamental processes governing host-microbiome mutualism. This improved understanding will enhance the translational relevance of studies that address how the microbiome promotes host health and influences disease states. Microbial exposures in wild mice, both symbiotic and infectious in nature, have recently been established to more readily recapitulate human-like phenotypes. The development of synthetic model communities from such "wild mice" therefore represents an attractive strategy to overcome the limitations of current approaches. Advances in microbial culturing approaches that allow for the generation of large and diverse libraries of isolates, coupled to ever more affordable large-scale genomic sequencing, mean that we are now ideally positioned to develop such systems. Furthermore, the development of sophisticated in vitro systems is allowing for detailed insights into host-microbiome interactions to be obtained. Here we discuss the need to leverage such approaches and highlight key challenges that remain to be addressed.
Collapse
Affiliation(s)
- Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
27
|
Fecal Transplant and Bifidobacterium Treatments Modulate Gut Clostridium Bacteria and Rescue Social Impairment and Hippocampal BDNF Expression in a Rodent Model of Autism. Brain Sci 2021; 11:brainsci11081038. [PMID: 34439657 PMCID: PMC8391663 DOI: 10.3390/brainsci11081038] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Autism is associated with gastrointestinal dysfunction and gut microbiota dysbiosis, including an overall increase in Clostridium. Modulation of the gut microbiota is suggested to improve autistic symptoms. In this study, we explored the implementation of two different interventions that target the microbiota in a rodent model of autism and their effects on social behavior: the levels of different fecal Clostridium spp., and hippocampal transcript levels. Autism was induced in young Sprague Dawley male rats using oral gavage of propionic acid (PPA) for three days, while controls received saline. PPA-treated animals were divided to receive either saline, fecal transplant from healthy donor rats, or Bifidobacterium for 22 days, while controls continued to receive saline. We found that PPA attenuated social interaction in animals, which was rescued by the two interventions. PPA-treated animals had a significantly increased abundance of fecal C. perfringens with a concomitant decrease in Clostridium cluster IV, and exhibited high hippocampal Bdnf expression compared to controls. Fecal microbiota transplantation or Bifidobacterium treatment restored the balance of fecal Clostridium spp. and normalized the level of Bdnf expression. These findings highlight the involvement of the gut-brain axis in the etiology of autism and propose possible interventions in a preclinical model of autism.
Collapse
|
28
|
Takeuchi T, Ohno H. Reciprocal regulation of IgA and the gut microbiota: a key mutualism in the intestine. Int Immunol 2021; 33:781-786. [PMID: 34346497 DOI: 10.1093/intimm/dxab049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
The mammalian intestine is home to trillions of microbes, and their colonization contributes to host physiology through the production of indispensable metabolites and competition against pathogens. However, it is also important to balance this symbiotic relationship, as overgrowth and translocation of microbes could trigger a fatal infection. IgA is the major immunoglobulin class produced and secreted in the intestine and is considered to play a pivotal role in maintaining homeostasis. In this review, we summarize recent studies exploring the interactions between IgA and the gut microbiota, and explain how different types of IgA could coexist to regulate the gut microbiota. In particular, we discuss two important aspects of IgA in controlling the gut microbes: function and specificity. Differences in these two aspects appear attributable to how IgA is induced and are associated with the functions of IgA as well. Together, our review delineates a recent understanding of IgA-microbiome interactions and proposes a future direction to clarify its complexity.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Intestinal Ecosystem, Yokohama, Japan.,Department of Microbiology and Immunology, Keio University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Intestinal Ecosystem, Yokohama, Japan
| |
Collapse
|
29
|
Dietary Bioactive Peptide Alanyl-Glutamine Attenuates Dextran Sodium Sulfate-Induced Colitis by Modulating Gut Microbiota. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5543003. [PMID: 34046146 PMCID: PMC8128544 DOI: 10.1155/2021/5543003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disorder threatening human health. Di-peptide alanyl-glutamine (Ala-Gln) has various beneficial effects on gut health. However, its role and functional mechanism in treating IBD are still not clear. Therefore, the protective effects of Ala-Gln and glutamine (Gln) on dextran sulfate sodium- (DSS-) induced colitic mice were investigated in this study. The results showed that oral supplementation of Ala-Gln or Gln significantly attenuated the colitis symptoms in mice, including body weight loss, colon length, disease activity index, histological scores, and tissue apoptosis. The concentrations of interleukin- (IL-) 1β, IL-6, tumor necrosis factor-α, and myeloperoxidase were significantly decreased, while the concentrations of immunoglobulins (IgA, IgG, and IgM) and superoxide dismutase were significantly increased by Ala-Gln or Gln supplementation. The expression of occludin and peptide transporter 1 (PepT1) was significantly increased by Ala-Gln or Gln. Interestingly, Ala-Gln had better beneficial effects than Gln in alleviating colitis. In addition, 16S rDNA sequencing showed that the DSS-induced shifts of the microbiome (community diversity, evenness, richness, and composition) in the mouse colon were restored by Gln and Ala-Gln, including Lactobacillus, Bacteroides_acidifaciens, Bacteroidales, Firmicutes, Clostridia, Helicobacter, and Bacteroides. Correspondingly, the functions of the microflora metabolism pathways were also rescued by Ala-Gln, including fatty acid metabolism, membrane transporters, infectious diseases, and immune system. In conclusion, the results revealed that Ala-Gln can prevent colitis through PepT1, enhancing the intestinal barrier and modulating gut microbiota and microflora metabolites.
Collapse
|
30
|
Abstract
The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system-microbiota interactions.
Collapse
Affiliation(s)
- Eduard Ansaldo
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20814, USA;
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20814, USA; .,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20814, USA; .,Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Palacios N, Hannoun A, Flahive J, Ward D, Goostrey K, Deb A, Smith KM. Effect of Levodopa Initiation on the Gut Microbiota in Parkinson's Disease. Front Neurol 2021; 12:574529. [PMID: 33746867 PMCID: PMC7970035 DOI: 10.3389/fneur.2021.574529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/13/2021] [Indexed: 01/22/2023] Open
Abstract
Background: The impact of Levodopa on the gut microbiota of Parkinson's disease (PD) patients has not been sufficiently addressed. Methods: We conducted a longitudinal study to examine the impact of Levodopa initiation on the gut microbiota composition of 19 PD patients who had not previously been exposed to Levodopa. Patients provided two stool samples prior to and two samples 90 days after starting Levodopa. Motor impairment (MDS-UPDRS Part III), diet, and other patient characteristics were assessed. 16S rRNA gene amplicon sequencing was used to characterize the microbiota. We examined, cross-sectionally and longitudinally, the associations between Levodopa use and alpha and beta diversity and performed feature-wise, multivariate modeling to identify taxa associated longitudinally with Levodopa use and with improvement in motor function after Levodopa administration. Results: We did not observe significant differences in alpha or beta diversity before vs. after initiation of Levodopa. In longitudinal feature-wise analyses, at the genus level, no taxa were significantly associated with Levodopa use after false discovery rate (FDR) correction (q < 0.05). We observed a marginally lower relative abundance of bacteria belonging to Clostridium group IV in PD patients who experienced a medium or large improvement in motor impairment in response to Levodopa compared to those with a small response [β = −0.64 (SE: 0.18), p-trend: 0.00015 p-FDR: 0.019]. Conclusions: In this study, Levodopa was not associated with changes in microbiota composition in this longitudinal analysis. The association between abundance of Clostridium group IV and short-term motor symptom response to Levodopa is preliminary and should be investigated in larger, longer-term studies, that include a control group.
Collapse
Affiliation(s)
- Natalia Palacios
- Department of Public Health, University of Massachusetts Lowell, Lowell, MA, United States.,Department of Veterans Affairs, Edith Nourse Rogers Memorial Veteran's Hospital (ENRM VA) Hospital, Bedford, MA, United States.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Anas Hannoun
- Department of Neurology, Geisel School of Medicine at Dartmouth, Manchester, NH, United States
| | - Julie Flahive
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States.,Department of UMass Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kelsey Goostrey
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anindita Deb
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kara M Smith
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
32
|
Goto Y. [Commensal bacteria prevent pathogenic bacterial infection by inducing of activation of host immune system]. Nihon Saikingaku Zasshi 2021; 75:185-194. [PMID: 33361654 DOI: 10.3412/jsb.75.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Countless numbers of bacteria inhabit the intestinal tract. One of the important functions of gut microbiota is the "colonization resistance" against infection by pathogenic microorganisms. However, detailed mechanism of the colonization resistance of intestinal bacteria is still largely unknown. We tried to identify molecular and cellular mechanism of it and found that antigen presentation by dendritic cells is required for the induction of intestinal segmented filamentous bacteria (SFB)-induced T helper 17 (Th17) cells that contribute to the protection against infection by Citrobacter rodentium. We further identified that gut Th17 cells selectively recognize antigens derived from SFB. We also revealed that SFB induce α1,2-fucose, one of carbohydrate chains, expressed on the intestinal epithelial cells mediated by group 3 innate lymphoid cells. Epithelial α1,2-fucose protected against infection by pathogenic bacterium Salmonella typhimurium. Furthermore, it was found that intestinal bacteria inhibit colonization of the pathogenic fungus Candida albicans as well as pathogenic bacteria. From these studies, detailed mechanism of "colonization resistance" against pathogenic microorganisms by intestinal bacteria has been clarified.
Collapse
Affiliation(s)
- Yoshiyuki Goto
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University.,Division of Mucosal Symbiosis, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo
| |
Collapse
|
33
|
Ericsson AC, Franklin CL. The gut microbiome of laboratory mice: considerations and best practices for translational research. Mamm Genome 2021; 32:239-250. [PMID: 33689000 PMCID: PMC8295156 DOI: 10.1007/s00335-021-09863-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Just as the gut microbiota (GM) is now recognized as an integral mediator of environmental influences on human physiology, susceptibility to disease, and response to pharmacological intervention, so too does the GM of laboratory mice affect the phenotype of research using mouse models. Multiple experimental factors have been shown to affect the composition of the GM in research mice, as well as the model phenotype, suggesting that the GM represents a major component in experimental reproducibility. Moreover, several recent studies suggest that manipulation of the GM of laboratory mice can substantially improve the predictive power or translatability of data generated in mouse models to the human conditions under investigation. This review provides readers with information related to these various factors and practices, and recommendations regarding methods by which issues with poor reproducibility or translatability can be transformed into discoveries.
Collapse
Affiliation(s)
- Aaron C Ericsson
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Craig L Franklin
- University of Missouri Metagenomics Center (MUMC), MU Mutant Mouse Resource and Research Center (MU MMRRC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
34
|
Genome sequence of segmented filamentous bacteria present in the human intestine. Commun Biol 2020; 3:485. [PMID: 32887924 PMCID: PMC7474095 DOI: 10.1038/s42003-020-01214-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Segmented filamentous bacteria (SFB) are unique immune modulatory bacteria colonizing the small intestine of a variety of animals in a host-specific manner. SFB exhibit filamentous growth and attach to the host’s intestinal epithelium, offering a physical route of interaction. SFB affect functions of the host immune system, among them IgA production and T-cell maturation. Until now, no human-specific SFB genome has been reported. Here, we report the metagenomic reconstruction of an SFB genome from a human ileostomy sample. Phylogenomic analysis clusters the genome with SFB genomes from mouse, rat and turkey, but the genome is genetically distinct, displaying 65–71% average amino acid identity to the others. By screening human faecal metagenomic datasets, we identified individuals carrying sequences identical to the new SFB genome. We thus conclude that a unique SFB variant exists in humans and foresee a renewed interest in the elucidation of SFB functionality in this environment. Hans Jonsson et al. report the metagenomic reconstruction of the genome of a potentially immune modulatory segmented filamentous bacteria (SFB) from a human ileostomy sample. They demonstrate that the genome clusters closely with SFB genomes from other species. They also detect the unique SFB variant in human faecal metagenomics datasets.
Collapse
|
35
|
The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry 2020; 25:1068-1079. [PMID: 30833676 DOI: 10.1038/s41380-019-0380-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Chronic exposure to stress is associated with increased incidence of depression, generalized anxiety, and PTSD. However, stress induces vulnerability to such disorders only in a sub-population of individuals, as others remain resilient. Inflammation has emerged as a putative mechanism for promoting stress vulnerability. Using a rodent model of social defeat, we have previously shown that rats with short-defeat latencies (SL/vulnerable rats) show increased anxiety- and depression-like behaviors, and these behaviors are mediated by inflammation in the ventral hippocampus. The other half of socially defeated rats show long-latencies to defeat (LL/resilient) and are similar to controls. Because gut microbiota are important activators of inflammatory substances, we assessed the role of the gut microbiome in mediating vulnerability to repeated social defeat stress. We analyzed the fecal microbiome of control, SL/vulnerable, and LL/resilient rats using shotgun metagenome sequencing and observed increased expression of immune-modulating microbiota, such as Clostridia, in SL/vulnerable rats. We then tested the importance of gut microbiota to the SL/vulnerable phenotype. In otherwise naive rats treated with microbiota from SL/vulnerable rats, there was higher microglial density and IL-1β expression in the vHPC, and higher depression-like behaviors relative to rats that received microbiota from LL/resilient rats, non-stressed control rats, or vehicle-treated rats. However, anxiety-like behavior during social interaction was not altered by transplant of the microbiome of SL/vulnerable rats into non-stressed rats. Taken together, the results suggest the gut microbiome contributes to the depression-like behavior and inflammatory processes in the vHPC of stress vulnerable individuals.
Collapse
|
36
|
Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol 2020; 11:24. [PMID: 32099648 PMCID: PMC7031906 DOI: 10.1186/s40104-019-0402-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium species, as a predominant cluster of commensal bacteria in our gut, exert lots of salutary effects on our intestinal homeostasis. Up to now, Clostridium species have been reported to attenuate inflammation and allergic diseases effectively owing to their distinctive biological activities. Their cellular components and metabolites, like butyrate, secondary bile acids and indolepropionic acid, play a probiotic role primarily through energizing intestinal epithelial cells, strengthening intestinal barrier and interacting with immune system. In turn, our diets and physical state of body can shape unique pattern of Clostridium species in gut. In view of their salutary performances, Clostridium species have a huge potential as probiotics. However, there are still some nonnegligible risks and challenges in approaching application of them. Given this, this review summarized the researches involved in benefits and potential risks of Clostridium species to our health, in order to develop Clostridium species as novel probiotics for human health and animal production.
Collapse
Affiliation(s)
- Pingting Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Ke Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| |
Collapse
|
37
|
Richards-Rios P, Leeming G, Fothergill J, Bernardeau M, Wigley P. Topical Application of Adult Cecal Contents to Eggs Transplants Spore-Forming Microbiota but Not Other Members of the Microbiota to Chicks. Appl Environ Microbiol 2020; 86:e02387-19. [PMID: 31862722 PMCID: PMC7028958 DOI: 10.1128/aem.02387-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota plays an essential role in the metabolism and immune competence of chickens from the first day after hatching. In modern production systems, chicks are isolated from adult chickens, instead hatching in a clean environment. As a result, chicks are colonized by environmental bacteria, including potential pathogens. There is a need to investigate methods by which chicks can be exposed to a more appropriate microbial community at hatching. Such methods must be easy to apply in a hatchery and produce consistent results. The development of the intestinal microbiota of chicks hatched from eggs sprayed with dilute adult cecal content during incubation was observed at 0, 3, 7, and 14 days posthatching (dph) across two experiments. High-throughput Illumina sequencing was performed for the V4 hypervariable region of the 16S rRNA gene. A topical treatment of dilute adult cecal content was sufficient to transplant spore-forming bacteria such as Lachnospiraceae and Ruminococcaceae However, this treatment was not able to transplant other taxa that are considered to be core elements of the chicken cecal microbiota, such as Bacteroidaceae, Lactobacillaceae, Bifidobacteriaceae, and Burkholderiaceae The topical treatment significantly altered the microbiota of chicks immediately posthatching and accelerated the normal development of the microbiota with earlier colonization by Ruminococcaceae in the cecum and "Candidatus Arthromitus" in the ileum. The effect of the treatment on the cecal microbiota was maximal at 3 dph but diminished over time.IMPORTANCE Over the last 60 years poultry production has intensified in response to increased demand for meat. In modern systems, chicks hatch without contacting chickens and their gut bacteria. Consequently, they are colonized by environmental bacteria that may cause disease. The normal bacteria that live in the gut, or intestinal microbiota, play an important role in the development of the immune system. Therefore, it is essential to find easy ways to expose chicks to the more appropriate bacteria at hatching. This experiment investigated whether spraying eggs with adult cecal contents was sufficient to transfer an adult microbiota to chicks. Our findings show that spore-forming bacteria were transplanted, but other members of the microbiota were not. In this respect, the spray application was partially successful, but the timing of the spray needs to be modified to ensure that more bacteria are transferred.
Collapse
Affiliation(s)
- Peter Richards-Rios
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Gail Leeming
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Department of Veterinary Pathology, Infection and Public Health, Institute of Veterinary Science, University of Liverpool
| | - Jo Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marion Bernardeau
- DuPont Industrial Biosciences, Genencor International BV, Leiden, The Netherlands
| | - Paul Wigley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
38
|
Li Y, Li W, Wang X, Ding C, Liu J, Li Y, Li W, Sun Y. High-Salt Diet-Induced Gastritis in C57BL/6 Mice is Associated with Microbial Dysbiosis and Alleviated by a Buckwheat Diet. Mol Nutr Food Res 2020; 64:e1900965. [PMID: 32032975 DOI: 10.1002/mnfr.201900965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/15/2020] [Indexed: 12/19/2022]
Abstract
SCOPE A high-salt diet is a cause of gastritis, but the associated mechanism remains unclear. Recent studies have shown that gastric flora is associated with a variety of stomach diseases, but it is not known whether gastric flora is involved in gastritis induced by a high-salt diet. METHODS AND RESULTS Gastritis is successfully induced in C57BL/6 mice fed a high-salt diet (salt: 5% NaCl) for four weeks. Through 16S rRNA gene sequencing, the composition of the stomach microbiota of mice fed normal and high-salt diets are compared, the results of which show that the high-salt diet induces significant changes in the gastric flora. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) is used to predict the function of the microbiota in the stomach of mice, and the results indicate that a high-salt diet leads to a decrease in the ability of the gastric microbiota to metabolize polysaccharides and vitamins. A buckwheat diet is used to treat gastritis. The results show gastritis induced by the high-salt diet is significantly alleviated, and the dysbiosis in the stomach also improved. CONCLUSION Buckwheat diet may be one of the ways to prevent and treat gastritis caused by a high-salt diet.
Collapse
Affiliation(s)
- Ya Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, 250012, China
| | - Wen Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, 250012, China
| | - Xiao Wang
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, 250012, China
| | - Chao Ding
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Junze Liu
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, 250012, China
| | - Yan Li
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Wenjuan Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, 250012, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
39
|
Richards-Rios P, Fothergill J, Bernardeau M, Wigley P. Development of the Ileal Microbiota in Three Broiler Breeds. Front Vet Sci 2020; 7:17. [PMID: 32083101 PMCID: PMC7002466 DOI: 10.3389/fvets.2020.00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
The development and succession of the microbiota in ileal mucus and lumen samples from three breeds of broiler chicken (Cobb 500, n = 36; Hubbard JA87, n = 38; and Ross 308, n = 36) was observed between 3 and 42 days post hatch (d.p.h). Chicks were housed in the same room of a climate-controlled, biosecure chicken housing unit. Between 0 and 14 d.p.h, chicks were kept in three circular brooder pens ensuring a mixture of breeds in each brooder. From 22 d.p.h, chicks were removed from the brooders and kept in the same room. DNA was extracted from a pooled sample of ileal mucus and luminal contents taken from five birds of each breed at 3, 7, 14, 21, 28, and 42 d.p.h. High-throughput Illumina sequencing was performed for the V4 hypervariable region of the 16S rRNA gene. The initial microbiota in the ileum varied between breeds. The common features were a low diversity and general dominance by one or two taxa such as Enterococcus or Escherichia with relatively low numbers of Lactobacillus. Escherichia became the most abundant genus in samples where Enterococcus was previously the dominant taxa. The next phase of development was marked by an increase in the abundance of Candidatus Arthromitus in the mucus and Lactobacillus in the lumen. The high abundance of Candidatus Arthromitus persisted between 7 and 14 d.p.h after which Lactobacillus became the most abundant genus in both the mucus and lumen. Dominance of the ileal microbiota by Lactobacillus was a transient feature. By 42 d.p.h, the relative abundance of Lactobacillus had fallen while a range of other taxa including Escherichia, Turicibacter, and members of Clostridiales increased. This general pattern was followed by all breeds, however, the rate at which succession occurred differed as Ross matured quicker than Cobb with Hubbard as an intermediate.
Collapse
Affiliation(s)
- Peter Richards-Rios
- Department of Health and Life Sciences, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Jo Fothergill
- Department of Health and Life Sciences, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marion Bernardeau
- DuPont Industrial Biosciences, Genencor International BV, Leiden, Netherlands
| | - Paul Wigley
- Department of Health and Life Sciences, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
40
|
Ali F, Lui K, Wang A, Day AS, Leach ST. The perinatal period, the developing intestinal microbiome and inflammatory bowel diseases: What links early life events with later life disease? J R Soc N Z 2020. [DOI: 10.1080/03036758.2019.1706586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fathalla Ali
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| | - Kei Lui
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
- Department of Newborn Care, Royal Hospital for Women, Sydney, Australia
| | - Alex Wang
- Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Andrew S. Day
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Steven T. Leach
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
42
|
Ahern PP, Maloy KJ. Understanding immune-microbiota interactions in the intestine. Immunology 2020; 159:4-14. [PMID: 31777071 PMCID: PMC6904641 DOI: 10.1111/imm.13150] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The past two decades have seen an explosion in research that aims to understand how the dynamic interplay with the gut microbiota impacts host health and disease, establishing a role for the gut microbiota in a plethora of pathologies. Understanding how health-promoting microbiota are established and how beneficial host-microbiota interactions are maintained is of immense biomedical importance. Despite the enormous progress that has been made, our knowledge of the specific microbiota members that mediate these effects and the mechanisms underlying these interactions is rudimentary. The dearth of information regarding the nature of advantageous host-microbiota interactions, and the factors that cause these relationships to go awry, has hampered our ability to realize the therapeutic potential of the microbiota. Here we discuss key issues that limit current knowledge and describe a path forwards to improving our understanding of the contributions of the microbiota to host health.
Collapse
Affiliation(s)
- Philip P. Ahern
- Department of Cardiovascular and Metabolic SciencesCleveland Clinic Lerner Research InstituteClevelandOHUSA
| | - Kevin J. Maloy
- Institute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
43
|
Goto Y. Epithelial Cells as a Transmitter of Signals From Commensal Bacteria and Host Immune Cells. Front Immunol 2019; 10:2057. [PMID: 31555282 PMCID: PMC6724641 DOI: 10.3389/fimmu.2019.02057] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Intestinal epithelial cells (IECs) are non-hematopoietic cells that form a physical barrier against external antigens. Recent studies indicate that IECs have pleiotropic functions in the regulation of luminal microbiota and the host immune system. IECs produce various immune modulatory cytokines and chemokines in response to commensal bacteria and contribute to developing the intestinal immune system. In contrast, IECs receive cytokine signals from immune cells and produce various immunological factors against luminal bacteria. This bidirectional function of IECs is critical to regulate homeostasis of microbiota and the host immune system. Disruption of the epithelial barrier leads to detrimental host diseases such as inflammatory bowel disease, colonic cancer, and pathogenic infection. This review provides an overview of the functions and physiology of IECs and highlights their bidirectional functions against luminal bacteria and immune cells, which contribute to maintaining gut homeostasis.
Collapse
Affiliation(s)
- Yoshiyuki Goto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.,Division of Mucosal Symbiosis, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Hansen AK, Nielsen DS, Krych L, Hansen CHF. Bacterial species to be considered in quality assurance of mice and rats. Lab Anim 2019; 53:281-291. [PMID: 31096877 DOI: 10.1177/0023677219834324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria are relevant in rodent quality assurance programmes if (a) the animals are at risk and (b) presence in the animals makes a difference for animal research or welfare, for example because the agent regulates clinical disease progression or impacts its host in other ways. Furthermore, zoonoses are relevant. Some bacterial species internationally recommended for the health monitoring of rats and mice, that is, Citrobacter rodentium, Corynebacterium kutscheri, Salmonella spp. and Streptococcus pneumonia, are no longer found in either laboratory or pet shop rats or mice, while there is still a real risk of impact on animal research and welfare from Filobacterium rodentium, Clostridium piliforme, Mycoplasma spp., Helicobacter spp. and Rodentibacter spp., while Streptobacillus moniliformis may be considered a serious zoonotic agent in spite of a very low risk. Modern molecular techniques have revealed that there may, depending on the research type, be equally good reasons for knowing the colony status of some commensal bacteria that are essential for the induction of specific rodent models, such as Alistipes spp., Akkermansia muciniphila, Bifidobacterium spp., Bacteroides fragilis, Bacteroides vulgatus, Faecalibacterium prausnitzii, Prevotella copri and segmented filamentous bacteria. In future, research groups should therefore consider the presence or absence of a short list of defined bacterial species relevant for their models. This list can be tested by cost-effective sequencing or even a simple multiple polymerase chain reaction approach, which is likely to be cost-neutral compared to more traditional screening methods.
Collapse
Affiliation(s)
- Axel Kornerup Hansen
- 1 Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Lukasz Krych
- 2 Department of Food Science, University of Copenhagen, Denmark
| | | |
Collapse
|
45
|
Jung J, Surh CD, Lee YJ. Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells. Mol Cells 2019; 42:313-320. [PMID: 30841027 PMCID: PMC6530640 DOI: 10.14348/molcells.2019.2431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of CD8αβ IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced CD8αβ IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of CD8αβ IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.
Collapse
Affiliation(s)
- Jisun Jung
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| | - Charles D. Surh
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, CA 92037,
USA
| | - You Jeong Lee
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| |
Collapse
|
46
|
Yi J, Jung J, Han D, Surh CD, Lee YJ. Segmented Filamentous Bacteria Induce Divergent Populations of Antigen-Specific CD4 T Cells in the Small Intestine. Mol Cells 2019; 42:228-236. [PMID: 30759969 PMCID: PMC6449712 DOI: 10.14348/molcells.2018.0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
CD4 T cells differentiate into RORγt/IL-17A-expressing cells in the small intestine following colonization by segmented filamentous bacteria (SFB). However, it remains unclear whether SFB-specific CD4 T cells can differentiate directly from naïve precursors, and whether their effector differentiation is solely directed towards the Th17 lineage. In this study, we used adoptive T cell transfer experiments and showed that naïve CD4 T cells can migrate to the small intestinal lamina propria (sLP) and differentiate into effector T cells that synthesize IL-17A in response to SFB colonization. Using single cell RT-PCR analysis, we showed that the progenies of SFB responding T cells are not uniform but composed of transcriptionally divergent populations including Th1, Th17 and follicular helper T cells. We further confirmed this finding using in vitro culture of SFB specific intestinal CD4 T cells in the presence of cognate antigens, which also generated heterogeneous population with similar features. Collectively, these findings indicate that a single species of intestinal bacteria can generate a divergent population of antigen-specific effector CD4 T cells, rather than it provides a cytokine milieu for the development of a particular effector T cell subset.
Collapse
Affiliation(s)
- Jaeu Yi
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Jisun Jung
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Daehee Han
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Charles D. Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, CA 92037,
USA
| | - You Jeong Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
47
|
Miraglia F, Colla E. Microbiome, Parkinson's Disease and Molecular Mimicry. Cells 2019; 8:E222. [PMID: 30866550 PMCID: PMC6468760 DOI: 10.3390/cells8030222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Parkinson's Disease (PD) is typically classified as a neurodegenerative disease affecting the motor system. Recent evidence, however, has uncovered the presence of Lewy bodies in locations outside the CNS, in direct contact with the external environment, including the olfactory bulbs and the enteric nervous system. This, combined with the ability of alpha-synuclein (αS) to propagate in a prion-like manner, has supported the hypothesis that the resident microbial community, commonly referred to as microbiota, might play a causative role in the development of PD. In this article, we will be reviewing current knowledge on the importance of the microbiota in PD pathology, concentrating our investigation on mechanisms of microbiota-host interactions that might become harmful and favor the onset of PD. Such processes, which include the secretion of bacterial amyloid proteins or other metabolites, may influence the aggregation propensity of αS directly or indirectly, for example by favoring a pro-inflammatory environment in the gut. Thus, while the development of PD has not yet being associated with a unique microbial species, more data will be necessary to examine potential harmful interactions between the microbiota and the host, and to understand their relevance in PD pathogenesis.
Collapse
Affiliation(s)
- Fabiana Miraglia
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | - Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
48
|
Yuasa H, Mantani Y, Miyamoto K, Nishida M, Arai M, Tsuruta H, Yokoyama T, Hoshi N, Kitagawa H. Effects of the expansion of bacterial colonies into the intervillous spaces on the localization of several lymphocyte lineages in the rat ileum. J Vet Med Sci 2019; 81:555-566. [PMID: 30799326 PMCID: PMC6483913 DOI: 10.1292/jvms.18-0734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The effect of bacterial colonies expanded into the intervillous spaces on the localization of several lymphocyte lineages was immunohistochemically investigated in two types of mucosa: ordinary mucosa of rat ileum, which consists of mucosa without any mucosal lymphatic tissue; and follicle-associated mucosa (FAM), which accompanies the parafollicular area under the muscularis mucosae in the rat ileal Peyer's patch. The results showed that bacterial colonies in the intervillous spaces induced increased populations of CD8+ cells in the epithelium of the intestinal villus in ordinary mucosa (IV) and intestinal villus in FAM (IV-FAM). Bacterial colonies in the intervillous spaces were also associated with increased numbers of IgA+ cells, which were mainly localized in the lamina propria of basal portions of IV and IV-FAM, and with expanded localization of IgA+ cells into the villous apex in both IV and IV-FAM. Moreover, IgA+ cells around the intestinal crypts adjacent to IV or IV-FAM were also increased in response to bacterial colonies. In the IV-FAM, but not IV, L-selectin+ cells, which were found to be immunopositive for TCRαβ or CD19, were drastically increased in the lamina propria from the crypt to middle portion of IV-FAM and in the lumen of central lymph vessel of IV-FAM in response to the bacterial colonies in the intervillous spaces. These findings revealed that the expansion of bacterial colonies into the intervillous spaces accompanies the change of histological localization of the lymphocyte lineage in both the ordinary mucosa and FAM.
Collapse
Affiliation(s)
- Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuki Miyamoto
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Miho Nishida
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaya Arai
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroki Tsuruta
- Center for Collaborative Research and Technology Development, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
49
|
Robino P, Ferrocino I, Rossi G, Dogliero A, Alessandria V, Grosso L, Galosi L, Tramuta C, Cocolin L, Nebbia P. Changes in gut bacterial communities in canaries infected by Macrorhabdus ornithogaster. Avian Pathol 2018; 48:111-120. [PMID: 30499334 DOI: 10.1080/03079457.2018.1553294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macrorhabdus ornithogaster is an opportunistic yeast that colonizes the gastric mucosa of many avian species. Until now, no studies have focused on the influence of a gastric infection on the balance of the intestinal microbiota of birds. In this study, 44 faecal samples from individual canaries, with and without M. ornithogaster infection, were analysed. The detection of the yeast was evaluated by 18S rRNA PCR. In order to evaluate the impact of the Macrorhabdus infection on the bacterial communities, culture-independent methods, by the use of amplicon-based sequencing as well as 16S rRNA-DGGE, were adopted. The different health status of animals affected the relative abundance of the main OTUs, with a greater diversification of the gut microbiota in healthy animals compared to the infected. In particular, Lactococcus, Pseudomonas, Acinetobacter, Lachnospiraceae, Propionibacterium and Weissella were found to be characteristic of uninfected animals (FDR < 0.05), while Lactobacillus and Candidatus Arthromitus were characteristic of infected animals (FDR < 0.05). Both these taxa have been reported as immunostimulatory, involved in immunological disorders. In infected animals the inferred metagenome assessed by PICRUST clearly showed a positive correlation between the presence of M. ornithogaster and KEGG genes related to ether lipid metabolism, already reported to be immunostimulatory by activation of macrophages and to play a pathophysiological role in several immunological disorders. Finally, our results show an interaction between infection of the digestive tract and intestinal microbiota of pet birds and provide insight into the changing of the complex enteric bacterial community. HIGHLIGHTS Macrorabdus ornithogaster is a gastric yeast that colonizes a wide range of birds. Differences were found between infected and healthy animals in gut microbiota. Candidatus Arthromitus was closely associated with infected birds. M. ornithogaster can affect intestinal microbiota composition of canaries.
Collapse
Affiliation(s)
- Patrizia Robino
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Ilario Ferrocino
- b Department of Agriculture, Forestry and Food Science , University of Torino , Grugliasco , Italy
| | - Giacomo Rossi
- c School of Biosciences and Veterinary Medicine University of Camerino , Matelica , Italy
| | - Andrea Dogliero
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Valentina Alessandria
- b Department of Agriculture, Forestry and Food Science , University of Torino , Grugliasco , Italy
| | - Lisa Grosso
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Livio Galosi
- c School of Biosciences and Veterinary Medicine University of Camerino , Matelica , Italy
| | - Clara Tramuta
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Luca Cocolin
- b Department of Agriculture, Forestry and Food Science , University of Torino , Grugliasco , Italy
| | - Patrizia Nebbia
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| |
Collapse
|
50
|
Leger AJ, Caspi RR. Visions of Eye Commensals: The Known and the Unknown About How the Microbiome Affects Eye Disease. Bioessays 2018; 40:e1800046. [PMID: 30289987 PMCID: PMC6354774 DOI: 10.1002/bies.201800046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Until recently, the ocular surface is thought by many to be sterile and devoid of living microbes. It is now becoming clear that this may not be the case. Recent and sophisticated PCR analyses have shown that microbial DNA-based "signatures" are present within various ethnic, geographic, and contact lens wearing communities. Furthermore, using a mouse model of ocular surface disease, we have shown that the microbe, Corynebacterium mastitidis (C. mast), can stably colonize the ocular mucosa and that a causal relationship exists between ocular C. mast colonization and beneficial local immunity. While this constitutes proof-of-concept that a bona fide ocular microbiome that tunes immunity can exist at the ocular surface, there remain numerous unanswered questions to be addressed before microbiome-modulating therapies may be successfully developed. Here, the authors will briefly outline what is currently known about the local ocular microbiome as well as microbiomes associated with other sites, and how those sites may play a role in ocular surface immunity. Understanding how commensal microbes affect the ocular surface immune homeostasis has the potential revolutionize how we think about treating ocular surface disease.
Collapse
Affiliation(s)
- Anthony J. Leger
- Laboratory of Immunology National Eye Institute, Bethesda, MD 20892, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, PA 15213, USA,
| | - Rachel R. Caspi
- Laboratory of Immunology National Eye Institute, Bethesda, MD 20892, USA,
| |
Collapse
|