1
|
Kanaan G, Hoehler TM, Iwahana G, Deming JW. Modeled energetics of bacterial communities in ancient subzero brines. Front Microbiol 2023; 14:1206641. [PMID: 37564288 PMCID: PMC10411740 DOI: 10.3389/fmicb.2023.1206641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Cryopeg brines are isolated volumes of hypersaline water in subzero permafrost. The cryopeg system at Utqiaġvik, Alaska, is estimated to date back to 40 ka BP or earlier, a remnant of a late Pleistocene Ocean. Surprisingly, the cryopeg brines contain high concentrations of organic carbon, including extracellular polysaccharides, and high densities of bacteria. How can these physiologically extreme, old, and geologically isolated systems support such an ecosystem? This study addresses this question by examining the energetics of the Utqiaġvik cryopeg brine ecosystem. Using literature-derived assumptions and new measurements on archived borehole materials, we first estimated the quantity of organic carbon when the system formed. We then considered two bacterial growth trajectories to calculate the lower and upper bounds of the cell-specific metabolic rate of these communities. These bounds represent the first community estimates of metabolic rate in a subzero hypersaline environment. To assess the plausibility of the different growth trajectories, we developed a model of the organic carbon cycle and applied it to three borehole scenarios. We also used dissolved inorganic carbon and nitrogen measurements to independently estimate the metabolic rate. The model reconstructs the growth trajectory of the microbial community and predicts the present-day cell density and organic carbon content. Model input included measured rates of the in-situ enzymatic conversion of particulate to dissolved organic carbon under subzero brine conditions. A sensitivity analysis of model parameters was performed, revealing an interplay between growth rate, cell-specific metabolic rate, and extracellular enzyme activity. This approach allowed us to identify plausible growth trajectories consistent with the observed bacterial densities in the cryopeg brines. We found that the cell-specific metabolic rate in this system is relatively high compared to marine sediments. We attribute this finding to the need to invest energy in the production of extracellular enzymes, for generating bioavailable carbon from particulate organic carbon, and the production of extracellular polysaccharides for cryoprotection and osmoprotection. These results may be relevant to other isolated systems in the polar regions of Earth and to possible ice-bound brines on worlds such as Europa, Enceladus, and Mars.
Collapse
Affiliation(s)
- Georges Kanaan
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| | | | - Go Iwahana
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jody W. Deming
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Dopson M, González-Rosales C, Holmes DS, Mykytczuk N. Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies. Front Microbiol 2023; 14:1149903. [PMID: 37007468 PMCID: PMC10050440 DOI: 10.3389/fmicb.2023.1149903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, “Ferrovum myxofaciens,” and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of “omics” techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- *Correspondence: Mark Dopson
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Nadia Mykytczuk
- Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
3
|
Li J, Liu X, Li L, Zhu C, Luo L, Qi Y, Tian L, Chen Z, Qi J, Geng B. Performance exploration and microbial dynamics of urine diverting composting toilets in rural China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115964. [PMID: 36007385 DOI: 10.1016/j.jenvman.2022.115964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The ongoing "toilet revolution" in China provides new opportunities to improve the rural living environment and sanitation, and the introduction of new sanitation facilities such as urine diverting composting toilets (UDCTs) is conducive to the effective treatment and resource utilization of feces. This study revealed the degradation performance and microbial community dynamics of UDCTs and clarified the influence mechanism of fecal volume in aerobic composting treatment. The results showed that UDCTs could effectively decompose human feces, with an organic matter degradation rate of 25%⁓30%. The temperature, water content, NH4+-N and nutrient accumulation were higher in the high fecal volume treatment than in the low fecal volume treatment. Bacterial community composition and structure in UDCTs varied with composting stage and fecal volume. The diversity and richness of bacterial community in compost were changed with different fecal volumes, but the dominant groups were similar. Redundancy analysis (RDA) showed that nitrogen and organic carbon were the main drivers of bacterial community changes during composting. Highly nutritious and non-phytotoxic compost products were suitable for agronomic uses. Based on these results, UDCTs can be an effective way to solve the problem of fecal pollution in rural areas, and fecal dosage is a potential influencing factor in the operation and maintenance of composting systems.
Collapse
Affiliation(s)
- Jiabin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Luyao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Liangguo Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yuanyi Qi
- Zhangye Lanbiao Biotechnology Co., Ltd, Zhangye, Gansu, 734000, PR China
| | - Lan Tian
- Zhangye Lanbiao Biotechnology Co., Ltd, Zhangye, Gansu, 734000, PR China
| | - Zhuobo Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jin Qi
- Zhangye Lanbiao Biotechnology Co., Ltd, Zhangye, Gansu, 734000, PR China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
4
|
Temperature- and Nutrients-Induced Phenotypic Changes of Antarctic Green Snow Bacteria Probed by High-Throughput FTIR Spectroscopy. BIOLOGY 2022; 11:biology11060890. [PMID: 35741411 PMCID: PMC9220083 DOI: 10.3390/biology11060890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Green snow microorganisms play an important role in biogeochemical cycle and carbon sink processes and they can be a source of biotechnologically interesting cell factories. A wide temperature tolerance is a unique property of bacteria isolated from cold environments, which has received great attention in the last years. The present paper examines the growth and chemical profile flexibility for green snow bacteria exposed to different temperature and nutrient fluctuations. By applying high-throughput chemical phenotyping with FTIR spectroscopy we discovered chemical changes possessed by green snow bacteria when grown at high/low temperature and rich/minimal media. Abstract Temperature fluctuations and nutrient composition are the main parameters influencing green snow microbiome. In this study we investigated the influence of temperature and nutrient conditions on the growth and cellular chemical profile of bacteria isolated from green snow. Chemical profiling of the green snow bacteria was done by high-throughput FTIR spectroscopy combined with multivariate data analysis. We showed that temperature and nutrients fluctuations strongly affect growth ability and chemical profile of the green snow bacteria. The size of colonies for green snow bacteria grown at higher (25 °C) and lower (4 °C and 10 °C) than optimal temperature (18 °C) was smaller. All isolates grew on rich medium, and only 19 isolates were able to grow on synthetic minimal media. Lipid and mixed spectral regions showed to be phylogeny related. FTIR fingerprinting indicates that lipids are often affected by the temperature fluctuations. Growth on different media resulted in the change of the whole chemical profile, where lipids showed to be more affected than proteins and polysaccharides. Correlation analysis showed that nutrient composition is clearly strongly influencing chemical changes in the cells, followed by temperature.
Collapse
|
5
|
Ceron-Chafla P, García-Timermans C, de Vrieze J, Ganigué R, Boon N, Rabaey K, van Lier JB, Lindeboom REF. Pre-incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure. Biotechnol Bioeng 2022; 119:1792-1807. [PMID: 35312065 PMCID: PMC9325544 DOI: 10.1002/bit.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022]
Abstract
Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, that is, acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP; < 10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity, and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature-halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Cristina García-Timermans
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Jo de Vrieze
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Ramon Ganigué
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
6
|
Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules 2021; 26:molecules26041035. [PMID: 33669237 PMCID: PMC7919833 DOI: 10.3390/molecules26041035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.
Collapse
|
7
|
Sharma N, Kumar J, Abedin MM, Sahoo D, Pandey A, Rai AK, Singh SP. Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiol 2020; 20:246. [PMID: 32778049 PMCID: PMC7418396 DOI: 10.1186/s12866-020-01923-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Himalaya is an ecologically pristine environment. The geo-tectonic activities have shaped various environmental niches with diverse microbial populations throughout the Himalayan biosphere region. Albeit, limited information is available in terms of molecular insights into the microbiome, including the uncultured microbes, of the Himalayan habitat. Hence, a vast majority of genomic resources are still under-explored from this region. Metagenome analysis has simplified the extensive in-depth exploration of diverse habitats. In the present study, the culture-independent whole metagenome sequencing methodology was employed for microbial diversity exploration and identification of genes involved in various metabolic pathways in two geothermal springs located at different altitudes in the Sikkim Himalaya. RESULTS The two hot springs, Polok and Reshi, have distinct abiotic conditions. The average temperature of Polok and Reshi was recorded to be 62 °C and 43 °C, respectively. Both the aquatic habitats have alkaline geochemistry with pH in the range of 7-8. Community profile analysis revealed genomic evidence of plentiful bacteria, with a minute fraction of the archaeal population in hot water reservoirs of Polok and Reshi hot spring. Mesophilic microbes belonging to Proteobacteria and Firmicutes phyla were predominant at both the sites. Polok exhibited an extravagant representation of Chloroflexi, Deinococcus-Thermus, Aquificae, and Thermotogae. Metabolic potential analysis depicted orthologous genes associated with sulfur, nitrogen, and methane metabolism, contributed by the microflora in the hydrothermal system. The genomic information of many novel carbohydrate-transforming enzymes was deciphered in the metagenomic description. Further, the genomic capacity of antimicrobial biomolecules and antibiotic resistance were discerned. CONCLUSION The study provided comprehensive molecular information about the microbial treasury as well as the metabolic features of the two geothermal sites. The thermal aquatic niches were found a potential bioresource of biocatalyst systems for biomass-processing. Overall, this study provides the whole metagenome based insights into the taxonomic and functional profiles of Polok and Reshi hot springs of the Sikkim Himalaya. The study generated a wealth of genomic data that can be explored for the discovery and characterization of novel genes encoding proteins of industrial importance.
Collapse
Affiliation(s)
- Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jitesh Kumar
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong, Gangtok, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Mohali, India.
| |
Collapse
|
8
|
Abstract
Temperature is an important parameter in bioprocesses, influencing the structure and functionality of almost every biomolecule, as well as affecting metabolic reaction rates. In industrial biotechnology, the temperature is usually tightly controlled at an optimum value. Smart variation of the temperature to optimize the performance of a bioprocess brings about multiple complex and interconnected metabolic changes and is so far only rarely applied. Mathematical descriptions and models facilitate a reduction in complexity, as well as an understanding, of these interconnections. Starting in the 19th century with the “primal” temperature model of Svante Arrhenius, a variety of models have evolved over time to describe growth and enzymatic reaction rates as functions of temperature. Data-driven empirical approaches, as well as complex mechanistic models based on thermodynamic knowledge of biomolecular behavior at different temperatures, have been developed. Even though underlying biological mechanisms and mathematical models have been well-described, temperature as a control variable is only scarcely applied in bioprocess engineering, and as a conclusion, an exploitation strategy merging both in context has not yet been established. In this review, the most important models for physiological, biochemical, and physical properties governed by temperature are presented and discussed, along with application perspectives. As such, this review provides a toolset for future exploitation perspectives of temperature in bioprocess engineering.
Collapse
|
9
|
Casillo A, Ricciardelli A, Parrilli E, Tutino ML, Corsaro MM. Cell-wall associated polysaccharide from the psychrotolerant bacterium Psychrobacter arcticus 273-4: isolation, purification and structural elucidation. Extremophiles 2019; 24:63-70. [PMID: 31309337 DOI: 10.1007/s00792-019-01113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 01/27/2023]
Abstract
In this paper, the structure of the capsular polysaccharide isolated from the psychrotolerant bacterium Psychrobacter arcticus 273-4 is reported. The polymer was purified by gel filtration chromatography and the structure was elucidated by means of one- and two-dimensional NMR spectroscopy, in combination with chemical analyses. The polysaccharide consists of a trisaccharidic repeating unit containing two residues of glucose and a residue of a N,N-diacetyl-pseudaminic acid.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
10
|
Chua MJ, Campen RL, Wahl L, Grzymski JJ, Mikucki JA. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. nov., a psychrophilic, moderate halophile from Blood Falls, an antarctic subglacial brine. FEMS Microbiol Ecol 2019; 94:4850642. [PMID: 29444218 DOI: 10.1093/femsec/fiy021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/08/2018] [Indexed: 11/12/2022] Open
Abstract
Antarctic subice environments are diverse, underexplored microbial habitats. Here, we describe the ecophysiology and annotated genome of a Marinobacter strain isolated from a cold, saline, iron-rich subglacial outflow of the Taylor Glacier, Antarctica. This strain (BF04_CF4) grows fastest at neutral pH (range 6-10), is psychrophilic (range: 0°C-20°C), moderately halophilic (range: 0.8%-15% NaCl) and hosts genes encoding potential low temperature and high salt adaptations. The predicted proteome suggests it utilizes fewer charged amino acids than a mesophilic Marinobacter strain. BF04_CF4 has increased concentrations of membrane unsaturated fatty acids including palmitoleic (33%) and oleic (27.5%) acids that may help maintain cell membrane fluidity at low temperatures. The genome encodes proteins for compatible solute biosynthesis and transport, which are known to be important for growth in saline environments. Physiological verification of predicted metabolic functions demonstrate BF04_CF4 is capable of denitrification and may facilitate iron oxidation. Our data indicate that strain BF04_CF4 represents a new Marinobacter species, Marinobacter gelidimuriae sp. nov., that appears well suited for the subglacial environment it was isolated from. Marinobacter species have been isolated from other cold, saline environments in the McMurdo Dry Valleys and permanently cold environments globally suggesting that this lineage is cosmopolitan and ecologically relevant in icy brines.
Collapse
Affiliation(s)
- Michelle J Chua
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard L Campen
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Lindsay Wahl
- Department of Environmental Studies, Dartmouth College, Hanover, NH, 03755, USA
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, 89512, USA
| | - Jill A Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
11
|
Corkrey R, Macdonald C, McMeekin T. The Biokinetic Spectrum for Temperature and optimal Darwinian fitness. J Theor Biol 2019; 462:171-183. [PMID: 30385312 DOI: 10.1016/j.jtbi.2018.10.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
Abstract
Darwinian fitness is maximised at a temperature below Topt, but what this temperature is remains unclear. By linking our previous work on the Biokinetic Spectrum for Temperature with a model for temperature-dependent biological growth rate we obtain a plausible value for such a temperature. We find this approach reveals considerable commonalities in how life responds to temperature with implications that follow in evolution, physiology and ecology. We described a data set consisting of 17,021 observations of temperature-dependent population growth rates from 2411 bacterial, archaeal and eukaryal strains. We fitted a thermodynamic model to describe the strains' temperature-dependent growth rate curves that assumed growth was limited by a single rate-limiting enzyme. We defined Umes as an empirical measure of the temperature at which strains grew as fast and also as efficiently as possible. We propose that Darwinian fitness is optimised at Umes by trading-off growth rate and physiological efficiency. Using the full data set we calculated the Biokinetic Spectrum for Temperature (BKST): the distribution of temperature-dependent growth rates for each temperature. We used quantile regression to fit alternative models to the BKST to obtain quantile curves. A quantile is a value that contains a particular proportion of the data. The quantile curves suggested commonalities in temperature-dependencies spanning taxa and ecotype, consistent with the single rate-limiting enzyme concept. We showed that on the log scale, the slopes of the quantile curves were the same as the slopes of the thermodynamic model growth curves at Umes. This was true for Bacteria, Archaea, and Eukarya, and across other conditions (pH, water activity, metabolic type and trophic type). We showed that the quantile curves were the loci of the temperatures and growth rates that optimised Darwinian fitness for each strain at a given temperature-dependence and independently of other conditions. The quantile curves for Archaea and Bacteria shared a number of similarities attributable to the influence of the properties of water on protein folding. Other implications have impact on evolutionary biology, ecology, and physiology. The model predicts the existence of eurythermic strains that grow with about equal efficiency over a broad temperature range. These strains will have higher evolutionary rates with lower mutational costs that are independent of environmental conditions, a factor likely to have been significant during the Precambrian if the early Earth was warmer than today. The model predicts that random mutations are likely to result in shifts along the quantile curves and not across them. It predicts that some psychrophiles will be capable of performing well under climate change, and that selection will favour faster growth rates as the temperature increases. Last, it predicts trade-offs between growth rate and soma production, so that temperature-dependence, and possibly Darwinian fitness, remain constant over a broad temperature range and growth rates.
Collapse
Affiliation(s)
- Ross Corkrey
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia.
| | - Cameron Macdonald
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom McMeekin
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
12
|
Bendia AG, Araujo GG, Pulschen AA, Contro B, Duarte RTD, Rodrigues F, Galante D, Pellizari VH. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles 2018; 22:917-929. [PMID: 30109444 DOI: 10.1007/s00792-018-1048-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Polar volcanoes harbor unique conditions of extreme temperature gradients capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located at Maritime Antarctica that is notable for its pronounced temperature gradients over very short distances, reaching values up to 100 °C in the fumaroles, and subzero temperatures next to the glaciers. Due to these characteristics, Deception can be considered an interesting analogue of extraterrestrial environments. Our main goal in this study was to isolate thermophilic and psychrophilic bacteria from sediments associated with fumaroles and glaciers from two geothermal sites in Deception Island, comprising temperatures between 0 and 98 °C, and to evaluate their survivability to desiccation and UV-C radiation. Our results revealed that culturable thermophiles and psychrophiles were recovered among the extreme temperature gradient in Deception volcano, which indicates that these extremophiles remain alive even when the conditions do not comprise their growth range. The viability of culturable psychrophiles in hyperthermophilic environments is still poorly understood and our work showed the importance of future studies about their survival strategies in high temperatures. Finally, the spore-forming thermophilic isolates which we found have displayed good survival to desiccation and UV-C irradiation, which suggests their potential to be further explored in astrobiological studies.
Collapse
Affiliation(s)
- Amanda G Bendia
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil.
| | - Gabriel G Araujo
- Interunities Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Contro
- Undergraduate Program in Biology, Universidade Estadual Paulista "Julio de Mesquisa Filho", São Paulo, Brazil
| | - Rubens T D Duarte
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| | - Fábio Rodrigues
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
13
|
Temporal and Regional Variability in the Skin Microbiome of Humpback Whales along the Western Antarctic Peninsula. Appl Environ Microbiol 2018; 84:AEM.02574-17. [PMID: 29269499 PMCID: PMC5812929 DOI: 10.1128/aem.02574-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
The skin is the first line of defense between an animal and its environment, and disruptions in skin-associated microorganisms can be linked to an animal's health and nutritional state. To better understand the skin microbiome of large whales, high-throughput sequencing of partial small subunit rRNA genes was used to study the skin-associated bacteria of 89 seemingly healthy humpback whales (Megaptera novaeangliae) sampled along the Western Antarctic Peninsula (WAP) during early (2010) and late (2013) austral summers. Six core groups of bacteria were present in 93% or more of all humpback skin samples. A shift was observed in the average relative abundances of these core bacteria over time, with the emergence of four additional core groups of bacteria that corresponded to a decrease in water temperature, possibly caused by season- or foraging-related changes in skin biochemistry that influenced microbial growth, or other temporal factors. The skin microbiome differed between whales sampled at several regional locations along the WAP, suggesting that environmental factors or population may also influence the whale skin microbiome. Overall, the skin microbiome of humpback whales appears to provide insight into animal- and environment-related factors and may serve as a useful indicator for animal health or ecosystem alterations. IMPORTANCE The microbiomes of wild animals are currently understudied but may provide information about animal health and/or animal-environment interactions. In the largest sampling of any marine mammal microbiome, this study demonstrates conservation in the skin microbiome of 89 seemingly healthy humpback whales sampled in the Western Antarctic Peninsula, with shifts in the bacterial community composition related to temporal and regional variability. This study is important because it suggests that the skin microbiome of humpback whales could provide insight into animal nutritional or seasonal/environment-related factors, which are becoming increasingly important to recognize due to unprecedented rates of climate change and anthropogenic impact on ocean ecosystems.
Collapse
|
14
|
Perfumo A, Banat IM, Marchant R. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications. Trends Biotechnol 2018; 36:277-289. [PMID: 29428461 DOI: 10.1016/j.tibtech.2017.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/17/2022]
Abstract
Approximately 80% of the Earth's biosphere is cold, at an average temperature of 5°C, and is populated by a diversity of microorganisms that are a precious source of molecules with high biotechnological potential. Biosurfactants from cold-adapted organisms can interact with multiple physical phases - water, ice, hydrophobic compounds, and gases - at low and freezing temperatures and be used in sustainable (green) and low-energy-impact (cold) products and processes. We review the biodiversity of microbial biosurfactants produced in cold habitats and provide a perspective on the most promising future applications in environmental and industrial technologies. Finally, we encourage exploring the cryosphere for novel types of biosurfactants via both culture screening and functional metagenomics.
Collapse
Affiliation(s)
- Amedea Perfumo
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, UK
| | - Roger Marchant
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
15
|
Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter-specific vectors. J Biotechnol 2017; 263:64-74. [PMID: 28919459 DOI: 10.1016/j.jbiotec.2017.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 01/06/2023]
Abstract
Psychrobacter sp. DAB_AL43B, isolated from ornithogenic soil collected on the Arctic island of Spitsbergen, is a newly sequenced psychrophilic strain susceptible to conjugation and electrotransformation. Its genome consists of a circular chromosome (3.3 Mb) and four plasmids (4.4-6.4kb). In silico genome mining and microarray-based phenotypic analysis were performed to describe the metabolic potential of this strain and identify possible biotechnological applications. Metabolic reconstruction indicated that DAB_AL43B prefers low-molecular-weight carboxylates and amino acids as carbon and energy sources. Genetic determinants of heavy-metal resistance, anthracene degradation and possible aerobic denitrification were also identified. Comparative analyses revealed a relatively close relationship between DAB_AL43B and other sequenced Psychrobacter species. In addition, the plasmids of this strain were used as the basis for the construction of Escherichia coli-Psychrobacter spp. shuttle vectors. Taken together, the results of this work suggest that DAB_AL43B is a promising candidate as a new model strain for studies on Psychrobacter spp.
Collapse
|
16
|
Characterization of Thermophilic Bacteria Isolated from two Hot Springs in Jazan, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Pankowski JA. Use of essential gene, encoding prophobilinogen deaminase from extreme psychrophilic Colwellia sp. C1, to generate temperature-sensitive strain of Francisella novicida. Lett Appl Microbiol 2017; 63:124-30. [PMID: 27248501 DOI: 10.1111/lam.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Previously, several essential genes from psychrophilic bacteria have been substituted for their homologues in mesophilic bacterial pathogens to make the latter temperature sensitive. It has been noted that an essential ligA gene from an extreme psychrophile, Colwellia sp. C1, yielded a gene product that is inactivated at 27°C, the lowest that has been observed for any psychrophilic enzyme, and hypothesized that other essential proteins of that strain would also have low inactivation temperatures. This work describes the partial sequencing of the genome of Colwellia sp. C1 strain and the identification of 24 open reading frames encoding homologues of highly conserved bacterial essential genes. The gene encoding porphobilinogen deaminase (hemC), which is involved in the pathway of haem synthesis, has been tested for its ability to convert Francisella novicida into a temperature-sensitive strain. The hybrid strain carrying the C1-derived hemC gene exhibited a temperature-sensitive phenotype with a restrictive temperature of 36°C. These results support the conclusion that Colwellia sp. C1 is a rich source of heat-labile enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY The issue of biosafety is often raised when it comes to work with pathogenic organisms. The main concern is caused by the risk of researchers being exposed to infectious doses of dangerous microbes. This paper analyses essential genes identified in partial genomic sequence of the psychrophilic bacterium Collwelia sp. C1. These sequences can be used as a mean of generating temperature-sensitive strains of pathogenic bacteria. Such strains are incapable of surviving at the temperature of human body. This means they could be applied as vaccines or for safer work with dangerous organisms.
Collapse
Affiliation(s)
- J A Pankowski
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
18
|
Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H. Antonie van Leeuwenhoek 2017; 110:1377-1387. [PMID: 28161737 DOI: 10.1007/s10482-017-0834-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 12/29/2022]
Abstract
Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: →4)-β-D-GlcpNAcA-(1 →3)-β-D-QuipNAc4NAc-(1 →3)-β-D-GalpNAc-(1 →. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity.
Collapse
|
19
|
Christel S, Fridlund J, Watkin EL, Dopson M. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at 8 °C suggesting it is a eurypsychrophile. Extremophiles 2016; 20:903-913. [PMID: 27783177 PMCID: PMC5085989 DOI: 10.1007/s00792-016-0882-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022]
Abstract
Acidithiobacillus ferrivorans is an acidophilic bacterium that represents a substantial proportion of the microbial community in a low temperature mining waste stream. Due to its ability to grow at temperatures below 15 °C, it has previously been classified as 'psychrotolerant'. Low temperature-adapted microorganisms have strategies to grow at cold temperatures such as the production of cold acclimation proteins, DEAD/DEAH box helicases, and compatible solutes plus increasing their cellular membrane fluidity. However, little is known about At. ferrivorans adaptation strategies employed during culture at its temperature extremes. In this study, we report the transcriptomic response of At. ferrivorans SS3 to culture at 8 °C compared to 20 °C. Analysis revealed 373 differentially expressed genes of which, the majority were of unknown function. Only few changes in transcript counts of genes previously described to be cold adaptation genes were detected. Instead, cells cultured at cold (8 °C) altered the expression of a wide range of genes ascribed to functions in transcription, translation, and energy production. It is, therefore, suggested that a temperature of 8 °C imposed little cold stress on At. ferrivorans, underlining its adaptation to growth in the cold as well as suggesting it should be classified as a 'eurypsychrophile'.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Elizabeth L Watkin
- School of Biomedical Sciences, Curtin University, Perth, 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
20
|
Seel W, Derichs J, Lipski A. Increased Biomass Production by Mesophilic Food-Associated Bacteria through Lowering the Growth Temperature from 30°C to 10°C. Appl Environ Microbiol 2016; 82:3754-3764. [PMID: 27084015 PMCID: PMC4907174 DOI: 10.1128/aem.00211-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Five isolates from chilled food and refrigerator inner surfaces and closely related reference strains of the species Escherichia coli, Listeria monocytogenes, Staphylococcus xylosus, Bacillus cereus, Pedobacter nutrimenti, and Pedobacter panaciterrae were tested for the effect of growth temperature (30°C and 10°C) on biomass formation. Growth was monitored via optical density, and biomass formation was measured at the early stationary phase based on the following parameters in complex and defined media: viable cell count, total cell count, cell dry weight, whole-cell protein content, and cell morphology. According to the lack of growth at 1°C, all strains were assigned to the thermal class of mesophiles. Glucose and ammonium consumption related to cell yield were analyzed in defined media. Except for the protein content, temperature had a significant (t test, P < 0.05) effect on all biomass formation parameters for each strain. The results show a significant difference between the isolates and the related reference strains. Isolates achieved an increase in biomass production between 20% and 110% at the 10°C temperature, which is 15 to 25°C lower than their maximum growth rate temperatures. In contrast, reference strains showed a maximum increase of only about 25%, and some reference strains showed no increase or a decrease of approximately 25%. As expected, growth rates for all strains were higher at 30°C than at 10°C, while biomass production for isolates was higher at 10°C than at 30°C. In contrast, the reference strains showed similar growth yields at the two temperatures. This also demonstrates for mesophilic bacterial strains more efficient nutrient assimilation during growth at low temperatures. Until now, this characteristic was attributed only to psychrophilic microorganisms. IMPORTANCE For several psychrophilic species, increased biomass formation was described at temperatures lower than optimum growth temperatures, which are defined by the highest growth rate. This work shows increased biomass formation at low growth temperatures for mesophilic isolates. A comparison with closely related reference strains from culture collections showed a significantly smaller increase or no increase in biomass formation. This indicates a loss of specific adaptive mechanisms (e.g., cold adaptation) for mesophiles during long-term cultivation. The increased biomass production for mesophiles under low-temperature conditions opens new avenues for a more efficient biotechnological transformation of nutrients to microbial biomass. These findings may also be important for risk assessment of cooled foods since risk potential is often correlated with the cell numbers present in food samples.
Collapse
Affiliation(s)
- Waldemar Seel
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Bonn, Germany
| | - Julia Derichs
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Bonn, Germany
| | - André Lipski
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Ernährungs- und Lebensmittelwissenschaften, Abteilung Lebensmittelmikrobiologie und -hygiene, Bonn, Germany
| |
Collapse
|
21
|
Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol 2016; 92:fiw081. [PMID: 27106051 DOI: 10.1093/femsec/fiw081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 01/15/2023] Open
Abstract
Most of the Earth's biosphere is characterized by low temperatures (<5°C) and cold-adapted microorganisms are widespread. These psychrophiles have evolved a complex range of adaptations of all cellular constituents to counteract the potentially deleterious effects of low kinetic energy environments and the freezing of water. Microbial life continues into the subzero temperature range, and this activity contributes to carbon and nitrogen flux in and out of ecosystems, ultimately affecting global processes. Microbial responses to climate warming and, in particular, thawing of frozen soils are not yet well understood, although the threat of microbial contribution to positive feedback of carbon flux is substantial. To date, several studies have examined microbial community dynamics in frozen soils and permafrost due to changing environmental conditions, and some have undertaken the complicated task of characterizing microbial functional groups and how their activity changes with changing conditions, either in situ or by isolating and characterizing macromolecules. With increasing temperature and wetter conditions microbial activity of key microbes and subsequent efflux of greenhouse gases also increase. In this review, we aim to provide an overview of microbial activity in seasonally frozen soils and permafrost. With a more detailed understanding of the microbiological activities in these vulnerable soil ecosystems, we can begin to predict and model future expectations for carbon release and climate change.
Collapse
Affiliation(s)
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
22
|
|
23
|
Robador A, Müller AL, Sawicka JE, Berry D, Hubert CRJ, Loy A, Jørgensen BB, Brüchert V. Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. ISME JOURNAL 2015; 10:796-809. [PMID: 26359912 DOI: 10.1038/ismej.2015.157] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/18/2015] [Accepted: 07/25/2015] [Indexed: 11/09/2022]
Abstract
Temperature has a fundamental impact on the metabolic rates of microorganisms and strongly influences microbial ecology and biogeochemical cycling in the environment. In this study, we examined the catabolic temperature response of natural communities of sulfate-reducing microorganisms (SRM) in polar, temperate and tropical marine sediments. In short-term sediment incubation experiments with (35)S-sulfate, we demonstrated how the cardinal temperatures for sulfate reduction correlate with mean annual sediment temperatures, indicating specific thermal adaptations of the dominant SRM in each of the investigated ecosystems. The community structure of putative SRM in the sediments, as revealed by pyrosequencing of bacterial 16S rRNA gene amplicons and phylogenetic assignment to known SRM taxa, consistently correlated with in situ temperatures, but not with sediment organic carbon concentrations or C:N ratios of organic matter. Additionally, several species-level SRM phylotypes of the class Deltaproteobacteria tended to co-occur at sites with similar mean annual temperatures, regardless of geographic distance. The observed temperature adaptations of SRM imply that environmental temperature is a major controlling variable for physiological selection and ecological and evolutionary differentiation of microbial communities.
Collapse
Affiliation(s)
- Alberto Robador
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Albert L Müller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Wien, Austria
| | - Joanna E Sawicka
- Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Wien, Austria
| | - Casey R J Hubert
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Wien, Austria.,Austrian Polar Research Institute, Vienna, Austria
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus C, Denmark
| | - Volker Brüchert
- Department of Geological Sciences, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
24
|
Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S. Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics 2015; 16:383. [PMID: 25975821 PMCID: PMC4432818 DOI: 10.1186/s12864-015-1611-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/01/2015] [Indexed: 11/29/2022] Open
Abstract
Background Arctic Mesorhizobium strain N33 was isolated from nodules of the legume Oxytropis arctobia in Canada’s eastern Arctic. This symbiotic bacterium can grow at temperatures ranging from 0 to 30 °C, fix nitrogen at 10 °C, and is one of the best known cold-adapted rhizobia. Despite the economic potential of this bacterium for northern regions, the key molecular mechanisms of its cold adaptation remain poorly understood. Results Using a microarray printed with 5760 Arctic Mesorhizobium genomic clones, we performed a partial transcriptome analysis of strain N33 grown under eight different temperature conditions, including both sustained and transient cold treatments, compared with cells grown at room temperature. Cells treated under constant (4 and 10 °C) low temperatures expressed a prominent number of induced genes distinct from cells treated to short-term cold-exposure (<60 min), but exhibited an intermediate expression profile when exposed to a prolonged cold exposure (240 min). The most prominent up-regulated genes encode proteins involved in metabolite transport, transcription regulation, protein turnover, oxidoreductase activity, cryoprotection (mannitol, polyamines), fatty acid metabolism, and membrane fluidity. The main categories of genes affected in N33 during cold treatment are sugar transport and protein translocation, lipid biosynthesis, and NADH oxidoreductase (quinone) activity. Some genes were significantly down-regulated and classified in secretion, energy production and conversion, amino acid transport, cell motility, cell envelope and outer membrane biogenesis functions. This might suggest growth cessation or reduction, which is an important strategy to adjust cellular function and save energy under cold stress conditions. Conclusion Our analysis revealed a complex series of changes associated with cold exposure adaptation and constant growth at low temperatures. Moreover, it highlighted some of the strategies and different physiological states that Mesorhizobium strain N33 has developed to adapt to the cold environment of the Canadian high Arctic and has revealed candidate genes potentially involved in cold adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1611-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdollah-Fardin Ghobakhlou
- Graduate Programs in Agri-Food Microbiology, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, Quebec, G1V 0A6, Canada.
| | - Anne Johnston
- Eastern Cereal & Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.
| | - Linda Harris
- Eastern Cereal & Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.
| | - Hani Antoun
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, G1V 0A6, Canada.
| | - Serge Laberge
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, Quebec City, Quebec, G1V 2 J3, Canada.
| |
Collapse
|
25
|
Schostag M, Stibal M, Jacobsen CS, Bælum J, Taş N, Elberling B, Jansson JK, Semenchuk P, Priemé A. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front Microbiol 2015; 6:399. [PMID: 25983731 PMCID: PMC4415418 DOI: 10.3389/fmicb.2015.00399] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/17/2015] [Indexed: 01/17/2023] Open
Abstract
The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.
Collapse
Affiliation(s)
- Morten Schostag
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark ; Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Marek Stibal
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark
| | - Carsten S Jacobsen
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Geological Survey of Denmark and Greenland (GEUS) Copenhagen, Denmark ; Department of Environmental Sciences, Aarhus University Denmark
| | - Jacob Bælum
- Department of Environmental Sciences, Aarhus University Denmark
| | - Neslihan Taş
- Ecology Department, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Philipp Semenchuk
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Arctic and Marine Biology, University of Tromsø Tromsø, Norway
| | - Anders Priemé
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
26
|
Ronholm J, Raymond-Bouchard I, Creskey M, Cyr T, Cloutis EA, Whyte LG. Characterizing the surface-exposed proteome of Planococcus halocryophilus during cryophilic growth. Extremophiles 2015; 19:619-29. [PMID: 25832669 DOI: 10.1007/s00792-015-0743-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/01/2015] [Indexed: 12/16/2022]
Abstract
Planococcus halocryophilus OR1 is a bacterial isolate capable of growth at temperatures ranging from -15 to +37 °C. During sub-zero (cryophilic) growth, nodular features appear on its cell surface; however, the biochemical compositions of these features as well as any cold-adaptive benefits they may offer are not understood. This study aimed to identify differences in the cell surface proteome (surfaceome) of P. halocryophilus cells grown under optimal (24 °C, no added salt), low- and mid-salt (5 and 12 % NaCl, respectively) at 24 °C, and low- and mid-salt sub-zero (5 % NaCl at -5 °C and 12 % NaCl at -10 °C) culture conditions, for the purpose of gaining insight into cold-adapted proteomic traits at the cell surface. Mid-log cells were harvested, treated briefly with trypsin and the resultant peptides were purified followed by identification by LC-MS/MS analysis. One hundred and forty-four proteins were subsequently identified in at least one culture condition. Statistically significant differences in amino acid usage, a known indicator of cold adaptation, were identified through in silico analysis. Two proteins with roles in peptidoglycan (PG) metabolism, an N-acetyl-L-alanine amidase and a multimodular transpeptidase-transglycosylase, were detected, though each was only detected under optimal conditions, indicating that high-salt and high-cold stress each affect PG metabolism. Two iron transport-binding proteins, associated with two different iron transport strategies, were identified, indicating that P. halocryophilus uses a different iron acquisition strategy at very low temperatures. Here we present the first set of data that describes bacterial adaptations at the cellular surface that occur as a cryophilic bacterium is transitioned from optimal to near-inhibitory sub-zero culture conditions.
Collapse
Affiliation(s)
- Jennifer Ronholm
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd. Sainte-Anne-de-Bellevue, Montreal, QC, H9X3V9, Canada,
| | | | | | | | | | | |
Collapse
|
27
|
Ewert M, Deming JW. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice. FEMS Microbiol Ecol 2014; 89:476-89. [DOI: 10.1111/1574-6941.12363] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Marcela Ewert
- School of Oceanography; University of Washington; Seattle WA USA
| | - Jody W. Deming
- School of Oceanography; University of Washington; Seattle WA USA
| |
Collapse
|
28
|
Bacterial genome replication at subzero temperatures in permafrost. ISME JOURNAL 2013; 8:139-49. [PMID: 23985750 DOI: 10.1038/ismej.2013.140] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/21/2013] [Accepted: 07/10/2013] [Indexed: 11/08/2022]
Abstract
Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with (13)C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to -20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize (13)C-labeled DNA when supplemented with (13)C-acetate at temperatures of 0 to -20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of (13)C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems.
Collapse
|
29
|
Mykytczuk NCS, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG. Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. THE ISME JOURNAL 2013; 7:1211-26. [PMID: 23389107 PMCID: PMC3660685 DOI: 10.1038/ismej.2013.8] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/04/2012] [Accepted: 12/23/2012] [Indexed: 11/08/2022]
Abstract
Planococcus halocryophilus strain Or1, isolated from high Arctic permafrost, grows and divides at -15 °C, the lowest temperature demonstrated to date, and is metabolically active at -25 °C in frozen permafrost microcosms. To understand how P. halocryophilus Or1 remains active under the subzero and osmotically dynamic conditions that characterize its native permafrost habitat, we investigated the genome, cell physiology and transcriptomes of growth at -15 °C and 18% NaCl compared with optimal (25 °C) temperatures. Subzero growth coincides with unusual cell envelope features of encrustations surrounding cells, while the cytoplasmic membrane is significantly remodeled favouring a higher ratio of saturated to branched fatty acids. Analyses of the 3.4 Mbp genome revealed that a suite of cold and osmotic-specific adaptive mechanisms are present as well as an amino acid distribution favouring increased flexibility of proteins. Genomic redundancy within 17% of the genome could enable P. halocryophilus Or1 to exploit isozyme exchange to maintain growth under stress, including multiple copies of osmolyte uptake genes (Opu and Pro genes). Isozyme exchange was observed between the transcriptome data sets, with selective upregulation of multi-copy genes involved in cell division, fatty acid synthesis, solute binding, oxidative stress response and transcriptional regulation. The combination of protein flexibility, resource efficiency, genomic plasticity and synergistic adaptation likely compensate against osmotic and cold stresses. These results suggest that non-spore forming P. halocryophilus Or1 is specifically suited for active growth in its Arctic permafrost habitat (ambient temp. ∼-16 °C), indicating that such cryoenvironments harbor a more active microbial ecosystem than previously thought.
Collapse
Affiliation(s)
- Nadia C S Mykytczuk
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
30
|
Olajuyigbe FM. Optimized production and properties of thermostable alkaline protease from Bacillus subtilis SHS-04 grown on groundnut (Arachis hypogaea) meal. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aer.2013.14012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Biochemical characterization of a novel haloalkane dehalogenase from a cold-adapted bacterium. Appl Environ Microbiol 2012; 78:4995-8. [PMID: 22582053 DOI: 10.1128/aem.00485-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A haloalkane dehalogenase, DpcA, from Psychrobacter cryohalolentis K5, representing a novel psychrophilic member of the haloalkane dehalogenase family, was identified and biochemically characterized. DpcA exhibited a unique temperature profile with exceptionally high activities at low temperatures. The psychrophilic properties of DpcA make this enzyme promising for various environmental applications.
Collapse
|
32
|
Abstract
Metabolic activity, but not growth, has been observed in ice at temperatures from -5°C to -32°C. To improve understanding of metabolism in ice, we simultaneously examined various aspects of metabolism ((14) C-acetate utilization, macromolecule syntheses and viability via reduction of CTC) of the glacial isolates Sporosarcina sp. B5 and Chryseobacterium sp. V3519-10 during incubation in nutrient-rich ice and brine at -5°C for 50 days. Measured rates of acetate utilization and macromolecule syntheses were high in the first 20 days suggesting adjustment to the lower temperatures and higher salt concentrations of both the liquid vein network in the ice and the brine. Following this adjustment, reproductive growth of both organisms was evident in brine, and suggested for Sporosarcina sp. B5 in ice by increases in cell numbers and biomass. Chryseobacterium sp. V3519-10 cells incubated in ice remained active. These data indicate that neither low temperature nor high salt concentrations prohibit growth in ice, but some other aspect of living within ice slows growth to within the detection limits of current methodologies. These results imply that microbial growth is plausible in natural ice systems with comparable temperatures and sufficient nutrients, such as debris-rich basal ices of glaciers and ice masses.
Collapse
Affiliation(s)
- Corien Bakermans
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA.
| | | |
Collapse
|
33
|
Williams TJ, Lauro FM, Ertan H, Burg DW, Poljak A, Raftery MJ, Cavicchioli R. Defining the response of a microorganism to temperatures that span its complete growth temperature range (-2°C to 28°C) using multiplex quantitative proteomics. Environ Microbiol 2011; 13:2186-203. [PMID: 21443741 DOI: 10.1111/j.1462-2920.2011.02467.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Robador A, Brüchert V, Jørgensen BB. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 2009; 11:1692-703. [DOI: 10.1111/j.1462-2920.2009.01896.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Rodrigues DF, da C Jesus E, Ayala-Del-Río HL, Pellizari VH, Gilichinsky D, Sepulveda-Torres L, Tiedje JM. Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME JOURNAL 2009; 3:658-65. [PMID: 19322243 DOI: 10.1038/ismej.2009.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genera Exiguobacterium and Psychrobacter have been frequently detected in and isolated from polar permafrost and ice. These two genera have members that can grow at temperatures as low as -5 and -10 degrees C, respectively. We used quantitative PCR (Q-PCR) to quantify members of these genera in 54 soil or sediment samples from polar, temperate and tropical environments to determine to what extent they are selected by cold environments. These results were further analyzed by multiple linear regression to identify the most relevant environmental factors corresponding to their distribution. Exiguobacterium was detected in all three climatic zones at similar densities, but was patchier in the temperate and tropical samples. Psychrobacter was present in almost all polar samples, was at highest densities in Antarctica sediment samples, but was in very low densities and infrequently detected in temperate and tropical soils. Clone libraries, specific for the 16S rRNA gene for each genus, were constructed from a sample from each climatic region. The clone libraries were analyzed for alpha and beta diversities, as well as for variation in population structure by using analysis of molecular variance. Results confirm that both genera were found in all three climatic zones; however, Psychrobacter populations seemed to be much more diverse than Exiguobacterium in all three climatic zones. Furthermore, Psychrobacter populations from Antarctica are different from those in Michigan and Puerto Rico, which are similar to each other.
Collapse
Affiliation(s)
- Debora F Rodrigues
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Smith DJ, Schuerger AC, Davidson MM, Pacala SW, Bakermans C, Onstott TC. Survivability of Psychrobacter cryohalolentis K5 under simulated martian surface conditions. ASTROBIOLOGY 2009; 9:221-228. [PMID: 19371162 DOI: 10.1089/ast.2007.0231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25 degrees C for 24 h within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 h of exposure to Mars-normal conditions of 4.55 W/m(2) UVC irradiation (200-280 nm), -12.5 degrees C, 7.1 mbar, and a Mars gas mix composed of CO(2) (95.3%), N(2) (2.7%), Ar (1.6%), O(2) (0.2%), and H(2)O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at tau = 0.1 (dust-free CO(2) atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO(2)-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 h exposure period.
Collapse
Affiliation(s)
- David J Smith
- Department of Ecological and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
37
|
Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 2009; 191:2340-52. [PMID: 19168616 DOI: 10.1128/jb.01377-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Permafrost soils are extreme environments that exert low-temperature, desiccation, and starvation stress on bacteria over thousands to millions of years. To understand how Psychrobacter arcticus 273-4 survived for >20,000 years in permafrost, transcriptome analysis was performed during growth at 22 degrees C, 17 degrees C, 0 degrees C, and -6 degrees C using a mixed-effects analysis of variance model. Genes for transcription, translation, energy production, and most biosynthetic pathways were downregulated at low temperatures. Evidence of isozyme exchange was detected over temperature for D-alanyl-D-alanine carboxypeptidases (dac1 and dac2), DEAD-box RNA helicases (csdA and Psyc_0943), and energy-efficient substrate incorporation pathways for ammonium and acetate. Specific functions were compensated by upregulation of genes at low temperature, including genes for the biosynthesis of proline, tryptophan, and methionine. RNases and peptidases were generally upregulated at low temperatures. Changes in energy metabolism, amino acid metabolism, and RNase gene expression were consistent with induction of a resource efficiency response. In contrast to results observed for other psychrophiles and mesophiles, only clpB and hsp33 were upregulated at low temperature, and there was no upregulation of other chaperones and peptidyl-prolyl isomerases. relA, csdA, and dac2 knockout mutants grew more slowly at low temperature, but a dac1 mutant grew more slowly at 17 degrees C. The combined data suggest that the basal biological machinery, including translation, transcription, and energy metabolism, is well adapted to function across the growth range of P. arcticus from -6 degrees C to 22 degrees C, and temperature compensation by gene expression was employed to address specific challenges to low-temperature growth.
Collapse
|
38
|
Margesin R. Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 2008; 13:257-62. [PMID: 19057843 DOI: 10.1007/s00792-008-0213-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/12/2008] [Indexed: 12/01/2022]
Abstract
Three bacterial (Pedobacter heparinus, Pedobacter piscium, Pedobacter cryoconitis) and three yeast strains (Saccharomyces cerevisiae, Leucosporidiella creatinivora, Rhodotorula glacialis) of different thermal classes (mesophiles and psychrophiles) were tested for the effect of temperature on a range of growth parameters, including optical density, viable cell numbers, and cell dry mass, in order to determine the temperature conditions under which maximum biomass formation is obtained. Maximum values of growth parameters obtained at the stationary growth phase of the strains were used for statistical calculation. Temperature had a significant (P <or= 0.05) effect on all growth parameters for each strain; correlations between the growth parameters were significant (P <or= 0.05-0.01). The maximum growth temperature or the temperature at which microbial growth was fastest was in no case the temperature at which the investigated strains produced the highest amount of biomass. All tested psychrophilic bacteria and yeast strains produced highest amounts of cells (as calculated per mg cell dry mass or per OD(600) unit) at 1 degrees C, while cell numbers of mesophiles were highest at 20 degrees C. Thus, cultivation temperatures close to the maximum growth temperature are not appropriate for studying psychrophiles.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Amato P, Doyle S, Christner BC. Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 2008; 11:589-96. [PMID: 19077008 DOI: 10.1111/j.1462-2920.2008.01829.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although viable fungi have been recovered from a wide variety of icy environments, their metabolic capabilities under frozen conditions are still largely unknown. We investigated basidiomycetous yeasts isolated from an Antarctic ice core and showed that after freezing at a relatively slow rate (0.8 degrees C min(-1)), the cells are excluded into veins of liquid at the triple junctions of ice crystals. These strains were capable of reproductive growth at -5 degrees C under liquid conditions. Under frozen conditions, metabolic activity was assessed by measuring rates of [(3)H]leucine incorporation into the acid-insoluble macromolecular fraction, which decreased exponentially at temperatures between 15 degrees C and -15 degrees C and was inhibited by the protein synthesis inhibitor cycloheximide. Experiments at -5 degrees C under frozen and liquid conditions revealed 2-3 orders of magnitude lower rates of endogenous metabolism in ice, likely due to the high salinity in the liquid fraction of the ice (equivalent of approximately 1.4 mol l(-1) of NaCl at -5 degrees C). The mesophile Saccharomyces cerevisae also incorporated [(3)H]leucine at -5 degrees C and -15 degrees C, indicating that this activity is not exclusive to cold-adapted microorganisms. The ability of yeast cells to incorporate amino acid substrates into macromolecules and remain metabolically active under these conditions has implications for understanding the survival of Eukarya in icy environments.
Collapse
Affiliation(s)
- Pierre Amato
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Qiu Y, Vishnivetskaya TA, Lubman DM. Proteomic Insights: Cryoadaptation of Permafrost Bacteria. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-69371-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
42
|
Nevot M, Deroncelé V, Montes MJ, Mercade E. Effect of incubation temperature on growth parameters ofPseudoalteromonas antarcticaNF3and its production of extracellular polymeric substances. J Appl Microbiol 2008; 105:255-63. [DOI: 10.1111/j.1365-2672.2008.03769.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF. Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 2006; 11:343-54. [PMID: 17123128 DOI: 10.1007/s00792-006-0042-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/22/2006] [Indexed: 10/23/2022]
Abstract
It is crucial to examine the physiological processes of psychrophiles at temperatures below 4 degrees C, particularly to facilitate extrapolation of laboratory results to in situ activity. Using two dimensional electrophoresis, we examined patterns of protein abundance during growth at 16, 4, and -4 degrees C of the eurypsychrophile Psychrobacter cryohalolentis K5 and report the first identification of cold inducible proteins (CIPs) present during growth at subzero temperatures. Growth temperature substantially reprogrammed the proteome; the relative abundance of 303 of the 618 protein spots detected (approximately 31% of the proteins at each growth temperature) varied significantly with temperature. Five CIPs were detected specifically at -4 degrees C; their identities (AtpF, EF-Ts, TolC, Pcryo_1988, and FecA) suggested specific stress on energy production, protein synthesis, and transport during growth at subzero temperatures. The need for continual relief of low-temperature stress on these cellular processes was confirmed via identification of 22 additional CIPs whose abundance increased during growth at -4 degrees C (relative to higher temperatures). Our data suggested that iron may be limiting during growth at subzero temperatures and that a cold-adapted allele was employed at -4 degrees C for transport of iron. In summary, these data suggest that low-temperature stresses continue to intensify as growth temperatures decrease to -4 degrees C.
Collapse
Affiliation(s)
- Corien Bakermans
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Panikov NS, Sizova MV. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35 degrees C. FEMS Microbiol Ecol 2006; 59:500-12. [PMID: 17026514 DOI: 10.1111/j.1574-6941.2006.00210.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We developed a procedure to culture microorganisms below freezing point on solid media (cellulose powder or plastic film) with ethanol as the sole carbon source without using artificial antifreezes. Enrichment from soil and permafrost obtained on such frozen solid media contained mainly fungi, and further purification resulted in isolation of basidiomycetous yeasts of the genera Mrakia and Leucosporidium as well as ascomycetous fungi of the genus Geomyces. Contrary to solid frozen media, the enrichment of liquid nutrient solutions at 0 degrees C or supercooled solutions stabilized by glycerol at -1 to -5 degrees C led to the isolation of bacteria representing the genera Polaromonas, Pseudomonas and Arthrobacter. The growth of fungi on ethanol-microcrystalline cellulose media at -8 degrees C was exponential with generation times of 4.6-34 days, while bacteria displayed a linear or progressively declining curvilinear dynamic. At -17 to -0 degrees C the growth of isolates and entire soil community on 14C-ethanol was continuous and characterized by yields of 0.27-0.52 g cell C (g of C-substrate)(-1), similar to growth above the freezing point. The 'state of maintenance,' implying measurable catabolic activity of non-growing cells, was not confirmed. Below -18 to -35 degrees C, the isolated organisms were able to grow only transiently for 3 weeks after cooling with measurable respiratory and biosynthetic (14CO2 uptake) activity. Then metabolic activity declined to zero, and microorganisms entered a state of reversible dormancy.
Collapse
Affiliation(s)
- Nicolai S Panikov
- Department of Chemistry & Chemical Biology, Stevens Institute of Technology, NJ 07030, USA.
| | | |
Collapse
|
45
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
46
|
Cotner JB, Makino W, Biddanda BA. Temperature affects stoichiometry and biochemical composition of Escherichia coli. MICROBIAL ECOLOGY 2006; 52:26-33. [PMID: 16767523 DOI: 10.1007/s00248-006-9040-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 01/01/2005] [Indexed: 05/10/2023]
Abstract
Temperature is a master variable controlling biochemical processes in organisms, and its effects are manifested on many organizational levels in organisms and ecosystems. We examined the effects of temperature on the biochemical composition and stoichiometry of a model heterotrophic bacterium, Escherichia coli K-12, held at constant growth rate in chemostats. Increasing temperature led to increased cellular organic carbon (C) and organic nitrogen (N) with decreased phosphorus (P) content, leading to increased C/P and N/P biomass ratios. P content was related to cellular RNA, which is P-rich (9-10% by weight) and nonnucleic acid P (presumably composed of mostly phospholipids, intracellular phosphate, and polyphosphate). These results indicate that E. coli allocates an increased proportion of its P cell quota toward assembly (ribosomes) at low temperatures and an increasing proportion toward resource acquisition machinery (membranes) at higher temperatures. If these results are relevant to the behavior of prokaryotic heterotrophs in natural settings (the gut, soils, lakes, oceans, etc.), it suggests greater nutrient regeneration and less microbial nutrient retention as temperatures increase.
Collapse
Affiliation(s)
- James B Cotner
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
47
|
Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM. Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 2006; 53:117-28. [PMID: 16329934 DOI: 10.1016/j.femsec.2005.02.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 12/21/2004] [Accepted: 02/04/2005] [Indexed: 11/29/2022] Open
Abstract
This study describes the biodiversity of the indigenous microbial community in the sodium-chloride water brines (cryopegs) derived from ancient marine sediments and sandwiched within permafrost 100-120,000 years ago after the Arctic Ocean regression. Cryopegs remain liquid at the in situ temperature of -9 to -11 degrees C and make up the only habitat on the Earth that is characterized by permanently subzero temperatures, high salinity, and the absence of external influence during geological time. From these cryopegs, anaerobic and aerobic, spore-less and spore-forming, halotolerant and halophilic, psychrophilic and psychrotrophic bacteria, mycelial fungi and yeast were isolated and their activity was detected below 0 degrees C.
Collapse
Affiliation(s)
- David Gilichinsky
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Many archaea are extremophiles. They thrive at high temperatures, at high pressure and in concentrated acidic environments. Nevertheless, the largest proportion and greatest diversity of archaea exist in cold environments. Most of the Earth's biosphere is cold, and archaea represent a significant fraction of the biomass. Although psychrophilic archaea have long been the neglected majority, the study of these microorganisms is beginning to come of age. This review casts a spotlight on the ecology, adaptation biology and unique science that is being realized from studies on cold-adapted archaea.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
49
|
Steven B, Léveillé R, Pollard WH, Whyte LG. Microbial ecology and biodiversity in permafrost. Extremophiles 2006; 10:259-67. [PMID: 16550305 DOI: 10.1007/s00792-006-0506-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 11/18/2005] [Indexed: 11/29/2022]
Abstract
Permafrost represents 26% of terrestrial soil ecosystems; yet its biology, essentially microbiology, remains relatively unexplored. The permafrost environment is considered extreme because indigenous microorganisms must survive prolonged exposure to subzero temperatures and background radiation for geological time scales in a habitat with low water activity and extremely low rates of nutrient and metabolite transfer. Yet considerable numbers and biodiversity of bacteria exist in permafrost, some of which may be among the most ancient viable life on Earth. This review describes the permafrost environment as a microbial habitat and reviews recent studies examining microbial biodiversity found in permafrost as well as microbial growth and activity at ambient in situ subzero temperatures. These investigations suggest that functional microbial ecosystems exist within the permafrost environment and may have important implications on global biogeochemical processes as well as the search for past or extant life in permafrost presumably present on Mars and other bodies in our solar system.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Natural Resource Sciences, McGill University, 21, 111 Lakeshore Rd, H9X 3V9, Ste-Anne de Bellevue, QC, Canada
| | | | | | | |
Collapse
|
50
|
Tarpgaard IH, Boetius A, Finster K. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes. Antonie van Leeuwenhoek 2005; 89:109-24. [PMID: 16328859 DOI: 10.1007/s10482-005-9014-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvb(T)) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 degrees C. Of the various substrates tested, strain akvb(T) grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvb(T) grew at temperatures ranging from -3.6 to 26.3 degrees C. Optimal growth was observed at 20 degrees C. The highest cell specific sulfate reduction rate of 6.2 fmol cell(-1) d(-1) determined by the (35)SO(2-)(40) method was measured at 26 degrees C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 degrees C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 degrees C. The highest growth yield (4.3-4.5 g dry weight mol(-1) acetate) was determined at temperatures between 5 and 15 degrees C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 degrees C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1omega7c) was higher in cells grown at 4 degrees C than in cells grown at 20 degrees C. The physiological responses to temperature changes showed that strain akvb(T) was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvb(T) is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA-DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvb(T). Based on phenotypic and DNA-based characteristics we propose that strain akvb(T) is a member of a new species, Desulfobacter psychrotolerans sp. nov.
Collapse
Affiliation(s)
- Irene H Tarpgaard
- Department of Microbiology, Bldg. 540, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus, Denmark
| | | | | |
Collapse
|