1
|
Schweitzer L, Miko BA, Pereira MR. Infectious Disease Prophylaxis During and After Immunosuppressive Therapy. Kidney Int Rep 2024; 9:2337-2352. [PMID: 39156157 PMCID: PMC11328545 DOI: 10.1016/j.ekir.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 08/20/2024] Open
Abstract
Immune-mediated renal diseases are a diverse group of disorders caused by antibody, complement, or cell-mediated autosensitization. Although these diseases predispose to infection on their own, a growing array of traditional and newer, more targeted immunosuppressant medications are used to treat these diseases. By understanding their mechanisms of action and the infections associated with suppression of each arm of the immune system, nephrologists can better anticipate these risks and effectively prevent and recognize opportunistic infections. Focusing specifically on nonkidney transplant recipients, this review discusses the infections that can be associated with each of the commonly used immunosuppressants by nephrologists and suggest interventions to prevent infectious complications in patients with immune-mediated renal disease.
Collapse
Affiliation(s)
- Lorne Schweitzer
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Benjamin A. Miko
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Marcus R. Pereira
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Walsh L, Clark SA, Derrick JP, Borrow R. Beyond the usual suspects: Reviewing infections caused by typically-commensal Neisseria species. J Infect 2023; 87:479-489. [PMID: 37797844 DOI: 10.1016/j.jinf.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE Few data outside of individual case reports are available on non-meningococcal, non-gonococcal species of Neisseria as causative agents of invasive disease. This review collates disease, organism and patient information from case reports on the topic. METHODS A literature search was performed examining articles describing diseases caused by non-meningococcal and non-gonococcal Neisseria. FINDINGS Neisseria present as opportunistic pathogens causing a wide variety of diseases including serious presentations, endocarditis being the most common condition described and N. mucosa the most commonly presenting pathogen overall. Disease may occur in otherwise healthy patients, although risk factors for infection include recent surgery, an immunocompromised state, poor oral health, and intravenous drug use. CONCLUSIONS Commensal Neisseria infections are rare but can present serious invasive diseases. Further research is required to determine why some species cause disease more than others or why some are inclined towards particular manifestations.
Collapse
Affiliation(s)
- Lloyd Walsh
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom.
| | - Stephen A Clark
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom
| | - Jeremy P Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom
| |
Collapse
|
3
|
Fohmann I, Weinmann A, Schumacher F, Peters S, Prell A, Weigel C, Spiegel S, Kleuser B, Schubert-Unkmeir A. Sphingosine kinase 1/S1P receptor signaling axis is essential for cellular uptake of Neisseria meningitidis in brain endothelial cells. PLoS Pathog 2023; 19:e1011842. [PMID: 38033162 PMCID: PMC10715668 DOI: 10.1371/journal.ppat.1011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alina Weinmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Simon Peters
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
4
|
Eriksson L, Johannesen TB, Stenmark B, Jacobsson S, Säll O, Hedberg ST, Fredlund H, Stegger M, Mölling P. Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis. Microb Genom 2023; 9:001124. [PMID: 37874326 PMCID: PMC10634450 DOI: 10.1099/mgen.0.001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Neisseria meningitidis can be a human commensal in the upper respiratory tract but is also capable of causing invasive diseases such as meningococcal meningitis and septicaemia. No specific genetic markers have been detected to distinguish carriage from disease isolates. The aim here was to find genetic traits that could be linked to phenotypic outcomes associated with carriage versus invasive N. meningitidis disease through a bacterial genome-wide association study (GWAS). In this study, invasive N. meningitidis isolates collected in Sweden (n=103) and carriage isolates collected at Örebro University, Sweden (n=213) 2018-2019 were analysed. The GWAS analysis, treeWAS, was applied to single-nucleotide polymorphisms (SNPs), genes and k-mers. One gene and one non-synonymous SNP were associated with invasive disease and seven genes and one non-synonymous SNP were associated with carriage isolates. The gene associated with invasive disease encodes a phage transposase (NEIS1048), and the associated invasive SNP glmU S373C encodes the enzyme N-acetylglucosamine 1-phosphate (GlcNAC 1-P) uridyltransferase. Of the genes associated with carriage isolates, a gene variant of porB encoding PorB class 3, the genes pilE/pilS and tspB have known functions. The SNP associated with carriage was fkbp D33N, encoding a FK506-binding protein (FKBP). K-mers from PilS, tbpB and tspB were found to be associated with carriage, while k-mers from mtrD and tbpA were associated with invasiveness. In the genes fkbp, glmU, PilC and pilE, k-mers were found that were associated with both carriage and invasive isolates, indicating that specific variations within these genes could play a role in invasiveness. The data presented here highlight genetic traits that are significantly associated with invasive or carriage N. meningitidis across the species population. These traits could prove essential to our understanding of the pathogenicity of N. meningitidis and could help to identify future vaccine targets.
Collapse
Affiliation(s)
- Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Thor Bech Johannesen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Olof Säll
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sara Thulin Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Fredlund
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marc Stegger
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
5
|
The Vi Capsular Polysaccharide of Salmonella Typhi Promotes Macrophage Phagocytosis by Binding the Human C-Type Lectin DC-SIGN. mBio 2022; 13:e0273322. [PMID: 36286551 PMCID: PMC9765441 DOI: 10.1128/mbio.02733-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharides are common virulence factors of extracellular, but not intracellular bacterial pathogens, due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi, an intracellular pathogen, synthesizes a virulence-associated (Vi) capsule, which exhibits antiphagocytic properties. Here, we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN, purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever, but the role the capsule plays during pathogenesis remains incompletely understood. Here, we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus, the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development.
Collapse
|
6
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
7
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
8
|
Herold R, Scholtysik R, Moroniak S, Weiss C, Ishikawa H, Schroten H, Schwerk C. Capsule-dependent impact of MAPK signalling on host cell invasion and immune response during infection of the choroid plexus epithelium by Neisseria meningitidis. Fluids Barriers CNS 2021; 18:53. [PMID: 34863201 PMCID: PMC8643193 DOI: 10.1186/s12987-021-00288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background The Gram-negative bacterium Neisseria meningitidis (Nm) can cause meningitis in humans, but the host signalling pathways manipulated by Nm during central nervous system (CNS) entry are not completely understood. Methods We investigate the role of the mitogen-activated protein kinases (MAPK) Erk1/2 and p38 in an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with Nm serogroup B (NmB) and serogroup C (NmC) strains. A transcriptome analysis of HIBCPP cells following infection with Nm by massive analysis of cDNA ends (MACE) was done to further characterize the cellular response to infection of the barrier. Results Interestingly, whereas NmB and NmC wild type strains required active Erk1/2 and p38 pathways for infection, invasion by capsule-deficient mutants was independent of Erk1/2 and, in case of the NmB strain, of p38 activity. The transcriptome analysis of HIBCPP cells following infection with Nm demonstrated specific regulation of genes involved in the immune response dependent on Erk1/2 signalling. Gene ontology (GO) analysis confirmed loss of MAPK signalling after Erk1/2 inhibition and revealed an additional reduction of cellular responses including NFκB and JAK-STAT signalling. Interestingly, GO terms related to TNF signalling and production of IL6 were lost specifically following Erk1/2 inhibition during infection with wild type Nm, which correlated with the reduced infection rates by the wild type in absence of Erk1/2 signalling. Conclusion Our data point towards a role of MAPK signalling during infection of the CP epithelium by Nm, which is strongly influenced by capsule expression, and affects infection rates as well as the host cell response. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00288-7.
Collapse
Affiliation(s)
- Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - René Scholtysik
- Genomics & Transcriptomics Facility, Institute of Cell Biology, University Hospital Essen, Virchowstraße 173, 45122, Essen, Germany
| | - Selina Moroniak
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
9
|
Mullally CA, Mikucki A, Wise MJ, Kahler CM. Modelling evolutionary pathways for commensalism and hypervirulence in Neisseria meningitidis. Microb Genom 2021; 7. [PMID: 34704920 PMCID: PMC8627216 DOI: 10.1099/mgen.0.000662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.
Collapse
Affiliation(s)
- Christopher A. Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - August Mikucki
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
10
|
Barnier JP, Euphrasie D, Join-Lambert O, Audry M, Schonherr-Hellec S, Schmitt T, Bourdoulous S, Coureuil M, Nassif X, El Behi M. Type IV pilus retraction enables sustained bacteremia and plays a key role in the outcome of meningococcal sepsis in a humanized mouse model. PLoS Pathog 2021; 17:e1009299. [PMID: 33592056 PMCID: PMC7909687 DOI: 10.1371/journal.ppat.1009299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.
Collapse
Affiliation(s)
- Jean-Philippe Barnier
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Olivier Join-Lambert
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathilde Audry
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Sophia Schonherr-Hellec
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Taliah Schmitt
- Service de chirurgie reconstructrice et plastique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Xavier Nassif
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mohamed El Behi
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
11
|
Corr M, Waterfield T, Shields M. Fifteen-minute consultation: Symptoms and signs of meningococcal disease. Arch Dis Child Educ Pract Ed 2020; 105:200-203. [PMID: 31619453 DOI: 10.1136/archdischild-2019-317722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 11/04/2022]
Abstract
Meningococcal disease remains a leading cause of meningitis, sepsis and death in children worldwide and in the UK. Successful vaccination programmes in the UK have, however, significantly reduced the burden of disease in children. Unfortunately, despite vaccination, a significant number of children are still diagnosed with invasive meningococcal disease each year.As the prevalence of meningococcal disease falls, it is important that we maintain awareness of the symptoms and signs of meningococcal disease because the prompt recognition of this life-threatening infection improves outcomes.In this article we discuss the pathology, epidemiology and recognition of invasive meningococcal disease in children. The aim is to maintain awareness of this rare but life-threatening infection.
Collapse
Affiliation(s)
- Michael Corr
- Paediatrics, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Thomas Waterfield
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Michael Shields
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
12
|
Thibau A, Dichter AA, Vaca DJ, Linke D, Goldman A, Kempf VAJ. Immunogenicity of trimeric autotransporter adhesins and their potential as vaccine targets. Med Microbiol Immunol 2020; 209:243-263. [PMID: 31788746 PMCID: PMC7247748 DOI: 10.1007/s00430-019-00649-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the suitability of various TAAs as vaccine candidates.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Alexander A. Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK
- Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki, Finland
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Neisseria meningitidis-Induced Caspase-1 Activation in Human Innate Immune Cells Is LOS-Dependent. J Immunol Res 2019; 2019:6193186. [PMID: 31198794 PMCID: PMC6526529 DOI: 10.1155/2019/6193186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/31/2019] [Indexed: 12/21/2022] Open
Abstract
Meningococcal disease such as sepsis and meningitidis is hallmarked by an excessive inflammatory response. The causative agent, Neisseria meningitidis, expresses the endotoxin lipooligosaccharide (LOS) that is responsible for activation of immune cells and the release of proinflammatory cytokines. One of the most potent proinflammatory cytokines, interleukin-1β (IL-1β), is activated following caspase-1 activity in the intracellular multiprotein complex called inflammasome. Inflammasomes are activated by a number of microbial factors as well as danger molecules by a two-step mechanism-priming and licensing of inflammasome activation-but there are no data available regarding a role for inflammasome activation in meningococcal disease. The aim of this study was to investigate if N. meningitidis activates the inflammasome and, if so, the role of bacterial LOS in this activation. Cells were subjected to N. meningitidis, both wild-type (FAM20) and its LOS-deficient mutant (lpxA), and priming as well as licensing of inflammasome activation was investigated. The wild-type LOS-expressing parental FAM20 serogroup C N. meningitidis (FAM20) strain significantly enhanced the caspase-1 activity in human neutrophils and monocytes, whereas lpxA was unable to induce caspase-1 activity as well as to induce IL-1β release. While the lpxA mutant induced a priming response, measured as increased expression of NLRP3 and IL1B, the LOS-expressing FAM20 further increased this priming. We conclude that although non-LOS components of N. meningitidis contribute to the priming of the inflammasome activity, LOS per se is to be considered as the central component of N. meningitidis virulence, responsible for both priming and licensing of inflammasome activation.
Collapse
|
14
|
Colicchio R, Pagliuca C, Ricci S, Scaglione E, Grandgirard D, Masouris I, Farina F, Pagliarulo C, Mantova G, Paragliola L, Leib SL, Koedel U, Pozzi G, Alifano P, Salvatore P. Virulence Traits of a Serogroup C Meningococcus and Isogenic cssA Mutant, Defective in Surface-Exposed Sialic Acid, in a Murine Model of Meningitis. Infect Immun 2019; 87:e00688-18. [PMID: 30718288 PMCID: PMC6434112 DOI: 10.1128/iai.00688-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
In serogroup C Neisseria meningitidis, the cssA (siaA) gene codes for an UDP-N-acetylglucosamine 2-epimerase that catalyzes the conversion of UDP-N-acetyl-α-d-glucosamine into N-acetyl-d-mannosamine and UDP in the first step in sialic acid biosynthesis. This enzyme is required for the biosynthesis of the (α2→9)-linked polysialic acid capsule and for lipooligosaccharide (LOS) sialylation. In this study, we have used a reference serogroup C meningococcal strain and an isogenic cssA knockout mutant to investigate the pathogenetic role of surface-exposed sialic acids in a model of meningitis based on intracisternal inoculation of BALB/c mice. Results confirmed the key role of surface-exposed sialic acids in meningococcal pathogenesis. The 50% lethal dose (LD50) of the wild-type strain 93/4286 was about four orders of magnitude lower than that of the cssA mutant. Compared to the wild-type strain, the ability of this mutant to replicate in brain and spread systemically was severely impaired. Evaluation of brain damage evidenced a significant reduction in cerebral hemorrhages in mice infected with the mutant in comparison with the levels in those challenged with the wild-type strain. Histological analysis showed the typical features of bacterial meningitis, including inflammatory cells in the subarachnoid, perivascular, and ventricular spaces especially in animals infected with the wild type. Noticeably, 80% of mice infected with the wild-type strain presented with massive bacterial localization and accompanying inflammatory infiltrate in the corpus callosum, indicating high tropism of meningococci exposing sialic acids toward this brain structure and a specific involvement of the corpus callosum in the mouse model of meningococcal meningitis.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Susanna Ricci
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Fabrizio Farina
- Department of Law, Economics, Management and Quantitative Methods, University of Sannio, Benevento, Italy
| | | | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Laura Paragliola
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Uwe Koedel
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
15
|
Host Defenses to Extracellular Bacteria. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Clemence MEA, Maiden MCJ, Harrison OB. Characterization of capsule genes in non-pathogenic Neisseria species. Microb Genom 2018; 4. [PMID: 30074474 PMCID: PMC6202450 DOI: 10.1099/mgen.0.000208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genus Neisseria comprises a diverse group of commensal bacteria, which typically colonize the mucosal surfaces of humans and other animals. Neisseria meningitidis, the meningococcus, is notable for its potential to cause invasive meningococcal disease (IMD) in humans; however, IMD is comparatively rare, and meningococci normally colonize the nasopharynx asymptomatically. Possession of a polysaccharide capsule has been shown to be a prerequisite for disease in almost all IMD cases, and was previously considered unique to N. meningitidis, and potentially acquired by horizontal genetic transfer (HGT). Nevertheless, the capsule must also have some role in asymptomatic colonization and/or transmission, consistent with the existence of six non-disease-associated meningococcal capsule serogroups. In this study, full complements of putative capsule genes were identified in non-pathogenic Neisseria species, including Neisseria subflava and Neisseria elongata. These species contained genes for capsule transport and translocation homologous to those of N. meningitidis, as well as novel putative capsule synthesis genes. Phylogenetic analyses were consistent with the proposal that these genes were acquired by the meningococcus through HGT. In contrast with previous evolutionary models, however, the most parsimonious explanation of these data was that capsule transport genes had been lost in the common ancestor of the meningococcus, gonococcus, and their close relatives, and then reacquired by some meningococci. The most likely donor of the meningococcal transport genes was another Neisseria species.
Collapse
|
17
|
Mubaiwa TD, Semchenko EA, Hartley-Tassell LE, Day CJ, Jennings MP, Seib KL. The sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease. Pathog Dis 2017; 75:3867065. [PMID: 28633281 PMCID: PMC5808653 DOI: 10.1093/femspd/ftx063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhoea, are responsible for significant morbidity and mortality worldwide. Neisseria meningitidis displays a range of surface glycosylations including capsule polysaccharide, lipooligosaccharide and O-linked glycoproteins. While N. gonorrhoeae does not have a capsule, it does express both lipooligosaccharide and O-linked glycoproteins. Neisseria gonorrhoeae also has the ability to scavenge host sialic acids, while several N. meningitidis serogroups can synthesise sialic acid. Surface expressed sialic acid is key in serum resistance and survival in the host. On the host side, the pathogenic Neisseria protein adhesins such as Opc and NHBA bind to host glycans for adherence and colonisation of host cells. Essentially, from both the bacterial and host perspective, glycan interactions are fundamental in colonisation and disease of pathogenic Neisseria. The key aspects of glycobiology of the pathogenic Neisseria are reviewed herein.
Collapse
Affiliation(s)
- Tsitsi D. Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
18
|
Resurgence of Neisseria meningitidis serogroup W ST-11 (cc11) in Madagascar, 2015-2016. Int J Infect Dis 2016; 55:1-3. [PMID: 27940178 DOI: 10.1016/j.ijid.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 11/23/2022] Open
Abstract
The resurgence of invasive meningococcal disease caused by Neisseria meningitidis serogroup W with sequence type ST-11 (cc11) was observed in Madagascar in 2015-2016. Three cases were investigated in this study. Molecular characterization of the strains suggests the local transmission of a single genotype that may have been circulating for years.
Collapse
|
19
|
Impact of Moderate Temperature Changes on Neisseria meningitidis Adhesion Phenotypes and Proteome. Infect Immun 2016; 84:3484-3495. [PMID: 27672084 DOI: 10.1128/iai.00584-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, bears the potential to cause life-threatening invasive diseases, but it usually colonizes the nasopharynx without causing any symptoms. Within the nasopharynx, Neisseria meningitidis must face temperature changes depending on the ambient air temperature. Indeed, the nasopharyngeal temperature can be substantially lower than 37°C, the temperature commonly used in experimental settings. Here, we compared the levels of meningococcal biofilm formation, autoaggregation, and cellular adherence at 32°C and 37°C and found a clear increase in all these phenotypes at 32°C suggestive of a stronger in vivo colonization capability at this temperature. A comparative proteome analysis approach revealed differential protein expression levels between 32°C and 37°C, predominantly affecting the bacterial envelope. A total of 375 proteins were detected. Use of database annotation or the PSORTb algorithm predicted 49 of those proteins to be localized in the outer membrane, 21 in either the inner or outer membrane, 35 in the periplasm, 56 in the inner membrane, and 208 in the cytosol; for 6 proteins, no annotation or prediction was available. Temperature-dependent regulation of protein expression was seen particularly in the periplasm as well as in the outer and inner membranes. Neisserial heparin binding antigen (NHBA), NMB1030, and adhesin complex protein (ACP) showed the strongest upregulation at 32°C and were partially responsible for the observed temperature-dependent phenotypes. Screening of different global regulators of Neisseria meningitidis suggested that the extracytoplasmic sigma factor σE might be involved in temperature-dependent biofilm formation. In conclusion, subtle temperature changes trigger adaptation events promoting mucosal colonization by meningococci.
Collapse
|
20
|
Huston SM, Ngamskulrungroj P, Xiang RF, Ogbomo H, Stack D, Li SS, Timm-McCann M, Kyei SK, Oykhman P, Kwon-Chung KJ, Mody CH. Cryptococcus gattii Capsule Blocks Surface Recognition Required for Dendritic Cell Maturation Independent of Internalization and Antigen Processing. THE JOURNAL OF IMMUNOLOGY 2016; 196:1259-71. [PMID: 26740109 DOI: 10.4049/jimmunol.1501089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/25/2015] [Indexed: 12/14/2022]
Abstract
Cryptococcus gattii is an emerging fungal pathogen on the west coast of Canada and the United States that causes a potentially fatal infection in otherwise healthy individuals. In previous investigations of the mechanisms by which C. gattii might subvert cell-mediated immunity, we found that C. gattii failed to induce dendritic cell (DC) maturation, leading to defective T cell responses. However, the virulence factor and the mechanisms of evasion of DC maturation remain unknown. The cryptococcal polysaccharide capsule is a leading candidate because of its antiphagocytic properties. Consequently, we asked if the capsule of C. gattii was involved in evasion of DC maturation. We constructed an acapsular strain of C. gattii through CAP59 gene deletion by homologous integration. Encapsulated C. gattii failed to induce human monocyte-derived DC maturation and T cell proliferation, whereas the acapsular mutant induced both processes. Surprisingly, encapsulation impaired DC maturation independent of its effect on phagocytosis. Indeed, DC maturation required extracellular receptor signaling that was dependent on TNF-α and p38 MAPK, but not ERK activation, and the cryptococcal capsule blocked this extracellular recognition. Although the capsule impaired phagocytosis that led to pH-dependent serine-, threonine-, and cysteine-sensitive protease-dependent Ag processing, it was insufficient to impair T cell responses. In summary, C. gattii affects two independent processes, leading to DC maturation and Ag processing. The polysaccharide capsule masked extracellular detection and reduced phagocytosis that was required for DC maturation and Ag processing, respectively. However, the T cell response was fully restored by inducing DC maturation.
Collapse
Affiliation(s)
- Shaunna M Huston
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Danuta Stack
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Martina Timm-McCann
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Stephen K Kyei
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul Oykhman
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Internal Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
21
|
Comparison of Phenotypic and Genotypic Approaches to Capsule Typing of Neisseria meningitidis by Use of Invasive and Carriage Isolate Collections. J Clin Microbiol 2015; 54:25-34. [PMID: 26311858 DOI: 10.1128/jcm.01447-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022] Open
Abstract
Neisseria meningitidis serogroup B (MnB) is a leading cause of bacterial meningitis; however, MnB is most commonly associated with asymptomatic carriage in the nasopharyngeal cavity, as opposed to the disease state. Two vaccines are now licensed for the prevention of MnB disease; a possible additional benefit of these vaccines could be to protect against disease indirectly by disrupting nasopharyngeal carriage (e.g., herd protection). To investigate this possibility, accurate diagnostic approaches to characterize MnB carriage isolates are required. In contrast to invasive meningococcal disease (IMD) isolates, which can be readily serogrouped, carriage isolates often lack capsule expression, making standard phenotypic assays unsuitable for strain characterization. Several antibody-based methods were evaluated for their abilities to serogroup isolates and were compared with two genotyping methods (real-time PCR [rt-PCR] and whole-genome sequencing [WGS]) to identify which approach would most accurately ascertain the polysaccharide groups associated with carriage isolates. WGS and rt-PCR were in agreement for 99% of IMD isolates, including those with coding sequences for MnB, MnC, MnW, and MnY, and the phenotypic methods correctly identified serogroups for 69 to 98% of IMD isolates. In contrast, only 47% of carriage isolates were groupable by genotypic methods, due to mutations within the capsule operon; of the isolates identified by genotypic methods, ≤43% were serogroupable with any of the phenotypic methods tested. These observations highlight the difficulties in the serogrouping and capsular genogrouping of meningococcal carriage isolates. Based on our findings, WGS is the most suitable approach for the characterization of meningococcal carriage isolates.
Collapse
|
22
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
23
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
24
|
Louwen R, Staals RHJ, Endtz HP, van Baarlen P, van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 2014; 78:74-88. [PMID: 24600041 PMCID: PMC3957734 DOI: 10.1128/mmbr.00039-13] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.
Collapse
|
25
|
Maue AC, Mohawk KL, Giles DK, Poly F, Ewing CP, Jiao Y, Lee G, Ma Z, Monteiro MA, Hill CL, Ferderber JS, Porter CK, Trent MS, Guerry P. The polysaccharide capsule of Campylobacter jejuni modulates the host immune response. Infect Immun 2013; 81:665-72. [PMID: 23250948 PMCID: PMC3584872 DOI: 10.1128/iai.01008-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni is a major cause of bacterial diarrheal disease worldwide. The organism is characterized by a diversity of polysaccharide structures, including a polysaccharide capsule. Most C. jejuni capsules are known to be decorated nonstoichiometrically with methyl phosphoramidate (MeOPN). The capsule of C. jejuni 81-176 has been shown to be required for serum resistance, but here we show that an encapsulated mutant lacking the MeOPN modification, an mpnC mutant, was equally as sensitive to serum killing as the nonencapsulated mutant. A nonencapsulated mutant, a kpsM mutant, exhibited significantly reduced colonization compared to that of wild-type 81-176 in a mouse intestinal colonization model, and the mpnC mutant showed an intermediate level of colonization. Both mutants were associated with higher levels of interleukin 17 (IL-17) expression from lamina propria CD4(+) cells than from cells from animals infected with 81-176. In addition, reduced levels of Toll-like receptor 4 (TLR4) and TLR2 activation were observed following in vitro stimulation of human reporter cell lines with the kpsM and mpnC mutants compared to those with wild-type 81-176. The data suggest that the capsule polysaccharide of C. jejuni and the MeOPN modification modulate the host immune response.
Collapse
Affiliation(s)
- Alexander C. Maue
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Krystle L. Mohawk
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - David K. Giles
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattagnooga, Tennessee, USA
| | - Frédéric Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Cheryl P. Ewing
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Yuening Jiao
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Ginyoung Lee
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Zuchao Ma
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Mario A. Monteiro
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Christina L. Hill
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Jason S. Ferderber
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Chad K. Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - M. Stephen Trent
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, USA
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
26
|
Bartley SN, Tzeng YL, Heel K, Lee CW, Mowlaboccus S, Seemann T, Lu W, Lin YH, Ryan CS, Peacock C, Stephens DS, Davies JK, Kahler CM. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule. PLoS One 2013; 8:e55798. [PMID: 23405216 PMCID: PMC3566031 DOI: 10.1371/journal.pone.0055798] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022] Open
Abstract
We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS) in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.
Collapse
Affiliation(s)
- Stephanie N. Bartley
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Yih-Ling Tzeng
- Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kathryn Heel
- Centre for Microscopy, Characterisation and Analysis, and Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Chiang W. Lee
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Shakeel Mowlaboccus
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Melbourne, Victoria, Australia
| | - Wei Lu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Ya-Hsun Lin
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Catherine S. Ryan
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Christopher Peacock
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - David S. Stephens
- Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John K. Davies
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
El-Yamany S, Mayah W, Jiman-Fatani A, El Saadany S, Hassanien M, Hasan A, Abo-Hagar H. Study of different diagnostic markers used to differentiate septic from aseptic meningitis. J Microsc Ultrastruct 2013. [DOI: 10.1016/j.jmau.2013.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Host defenses to extracellular bacteria. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome. Eur J Clin Microbiol Infect Dis 2012; 32:207-26. [DOI: 10.1007/s10096-012-1733-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 11/27/2022]
|
30
|
Abstract
Dendritic cells (DC) play a key role in the development of natural immunity to microbes. The DC form a bridge between the innate and adaptive immune system by providing key instructions particularly to antigen naïve T-cells. The interaction of DC with T lymphocytes involves three signals: (1) antigen processing and presentation in context of MHC Class I and/or II, (2) expression of T cell co-stimulatory molecules, and (3) cytokine production. Studying the interactions of DCs with specific pathogens allows for better understanding of how protective immunity is generated, and may be particularly useful for assessing vaccine components. In this chapter, we describe methods to generate human monocyte-derived DCs and assess their maturation, activation, and function, using interaction with the gram-negative bacterial pathogen Neisseria meningitidis as a model.
Collapse
Affiliation(s)
- Hannah E Jones
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, UK.
| | | | | |
Collapse
|
31
|
Sialylation of lipooligosaccharides is dispensable for the virulence of Haemophilus ducreyi in humans. Infect Immun 2011; 80:679-87. [PMID: 22144477 DOI: 10.1128/iai.05826-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.
Collapse
|
32
|
Kobsar A, Siauw C, Gambaryan S, Hebling S, Speer C, Schubert-Unkmeir A, Eigenthaler M. Neisseria meningitidis induces platelet inhibition and increases vascular endothelial permeability via nitric oxide regulated pathways. Thromb Haemost 2011; 106:1127-38. [PMID: 22072136 DOI: 10.1160/th11-07-0491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/17/2011] [Indexed: 12/23/2022]
Abstract
Despite antibiotic therapy, infections with Neisseria meningitidis still demonstrate a high rate of morbidity and mortality even in developed countries. The fulminant septicaemic course, named Waterhouse-Friderichsen syndrome, with massive haemorrhage into the adrenal glands and widespread petechial bleeding suggest pathophysiological inhibition of platelet function. Our data show that N. meningitidis produces the important physiological platelet inhibitor and cardiovascular signalling molecule nitric oxide (NO), also known as endothelium-derived relaxing factor (EDRF). N. meningitidis -derived NO inhibited ADP-induced platelet aggregation through the activation of soluble guanylyl cyclase (sGC) followed by an increase in platelet cyclic nucleotide levels and subsequent activation of platelet cGMP- and cAMP- dependent protein kinases (PKG and PKA). Furthermore, direct measurement of horseradish peroxidase (HRP) passage through a vascular endothelial cell monolayer revealed that N. meningitidis significantly increased endothelial monolayer permeability. Immunfluorescence analysis demonstrated NO dependent disturbances in the structure of endothelial adherens junctions after co-incubation with N. meningitidis . In contrast to platelet inhibition, the NO effects on HBMEC were not mediated by cyclic nucleotides. Our study provides evidence that NO plays an essential role in the pathophysiology of septicaemic meningococcal infection.
Collapse
Affiliation(s)
- Anna Kobsar
- Institute of Clinical Biochemistry and Pathobiochemistry /Central Laboratory, University of Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Talà A, Monaco C, Nagorska K, Exley RM, Corbett A, Zychlinsky A, Alifano P, Tang CM. Glutamate utilization promotes meningococcal survival in vivo through avoidance of the neutrophil oxidative burst. Mol Microbiol 2011; 81:1330-42. [PMID: 21777301 PMCID: PMC3755445 DOI: 10.1111/j.1365-2958.2011.07766.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bacterial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L-glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intracellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen peroxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a critical step in the disease process during infections caused by this important human pathogen.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Caterina Monaco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Krzysztofa Nagorska
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Rachel M. Exley
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Anne Corbett
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| |
Collapse
|
34
|
Importance of antibodies to lipopolysaccharide in natural and vaccine-induced serum bactericidal activity against Neisseria meningitidis group B. Infect Immun 2011; 79:4146-56. [PMID: 21768280 DOI: 10.1128/iai.05125-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the specificity of bactericidal antibodies in normal, convalescent, and postvaccination human sera is important in understanding human immunity to meningococcal infections and can aid in the design of an effective group B vaccine. A collection of human sera, including group C and group B convalescent-phase sera, normal sera with naturally occurring cross-reactive bactericidal activity, and some postvaccination sera, was analyzed to determine the specificity of cross-reactive bactericidal antibodies. Analysis of human sera using a bactericidal antibody depletion assay demonstrated that a significant portion of the bactericidal activity could be removed by purified lipopolysaccharide (LPS). LPS homologous to that expressed on the bactericidal test strain was most effective, but partial depletion by heterologous LPS suggested the presence of antibodies with various degrees of cross-reactivity. Binding of anti-L3,7 LPS bactericidal antibodies was affected by modification of the core structure, suggesting that these functional antibodies recognized epitopes consisting of both core structures and lacto-N-neotetraose (LNnT). When the target strain was grown with 5'-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA) to increase LPS sialylation, convalescent-phase serum bactericidal titers were decreased by only 2- to 4-fold, and most remaining bactericidal activity was still depleted by LPS. Highly sialylated LPS was ineffective in depleting bactericidal antibodies. We conclude that natural infections caused by strains expressing L3,7 LPS induce persistent, protective bactericidal antibodies and appear to be directed against nonsialylated bacterial epitopes. Additionally, subsets of these bactericidal antibodies are cross-reactive, binding to several different LPS immunotypes, which is a useful characteristic for an effective group B meningococcal vaccine antigen.
Collapse
|
35
|
Deutschmann R, Boncheff AG, MacInnes JI, Monteiro MA. Discovery and characterization of a fructosylated capsule polysaccharide and sialylated lipopolysaccharide in a virulent strain of Actinobacillus suis. Biochem Cell Biol 2011; 89:325-31. [PMID: 21612441 DOI: 10.1139/o11-001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We are developing a serotyping system for Actinobacillus suis based on its capsule (K) and lipopolysaccharide O-chain (O) structures. Previously, we have shown that less virulent strains of this swine pathogen express a (1→6)-β-D-glucan as both K- and O-chain polysaccharides and were serologically classified as K:1/O:1. Here, we show that representative A. suis strains with a high (H91-0380; serotype K:2/O:2) and intermediate (C84; serotype K:2/O:1) degree of virulence possess a capsule polysaccharide (K:2) composed of an O-acetylated diglycosyl phosphate repeat decorated with fructose: [→4)-3-O-Ac-β-D-GlcpNAc-(1→3)-[β-D-Fruf-(2→2)]-α-D-Galp-(1→PO(4)(-)→]. In addition, the serotype O:2 lipopolysaccharide was shown to express a sialylated O-chain [→3)-β-D-Galp-(1→4)-[Neu5Ac-(2→3)-α-D-Galp-(1→6)]-β-D-Glcp-(1→6)-β-D-GlcpNAc-(1→]. As (1→6)-β-D-glucan is ubiquitous in the environment, low levels of antibodies in the animals are predicted to prevent disease by K:1/O:1 strains. The greater potential associated with K:2/O:2 and K:2/O:1 strains is most likely due to the absence of (1→6)-β-D-glucan as the K antigen and, in the case of K:2/O:2, the presence of sialic acid in the lipopolysaccharide, a nonulosonic acid known to promote evasion of host recognition.
Collapse
|
36
|
Gasparini R, Panatto D. Meningococcal glycoconjugate vaccines. HUMAN VACCINES 2011; 7:170-82. [PMID: 21178398 PMCID: PMC3166476 DOI: 10.4161/hv.7.2.13717] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/13/2010] [Accepted: 09/22/2010] [Indexed: 12/20/2022]
Abstract
Neisseria meningitidis is a major cause of invasive bacterial infections worldwide. For this reason, efforts to control the disease have been directed at optimizing meningococcal vaccines and implementing appropriate vaccination policies. In the past, plain polysaccharide vaccines containing purified capsular polysaccharides A, C, Y and W135 were developed, but failed to protect infants, who are at greatest risk. Experience with the conjugate Haemophilus vaccine suggested that this approach might well empower meningococcal vaccines. Thus, a very efficacious vaccine against serogroup C Neisseria meningitis was optimized and has been widely used in developed nations since 1999. On the basis of epidemiological changes in the circulation of pathogenic serogroups in the United States, a quadrivalent conjugate vaccine against A, C, Y and W135 serogroups (Menactra™) has been developed and was approved by the U.S. FDA (Food and Drug Administration) in 2005. Recently, another tetravalent conjugate meningococcal vaccine (Menveo™) has been licensed and made available in the United States of America and in the European Union. Finally, in response to large epidemics caused by serogroup A meningococcus in Africa, a new, safe, immunogenic and affordable vaccine has been developed. This review highlights the evolution of conjugate meningococcal vaccines in general and discusses how this kind of vaccine can contribute to preventing meningococcal disease.
Collapse
|
37
|
Molecular diagnosis of bloodstream infections: planning to (physically) reach the bedside. Curr Opin Infect Dis 2010; 23:311-9. [PMID: 20592531 DOI: 10.1097/qco.0b013e32833bfc44] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Faster identification of infecting microorganisms and treatment options is a first-ranking priority in the infectious disease area, in order to prevent inappropriate treatment and overuse of broad-spectrum antibiotics. Standard bacterial identification is intrinsically time-consuming, and very recently there has been a burst in the number of commercially available nonphenotype-based techniques and in the documentation of a possible clinical impact of these techniques. RECENT FINDINGS Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now a standard diagnostic procedure on cultures and hold promises on spiked blood. Meanwhile, commercial PCR-based techniques have improved with the use of bacterial DNA enrichment methods, the diversity of amplicon analysis techniques (melting curve analysis, microarrays, gel electrophoresis, sequencing and analysis by mass spectrometry) leading to the ability to challenge bacterial culture as the gold standard for providing earlier diagnosis with a better 'clinical' sensitivity and additional prognostic information. SUMMARY Laboratory practice has already changed with MALDI-TOF MS, but a change in clinical practice, driven by emergent nucleic acid-based techniques, will need the demonstration of real-life applicability as well as robust clinical-impact-oriented studies.
Collapse
|
38
|
Kuijf ML, Samsom JN, van Rijs W, Bax M, Huizinga R, Heikema AP, van Doorn PA, van Belkum A, van Kooyk Y, Burgers PC, Luider TM, Endtz HP, Nieuwenhuis EES, Jacobs BC. TLR4-mediated sensing of Campylobacter jejuni by dendritic cells is determined by sialylation. THE JOURNAL OF IMMUNOLOGY 2010; 185:748-55. [PMID: 20525894 DOI: 10.4049/jimmunol.0903014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Guillain-Barré syndrome (GBS), ganglioside mimicry of Campylobacter jejuni lipo-oligosaccharide (LOS) drives the production of cross-reactive Abs to peripheral nerve gangliosides. We determined whether sialic acid residues in C. jejuni LOS modulate dendritic cell (DC) activation and subsequent B cell proliferation as a possible mechanism for the aberrant humoral immune response in GBS. Highly purified sialylated LOS of C. jejuni isolates from three GBS patients induced human DC maturation and secretion of inflammatory cytokines that were inhibited by anti-TLR4 neutralizing Abs. The extent of TLR4 signaling and DC activation was greater with LOS of the wild type isolates than with nonsialylated LOS of the corresponding sialyltransferase gene knockout (cst-II mutant) strains, indicating that sialylation boosts the DC response to C. jejuni LOS. Supernatants of LOS-activated DCs induced B cell proliferation after cross-linking of surface Igs in the absence of T cells. Lower B cell proliferation indices were found with DC supernatants after DC stimulation with cst-II mutant or neuraminidase desialylated LOS. This study showed that sialylation of C. jejuni LOS enhances human DC activation and subsequent B cell proliferation, which may contribute to the development of cross-reactive anti-ganglioside Abs found in GBS patients following C. jejuni infection.
Collapse
Affiliation(s)
- Mark L Kuijf
- Department of Neurology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The transcriptional repressor FarR is not involved in meningococcal fatty acid resistance mediated by the FarAB efflux pump and dependent on lipopolysaccharide structure. Appl Environ Microbiol 2010; 76:3160-9. [PMID: 20348314 DOI: 10.1128/aem.02833-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Free fatty acids are important antimicrobial substances regulating the homeostasis of colonizing bacteria on epithelial surfaces. Here, we show that meningococci express a functional farAB efflux pump, which is indispensable for fatty acid resistance. However, other than in Neisseria gonorrhoeae, the transcriptional regulator FarR is not involved in regulation of this operon in Neisseria meningitidis. We tested the susceptibility of 23 meningococcal isolates against saturated and unsaturated long-chain fatty acids, proving that meningococci are generally highly resistant, with the exception of serogroup Y strains belonging to sequence type 23. Using genetically determined lipopolysaccharide (LPS)-truncated mutant strains, we show that addition of the LPS core oligosaccharide and hexa-acylation of its membrane anchor lipid A are imperative for fatty acid resistance of meningococci. The sensitivity of the serogroup Y strains is due to naturally occurring mutations within the lpxL1 gene, which is responsible for addition of the sixth acyl chain on the LPS membrane anchor lipid A. Therefore, fatty acid resistance in meningococci is provided by both the active efflux pump FarAB and by the natural permeability barrier of the Gram-negative outer membrane. The transcriptional regulator FarR is not implicated in fatty acid resistance in meningococci, possibly giving rise to a constitutively active FarAB efflux pump system and thus revealing diverse mechanisms of niche adaptation in the two closely related Neisseria species.
Collapse
|
40
|
de Filippis I. Quest for a broad-range vaccine against Neisseria meningitidis serogroup B: implications of genetic variations of the surface-exposed proteins. J Med Microbiol 2009; 58:1127-1132. [DOI: 10.1099/jmm.0.011189-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the development of new vaccine formulations using new biotechnology resources to combat emerging and re-emerging diseases, serogroup B meningococcal disease is still a worldwide burden, accounting for many deaths and disabilities every year. The successful approach of coupling a polysaccharide (PS) with a carrier protein in order to increase long-lasting immunity could not be exploited againstNeisseria meningitidisB because of the limitations of using the capsular PS of serogroup B meningococci. Tailor-made vaccines based on exposed proteins were shown to be a promising approach to overcome these flaws. However, the continuous adaptation of surface meningococcal structures to the external environment has led to genetic shifts of potential vaccine-target epitopes, hampering the quest for a broad-range vaccine that could be used against all serogroups, especially against serogroup B.
Collapse
Affiliation(s)
- Ivano de Filippis
- Fundacao Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Departamento de Microbiologia, Rio de Janeiro 21045-900, Brazil
| |
Collapse
|
41
|
Mechanisms of avoidance of host immunity by Neisseria meningitidis and its effect on vaccine development. THE LANCET. INFECTIOUS DISEASES 2009; 9:418-27. [PMID: 19555901 DOI: 10.1016/s1473-3099(09)70132-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neisseria meningitidis remains an important cause of severe sepsis and meningitis worldwide. The bacterium is only found in human hosts, and so must continually coexist with the immune system. Consequently, N meningitidis uses multiple mechanisms to avoid being killed by antimicrobial proteins, phagocytes, and, crucially, the complement system. Much remains to be learnt about the strategies N meningitidis employs to evade aspects of immune killing, including mimicry of host molecules by bacterial structures such as capsule and lipopolysaccharide, which poses substantial problems for vaccine design. To date, available vaccines only protect individuals against subsets of meningococcal strains. However, two promising vaccines are currently being assessed in clinical trials and appear to offer good prospects for an effective means of protecting individuals against endemic serogroup B disease, which has proven to be a major challenge in vaccine research.
Collapse
|
42
|
Noske N, Kämmerer U, Rohde M, Hammerschmidt S. Pneumococcal Interaction with Human Dendritic Cells: Phagocytosis, Survival, and Induced Adaptive Immune Response Are Manipulated by PavA. THE JOURNAL OF IMMUNOLOGY 2009; 183:1952-63. [DOI: 10.4049/jimmunol.0804383] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Schielke S, Huebner C, Spatz C, Nägele V, Ackermann N, Frosch M, Kurzai O, Schubert-Unkmeir A. Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family. Mol Microbiol 2009; 72:1054-67. [PMID: 19400792 DOI: 10.1111/j.1365-2958.2009.06710.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two closely related pathogenic species have evolved in the genus Neisseria: N. meningitidis and N. gonorrhoeae, which occupy different host niches and cause different clinical entities. In contrast to the pathogen N. gonorrhoeae, N. meningitidis is a commensal and only rarely becomes invasive. Little is known about the genetic background of the entirely different lifestyles in these closely related species. Meningococcal NMB1843 encodes a transcriptional regulator of the MarR family. The gonococcal homologue FarR regulates expression of farAB, mediating fatty acid resistance. We show that NmFarR also directly interacts with NmfarAB. Yet, by contrast to N. gonorrhoeae, no significant sensitivity to fatty acids was observed in a DeltafarR mutant due to intrinsic resistance of meningococci. Further analyses identified an NmFarR-repressed protein absent from N. gonorrhoeae. This protein is the meningococcus-specific adhesin and vaccine component NadA that has most likely been acquired by horizontal gene transfer. NmFarR binds to a 16 base pair palindromic repeat within the nadA promoter. De-repression of nadA resulted in significantly higher association of a DeltafarR strain with epithelial cells. Hence NmFarR has gained control over a meningococcus-specific gene involved in host colonization and thus contributed to divergent niche adaptation in pathogenic Neisseriae.
Collapse
Affiliation(s)
- Stephanie Schielke
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sloan AM, Henderson AM, Tsang RSW. Characterization of serogroup A Neisseria meningitidis from invasive meningococcal disease cases in Canada between 1979 and 2006: Epidemiological links to returning travellers. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2008; 19:227-32. [PMID: 19412379 PMCID: PMC2605869 DOI: 10.1155/2008/523021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/17/2007] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Serogroup A Neisseria meningitidis has repeatedly caused epidemics of invasive meningococcal disease (IMD) in developing nations since the 1960s. The present study is the first detailed study of serogroup A bacteria isolated in Canada. METHODS Thirty-four serogroup A meningococcal isolates collected from individuals with IMD in Canada between 1979 and 2006 were characterized by serology and multilocus sequence typing of seven housekeeping enzyme genes and genes encoding three outer membrane protein antigens. RESULTS Isolates were assigned to either the sequence type (ST)-1 or the ST-5 clonal complex. Clones within the ST-1 complex were recovered between 1979 and 1992, while clones of the ST-5 complex were isolated between 1987 and 2006; respectively, they accounted for 70.6% and 29.4% of all isolates studied. Isolates of the ST-1 complex were characterized by serosubtype antigen P1.3 or P1.3,6 with PorB allele 60 (serotype 4) and FetA sequence F5-1, while isolates of the ST-5 complex were characterized by serosubtype antigen P1.9 with PorB allele 47 (also serotype 4) and FetA sequence F3-1. CONCLUSIONS The Canadian serogroup A IMD isolates likely originated in travellers returning from hyperendemic or epidemic areas of the globe where serogroup A bacteria circulate. Although the Canadian cases of serogroup A IMD were caused by clones known to have caused epidemics in developing countries, disease incidence remained low in Canada.
Collapse
Affiliation(s)
- Angela M Sloan
- International Centre for Infectious Diseases, Winnipeg, Manitoba
| | - Averil M Henderson
- Vaccine Preventable Bacterial Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Raymond SW Tsang
- International Centre for Infectious Diseases, Winnipeg, Manitoba
- Vaccine Preventable Bacterial Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| |
Collapse
|
45
|
|
46
|
Post DMB, Gibson BW. Proposed second class ofHaemophilus ducreyi strains show altered protein and lipooligosaccharide profiles. Proteomics 2007; 7:3131-42. [PMID: 17676659 DOI: 10.1002/pmic.200600830] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Haemophilus ducreyi is the etiologic agent of chancroid, a sexually transmitted genital ulcer disease. Previously we have shown that the protein profiles and lipooligosaccharide (LOS) structures from various strains of H. ducreyi are generally well conserved. Previous studies have demonstrated that at least one strain, 33921, has a variant protein profile and LOS structure. In this study, both the whole cell lysate and the membrane proteins from strain 33921 were further examined and compared to the prototypical strain 35000HP by 2-DE and by the 16-BAC (benzyldimethyl-n-hexadecylammonium chloride)/SDS-PAGE two-detergent system, respectively. These comparisons demonstrated that a number of the proteins that could be identified from both strains had altered positions on the gels, both in their apparent molecular weight and pI values. Strain 33921 has been suggested to be a member of a second class of strains, termed class II strains. In this study, the proteomic profiles and the LOS structures from the five potential class II strains were examined and found to be similar to strain 33921.
Collapse
|
47
|
Pajón R, Niebla O, Yero D, Pérez O, Cabrera O, Findlow J, Balmer P, Borrow R. On the neisserial vaccine quest: Neisseria Vaccines 2007. Expert Rev Anti Infect Ther 2007; 5:545-50. [PMID: 17678419 DOI: 10.1586/14787210.5.4.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rolando Pajón
- Meningococcal Research Department, Center for Genetic Engineering and Biotechnology, Cubanacán Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Schultz H, Hume J, Zhang DS, Gioannini TL, Weiss JP. A Novel Role for the Bactericidal/Permeability Increasing Protein in Interactions of Gram-Negative Bacterial Outer Membrane Blebs with Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2477-84. [PMID: 17675509 DOI: 10.4049/jimmunol.179.4.2477] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bactericidal/permeability-increasing protein (BPI) is thought to play an important role in killing and clearance of Gram-negative bacteria and the neutralization of endotoxin. A possible role for BPI in clearance of cell-free endotoxin has also been suggested based on studies with purified endotoxin aggregates and blood monocytes. Because the interaction of BPI with cell-free endotoxin, during infection, occurs mainly in tissue and most likely in the form of shed bacterial outer membrane vesicles ("blebs"), we examined the effect of BPI on interactions of metabolically labeled ([(14)C]-acetate) blebs purified from Neisseria meningitidis serogroup B with either human monocyte-derived macrophages or monocyte-derived dendritic cells (MDDC). BPI produced a dose-dependent increase (up to 3-fold) in delivery of (14)C-labeled blebs to MDDC, but not to monocyte-derived macrophages in the presence or absence of serum. Both, fluorescently labeled blebs and BPI were internalized by MDDC under these conditions. The closely related LPS-binding protein, in contrast to BPI, did not increase association of the blebs with MDDC. BPI-enhanced delivery of the blebs to MDDC did not increase cell activation but permitted CD14-dependent signaling by the blebs as measured by changes in MDDC morphology, surface expression of CD80, CD83, CD86, and MHC class II and secretion of IL-8, RANTES, and IP-10. These findings suggest a novel role of BPI in the interaction of bacterial outer membrane vesicles with dendritic cells that may help link innate immune recognition of endotoxin to Ag delivery and presentation.
Collapse
Affiliation(s)
- Hendrik Schultz
- Inflammation Program, University of Iowa and Iowa City Veterans Affairs Medical Center, IA, USA
| | | | | | | | | |
Collapse
|
49
|
Kocabas C, Katsenelson N, Kanswal S, Kennedy MN, Cui X, Blake MS, Segal DM, Akkoyunlu M. Neisseria meningitidis type C capsular polysaccharide inhibits lipooligosaccharide-induced cell activation by binding to CD14. Cell Microbiol 2007; 9:1297-310. [PMID: 17250593 DOI: 10.1111/j.1462-5822.2006.00872.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Encapsulated Neisseria meningitidis can invade mucosal barriers and cause systemic diseases. Activation of the innate immune system by conserved meningococcal molecules such as lipooligosaccharides (LOS) is essential for the generation of an effective host immune response. Here we show that the type C capsular polysaccharide of N. meningitidis (MCPS) inhibited LOS-induced interleukin-6 and TNF-alpha secretion from monocytes, and blocked the maturation of dendritic cells induced by LOS, while the capsular polysaccharide from group B streptococcus type III and t(4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll had no such effect. MCPS also inhibited the LOS-induced NF-kappaB activation and phosphorylation of signalling molecules such as ERK1/2, p38 and Jun N-terminal kinase. In a direct binding assay, MCPS manifested a concentration-dependent binding to recombinant lipoprotein binding protein and CD14, the two members of the LOS receptor complex. In addition, the binding of LOS to CD14 and lipopolysaccharide binding protein was inhibited by MCPS. We established that MCPS binding to CD14 is responsible for the inhibition of LOS-mediated cell activation because MCPS inhibition of LOS was reversed when access amounts of CD14 were added to culture media of HEK293 cells expressing TLR4 and MD-2, and the magnitude of recovery in LOS stimulation correlated with the increase in CD14 concentration. These results suggest a new virulence property of meningococcal capsular polysaccharides.
Collapse
Affiliation(s)
- Can Kocabas
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, 1410 Rockville Pike (HFM-428), Rockville, MD 20852-1448, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Effect of gonococcal lipooligosaccharide variation on human monocytic cytokine profile. BMC Microbiol 2007; 7:7. [PMID: 17257430 PMCID: PMC1797046 DOI: 10.1186/1471-2180-7-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/26/2007] [Indexed: 01/17/2023] Open
Abstract
Background Neisseria gonorrhoeae is an obligate human pathogen that causes significant worldwide morbidity. N. gonorrhoeae expresses lipooligosaccharide (LOS), a phase variable molecule that plays an important role during pathogenesis of the organism. Alteration in the structure of gonococcal LOS correlates with altered disease presentation. In addition, LOS sialylation occurs readily in vivo, though the role of this sialylation during disease is unknown. Results Challenge of human monocytes with purified LOS preparations isolated from strains expressing distinct structurally defined LOSs resulted in identical production of the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-12 (IL-12). Similar results were seen when monocytes were challenged with either live or gentamicin-killed whole cell gonococcal variants expressing these LOS structures, although greater cytokine production was observed in comparison with challenge by purified LOS. Challenge of a human primary monocyte model with distinct LOS variants resulted in similar production of TNFα, IL-12, interleukin-10 (IL-10), and interleukin-8 (IL-8). A cytokine array was employed to allow measurement of a broad range of cytokines in samples challenge with gonococcal LOS variants as well as variants expressing sialylated LOS. Challenge of primary monocytes with sialylated gonococci was shown to elicit the production of more MCP-2 (monocyte chemoattractant protein-2) in comparison with challenge by unsialylated gonococci. Conclusion We demonstrated that while alterations in the carbohydrate moiety of LOS do not impact the production of most cytokines by human monocytes, whole-cell bacterial challenge is more stimulatory than challenge with purified LOS, implying that other gonococcal cell surface antigens are important for the elicitation of cytokines. Challenge with gonococci expressing sialylated LOS resulted in elicitation of more of the chemokine MCP-2 from challenged cells in comparison with gonococci expressing unsialylated LOS. As MCP-2 is an important chemoattractant, this indicates that in vivo sialylation may play an important role during the pathogenesis of N. gonorrhoeae.
Collapse
|