1
|
Pena R, Lopes P, Gaspar G, Miranda A, Faustino P. Ancestry of the major long-range regulatory site of the α-globin genes in the Portuguese population with the common 3.7 kb α-thalassemia deletion. Mol Biol Rep 2024; 51:612. [PMID: 38704770 PMCID: PMC11070386 DOI: 10.1007/s11033-024-09530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The α-Major Regulatory Element (α-MRE), also known as HS-40, is located upstream of the α-globin gene cluster and has a crucial role in the long-range regulation of the α-globin gene expression. This enhancer is polymorphic and several haplotypes were identified in different populations, with haplotype D almost exclusively found in African populations. The purpose of this research was to identify the HS-40 haplotype associated with the 3.7 kb α-thalassemia deletion (-α3.7del) in the Portuguese population, and determine its ancestry and influence on patients' hematological phenotype. METHODS AND RESULTS We selected 111 Portuguese individuals previously analyzed by Gap-PCR to detect the presence of the -α3.7del: 50 without the -α3.7del, 34 heterozygous and 27 homozygous for the -α3.7del. The HS-40 region was amplified by PCR followed by Sanger sequencing. Four HS-40 haplotypes were found (A to D). The distribution of HS-40 haplotypes and genotypes are significantly different between individuals with and without the -α3.7del, being haplotype D and genotype AD the most prevalent in patients with this deletion in homozygosity. Furthermore, multiple correspondence analysis revealed that individuals without the -α3.7del are grouped with other European populations, while samples with the -α3.7del are separated from these and found more closely related to the African population. CONCLUSION This study revealed for the first time an association of the HS-40 haplotype D with the -α3.7del in the Portuguese population, and its likely African ancestry. These results may have clinical importance as in vitro analysis of haplotype D showed a decrease in its enhancer activity on α-globin gene.
Collapse
Affiliation(s)
- Rita Pena
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, Lisboa, 1649-016, Portugal
| | - Pedro Lopes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, Lisboa, 1649-016, Portugal
| | - Gisela Gaspar
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Armandina Miranda
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, Lisboa, 1649-016, Portugal.
- Grupo Ecogenética e Saúde Humana, Faculdade de Medicina, Instituto de Saúde Ambiental, Universidade de Lisboa, Lisboa, Portugal.
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Razin SV, Ioudinkova ES, Kantidze OL, Iarovaia OV. Co-Regulated Genes and Gene Clusters. Genes (Basel) 2021; 12:907. [PMID: 34208174 PMCID: PMC8230824 DOI: 10.3390/genes12060907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
There are many co-regulated genes in eukaryotic cells. The coordinated activation or repression of such genes occurs at specific stages of differentiation, or under the influence of external stimuli. As a rule, co-regulated genes are dispersed in the genome. However, there are also gene clusters, which contain paralogous genes that encode proteins with similar functions. In this aspect, they differ significantly from bacterial operons containing functionally linked genes that are not paralogs. In this review, we discuss the reasons for the existence of gene clusters in vertebrate cells and propose that clustering is necessary to ensure the possibility of selective activation of one of several similar genes.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena S. Ioudinkova
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Omar L. Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| | - Olga V. Iarovaia
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia; (E.S.I.); (O.L.K.); (O.V.I.)
| |
Collapse
|
3
|
Cheng Y, Cai D, Shang X, Pang D, Wei X, Zhong J, Xu X. A combination of the (αα)
GZ
and ‐‐
SEA
deletions causing a severe form of hemoglobin H disease. Int J Lab Hematol 2019; 42:e80-e83. [DOI: 10.1111/ijlh.13122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Cheng
- Department of Medical Genetics School of Basic Medical Sciences Southern Medical University Guangzhou China
| | - Decheng Cai
- Department of Medical Genetics School of Basic Medical Sciences Southern Medical University Guangzhou China
| | - Xuan Shang
- Department of Medical Genetics School of Basic Medical Sciences Southern Medical University Guangzhou China
| | - Dejian Pang
- Department of Medical Genetics School of Basic Medical Sciences Southern Medical University Guangzhou China
| | - Xiaofeng Wei
- Department of Medical Genetics School of Basic Medical Sciences Southern Medical University Guangzhou China
| | - Jianmei Zhong
- Department of Medical Genetics School of Basic Medical Sciences Southern Medical University Guangzhou China
| | - Xiangmin Xu
- Department of Medical Genetics School of Basic Medical Sciences Southern Medical University Guangzhou China
- Guangdong Genetics Testing Engineering Research Center Guangzhou China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application Guangzhou China
| |
Collapse
|
4
|
Razin SV, Ulianov SV, Gavrilov AA. 3D Genomics. Mol Biol 2019; 53:802-812. [DOI: 10.1134/s0026893319060153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 08/30/2023]
|
5
|
Yu CH, Li Y, Zhao X, Yang SQ, Li L, Cui NX, Rong L, Yi ZC. Benzene metabolite 1,2,4-benzenetriol changes DNA methylation and histone acetylation of erythroid-specific genes in K562 cells. Arch Toxicol 2018; 93:137-147. [PMID: 30327826 DOI: 10.1007/s00204-018-2333-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
1,2,4-Benzenetriol (BT) is one of the phenolic metabolites of benzene, a general occupational hazard and ubiquitous environmental air pollutant with leukemogenic potential in humans. Previous studies have revealed that the benzene metabolites phenol and hydroquinone can inhibit hemin-induced erythroid differentiation in K562 cells. We investigated the roles of DNA methylation and histone acetylation in BT-inhibited erythroid differentiation in K562 cells. When K562 cells were treated with 0, 5, 10, 15 or 20 µM BT for 72 h, hemin-induced hemoglobin synthesis decreased in a concentration-dependent manner. Both 5-aza-2'-deoxycytidine (5-aza-CdR, DNA methyltransferase inhibitor) and trichostatin A (TSA, histone deacetylases inhibitor) could prevent 20 µM BT from inhibiting hemin-induced hemoglobin synthesis and the mRNA expression of erythroid genes. Exposure to BT changed DNA methylation levels at several CpG sites of erythroid-specific genes, as well as the acetylation of histone H3 and H4, chromatin occupancy of GATA-1 and recruitment of RNA polymerase II at α-globin and β-globin gene clusters after hemin induction. These results demonstrated that BT could inhibit hemin-induced erythroid differentiation, where DNA methylation and histone acetylation also played important roles by down-regulating erythroid-specific genes. This partly explained the mechanisms of benzene hematotoxicity.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Yang Li
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China
| | - Xiao Zhao
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Ning-Xuan Cui
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
6
|
Raffield LM, Ulirsch JC, Naik RP, Lessard S, Handsaker RE, Jain D, Kang HM, Pankratz N, Auer PL, Bao EL, Smith JD, Lange LA, Lange EM, Li Y, Thornton TA, Young BA, Abecasis GR, Laurie CC, Nickerson DA, McCarroll SA, Correa A, Wilson JG, Lettre G, Sankaran VG, Reiner AP. Common α-globin variants modify hematologic and other clinical phenotypes in sickle cell trait and disease. PLoS Genet 2018; 14:e1007293. [PMID: 29590102 PMCID: PMC5891078 DOI: 10.1371/journal.pgen.1007293] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/09/2018] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Co-inheritance of α-thalassemia has a significant protective effect on the severity of complications of sickle cell disease (SCD), including stroke. However, little information exists on the association and interactions for the common African ancestral α-thalassemia mutation (-α3.7 deletion) and β-globin traits (HbS trait [SCT] and HbC trait) on important clinical phenotypes such as red blood cell parameters, anemia, and chronic kidney disease (CKD). In a community-based cohort of 2,916 African Americans from the Jackson Heart Study, we confirmed the expected associations between SCT, HbC trait, and the -α3.7 deletion with lower mean corpuscular volume/mean corpuscular hemoglobin and higher red blood cell count and red cell distribution width. In addition to the recently recognized association of SCT with lower estimated glomerular filtration rate and glycated hemoglobin (HbA1c), we observed a novel association of the -α3.7 deletion with higher HbA1c levels. Co-inheritance of each additional copy of the -α3.7 deletion significantly lowered the risk of anemia and chronic kidney disease among individuals with SCT (P-interaction = 0.031 and 0.019, respectively). Furthermore, co-inheritance of a novel α-globin regulatory variant was associated with normalization of red cell parameters in individuals with the -α3.7 deletion and significantly negated the protective effect of α-thalassemia on stroke in 1,139 patients with sickle cell anemia from the Cooperative Study of Sickle Cell Disease (CSSCD) (P-interaction = 0.0049). Functional assays determined that rs11865131, located in the major alpha-globin enhancer MCS-R2, was the most likely causal variant. These findings suggest that common α- and β-globin variants interact to influence hematologic and clinical phenotypes in African Americans, with potential implications for risk-stratification and counseling of individuals with SCD and SCT.
Collapse
Affiliation(s)
- Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jacob C. Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Rakhi P. Naik
- Hematology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samuel Lessard
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Robert E. Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Hyun M. Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine & Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Erik L. Bao
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joshua D. Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ethan M. Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bessie A. Young
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Seattle Epidemiologic Research and Information Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Goncalo R. Abecasis
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Steven A. McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | | | - Guillaume Lettre
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (APR); (VGS)
| | - Alex P. Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (APR); (VGS)
| |
Collapse
|
7
|
Yu CH, Cui NX, Wang Y, Wang Y, Liu WJ, Gong M, Zhao X, Rong L, Yi ZC. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to catechol in long term. Toxicol In Vitro 2017; 43:21-28. [PMID: 28552822 DOI: 10.1016/j.tiv.2017.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Catechol is one of phenolic metabolites of benzene that is a general occupational hazard and a ubiquitous environmental air pollutant. Catechol also occurs naturally in fruits, vegetables and cigarettes. Previous studies have revealed that 72h exposure to catechol improved hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. In present study, K562 cells were treated with 0, 10 or 20μM catechol for 1-4weeks, hemin-induced hemoglobin synthesis increased in a concentration- and time-dependent manner and the enhanced hemoglobin synthesis was relatively stable. The mRNA expression of α-, β- and γ-globin genes, erythroid heme synthesis enzymes PBGD and ALAS2, transcription factor GATA-1 and NF-E2 showed a significant increase in K562 cells exposed to 20μM catechol for 3w, and catechol enhanced hemin-induced mRNA expression of these genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to catechol changed DNA methylation levels at several CpG sites in several erythroid-specific genes and their far upstream of regulatory elements. These results demonstrated that long-term exposure to low concentration of catechol enhanced the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role by up-regulating erythroid specific genes.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning-Xuan Cui
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yan Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen-Juan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Meng Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
8
|
Kovina AP, Petrova NV, Gushchanskaya ES, Dolgushin KV, Gerasimov ES, Galitsyna AA, Penin AA, Flyamer IM, Ioudinkova ES, Gavrilov AA, Vassetzky YS, Ulianov SV, Iarovaia OV, Razin SV. Evolution of the Genome 3D Organization: Comparison of Fused and Segregated Globin Gene Clusters. Mol Biol Evol 2017; 34:1492-1504. [DOI: 10.1093/molbev/msx100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Kovina AP, Petrova NV, Razin SV, Yarovaia OV. Main regulatory element (MRE) of the Danio rerio α/β-globin gene domain exerts enhancer activity toward the promoters of the embryonic-larval and adult globin genes. Mol Biol 2016. [DOI: 10.1134/s002689331606011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tang KY, Yu CH, Jiang L, Gong M, Liu WJ, Wang Y, Cui NX, Song W, Sun Y, Yi ZC. Long-term exposure of K562 cells to benzene metabolites inhibited erythroid differentiation and elevated methylation in erythroid specific genes. Toxicol Res (Camb) 2016; 5:1284-1297. [PMID: 30090432 DOI: 10.1039/c6tx00143b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Benzene is a common occupational hazard and a widespread environmental pollutant. Previous studies have revealed that 72 h exposure to benzene metabolites inhibited hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. However, little is known about the effects of long-term and low-dose benzene metabolite exposure. In this study, to elucidate the effects of long-term benzene metabolite exposure on erythroid differentiation, K562 cells were treated with low-concentration phenol, hydroquinone and 1,2,4-benzenetriol for at least 3 weeks. After exposure of K562 cells to benzene metabolites, hemin-induced hemoglobin synthesis declined in a concentration- and time-dependent manner, and the hemin-induced expressions of α-, β- and γ-globin genes and heme synthesis enzyme porphobilinogen deaminase were significantly suppressed. Furthermore, when K562 cells were continuously cultured without benzene metabolites for another 20 days after exposure to benzene metabolites for 4 weeks, the decreased erythroid differentiation capabilities still remained stable in hydroquinone- and 1,2,4-benzenetriol-exposed cells, but showed a slow increase in phenol-exposed K562 cells. In addition, methyltransferase inhibitor 5-aza-2'-deoxycytidine significantly blocked benzene metabolites inhibiting hemoglobin synthesis and expression of erythroid genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to benzene metabolites increased DNA methylation levels at several CpG sites in several erythroid-specific genes and their far-upstream regulatory elements. These results demonstrated that long-term and low-dose exposure to benzene metabolites inhibited the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role through the suppression of erythroid specific genes.
Collapse
Affiliation(s)
- K Y Tang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - C H Yu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - L Jiang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - M Gong
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W J Liu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Wang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - N X Cui
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W Song
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Sun
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - Z C Yi
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| |
Collapse
|
11
|
3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma 2016; 126:59-69. [DOI: 10.1007/s00412-016-0604-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
12
|
Wu MY, He Y, Yan JM, Li DZ. A novel selective deletion of the major α-globin regulatory element (MCS-R2) causing α-thalassaemia. Br J Haematol 2016; 176:984-986. [DOI: 10.1111/bjh.14005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Man-Yu Wu
- Prenatal Diagnostic Centre; Guangzhou Women and Children Medical Centre affiliated to Guangzhou Medical University; Guangzhou Guangdong China
| | - Yi He
- Prenatal Diagnostic Centre; Dongguan Maternal and Children Health Hospital; Dongguan Guangdong China
| | - Jin-Mei Yan
- Prenatal Diagnostic Centre; Guangzhou Women and Children Medical Centre affiliated to Guangzhou Medical University; Guangzhou Guangdong China
| | - Dong-Zhi Li
- Prenatal Diagnostic Centre; Guangzhou Women and Children Medical Centre affiliated to Guangzhou Medical University; Guangzhou Guangdong China
| |
Collapse
|
13
|
Nefedochkina AV, Petrova NV, Ioudinkova ES, Kovina AP, Iarovaia OV, Razin SV. Characterization of the enhancer element of the Danio rerio minor globin gene locus. Histochem Cell Biol 2016; 145:463-73. [PMID: 26847176 DOI: 10.1007/s00418-016-1413-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 12/23/2022]
Abstract
In Danio rerio, the alpha- and beta-globin genes are present in two clusters: a major cluster located on chromosome 3 and a minor cluster located on chromosome 12. In contrast to the segregated alpha- and beta-globin gene domains of warm-blooded animals, in Danio rerio, each cluster contains both alpha- and beta-globin genes. Expression of globin genes present in the major cluster is controlled by an erythroid-specific enhancer similar to the major regulatory element of mammalian and avian alpha-globin gene domains. The enhancer controlling expression of the globin genes present in the minor locus has not been identified yet. Based on the distribution of epigenetic marks, we have selected two genomic regions that might harbor an enhancer of the minor locus. Using transient transfection of constructs with a reporter gene, we have demonstrated that a ~500-bp DNA fragment located ~1.7 Kb upstream of the αe4 gene possesses an erythroid-specific enhancer active with respect to promoters present in both the major and the minor globin gene loci of Danio rerio. The identified enhancer element harbors clustered binding sites for GATA-1, NF-E2, and EKLF similar to the enhancer of the major globin locus on chromosome 3. Both enhancers appear to have emerged as a result of independent evolution of a duplicated regulatory element present in an ancestral single alpha-/beta-globin locus that existed before teleost-specific genome duplication.
Collapse
Affiliation(s)
- Anastasia V Nefedochkina
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow, Russia, 119334.,Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Natalia V Petrova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow, Russia, 119334
| | - Elena S Ioudinkova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow, Russia, 119334
| | - Anastasia P Kovina
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow, Russia, 119334.,Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia, 119992
| | - Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow, Russia, 119334
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow, Russia, 119334. .,Molecular Biology Department, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia, 119992.
| |
Collapse
|
14
|
Iarovaia OV, Ioudinkova ES, Petrova NV, Dolgushin KV, Kovina AV, Nefedochkina AV, Vassetzky YS, Razin SV. Evolution of α- and β-globin genes and their regulatory systems in light of the hypothesis of domain organization of the genome. BIOCHEMISTRY (MOSCOW) 2014; 79:1141-50. [PMID: 25539999 DOI: 10.1134/s0006297914110017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The α- and β-globin gene domains are a traditional model for study of the domain organization of the eucaryotic genome because these genes encode hemoglobin, a physiologically important protein. The α-globin and β-globin gene domains are organized in completely different ways, while the expression of globin genes is tightly coordinated, which makes it extremely interesting to study the origin of these genes and the evolution of their regulatory systems. In this review, the organization of the α- and β-globin gene domains and their genomic environment in different taxonomic groups are comparatively analyzed. A new hypothesis of possible evolutionary pathways for segregated α- and β-globin gene domains of warm-blooded animals is proposed.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chandrakasan S, Malik P. Gene therapy for hemoglobinopathies: the state of the field and the future. Hematol Oncol Clin North Am 2014; 28:199-216. [PMID: 24589262 DOI: 10.1016/j.hoc.2013.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After nearly two decades of struggle, gene therapy for hemoglobinopathies using vectors carrying β or γ-globin gene has finally reached the clinical doorsteps. This was made possible by advances made in our understanding of critical regulatory elements required for high level of globin gene expression and improved gene transfer vectors and methodologies. Development of gene editing technologies and reprogramming somatic cells for regenerative medicine holds the promise of genetic correction of hemoglobinopathies in the future. This article will review the state of the field and the upcoming technologies that will allow genetic therapeutic correction of hemoglobinopathies.
Collapse
Affiliation(s)
- Shanmuganathan Chandrakasan
- Division of Hematology, Oncology and Bone Marrow Transplant, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology/Cancer Biology, Cincinnati Children's Research Foundation, Cancer and Blood Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Hematology, Cincinnati Children's Research Foundation, Cancer and Blood Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
16
|
Abstract
Over the last three decades, studies of the α- and β-globin genes clusters have led to elucidation of the general principles of mammalian gene regulation, such as RNA stability, termination of transcription, and, more importantly, the identification of remote regulatory elements. More recently, detailed studies of α-globin regulation, using both mouse and human loci, allowed the dissection of the sequential order in which transcription factors are recruited to the locus during lineage specification. These studies demonstrated the importance of the remote regulatory elements in the recruitment of RNA polymerase II (PolII) together with their role in the generation of intrachromosomal loops within the locus and the removal of polycomb complexes during differentiation. The multiple roles attributed to remote regulatory elements that have emerged from these studies will be discussed.
Collapse
Affiliation(s)
- Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Paulsen J, Rødland EA, Holden L, Holden M, Hovig E. A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res 2014; 42:e143. [PMID: 25114054 PMCID: PMC4191384 DOI: 10.1093/nar/gku738] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/10/2014] [Accepted: 08/01/2014] [Indexed: 12/23/2022] Open
Abstract
Identification of three-dimensional (3D) interactions between regulatory elements across the genome is crucial to unravel the complex regulatory machinery that orchestrates proliferation and differentiation of cells. ChIA-PET is a novel method to identify such interactions, where physical contacts between regions bound by a specific protein are quantified using next-generation sequencing. However, determining the significance of the observed interaction frequencies in such datasets is challenging, and few methods have been proposed. Despite the fact that regions that are close in linear genomic distance have a much higher tendency to interact by chance, no methods to date are capable of taking such dependency into account. Here, we propose a statistical model taking into account the genomic distance relationship, as well as the general propensity of anchors to be involved in contacts overall. Using both real and simulated data, we show that the previously proposed statistical test, based on Fisher's exact test, leads to invalid results when data are dependent on genomic distance. We also evaluate our method on previously validated cell-line specific and constitutive 3D interactions, and show that relevant interactions are significant, while avoiding over-estimating the significance of short nearby interactions.
Collapse
Affiliation(s)
- Jonas Paulsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Einar A Rødland
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Lars Holden
- Statistics for Innovation, Norwegian Computing Center, N-0314 Oslo, Norway
| | - Marit Holden
- Statistics for Innovation, Norwegian Computing Center, N-0314 Oslo, Norway
| | - Eivind Hovig
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, PO Box 4950, Nydalen, N-0424 Oslo, Norway Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4950, Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
18
|
Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to phenol and hydroquinone. Toxicology 2013; 312:108-14. [DOI: 10.1016/j.tox.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 11/18/2022]
|
19
|
Horvathova M, Ponka P, Divoky V. Molecular basis of hereditary iron homeostasis defects. Hematology 2013; 15:96-111. [DOI: 10.1179/102453310x12583347009810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Monika Horvathova
- Department of BiologyPalacky University, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Prem Ponka
- Lady Davis Institute for Medical ResearchJewish General Hospital, and Departments of Physiology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Vladimir Divoky
- Department of BiologyFaculty of Medicine Palacky University, Olomouc, Czech Republic, Department of Hemato-oncology, Faculty of Medicine Palacky University, Olomouc, Czech Republic
| |
Collapse
|
20
|
Razin SV, Ulianov SV, Ioudinkova ES, Gushchanskaya ES, Gavrilov AA, Iarovaia OV. Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome. BIOCHEMISTRY (MOSCOW) 2012; 77:1409-1423. [DOI: 10.1134/s0006297912130019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
21
|
Li XF, Wu XR, Xue M, Wang Y, Wang J, Li Y, Suriguga, Zhang GY, Yi ZC. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells. Toxicol Appl Pharmacol 2012; 265:43-50. [DOI: 10.1016/j.taap.2012.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/06/2012] [Accepted: 09/20/2012] [Indexed: 12/17/2022]
|
22
|
Yudinkova ES, Bunina DA, Ulyanov SV, Gavrilov AA, Razin SV. Patterns of histone modifications across the chicken alfa-globin genes’ domain. Mol Biol 2011. [DOI: 10.1134/s0026893311030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Coelho A, Picanço I, Seuanes F, Seixas MT, Faustino P. Novel large deletions in the human α-globin gene cluster: Clarifying the HS-40 long-range regulatory role in the native chromosome environment. Blood Cells Mol Dis 2010; 45:147-53. [DOI: 10.1016/j.bcmd.2010.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/25/2010] [Indexed: 12/29/2022]
|
24
|
Philonenko ES, Klochkov DB, Borunova VV, Gavrilov AA, Razin SV, Iarovaia OV. TMEM8 - a non-globin gene entrapped in the globin web. Nucleic Acids Res 2010; 37:7394-406. [PMID: 19820109 PMCID: PMC2794187 DOI: 10.1093/nar/gkp838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For more than 30 years it was believed that globin gene domains included only genes encoding globin chains. Here we show that in chickens, the domain of α-globin genes also harbor the non-globin gene TMEM8. It was relocated to the vicinity of the α-globin cluster due to inversion of an ∼170-kb genomic fragment. Although in humans TMEM8 is preferentially expressed in resting T-lymphocytes, in chickens it acquired an erythroid-specific expression profile and is upregulated upon terminal differentiation of erythroblasts. This correlates with the presence of erythroid-specific regulatory elements in the body of chicken TMEM8, which interact with regulatory elements of the α-globin genes. Surprisingly, TMEM8 is not simply recruited to the α-globin gene domain active chromatin hub. An alternative chromatin hub is assembled, which includes some of the regulatory elements essential for the activation of globin gene expression. These regulatory elements should thus shuttle between two different chromatin hubs.
Collapse
Affiliation(s)
- Elena S Philonenko
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilov street 34/5, 119334 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
25
|
Ribeiro D, Zaccariotto T, Santos M, Costa F, Sonati M. Influence of the polymorphisms of the α-major regulatory element HS-40 on in vitro gene expression. Braz J Med Biol Res 2009; 42:783-6. [DOI: 10.1590/s0100-879x2009005000014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/07/2009] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - F.F. Costa
- Universidade Estadual de Campinas, Brasil
| | | |
Collapse
|
26
|
Abstract
Over the past 20 years, there has been an increasing awareness that gene expression can be regulated by multiple cis-acting sequences located at considerable distances (10-1000 kb) from the genes they control. Detailed investigation of a few specialized mammalian genes, including the genes controlling the synthesis of hemoglobin, provide important models to understand how such long-range regulatory elements act. In general, these elements contain a high density of evolutionarily conserved, transcription factor-binding sites and in many ways resemble the upstream regulatory elements found adjacent to the promoters of genes in simpler organisms, differing only in the distance over which they act. We have investigated in detail how the remote regulatory elements of the alpha-globin cluster become activated as hematopoietic stem cells (HSCs) undergo commitment, lineage specification, and differentiation to form red blood cells. In turn, we have addressed how, during this process, the upstream elements control the correct spatial and temporal expression from the alpha-gene promoter which lies approximately 60 kb downstream of these elements. At present too few loci have been studied to determine whether there are general principles underlying long-range regulation but some common themes are emerging.
Collapse
|
27
|
Maruyama K, Ishikawa Y, Yasumasu S, Iuchi I. Globin Gene Enhancer Activity of a DNase-I Hypersensitive Site-40 Homolog in Medaka, Oryzias latipes. Zoolog Sci 2007; 24:997-1004. [DOI: 10.2108/zsj.24.997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/14/2007] [Indexed: 11/17/2022]
|
28
|
Tang XB, Feng DX, Di LJ, Huang Y, Fu XH, Liu G, Tang Y, Liu DP, Liang CC. HS-48 alone has no enhancement role on the expression of human α-globin gene cluster. Blood Cells Mol Dis 2007; 38:32-6. [PMID: 17110138 DOI: 10.1016/j.bcmd.2006.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 08/29/2006] [Accepted: 09/21/2006] [Indexed: 10/23/2022]
Abstract
To investigate the in vivo function of the newly defined DNase I hypersensitive site HS-48 on the whole human alpha-globin gene cluster, the region containing all the other known 5 hypersensitive sites HS-4 to HS-40 was deleted from a 117 kb bacterial artificial chromosome clone bearing the whole human alpha-globin gene cluster. Transgenic mice were generated from this construct. The RNase protection assays showed that with HS-48 left and all the other 5 hypersensitive sites deleted, the expression of human alpha-like globin genes was completely silenced in embryonic, fetal and adult stages in all tissues. This finding indicates that HS-48 alone has no enhancer activity on the expression of human alpha-like globin genes, and that the region of HS-4 to HS-40 already contains all the upstream cis-elements needed for regulating human alpha-like globin genes.
Collapse
Affiliation(s)
- Xiao-bin Tang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Humble MC, Trempus CS, Spalding JW, Cannon RE, Tennant RW. Biological, cellular, and molecular characteristics of an inducible transgenic skin tumor model: a review. Oncogene 2006; 24:8217-28. [PMID: 16355251 DOI: 10.1038/sj.onc.1209000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetically initiated Tg.AC transgenic mouse carries a transgene consisting of an oncogenic v-Ha-ras coding region flanked 5' by a mouse zeta-globin promoter and 3' by an SV-40 polyadenylation sequence. Located on chromosome 11, the transgene is transcriptionally silent until activated by chemical carcinogens, UV light, or full-thickness wounding. Expression of the transgene is an early event that drives cellular proliferation resulting in clonal expansion and tumor formation, the unique characteristics now associated with the Tg.AC mouse. This ras-dependent phenotype has resulted in the widespread interest and use of the Tg.AC mouse in experimental skin carcinogenesis and as an alternative carcinogenesis assay. This review examines the general biology of the tumorigenic responses observed in Tg.AC mice, the genetic interactions of the ras transgene, and explores the cellular and molecular regulation of zeta-globin promoted transgene expression. As a prototype alternative model to the current long-term rodent bioassays, the Tg.AC has generated a healthy discussion on the future of transgenic bioassays, and opened the doors for subsequent models for toxicity testing. The further exploration and elucidation of the molecular controls of transgene expression will enhance the usefulness of this mouse and enable a better understanding of the Tg.AC's discriminate response to chemical carcinogens.
Collapse
Affiliation(s)
- Michael C Humble
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | | | | |
Collapse
|
30
|
Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P. Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem 2005; 281:3190-7. [PMID: 16339156 DOI: 10.1074/jbc.m510204200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key agent in the anabolic actions of growth hormone (GH) is insulin-like growth factor-I (IGF-I), a 70-amino acid secreted protein with direct effects on somatic growth and tissue maintenance and repair. GH rapidly and potently stimulates IGF-I gene transcription by mechanisms independent of new protein synthesis, and recent studies have linked the transcription factor Stat5b to a regulatory network connecting the activated GH receptor on the cell membrane to the IGF-I gene in the nucleus. Here we analyze two distinct conserved GH response elements in the rat IGF-I locus that contain paired Stat5b sites. Each response element binds Stat5b in vivo in a GH-dependent way, as assessed by chromatin immunoprecipitation assays, and consists of one high affinity and one lower affinity Stat5b site, as determined by both qualitative and quantitative protein-DNA binding studies. In biochemical reconstitution experiments, both response elements are able to mediate GH-stimulated and Stat5b-dependent transcription when fused to a reporter gene containing either the major IGF-I promoter or a minimal neutral promoter, although the paired Stat5b sites located in the second IGF-I intron were more than twice as effective as the response element that mapped approximately 73 kb 5' to the IGF-I exon 1. Taken together, our results define the initial molecular architecture of a complicated GH-regulated transcriptional pathway, and suggest that apparently redundant hormone response elements provide a mechanism for amplifying GH action at a physiologically important target gene.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ioudinkova E, Razin SV, Borunova V, De Conto F, Rynditch A, Scherrer K. RNA-dependent nuclear matrix contains a 33 kb globin full domain transcript as well as prosomes but no 26S proteasomes. J Cell Biochem 2005; 94:529-39. [PMID: 15543557 DOI: 10.1002/jcb.20306] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previously, we have shown that in murine myoblasts prosomes are constituents of the nuclear matrix; a major part of the latter was found to be RNase sensitive. Here, we further define the RNA-dependent matrix in avian erythroblastosis virus (AEV) transformed erythroid cells in relation to its structure, presence of specific RNA, prosomes and/or proteasomes. These cells transcribe but do not express globin genes prior to induction. Electron micrographs show little difference in matrices treated with DNase alone or with both, DNase and RNase. In situ hybridization with alpha globin riboprobes shows that this matrix includes globin transcripts. Of particular interest is that, apparently, a nearly 35 kb long globin full domain transcript (FDT), including genes, intergenic regions and a large upstream domain is a part of the RNA-dependent nuclear matrix. The 23K-type of prosomes, previously shown to be co-localized with globin transcripts in the nuclear RNA processing centers, were found all over the nuclear matrix. Other types of prosomes show different distributions in the intact cell but similar distribution patterns on the matrix. Globin transcripts and at least 80% of prosomes disappear from matrices upon RNase treatment. Interestingly, the 19S proteasome modulator complex is insensitive to RNase treatment. Only 20S prosomes but not 26S proteasomes are thus part of the RNA-dependent nuclear matrix. We suggest that giant pre-mRNA and FDTs in processing, aligning prosomes and other RNA-binding proteins are involved in the organization of the dynamic nuclear matrix. It is proposed that the putative function of RNA within the nuclear matrix and, thus, the nuclear dynamic architecture, might explain the giant size and complex organization of primary transcripts and their introns.
Collapse
|
32
|
Wang Y, Jiang H. Identification of a distal STAT5-binding DNA region that may mediate growth hormone regulation of insulin-like growth factor-I gene expression. J Biol Chem 2005; 280:10955-63. [PMID: 15677453 DOI: 10.1074/jbc.m412808200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Growth hormone (GH) regulates insulin-like growth factor-I (IGF-I) gene expression through signal transducer and activator of transcription 5b (STAT5b) and STAT5a. The objective of this study was to identify the cis-regulatory DNA region involved in this process. By cotransfection analyses of shotgun DNA fragments of a bacterial artificial chromosome sequence containing the entire human IGF-I gene and a large 5'-flanking region, a approximately 700-bp DNA region approximately 75 kb 5' to the IGF-I gene was found to have the ability to enhance gene expression from both heterologous and homologous promoters in the presence of constitutively active STAT5a or STAT5b. This 700-bp DNA region contains two closely located consensus STAT5-binding sites, and its sequence appears to be evolutionarily conserved. Electrophoretic mobility shift assays verified the ability of the two putative STAT5-binding sites to bind to STAT5a and STAT5b. Cotransfection analyses confirmed that both STAT5-binding sites were necessary for the 700-bp DNA region to mediate STAT5a or STAT5b activation of gene transcription. Chromatin immunoprecipitation assays demonstrated that the chromosomal region containing these two STAT5-binding sites was bound by constitutively active STAT5b protein in HepG2 cells and that the binding was accompanied by increased expression of IGF-I mRNA. In reconstituted GH-responsive cells, this 700-bp DNA region was able to mediate GH-induced STAT5a or STAT5b activation of gene expression. These results together suggest that this STAT5-binding site-containing distal 5'-flanking region of IGF-I gene may be an enhancer mediating GH-induced STAT5 activation of IGF-I gene transcription.
Collapse
Affiliation(s)
- Ying Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
33
|
Li Q, Emery DW, Han H, Sun J, Yu M, Stamatoyannopoulos G. Differences of globin transgene expression in stably transfected cell lines and transgenic mice. Blood 2004; 105:3346-52. [PMID: 15626741 PMCID: PMC2808413 DOI: 10.1182/blood-2004-03-0987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies demonstrated that DNase I hypersensitive site -40 (HS-40) of the alpha-globin locus is capable of greatly enhancing expression of a hybrid beta/gamma-globin transcriptional unit in plasmid-transfected murine erythroleukemia (MEL) cells. However, as reported here, this same gamma-globin gene expression cassette was only transcribed at trace amounts in erythroid cells of transgenic mice. This lack of expression was not directly attributable to the beta/gamma-globin transcriptional unit, since this same unit linked to a composite beta-globin locus control region was expressed at high levels in transgenic mice. This lack of expression was also not directly attributable to chromosomal position effects, since addition of chromatin insulators failed to increase the frequency of expression. DNase I hypersensitivity and chromatin immunoprecipitation assays demonstrated that the lack of expression was correlated with a closed chromatin structure. We hypothesize that transgenes undergo dynamic changes in chromatin conformation following chromosomal integration and that the discrepant results reported here can be attributed to the relatively high level of chromatin remodeling that occurs in the transgenic mouse model, coupled with the relative inability of the HS-40 element to maintain an open chromatin state under such conditions.
Collapse
Affiliation(s)
- Qiliang Li
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Tahara T, Sun J, Igarashi K, Taketani S. Heme-dependent up-regulation of the α-globin gene expression by transcriptional repressor Bach1 in erythroid cells. Biochem Biophys Res Commun 2004; 324:77-85. [PMID: 15464985 DOI: 10.1016/j.bbrc.2004.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Indexed: 10/26/2022]
Abstract
The transcriptional factor Bach1 forms a heterodimer with small Maf family, and functions as a repressor of the Maf recognition element (MARE) in vivo. To investigate the involvement of Bach1 in the heme-dependent regulation of the expression of the alpha-globin gene, human erythroleukemia K562 cells were cultured with succinylacetone (SA), a heme biosynthetic inhibitor, and the level of alpha-globin mRNA was examined. A decrease of alpha-globin mRNA was observed in SA-treated cells, which was restored by the addition of hemin. The heme-dependent expression of alpha-globin occurred at the transcriptional level since the expression of human alpha-globin gene promoter-reporter gene containing hypersensitive site-40 (HS-40) was decreased when K562 cells were cultured with SA. Hemin treatment restored the decrease of the promoter activity by SA. The regulation of the HS-40 activity by heme was dependent on the NF-E2/AP-1 (NA) site, which is similar to MARE. The NA site-binding activity of Bach1 in K562 increased upon SA-treatment, and the increase was diminished by the addition of hemin. The transient expression of Bach1 and mutated Bach1 lacking CP motifs suppressed the HS-40 activity, and cancellation of the repressor activity by hemin was observed when wild-type Bach1 was expressed. The expression of NF-E2 strengthened the restoration of the Bach1-effect by hemin. Interestingly, nuclear localization of Bach1 increased when cells were treated with SA, while hemin induced the nuclear export of Bach1. These results indicated that heme plays an important role in the induction of alpha-globin gene expression through disrupting the interaction of Bach1 and the NA site in HS-40 enhancer in erythroid cells.
Collapse
Affiliation(s)
- Tsuyoshi Tahara
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | | | | | | |
Collapse
|
35
|
Yi Z, Wang Z, Li H, Liu M. Inhibitory effect of tellimagrandin I on chemically induced differentiation of human leukemia K562 cells. Toxicol Lett 2004; 147:109-19. [PMID: 14757314 DOI: 10.1016/j.toxlet.2003.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tellimagrandin I is a hydrolysable tannin compound widely present in plants. In this study, the effect of tellimagrandin I on chemically induced erythroid and megakaryocytic differentiation was investigated using K562 cells as differentiation model. It was found that tellimagrandin I not only inhibited the hemoglobin synthesis in butyric acid (BA)- and hemin-induced K562 cells with IC50 of 3 and 40microM, respectively, but also inhibited other erythroid differentiation marker including acetylcholinesterase (AChE) and glycophorin A (GPA) in BA-induced K562 cells. Tellimagrandin I also inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of CD61 protein, a megakaryocytic marker. RT-PCR analysis showed that tellimagrandin I decreased the expression of erythroid genes (gamma-globin and porphobilinogen deaminase (PBGD)) and related transcription factors (GATA-1 and NF-E2) in BA-induced K562 cells, whereas tellimagrandin I induced the overexpresison of GATA-2 transcription factor that played negative regulation on erythroid differentiation. These results indicated that tellimagrandin I had inhibitory effects on erythroid and megakaryocytic differentiation, which suggested that tannins like tellimagrandin I might influence the anti-tumor efficiency of some drugs and the hematopoiesis processes.
Collapse
Affiliation(s)
- Zongchun Yi
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
36
|
Razin SV, Farrell CM, Recillas-Targa F. Genomic domains and regulatory elements operating at the domain level. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:63-125. [PMID: 12921236 DOI: 10.1016/s0074-7696(03)01002-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The sequencing of the complete genomes of several organisms, including humans, has so far not contributed much to our understanding of the mechanisms regulating gene expression in the course of realization of developmental programs. In this so-called "postgenomic" era, we still do not understand how (if at all) the long-range organization of the genome is related to its function. The domain hypothesis of the eukaryotic genome organization postulates that the genome is subdivided into a number of semiindependent functional units (domains) that may include one or several functionally related genes, with these domains having well-defined borders, and operate under the control of special (domain-level) regulatory systems. This hypothesis was extensively discussed in the literature over the past 15 years. Yet it is still unclear whether the hypothesis is valid or not. There is evidence both supporting and questioning this hypothesis. The most conclusive data supporting the domain hypothesis come from studies of avian and mammalian beta-globin domains. In this review we will critically discuss the present state of the studies on these and other genomic domains, paying special attention to the domain-level regulatory systems known as locus control regions (LCRs). Based on this discussion, we will try to reevaluate the domain hypothesis of the organization of the eukaryotic genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, 117334 Moscow, Russia
| | | | | |
Collapse
|
37
|
Deville MA, Ouazana R, Morlé F, Bernet A. Disruption of the mechanism of long range activation within the human alpha-globin complex. J Biol Chem 2004; 279:21793-801. [PMID: 14970235 DOI: 10.1074/jbc.m312298200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human alpha-globin complex lies at the tip of the short arm of chromosome 16. It comprises three functional globin genes (5'-zeta2-alpha2-alpha1-3'), the expression of which is strictly dependent on a positive regulatory element located 40-kb upstream, HS-40. This DNase I-hypersensitive site is the only known regulatory element displaying strong erythroid-specific enhancer activity within the human alpha-globin complex. How this enhancer activity is shared among different erythroid genes present in the same cluster without affecting the ubiquitous genes present within and around the complex is poorly understood. To address this issue, we used hybrid murine erythroleukemia cells containing a single copy of human chromosome 16 and targeted the insertion of different sequences downstream of HS-40 by recombinase-mediated cassette exchange. We thus demonstrate that (i). HS-40-mediated erythroid-specific activation of the alpha-globin genes is impaired solely by the insertion of a promoter sequence and not a coding sequence, unless it is methylated, and that (ii). the degree of transcriptional repression observed seems to be related directly to the transcriptional rate of the inserted promoter. Taken together, these results emphasize the importance of promoter sequences as the main targets for the activation mechanism of the human alpha-globin genes by HS-40.
Collapse
Affiliation(s)
- Marie-Alice Deville
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Abstract
Abstract
Over the past fifty years, many advances in our understanding of the general principles controlling gene expression during hematopoiesis have come from studying the synthesis of hemoglobin. Discovering how the α and β globin genes are normally regulated and documenting the effects of inherited mutations which cause thalassemia have played a major role in establishing our current understanding of how genes are switched on or off in hematopoietic cells. Previously, nearly all mutations causing thalassemia have been found in or around the globin loci, but rare inherited and acquired trans-acting mutations are being found with increasing frequency. Such mutations have demonstrated new mechanisms underlying human genetic disease. Furthermore, they are revealing new pathways in the regulation of globin gene expression which, in turn, may eventually open up new avenues for improving the management of patients with common types of thalassemia.
Collapse
Affiliation(s)
- Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
39
|
Loyd MR, Okamoto Y, Randall MS, Ney PA. Role of AP1/NFE2 binding sites in endogenous alpha-globin gene transcription. Blood 2003; 102:4223-8. [PMID: 12920035 DOI: 10.1182/blood-2003-02-0574] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-level alpha-globin expression depends on cis-acting regulatory sequences located far upstream of the alpha-globin cluster. Sequences that contain the alpha-globin positive regulatory element (PRE) activate alpha-globin expression in transgenic mice. The alpha-globin PRE contains a pair of composite binding sites for the transcription factors activating protein 1 and nuclear factor erythroid 2 (AP1/NFE2). To determine the role of these binding sites in alpha-globin gene transcription, we mutated the AP1/NFE2 sites in the alpha-globin PRE in mice. We replaced the AP1/NFE2 sites with a neomycin resistance gene (neo) that is flanked by LoxP sites (floxed). Mice with this mutation exhibited increased embryonic death and alpha-thalassemia intermedia. Next, we removed the neo gene by Cre-mediated recombination, leaving a single LoxP site in place of the AP1/NFE2 sites. These mice were phenotypically normal. However, alpha-globin expression, measured by allele-specific RNA polymerase chain reaction (PCR), was decreased 25%. We examined the role of the hematopoietic-restricted transcription factor p45Nfe2 in activating expression through these sites and found that it is not required. Thus, we have demonstrated that AP1/NFE2 binding sites in the murine alpha-globin PRE contribute to long-range alpha-globin gene activation. The proteins that mediate this effect remain to be determined.
Collapse
Affiliation(s)
- Melanie R Loyd
- Department of Biochemistry, Rm 4064, Thomas Tower, St Jude Children's Research Hospital, 332 N Lauderdale St, Memphis, TN 38105-2794, USA
| | | | | | | |
Collapse
|
40
|
Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 2003; 101:2175-83. [PMID: 12411297 DOI: 10.1182/blood-2002-07-2211] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased fetal hemoglobin (HbF) levels diminish the clinical severity of beta-thalassemia and sickle cell anemia. A treatment strategy using autologous stem cell-targeted gene transfer of a gamma-globin gene may therefore have therapeutic potential. We evaluated oncoretroviral- and lentiviral-based gamma-globin vectors for expression in transduced erythroid cell lines. Compared with gamma-globin, oncoretroviral vectors containing either a beta-spectrin or beta-globin promoter and the alpha-globin HS40 element, a gamma-globin lentiviral vector utilizing the beta-globin promoter and elements from the beta-globin locus control region demonstrated a higher probability of expression. This lentiviral vector design was evaluated in lethally irradiated mice that received transplants of transduced bone marrow cells. Long-term, stable erythroid expression of human gamma-globin was observed with levels of vector-encoded gamma-globin mRNA ranging from 9% to 19% of total murine alpha-globin mRNA. The therapeutic efficacy of the vector was subsequently evaluated in a murine model of beta-thalassemia intermedia. The majority of mice that underwent transplantation expressed significant levels of chimeric m(alpha)(2)h(gamma)(2) molecules (termed HbF), the amount of which correlated with the degree of phenotypic improvement. A group of animals with a mean HbF level of 21% displayed a 2.5 g/dL (25 g/L) improvement in Hb concentration and normalization of erythrocyte morphology relative to control animals. gamma-Globin expression and phenotypic improvement was variably lower in other animals due to differences in vector copy number and chromosomal position effects. These data establish the potential of using a gamma-globin lentiviral vector for gene therapy of beta-thalassemia.
Collapse
Affiliation(s)
- Derek A Persons
- Division of Experimental Hematology, Department of Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | |
Collapse
|
41
|
Viprakasit V, Kidd AMJ, Ayyub H, Horsley S, Hughes J, Higgs DR. De novo deletion within the telomeric region flanking the human alpha globin locus as a cause of alpha thalassaemia. Br J Haematol 2003; 120:867-75. [PMID: 12614224 DOI: 10.1046/j.1365-2141.2003.04197.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified and characterized a Scottish individual with alpha thalassaemia, resulting from a de novo 48 kilobase (kb) deletion from the telomeric flanking region of the alpha globin cluster which occurred as a result of recombination between two misaligned repetitive elements that normally lie approximately 83 kb and 131 kb from the 16p telomere. The deletion removes two previously described putative regulatory elements (HS-40 and HS-33) but leaves two other elements (HS-10 and HS-8) intact. Analysis of this deletion, together with eight other published deletions of the telomeric region, showed that they all severely downregulated alpha globin expression. Together they defined a 20.4-kb region of the human alpha cluster, which contains all of the positive cis-acting elements required to regulate alpha globin expression. Comparative analysis of this region with the corresponding segment of the mouse alpha globin cluster demonstrated conserved non-coding sequences corresponding to the putative regulatory elements HS-40 and HS-33. Although the role of HS-40 as an enhancer of alpha globin expression is fully established, these observations suggest that the role of HS-33 and other sequences in this region should be more fully investigated in the context of the natural human and mouse alpha globin loci.
Collapse
Affiliation(s)
- Vip Viprakasit
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The alpha-globin gene cluster is located at the very tip of the short arm of chromosome 16. It produces the alpha-like globins, which is combined with the beta-like globins to form hemoglobin, and its mutants cause alpha-thalassemia, which is one of the most common genetic diseases. Its expression shows a tissue and developmental stage specificity that is balanced with that of the beta-globin gene cluster. In this article, we summarize the research on the control of expression of the alpha-globin gene cluster, mainly with respect to the alpha-major regulatory element (alpha-MRE): HS-40, the tissue-specific and developmental control of its expression, and its chromosomal environment. In summary, the alpha-globin gene cluster is expressed in an open chromosomal environment; HS-40, the 5'-flanking sequence, the transcribed region, and the 3'-flanking sequence interact to fully regulate its expression.
Collapse
Affiliation(s)
- Hua-bing Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | | | | |
Collapse
|
43
|
Harteveld CL, Muglia M, Passarino G, Kielman MF, Bernini LF. Genetic polymorphism of the major regulatory element HS-40 upstream of the human alpha-globin gene cluster. Br J Haematol 2002; 119:848-54. [PMID: 12437670 DOI: 10.1046/j.1365-2141.2002.03917.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The highly conserved 350-bp major regulatory element HS-40 (or alphaMRE) upstream of the human alpha-globin gene cluster is involved in the regulation of alpha-globin gene expression. The study of alphaMRE differences between human populations and the evolution of alphaMRE sequences in mammals may lead to a better understanding of the function and importance of this element in the regulation of expression of the downstream alpha-cluster. Denaturing gradient gel electrophoresis was used to determine the sequence heterogeneity of the alphaMRE region in 276 unrelated individuals, representing seven different populations. Furthermore, we analysed the alpha major regulatory elements of chimpanzee, orang-utan and rhesus monkeys and compared them with the equivalent human and murine sequences. Six different alphaMRE haplotypes (labelled A to F) were found in humans. Haplotype frequencies between the seven populations showed a gradual shift to a higher haplotype A distribution from west to east, being the highest in Indonesians. The African sample shows the largest divergence in haplotypes. Five out of six different haplotypes were present, three of which were exclusively found in Africans. The high prevalence of the haplotype A in humans, together with the conservation of this haplotype in apes, suggests that it is the ancestral one. The alphaMRE fragment appears to be a highly polymorphic marker, which could be used in combination with the regular markers in the alpha-cluster to extend the haplotype and to follow segregation of alpha-thalassaemia genes in population studies more accurately.
Collapse
Affiliation(s)
- Cornelis L Harteveld
- Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Anguita E, Sharpe JA, Sloane-Stanley JA, Tufarelli C, Higgs DR, Wood WG. Deletion of the mouse alpha-globin regulatory element (HS -26) has an unexpectedly mild phenotype. Blood 2002; 100:3450-6. [PMID: 12393394 DOI: 10.1182/blood-2002-05-1409] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural deletions of the region upstream of the human alpha-globin gene cluster, together with expression studies in cell lines and transgenic mice, identified a single element (HS -40) as necessary and perhaps sufficient for high-level expression of the alpha-globin genes. A similar element occupies the corresponding position upstream of the mouse (m) alpha-globin genes (mHS -26) and was thought to have similar functional properties. We knocked out mHS -26 by homologous recombination and observed the surprising result that instead of the expected severe alpha-thalassemia phenotype, the mice had a mild disease. Transcription levels of the mouse genes were reduced by about 50%, but homozygotes were healthy, with normal hemoglobin levels and only mild decreases in mean corpuscular volume and mean corpuscular hemoglobin. These results may indicate differences in the regulation of the alpha-globin clusters in mice and humans or that additional cis-acting elements remain to be characterized in one or both clusters.
Collapse
Affiliation(s)
- Eduardo Anguita
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
In order to provide the appropriate level of oxygen transport to respiring tissues, we need to produce a molecular oxygen transporting system to supplement oxygen diffusion and solubility. This supplementation is provided by hemoglobin. The role of hemoglobin in providing oxygen transport from lung to tissues in the adult is well-documented and functional characteristics of the fetal hemoglobin, which provide placental oxygen exchange, are also well understood. However the characteristics of the three embryonic hemoglobins, which provide oxygen transport during the first three months of gestation, are not well recognized. This review seeks to describe the state of our understanding of the temporal control of the expression of these proteins and the oxygen binding characteristics of the individual protein molecules. The modulation of the oxygen binding properties of these proteins, by the various allosteric effectors, is described and the structural origins of these characteristics are probed.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
46
|
Gavva NR, Wen SC, Daftari P, Moniwa M, Yang WM, Yang-Feng LPT, Seto E, Davie JR, Shen CKJ. NAPP2, a peroxisomal membrane protein, is also a transcriptional corepressor. Genomics 2002; 79:423-31. [PMID: 11863372 DOI: 10.1006/geno.2002.6714] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear factor-erythroid number 2 (NF-E2) is a positive regulatory, DNA binding transcription factor for gene expression in erythroid and megakaryocytic cells. To further understand the mechanisms of NF-E2 function, we used expression cloning to identify coregulators interacting with the erythroid-specific subunit of NF-E2, p45. We have isolated a protein, NAPP2, which contains an aspartic-acid- and glutamic-acid-rich region and a nuclear localization signal. The gene encoding NAPP2, PEX14, is located on chromosome 1p36 and is ubiquitously expressed. The domains of interaction in vitro and in vivo between p45 and NAPP2 were mapped by a yeast two-hybrid system and cotransfection experiments. In mammalian cell culture, ectopically expressed NAPP2 inhibited p45-directed transcriptional activation. Furthermore, NAPP2 functions as a corepressor and interacts specifically with histone deacetylase l (HDAC1), but not HDAC2 or HDAC3. NAPP2 is thus potentially a negative coregulator of NF-E2. NAPP2 is identical to PEX14, an integral membrane protein essential for protein docking onto the peroxisomes. These studies have identified a novel, bifunctional protein capable of acting as a transcriptional corepressor and a polypeptide transport modulator. They also suggest that NF-E2 may function both positively and negatively in the transcription regulation of specific erythroid and megakaryocytic genes.
Collapse
Affiliation(s)
- Narender R Gavva
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sistare FD, Thompson KL, Honchel R, DeGeorge J. Evaluation of the Tg.AC transgenic mouse assay for testing the human carcinogenic potential of pharmaceuticals--practical pointers, mechanistic clues, and new questions. Int J Toxicol 2002; 21:65-79. [PMID: 11936901 DOI: 10.1080/10915810252826028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transgenic mouse strains with genetic alterations known to play a role in the multistage process of carcinogenesis are being used increasingly as models for evaluating the human carcinogenic potential of chemicals and pharmaceuticals. The Tg.AC transgenic mouse is one of the strains currently being used in such alternative short-term carcinogenicity testing protocols. This review is focused on recent data from studies designed to evaluate this model's ability to discriminate carcinogens from noncarcinogens. Details relating to protocol design that can significantly impact study outcome are described. Data relating to mechanisms of chemical tumor induction in the Tg.AC model are reviewed, and questions have been formulated to encourage research to further guide appropriate future applications of this model.
Collapse
Affiliation(s)
- Frank D Sistare
- Center for Drug Evaluation and Research, Food and Drug Administration, Laurel, Maryland 20708, USA.
| | | | | | | |
Collapse
|
48
|
Kearns M, Morris C, Whitelaw E. Spontaneous germline amplification and translocation of a transgene array. Mutat Res 2001; 486:125-36. [PMID: 11425517 DOI: 10.1016/s0921-8777(01)00084-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The majority of the mammalian genome is thought to be relatively stable throughout and between generations. There are no developmentally programmed gene amplifications as seen in lower eukaryotes and prokaryotes, however a number of unscheduled gene amplifications have been documented. Apart from expansion of trinucleotide repeats and minisatellite DNA, which involve small DNA elements, other cases of gene or DNA amplifications in mammalian systems have been reported in tumor samples or permanent cell lines. The mechanisms underlying these amplifications remain unknown. Here, we report a spontaneous transgene amplification through the male germline which resulted in silencing of transgene expression. During routine screening one mouse, phenotypically negative for transgene expression, was found to have a transgene copy number much greater than that of the transgenic parent. Analysis of the transgene expansion revealed that the amplification in the new high copy transgenic line resulted in a copy number approximately 40-60 times the primary transgenic line copy number of 5-8 copies per haploid genome. Genetic breeding analysis suggested that this amplification was the result of insertion at only one integration site, that it was stable for at least two generations and that the site of insertion was different from the site at which the original 5-8 copy array had integrated. FISH analysis revealed that the new high copy array was on chromosome 7 F3/4 whereas the original low copy transgene array had been localised to chromosome 3E3. DNA methylation analysis revealed that the high copy transgene array was heavily methylated. The amplification of transgenes, although a rare event, may give insight into amplification of endogenous genes which can be associated with human disease.
Collapse
Affiliation(s)
- M Kearns
- Department of Biochemistry, G08, University of Syndey, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
49
|
Adaptive Evolution of Gene Expression in Antarctic Fishes: Divergent Transcription of the 5′-to-5′ Linked Adult α1- and β-Globin Genes of the Antarctic TeleostNotothenia coriicepsis Controlled by Dual Promoters and Intergenic Enhancers. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.1.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Espéret C, Sabatier S, Deville MA, Ouazana R, Bouhassira EE, Godet J, Morlé F, Bernet A. Non-erythroid genes inserted on either side of human HS-40 impair the activation of its natural alpha -globin gene targets without being themselves preferentially activated. J Biol Chem 2000; 275:25831-9. [PMID: 10827181 DOI: 10.1074/jbc.m001757200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human alpha-globin gene complex includes three functional globin genes (5'-zeta2-alpha2-alpha1-3') regulated by a common positive regulatory element named HS-40 displaying strong erythroid-specific enhancer activity. How this enhancer activity can be shared between different promoters present at different positions in the same complex is poorly understood. To address this question, we used homologous recombination to target the insertion of marker genes driven by cytomegalovirus or long terminal repeat promoters in both possible orientations either upstream or downstream from the HS-40 region into the single human alpha-globin gene locus present in hybrid mouse erythroleukemia cells. We also used CRE recombinase-mediated cassette exchange to target the insertion of a tagged alpha-globin gene at the same position downstream from HS-40. All these insertions led to a similar decrease in the HS-40-dependent transcription of downstream human alpha-globin genes in differentiated cells. Interestingly, this decrease is associated with the strong activation of the proximal newly inserted alpha-globin gene, whereas in marked contrast, the transcription of the non-erythroid marker genes remains insensitive to HS-40. Taken together, these results indicate that the enhancer activity of HS-40 can be trapped by non-erythroid promoters in both upstream and downstream directions without necessarily leading to their own activation.
Collapse
Affiliation(s)
- C Espéret
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|