1
|
Harrison PM. Intrinsically Disordered Compositional Bias in Proteins: Sequence Traits, Region Clustering, and Generation of Hypothetical Functional Associations. Bioinform Biol Insights 2024; 18:11779322241287485. [PMID: 39417089 PMCID: PMC11481073 DOI: 10.1177/11779322241287485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Compositionally biased regions (CBRs), ie, tracts that are dominated by a subset of residue types, are common features of eukaryotic proteins. These are often found bounded within or almost coterminous with intrinsically disordered or 'natively unfolded' parts. Here, it is investigated how the function of such intrinsically disordered compositionally biased regions (ID-CBRs) is directly linked to their compositional traits, focusing on the well-characterized yeast (Saccharomyces cerevisiae) proteome as a test case. The ID-CBRs that are clustered together using compositional distance are discovered to have clear functional linkages at various levels of diversity. The specific case of the Sup35p and Rnq1p proteins that underlie causally linked prion phenomena ([PSI+] and [RNQ+]) is highlighted. Their prion-forming ID-CBRs are typically clustered very close together indicating some compositional engendering for [RNQ+] seeding of [PSI+] prions. Delving further, ID-CBRs with distinct types of residue patterning such as 'blocking' or relative segregation of residues into homopeptides are found to have significant functional trends. Specific examples of such ID-CBR functional linkages that are discussed are: Q/N-rich ID-CBRs linked to transcriptional coactivation, S-rich to transcription-factor binding, R-rich to DNA-binding, S/E-rich to protein localization, and D-rich linked to chromatin remodelling. These data may be useful in informing experimental hypotheses for proteins containing such regions.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
3
|
MacCready JS, Roggenkamp EM, Gdanetz K, Chilvers MI. Elucidating the Obligate Nature and Biological Capacity of an Invasive Fungal Corn Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:411-424. [PMID: 36853195 DOI: 10.1094/mpmi-10-22-0213-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level, due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome, using a combination of long- and short-read technologies, and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein-coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that, following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Emily M Roggenkamp
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Kristi Gdanetz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
4
|
Lawson MJ, Drawert B, Petzold L, Yi TM. A positive feedback loop involving the Spa2 SHD domain contributes to focal polarization. PLoS One 2022; 17:e0263347. [PMID: 35134079 PMCID: PMC8824340 DOI: 10.1371/journal.pone.0263347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/16/2022] [Indexed: 11/18/2022] Open
Abstract
Focal polarization is necessary for finely arranged cell-cell interactions. The yeast mating projection, with its punctate polarisome, is a good model system for this process. We explored the critical role of the polarisome scaffold protein Spa2 during yeast mating with a hypothesis motivated by mathematical modeling and tested by in vivo experiments. Our simulations predicted that two positive feedback loops generate focal polarization, including a novel feedback pathway involving the N-terminal domain of Spa2. We characterized the latter using loss-of-function and gain-of-function mutants. The N-terminal region contains a Spa2 Homology Domain (SHD) which is conserved from yeast to humans, and when mutated largely reproduced the spa2Δ phenotype. Our work together with published data show that the SHD domain recruits Msb3/4 that stimulates Sec4-mediated transport of Bud6 to the polarisome. There, Bud6 activates Bni1-catalyzed actin cable formation, recruiting more Spa2 and completing the positive feedback loop. We demonstrate that disrupting this loop at any point results in morphological defects. Gain-of-function perturbations partially restored focal polarization in a spa2 loss-of-function mutant without restoring localization of upstream components, thus supporting the pathway order. Thus, we have collected data consistent with a novel positive feedback loop that contributes to focal polarization during pheromone-induced polarization in yeast.
Collapse
Affiliation(s)
- Michael J. Lawson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Brian Drawert
- Department of Computer Science, University of North Carolina Asheville, Asheville, NC, United States of America
| | - Linda Petzold
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Tau-Mu Yi
- Molecular, Cellular, and Developmental Biology, 3131 Biological Sciences II, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- * E-mail:
| |
Collapse
|
5
|
OUP accepted manuscript. FEMS Yeast Res 2022; 22:6522173. [DOI: 10.1093/femsyr/foac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/12/2022] Open
|
6
|
Chao JT, Pina F, Niwa M. Regulation of the early stages of endoplasmic reticulum inheritance during ER stress. Mol Biol Cell 2021; 32:109-119. [PMID: 33448894 PMCID: PMC8120693 DOI: 10.1091/mbc.e20-08-0558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum (ER) is one of the largest cytoplasmic organelles in eukaryotic cells and plays a role in many cellular processes, such as the production and quality control of secretory protein, lipid synthesis, and calcium homeostasis. The ER cannot be generated de novo, and thus its proper inheritance during cell division is paramount to the health and survival of the daughter cells. Although previous work has uncovered the cytoskeletal components involved, we still lack a comprehensive understanding of the intricate steps of and the cytoplasmic and membrane-bound components involved in ER inheritance. To directly address these issues, we utilized microfluidics and genetic analyses to show that before nuclear migration, early ER inheritance can be further divided into three distinctive steps. Moreover, we demonstrated that perturbing each of these steps affects the cell's ability to mitigate ER stress. Thus, proper ER inheritance is essential to ensuring a healthy, functional cell.
Collapse
Affiliation(s)
- Jesse T Chao
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Francisco Pina
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377
| |
Collapse
|
7
|
Dünkler A, Leda M, Kromer JM, Neller J, Gronemeyer T, Goryachev AB, Johnsson N. Type V myosin focuses the polarisome and shapes the tip of yeast cells. J Cell Biol 2021; 220:211845. [PMID: 33656555 PMCID: PMC7933982 DOI: 10.1083/jcb.202006193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
The polarisome is a cortical proteinaceous microcompartment that organizes the growth of actin filaments and the fusion of secretory vesicles in yeasts and filamentous fungi. Polarisomes are compact, spotlike structures at the growing tips of their respective cells. The molecular forces that control the form and size of this microcompartment are not known. Here we identify a complex between the polarisome subunit Pea2 and the type V Myosin Myo2 that anchors Myo2 at the cortex of yeast cells. We discovered a point mutation in the cargo-binding domain of Myo2 that impairs the interaction with Pea2 and consequently the formation and focused localization of the polarisome. Cells carrying this mutation grow round instead of elongated buds. Further experiments and biophysical modeling suggest that the interactions between polarisome-bound Myo2 motors and dynamic actin filaments spatially focus the polarisome and sustain its compact shape.
Collapse
Affiliation(s)
- Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jan-Michael Kromer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Joachim Neller
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Nomura W, Futamata R, Inoue Y. Role of RhoGAP Rgd1 in Pkc1 signaling-related actin repolarization under heat shock stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2021; 1865:129853. [PMID: 33508381 DOI: 10.1016/j.bbagen.2021.129853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND A serine/threonine kinase Pkc1 is the sole protein kinase C in the budding yeast Saccharomyces cerevisiae, and plays an important role in the regulation of polarized growth and stress responses such as those due to heat shock. Exposure of cells to high temperature transiently arrests polarized growth and leads to depolarization of the actin cytoskeleton, followed by actin repolarization during adaptation to heat shock stress. Actin repolarization is ensured by the activation of Pkc1 signaling; however, the molecular mechanisms underlying this phenomenon remain poorly understood. METHODS Using an overexpression construct of a constitutively active mutant of Pkc1 (Pkc1R398P), we explored the Pkc1 target molecules involved in actin repolarization. RESULTS PKC1R398P overexpression as well as heat shock stress increased the phosphorylation levels of Rho GTPase-activating protein (RhoGAP) Rgd1. Rgd1 was found to contribute to Pkc1-signaling-related actin repolarization during adaptation to heat shock stress in a GAP activity-independent manner, with Ser148 in Rgd1 playing a crucial role. Furthermore, Rgd1 was involved in the maintenance of phosphorylation status of the mitogen-activated protein (MAP) kinase Mpk1, a downstream effector of Pkc1, under heat shock stress. CONCLUSIONS Rgd1 is a target of Pkc1 signaling under conditions of heat shock stress, and required for the normal process of actin repolarization during adaptation to heat shock stress. GENERAL SIGNIFICANCE Our results provide insights into the molecular mechanism underlying Pkc1-mediated modulation of actin repolarization under heat shock stress.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan; Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Ryota Futamata
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
9
|
Xie Y, Miao Y. Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth. J Cell Sci 2021; 134:134/1/jcs247916. [PMID: 33419950 DOI: 10.1242/jcs.247916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dynamic assembly and remodeling of actin is critical for many cellular processes during development and stress adaptation. In filamentous fungi and budding yeast, actin cables align in a polarized manner along the mother-to-daughter cell axis, and are essential for the establishment and maintenance of polarity; moreover, they rapidly remodel in response to environmental cues to achieve an optimal system response. A formin at the tip region within a macromolecular complex, called the polarisome, is responsible for driving actin cable polymerization during polarity establishment. This polarisome undergoes dynamic assembly through spatial and temporally regulated interactions between its components. Understanding this process is important to comprehend the tuneable activities of the formin-centered nucleation core, which are regulated through divergent molecular interactions and assembly modes within the polarisome. In this Review, we focus on how intrinsically disordered regions (IDRs) orchestrate the condensation of the polarisome components and the dynamic assembly of the complex. In addition, we address how these components are dynamically distributed in and out of the assembly zone, thereby regulating polarized growth. We also discuss the potential mechanical feedback mechanisms by which the force-induced actin polymerization at the tip of the budding yeast regulates the assembly and function of the polarisome.
Collapse
Affiliation(s)
- Ying Xie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
10
|
Xie Y, Loh ZY, Xue J, Zhou F, Sun J, Qiao Z, Jin S, Deng Y, Li H, Wang Y, Lu L, Gao Y, Miao Y. Orchestrated actin nucleation by the Candida albicans polarisome complex enables filamentous growth. J Biol Chem 2020; 295:14840-14854. [PMID: 32848016 DOI: 10.1074/jbc.ra120.013890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/09/2020] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a dimorphic fungus that converts from a yeast form to a hyphae form during infection. This switch requires the formation of actin cable to coordinate polarized cell growth. It's known that nucleation of this cable requires a multiprotein complex localized at the tip called the polarisome, but the mechanisms underpinning this process were unclear. Here, we found that C. albicans Aip5, a homolog of polarisome component ScAip5 in Saccharomyces cerevisiae that nucleates actin polymerization and synergizes with the formin ScBni1, regulates actin assembly and hyphae growth synergistically with other polarisome proteins Bni1, Bud6, and Spa2. The C terminus of Aip5 binds directly to G-actin, Bni1, and the C-terminal of Bud6, which form the core of the nucleation complex to polymerize F-actin. Based on insights from structural biology and molecular dynamic simulations, we propose a possible complex conformation of the actin nucleation core, which provides cooperative positioning and supports the synergistic actin nucleation activity of a tri-protein complex Bni1-Bud6-Aip5. Together with known interactions of Bni1 with Bud6 and Aip5 in S. cerevisiae, our findings unravel molecular mechanisms of C. albicans by which the tri-protein complex coordinates the actin nucleation in actin cable assembly and hyphal growth, which is likely a conserved mechanism in different filamentous fungi and yeast.
Collapse
Affiliation(s)
- Ying Xie
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zhi Yang Loh
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jiao Xue
- School of Biological Sciences, Nanyang Technological University, Singapore; College of Life Science and Technology, Jinan University, Guangzhou, China; The College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jialin Sun
- School of Biological Sciences, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shengyang Jin
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hongye Li
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yonggui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Nanyang Drive, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
11
|
Vasen G, Dunayevich P, Constantinou A, Colman-Lerner A. GPCR receptor phosphorylation and endocytosis are not necessary to switch polarized growth between internal cues during pheromone response in S. cerevisiae. Commun Integr Biol 2020; 13:128-139. [PMID: 33014265 PMCID: PMC7518455 DOI: 10.1080/19420889.2020.1806667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Chemotactic/chemotropic cells follow accurately the direction of gradients of regulatory molecules. Many G-protein-coupled receptors (GPCR) function as chemoattractant receptors to guide polarized responses. In "a" mating type yeast, the GPCR Ste2 senses the α-cell's pheromone. Previously, phosphorylation and trafficking of this receptor have been implicated in the process of gradient sensing, where cells dynamically correct growth. Correction is often necessary since yeast have intrinsic polarity sites that interfere with a correct initial gradient decoding. We have recently showed that when actively dividing (not in G1) yeast are exposed to a uniform pheromone concentration, they initiate a pheromone-induced polarization next to the mother-daughter cytokinesis site. Then, they reorient their growth to the intrinsic polarity site. Here, to study if Ste2 phosphorylation and internalization are involved in this process, we generated receptor variants combining three types of mutated signals for the first time: phosphorylation, ubiquitylation and the NPFX1,2D Sla1-binding motif. We first characterized their effect on endocytosis and found that these processes regulate internalization in a more complex manner than previously shown. Interestingly, we showed that receptor phosphorylation can drive internalization independently of ubiquitylation and the NPFX1,2D motif. When tested in our assays, cells expressing either phosphorylation or endocytosis-deficient receptors were able to switch away from the cytokinesis site to find the intrinsic polarity site as efficiently as their WT counterparts. Thus, we conclude that these processes are not necessary for the reorientation of polarization.
Collapse
Affiliation(s)
- Gustavo Vasen
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Paula Dunayevich
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Andreas Constantinou
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Department of Physiology, Molecular and Cellular Biology, School of Exact and Natural Sciences, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Institute of Physiology, Molecular Biology and Neurosciences, National Council of Scientific and Technical Research (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Spitzenkörper assembly mechanisms reveal conserved features of fungal and metazoan polarity scaffolds. Nat Commun 2020; 11:2830. [PMID: 32503980 PMCID: PMC7275032 DOI: 10.1038/s41467-020-16712-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
The Spitzenkörper (SPK) constitutes a collection of secretory vesicles and polarity-related proteins intimately associated with polarized growth of fungal hyphae. Many SPK-localized proteins are known, but their assembly and dynamics remain poorly understood. Here, we identify protein-protein interaction cascades leading to assembly of two SPK scaffolds and recruitment of diverse effectors in Neurospora crassa. Both scaffolds are transported to the SPK by the myosin V motor (MYO-5), with the coiled-coil protein SPZ-1 acting as cargo adaptor. Neither scaffold appears to be required for accumulation of SPK secretory vesicles. One scaffold consists of Leashin-2 (LAH-2), which is required for SPK localization of the signalling kinase COT-1 and the glycolysis enzyme GPI-1. The other scaffold comprises a complex of Janus-1 (JNS-1) and the polarisome protein SPA-2. Via its Spa homology domain (SHD), SPA-2 recruits a calponin domain-containing F-actin effector (CCP-1). The SHD NMR structure reveals a conserved surface groove required for effector binding. Similarities between SPA-2/JNS-1 and the metazoan GIT/PIX complex identify foundational features of the cell polarity apparatus that predate the fungal-metazoan divergence. The Spitzenkörper (SPK) is a polarized accumulation of proteins and secretory vesicles associated with tip growth of fungal hyphae. Here, Zheng et al. study SPK assembly and dynamics, identify SPK protein scaffolds and associated proteins, and reveal similarities with other scaffolds from metazoans.
Collapse
|
13
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
14
|
Mitotic and pheromone-specific intrinsic polarization cues interfere with gradient sensing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2020; 117:6580-6589. [PMID: 32152126 DOI: 10.1073/pnas.1912505117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polarity decisions are central to many processes, including mitosis and chemotropism. In Saccharomyces cerevisiae, budding and mating projection (MP) formation use an overlapping system of cortical landmarks that converges on the small G protein Cdc42. However, pheromone-gradient sensing must override the Rsr1-dependent internal polarity cues used for budding. Using this model system, we asked what happens when intrinsic and extrinsic spatial cues are not aligned. Is there competition, or collaboration? By live-cell microscopy and microfluidics techniques, we uncovered three previously overlooked features of this signaling system. First, the cytokinesis-associated polarization patch serves as a polarity landmark independently of all known cues. Second, the Rax1-Rax2 complex functions as a pheromone-promoted polarity cue in the distal pole of the cells. Third, internal cues remain active during pheromone-gradient tracking and can interfere with this process, biasing the location of MPs. Yeast defective in internal-cue utilization align significantly better than wild type with artificially generated pheromone gradients.
Collapse
|
15
|
Glomb O, Wu Y, Rieger L, Rüthnick D, Mulaw MA, Johnsson N. The cell polarity proteins Boi1 and Boi2 direct an actin nucleation complex to sites of exocytosis in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs.237982. [PMID: 31964708 DOI: 10.1242/jcs.237982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 01/13/2023] Open
Abstract
Owing to the local enrichment of factors that influence its dynamics and organization, the actin cytoskeleton displays different shapes and functions within the same cell. In yeast cells, post-Golgi vesicles ride on long actin cables to the bud tip. The proteins Boi1 and Boi2 (Boi1/2) participate in tethering and docking these vesicles to the plasma membrane. Here, we show in Saccharomyces cerevisiae that Boi1/2 also recruit nucleation and elongation factors to form actin filaments at sites of exocytosis. Disrupting the connection between Boi1/2 and the nucleation factor Bud6 impairs filament formation, reduces the directed movement of the vesicles to the tip and shortens the vesicles' tethering time at the cortex. Transplanting Boi1 from the bud tip to the peroxisomal membrane partially redirects the actin cytoskeleton and the vesicular flow towards the peroxisome, and creates an alternative, rudimentary vesicle-docking zone. We conclude that Boi1/2, through interactions with Bud6 and Bni1, induce the formation of a cortical actin structure that receives and aligns incoming vesicles before fusion with the membrane.
Collapse
Affiliation(s)
- Oliver Glomb
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Yehui Wu
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lucia Rieger
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Diana Rüthnick
- ZMBH, University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Medhanie A Mulaw
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
16
|
Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization. Nat Commun 2019; 10:5078. [PMID: 31699995 PMCID: PMC6838200 DOI: 10.1038/s41467-019-13125-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022] Open
Abstract
A multiprotein complex polarisome nucleates actin cables for polarized cell growth in budding yeast and filamentous fungi. However, the dynamic regulations of polarisome proteins in polymerizing actin under physiological and stress conditions remains unknown. We identify a previously functionally unknown polarisome member, actin-interacting-protein 5 (Aip5), which promotes actin assembly synergistically with formin Bni1. Aip5-C terminus is responsible for its activities by interacting with G-actin and Bni1. Through N-terminal intrinsically disordered region, Aip5 forms high-order oligomers and generate cytoplasmic condensates under the stresses conditions. The molecular dynamics and reversibility of Aip5 condensates are regulated by scaffolding protein Spa2 via liquid-liquid phase separation both in vitro and in vivo. In the absence of Spa2, Aip5 condensates hamper cell growth and actin cable structures under stress treatment. The present study reveals the mechanisms of actin assembly for polarity establishment and the adaptation in stress conditions to protect actin assembly by protein phase separation. The polarisome is a dynamic protein complex that nucleates F-actin for polarized yeast growth, but its regulation is unclear. Here, the authors report that the polarisome protein Aip5 undergoes Spa2-mediated phase separation in physiological and stress conditions, potentially for regulating actin assembly.
Collapse
|
17
|
Henderson NT, Pablo M, Ghose D, Clark-Cotton MR, Zyla TR, Nolen J, Elston TC, Lew DJ. Ratiometric GPCR signaling enables directional sensing in yeast. PLoS Biol 2019; 17:e3000484. [PMID: 31622333 PMCID: PMC6818790 DOI: 10.1371/journal.pbio.3000484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/29/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022] Open
Abstract
Accurate detection of extracellular chemical gradients is essential for many cellular behaviors. Gradient sensing is challenging for small cells, which can experience little difference in ligand concentrations on the up-gradient and down-gradient sides of the cell. Nevertheless, the tiny cells of the yeast Saccharomyces cerevisiae reliably decode gradients of extracellular pheromones to find their mates. By imaging the behavior of polarity factors and pheromone receptors, we quantified the accuracy of initial polarization during mating encounters. We found that cells bias the orientation of initial polarity up-gradient, even though they have unevenly distributed receptors. Uneven receptor density means that the gradient of ligand-bound receptors does not accurately reflect the external pheromone gradient. Nevertheless, yeast cells appear to avoid being misled by responding to the fraction of occupied receptors rather than simply the concentration of ligand-bound receptors. Such ratiometric sensing also serves to amplify the gradient of active G protein. However, this process is quite error-prone, and initial errors are corrected during a subsequent indecisive phase in which polarity clusters exhibit erratic mobile behavior. Cells use surface receptors to decode spatial information from chemical gradients, but accurate decoding is hampered by small cell size and the presence of molecular noise. This study shows that yeast cells decode pheromone gradients by measuring the local ratio of bound to unbound receptors. This mechanism corrects for uneven receptor density at the surface and amplifies the gradient transmitted to downstream components.
Collapse
Affiliation(s)
- Nicholas T. Henderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Debraj Ghose
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Manuella R. Clark-Cotton
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Trevin R. Zyla
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - James Nolen
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
| | - Timothy C. Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Transfer of the Septin Ring to Cytokinetic Remnants in ER Stress Directs Age-Sensitive Cell-Cycle Re-entry. Dev Cell 2019; 51:173-191.e5. [PMID: 31564614 DOI: 10.1016/j.devcel.2019.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/19/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
During cell division, the inheritance of a functional endoplasmic reticulum (ER) is ensured by the endoplasmic reticulum stress surveillance (ERSU) pathway. Activation of ERSU causes the septin ring to mislocalize, which blocks ER inheritance and cytokinesis. Here, we uncover that the septin ring in fact translocates to previously utilized cell division sites called cytokinetic remnants (CRMs). This unconventional translocation requires Nba1, a negative polarity regulator that normally prevents repolarization and re-budding at CRMs. Furthermore, septin ring translocation relies on the recruitment and activation of a key ERSU component Slt2 by Bem1, without activating Cdc42. Failure to transfer all septin subunits to CRMs delays the cell's ability to re-enter the cell cycle when ER homeostasis is restored and hinders cell growth after ER stress recovery. Thus, these deliberate but unprecedented rearrangements of cell polarity factors during ER stress safeguard cell survival and the timely cell-cycle re-entry upon ER stress recovery.
Collapse
|
19
|
Abstract
The polarisome comprises a network of proteins that organizes polar growth in yeast and filamentous fungi. The yeast formin Bni1 and the actin nucleation-promoting factor Bud6 are subunits of the polarisome that together catalyze the formation of actin cables below the tip of yeast cells. We identified YFR016c (Aip5) as an interaction partner of Bud6 and the polarisome scaffold Spa2. Yeast cells lacking Aip5 display a reduced number of actin cables. Aip5 binds with its N-terminal region to Spa2 and with its C-terminal region to Bud6. Both interactions collaborate to localize Aip5 at bud tip and neck, and are required to stimulate the formation of actin cables. Our experiments characterize Aip5 as a novel subunit of a complex that regulates the number of actin filaments at sites of polar growth.
Collapse
Affiliation(s)
- Oliver Glomb
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Lara Bareis
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, D-89081 Ulm, Germany
| |
Collapse
|
20
|
Callejas-Negrete OA, Castro-Longoria E. The role of GYP-3 in cellular morphogenesis of Neurospora crassa: Analyzing its relationship with the polarisome. Fungal Genet Biol 2019; 128:49-59. [DOI: 10.1016/j.fgb.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/18/2022]
|
21
|
Kubo K, Okada H, Shimamoto T, Kimori Y, Mizunuma M, Bi E, Ohnuki S, Ohya Y. Implications of maintenance of mother-bud neck size in diverse vital processes of Saccharomyces cerevisiae. Curr Genet 2019; 65:253-267. [PMID: 30066140 DOI: 10.1007/s00294-018-0872-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
Abstract
The mother-bud neck is defined as the boundary between the mother cell and bud in budding microorganisms, wherein sequential morphological events occur throughout the cell cycle. This study was designed to quantitatively investigate the morphology of the mother-bud neck in budding yeast Saccharomyces cerevisiae. Observation of yeast cells with time-lapse microscopy revealed an increase of mother-bud neck size through the cell cycle. After screening of yeast non-essential gene-deletion mutants with the image processing software CalMorph, we comprehensively identified 274 mutants with broader necks during S/G2 phase. Among these yeasts, we extensively analyzed 19 representative deletion mutants with defects in genes annotated to six gene ontology terms (polarisome, actin reorganization, endosomal tethering complex, carboxy-terminal domain protein kinase complex, DNA replication, and maintenance of DNA trinucleotide repeats). The representative broad-necked mutants exhibited calcofluor white sensitivity, suggesting defects in their cell walls. Correlation analysis indicated that maintenance of mother-bud neck size is important for cellular processes such as cell growth, system robustness, and replicative lifespan. We conclude that neck-size maintenance in budding yeast is regulated by numerous genes and has several aspects that are physiologically significant.
Collapse
Affiliation(s)
- Karen Kubo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Takuya Shimamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Department of Management and Information Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, Gakuen, Fukui City, Fukui, 910-8505, Japan
| | - Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-8565, Japan.
| |
Collapse
|
22
|
Miao Y, Tipakornsaowapak T, Zheng L, Mu Y, Lewellyn E. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS J 2018; 285:2762-2784. [PMID: 29722136 DOI: 10.1111/febs.14493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric Lewellyn
- Department of Biology, Division of Natural Sciences, St Norbert College, De Pere, WI, USA
| |
Collapse
|
23
|
Foltman M, Filali-Mouncef Y, Crespo D, Sanchez-Diaz A. Cell polarity protein Spa2 coordinates Chs2 incorporation at the division site in budding yeast. PLoS Genet 2018; 14:e1007299. [PMID: 29601579 PMCID: PMC5895073 DOI: 10.1371/journal.pgen.1007299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/11/2018] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Deposition of additional plasma membrane and cargoes during cytokinesis in eukaryotic cells must be coordinated with actomyosin ring contraction, plasma membrane ingression and extracellular matrix remodelling. The process by which the secretory pathway promotes specific incorporation of key factors into the cytokinetic machinery is poorly understood. Here, we show that cell polarity protein Spa2 interacts with actomyosin ring components during cytokinesis. Spa2 directly binds to cytokinetic factors Cyk3 and Hof1. The lethal effects of deleting the SPA2 gene in the absence of either Cyk3 or Hof1 can be suppressed by expression of the hypermorphic allele of the essential chitin synthase II (Chs2), a transmembrane protein transported on secretory vesicles that makes the primary septum during cytokinesis. Spa2 also interacts directly with the chitin synthase Chs2. Interestingly, artificial incorporation of Chs2 into the cytokinetic machinery allows the localisation of Spa2 at the site of division. In addition, increased Spa2 protein levels promote Chs2 incorporation at the site of division and primary septum formation. Our data indicate that Spa2 is recruited to the cleavage site to co-operate with the secretory vesicle system and particular actomyosin ring components to promote the incorporation of Chs2 into the so-called 'ingression progression complexes' during cytokinesis in budding yeast.
Collapse
Affiliation(s)
- Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Yasmina Filali-Mouncef
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Damaso Crespo
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
24
|
Merlini L, Khalili B, Dudin O, Michon L, Vincenzetti V, Martin SG. Inhibition of Ras activity coordinates cell fusion with cell-cell contact during yeast mating. J Cell Biol 2018; 217:1467-1483. [PMID: 29453312 PMCID: PMC5881505 DOI: 10.1083/jcb.201708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, pheromone signaling engages a signaling pathway composed of a G protein-coupled receptor, Ras, and a mitogen-activated protein kinase (MAPK) cascade that triggers sexual differentiation and gamete fusion. Cell-cell fusion requires local cell wall digestion, which relies on an initially dynamic actin fusion focus that becomes stabilized upon local enrichment of the signaling cascade on the structure. We constructed a live-reporter of active Ras1 (Ras1-guanosine triphosphate [GTP]) that shows Ras activity at polarity sites peaking on the fusion structure before fusion. Remarkably, constitutive Ras1 activation promoted fusion focus stabilization and fusion attempts irrespective of cell pairing, leading to cell lysis. Ras1 activity was restricted by the guanosine triphosphatase-activating protein Gap1, which was itself recruited to sites of Ras1-GTP and was essential to block untimely fusion attempts. We propose that negative feedback control of Ras activity restrains the MAPK signal and couples fusion with cell-cell engagement.
Collapse
Affiliation(s)
- Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Bita Khalili
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Physics, Lehigh University, Bethlehem, PA
| | - Omaya Dudin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Nie WC, He F, Yuan SM, Jia ZW, Wang RR, Gao XD. Roles of an N-terminal coiled-coil-containing domain in the localization and function of Bem3, a Rho GTPase-activating protein in budding yeast. Fungal Genet Biol 2017; 99:40-51. [PMID: 28064039 DOI: 10.1016/j.fgb.2016.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
GTPase-activating proteins (GAPs) play critical roles in the spatial and temporal control of small GTPases. The budding yeast Bem3 is a GAP for Cdc42, a Rho GTPase crucial for actin and septin organization. Bem3 localizes to the sites of polarized growth. However, the amino acid sequence determinants mediating recruitment of Bem3 to its physiological sites of action and those important for Bem3 function are not clear. Here, we show that Bem3's localization is guided by two distinct targeting regions-the PX-PH-domain-containing TD1 and the coiled-coil-containing TD2. TD2 localization is largely mediated by its interaction with the polarisome component Epo1 via heterotypic coiled-coil interaction. This finding reveals a novel role for the polarisome in linking Bem3 to its functional target, Cdc42. We also show that the coiled-coil domain of Bem3 interacts homotypically and this interaction is important for the regulation of Cdc42 by Bem3. Moreover, we show that overexpression of a longer version of the TD2 domain disrupts septin-ring assembly in a RhoGAP-independent manner, suggesting that TD2 may be capable of interacting with proteins implicated in septin-ring assembly. Furthermore, we show that the longer version of TD2 interacts with Kss1, a MAPK involved in filamentous growth. Kss1 is reported to localize mainly in the nucleus. We find that Kss1 also localizes to the sites of polarized growth and Bem3 interacts with Kss1 at the septin-ring assembly site. Our study provides new insights in Bem3's localization and function.
Collapse
Affiliation(s)
- Wen-Chao Nie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Si-Min Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Wen Jia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui-Rui Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China.
| |
Collapse
|
26
|
Juanes MA, Piatti S. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol Life Sci 2016; 73:3115-36. [PMID: 27085703 PMCID: PMC4951512 DOI: 10.1007/s00018-016-2220-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.
Collapse
Affiliation(s)
- Maria Angeles Juanes
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Simonetta Piatti
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
27
|
Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2. Genetics 2016; 204:205-20. [PMID: 27449057 DOI: 10.1534/genetics.116.189258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Formins are widespread actin-polymerizing proteins that play pivotal roles in a number of processes, such as cell polarity, morphogenesis, cytokinesis, and cell migration. In agreement with their crucial function, formins are prone to a variety of regulatory mechanisms that include autoinhibition, post-translational modifications, and interaction with formin modulators. Furthermore, activation and function of formins is intimately linked to their ability to interact with membranes. In the budding yeast Saccharomyces cerevisiae, the two formins Bni1 and Bnr1 play both separate and overlapping functions in the organization of the actin cytoskeleton. In addition, they are controlled by both common and different regulatory mechanisms. Here we show that proper localization of both formins requires the redundant E3 ubiquitin ligases Dma1 and Dma2, which were previously involved in spindle positioning and septin organization. In dma1 dma2 double mutants, formin distribution at polarity sites is impaired, thus causing defects in the organization of the actin cable network and hypersensitivity to the actin depolymerizer latrunculin B. Expression of a hyperactive variant of Bni1 (Bni1-V360D) rescues these defects and partially restores proper spindle positioning in the mutant, suggesting that the failure of dma1 dma2 mutant cells to position the spindle is partly due to faulty formin activity. Strikingly, Dma1/2 interact physically with both formins, while their ubiquitin-ligase activity is required for formin function and polarized localization. Thus, ubiquitylation of formin or a formin interactor(s) could promote formin binding to membrane and its ability to nucleate actin. Altogether, our data highlight a novel level of formin regulation that further expands our knowledge of the complex and multilayered controls of these key cytoskeleton organizers.
Collapse
|
28
|
Schröter S, Beckmann S, Schmitt HD. ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking. EMBO J 2016; 35:1935-55. [PMID: 27440402 DOI: 10.15252/embj.201592873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 06/21/2016] [Indexed: 11/09/2022] Open
Abstract
COPI-coated vesicles mediate retrograde membrane traffic from the cis-Golgi to the endoplasmic reticulum (ER) in all eukaryotic cells. However, it is still unknown whether COPI vesicles fuse everywhere or at specific sites with the ER membrane. Taking advantage of the circumstance that the vesicles still carry their coat when they arrive at the ER, we have visualized active ER arrival sites (ERAS) by monitoring contact between COPI coat components and the ER-resident Dsl tethering complex using bimolecular fluorescence complementation (BiFC). ERAS form punctate structures near Golgi compartments, clearly distinct from ER exit sites. Furthermore, ERAS are highly polarized in an actin and myosin V-dependent manner and are localized near hotspots of plasma membrane expansion. Genetic experiments suggest that the COPI•Dsl BiFC complexes recapitulate the physiological interaction between COPI and the Dsl complex and that COPI vesicles are mistargeted in dsl1 mutants. We conclude that the Dsl complex functions in confining COPI vesicle fusion sites.
Collapse
Affiliation(s)
- Saskia Schröter
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sabrina Beckmann
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Hans Dieter Schmitt
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
29
|
Wang H, Huang ZX, Au Yong JY, Zou H, Zeng G, Gao J, Wang Y, Wong AHH, Wang Y. CDK phosphorylates the polarisome scaffold Spa2 to maintain its localization at the site of cell growth. Mol Microbiol 2016; 101:250-64. [DOI: 10.1111/mmi.13386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Haitao Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
- Faculty of Health Sciences; University of Macau; Macau China
| | - Zhen-Xing Huang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Jie Ying Au Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Hao Zou
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Guisheng Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Jiaxin Gao
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Yanming Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | | | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
30
|
Yuan SM, Nie WC, He F, Jia ZW, Gao XD. Kin2, the Budding Yeast Ortholog of Animal MARK/PAR-1 Kinases, Localizes to the Sites of Polarized Growth and May Regulate Septin Organization and the Cell Wall. PLoS One 2016; 11:e0153992. [PMID: 27096577 PMCID: PMC4838231 DOI: 10.1371/journal.pone.0153992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
MARK/PAR-1 protein kinases play important roles in cell polarization in animals. Kin1 and Kin2 are a pair of MARK/PAR-1 orthologs in the budding yeast Saccharomyces cerevisiae. They participate in the regulation of secretion and ER stress response. However, neither the subcellular localization of these two kinases nor whether they may have other cellular functions is clear. Here, we show that Kin2 localizes to the sites of polarized growth in addition to localization on the plasma membrane. The localization to polarity sites is mediated by two targeting domains-TD1 and TD2. TD1 locates in the N-terminal region that spans the protein kinase domain whereas TD2 locates in the C-terminal end that covers the KA1 domain. We also show that an excess of Kin2 activity impaired growth, septin organization, and chitin deposition in the cell wall. Both TD1 and TD2 contribute to this function. Moreover, we find that the C-terminal region of Kin2 interacts with Cdc11, a septin subunit, and Pea2, a component of the polarisome that is known to play a role in septin organization. These findings suggest that Kin2 may play a role in the regulation of the septin cytoskeleton and the cell wall. Finally, we show that the C-terminal region of Kin2 interacts with Rho3, a Rho GTPase, whereas the N-terminal region of Kin2 interacts with Bmh1, a 14-3-3 protein. We speculate that Kin2 may be regulated by Bmh1, Rho3, or Pea2 in vivo. Our study provides new insight in the localization, function, and regulation of Kin2.
Collapse
Affiliation(s)
- Si-Min Yuan
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Chao Nie
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei He
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Wen Jia
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China
- * E-mail:
| |
Collapse
|
31
|
Muller N, Piel M, Calvez V, Voituriez R, Gonçalves-Sá J, Guo CL, Jiang X, Murray A, Meunier N. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients. PLoS Comput Biol 2016; 12:e1004795. [PMID: 27077831 PMCID: PMC4831791 DOI: 10.1371/journal.pcbi.1004795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.
Collapse
Affiliation(s)
- Nicolas Muller
- MAP5, CNRS UMR 8145, Université Paris Descartes, Paris, France
| | - Matthieu Piel
- Institut Curie, CNRS UMR 144, Paris, France
- * E-mail: (MP); (AM); (NM)
| | - Vincent Calvez
- Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669 and équipe-projet INRIA NUMED, École Normale Supérieure de Lyon, Lyon, France
| | - Raphaël Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC, Paris, France
| | - Joana Gonçalves-Sá
- Molecular and Cell Biology and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Chin-Lin Guo
- Molecular and Cell Biology and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Institute of Physics, Academia Sinica, Taiwan
| | - Xingyu Jiang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, People’s Republic of China
| | - Andrew Murray
- Molecular and Cell Biology and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (MP); (AM); (NM)
| | - Nicolas Meunier
- MAP5, CNRS UMR 8145, Université Paris Descartes, Paris, France
- * E-mail: (MP); (AM); (NM)
| |
Collapse
|
32
|
Guo M, Kilaru S, Schuster M, Latz M, Steinberg G. Fluorescent markers for the Spitzenkörper and exocytosis in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:158-65. [PMID: 26092802 PMCID: PMC4502456 DOI: 10.1016/j.fgb.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
Abstract
We establish Z. tritici polarity markers ZtSec4, ZtMlc1, ZtRab11, ZtExo70 and ZtSpa2. All markers localize correctly, labeling the Spitzenkörper and sites of polar exocytosis. We provide 5 carboxin-resistance conveying vectors for integration of all markers into the sdi1 locus. We provide 5 hygromycin B-resistance conveying vectors for random integration of all markers.
Fungal hyphae are highly polarized cells that invade their substrate by tip growth. In plant pathogenic fungi, hyphal growth is essential for host invasion. This makes polarity factors and secretion regulators potential new targets for novel fungicides. Polarization requires delivery of secretory vesicles to the apical Spitzenkörper, followed by polarized exocytosis at the expanding cell tip. Here, we introduce fluorescent markers to visualize the apical Spitzenkörper and the apical site of exocytosis in hyphae of the wheat pathogen Zymoseptoria tritici. We fused green fluorescent protein to the small GTPase ZtSec4, the myosin light chain ZtMlc1 and the small GTPase ZtRab11 and co-localize the fusion proteins with the dye FM4-64 in the hyphal apex, suggesting that the markers label the hyphal Spitzenkörper in Z. tritici. In addition, we localize GFP-fusions to the exocyst protein ZtExo70, the polarisome protein ZtSpa2. Consistent with results in the ascomycete Neurospora crassa, these markers did localize near the plasma membrane at the hyphal tip and only partially co-localize with FM4-64. Thus, these fluorescent markers are useful molecular tools that allow phenotypic analysis of mutants in Z. tritici. These tools will help develop new avenues of research in our quest to control STB infection in wheat.
Collapse
Affiliation(s)
- M Guo
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
33
|
Wu CF, Chiou JG, Minakova M, Woods B, Tsygankov D, Zyla TR, Savage NS, Elston TC, Lew DJ. Role of competition between polarity sites in establishing a unique front. eLife 2015; 4:e11611. [PMID: 26523396 PMCID: PMC4728132 DOI: 10.7554/elife.11611] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/01/2015] [Indexed: 01/15/2023] Open
Abstract
Polarity establishment in many cells is thought to occur via positive feedback that reinforces even tiny asymmetries in polarity protein distribution. Cdc42 and related GTPases are activated and accumulate in a patch of the cortex that defines the front of the cell. Positive feedback enables spontaneous polarization triggered by stochastic fluctuations, but as such fluctuations can occur at multiple locations, how do cells ensure that they make only one front? In polarizing cells of the model yeast Saccharomyces cerevisiae, positive feedback can trigger growth of several Cdc42 clusters at the same time, but this multi-cluster stage rapidly evolves to a single-cluster state, which then promotes bud emergence. By manipulating polarity protein dynamics, we show that resolution of multi-cluster intermediates occurs through a greedy competition between clusters to recruit and retain polarity proteins from a shared intracellular pool.
Collapse
Affiliation(s)
- Chi-Fang Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Maria Minakova
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Benjamin Woods
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Denis Tsygankov
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Natasha S Savage
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
34
|
Gupta YK, Dagdas YF, Martinez-Rocha AL, Kershaw MJ, Littlejohn GR, Ryder LS, Sklenar J, Menke F, Talbot NJ. Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae. THE PLANT CELL 2015; 27:3277-89. [PMID: 26566920 PMCID: PMC4682301 DOI: 10.1105/tpc.15.00552] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 05/21/2023]
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion.
Collapse
Affiliation(s)
- Yogesh K Gupta
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Yasin F Dagdas
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | - Michael J Kershaw
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | - Lauren S Ryder
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Frank Menke
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
35
|
Moosavi B, Mousavi B, Yang GF. Actin, Membrane Trafficking and the Control of Prion Induction, Propagation and Transmission in Yeast. Traffic 2015; 17:5-20. [PMID: 26503767 DOI: 10.1111/tra.12344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
The model eukaryotic yeast Saccharomyces cerevisiae has proven a useful model system in which prion biogenesis and elimination are studied. Several yeast prions exist in budding yeast and a number of studies now suggest that these alternate protein conformations may play important roles in the cell. During the last few years cellular factors affecting prion induction, propagation and elimination have been identified. Amongst these, proteins involved in the regulation of the actin cytoskeleton and dynamic membrane processes such as endocytosis have been found to play a critical role not only in facilitating de novo prion formation but also in prion propagation. Here we briefly review prion formation and maintenance with special attention given to the cellular processes that require the functionality of the actin cytoskeleton.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
36
|
Prosser DC, Pannunzio AE, Brodsky JL, Thorner J, Wendland B, O'Donnell AF. α-Arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis. J Cell Sci 2015; 128:4220-34. [PMID: 26459639 PMCID: PMC4712785 DOI: 10.1242/jcs.175372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a well-studied mechanism to internalize plasma membrane proteins; however, to endocytose such cargo, most eukaryotic cells also use alternative clathrin-independent endocytic (CIE) pathways, which are less well characterized. The budding yeast Saccharomyces cerevisiae, a widely used model for studying CME, was recently shown to have a CIE pathway that requires the GTPase Rho1, the formin Bni1, and their regulators. Nevertheless, in both yeast and mammalian cells, the mechanisms underlying cargo selection in CME and CIE are only beginning to be understood. For CME in yeast, particular α-arrestins contribute to recognition of specific cargos and promote their ubiquitylation by recruiting the E3 ubiquitin protein ligase Rsp5. Here, we show that the same α-arrestin–cargo pairs promote internalization through the CIE pathway by interacting with CIE components. Notably, neither expression of Rsp5 nor its binding to α-arrestins is required for CIE. Thus, α-arrestins are important for cargo selection in both the CME and CIE pathways, but function by distinct mechanisms in each pathway. Summary: In yeast, α-arrestins bind the Rho1 GTPase and regulate internalization of selective cargo through the clathrin-independent endocytic pathway.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anthony E Pannunzio
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | - Beverly Wendland
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Allyson F O'Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
37
|
Dünkler A, Rösler R, Kestler HA, Moreno-Andrés D, Johnsson N. SPLIFF: A Single-Cell Method to Map Protein-Protein Interactions in Time and Space. Methods Mol Biol 2015; 1346:151-68. [PMID: 26542721 DOI: 10.1007/978-1-4939-2987-0_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein interactions occur at certain times and at specific cellular places. The past years have seen a massive accumulation of binary protein-protein interaction data. The rapid increase of this context-free information necessitates robust methods to monitor protein interactions with temporal and spatial resolution in single cells. We have developed a simple split-ubiquitin-based method (SPLIFF) that uses the ratio of two fluorescent reporters as a signal for protein-protein interactions. One protein of the pair of interest is attached to the linear fusion of mCherry, the C-terminal half of ubiquitin, and GFP (mCherry-Cub-GFP). The other potential binding partner is expressed as a C-terminal fusion to the N-terminal half of ubiquitin (Nub). Upon co-expression the interaction between the two proteins of interest induces the reassociation of Nub and Cub to the native-like ubiquitin. GFP is subsequently cleaved from the C-terminus of Cub and degraded whereas the red-fluorescent mCherry stays attached to the Cub-fusion protein. We first implemented this method in the model yeast Saccharomyces cerevisiae. One fusion protein is expressed in cells of the a-mating type and the complementary fusion protein in cells of the α-mating type. Upon mixing, both cell types fuse and the Nub- and Cub-fusion proteins are free to interact. The red and green fluorescence is monitored by two-channel fluorescence time-lapse microcopy. The moment of cell fusion defines the start of the analysis. The calculated ratio of green to red fluorescence allows mapping the spatiotemporal interaction profiles of the investigated proteins in single cells.
Collapse
Affiliation(s)
- Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Reinhild Rösler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany
| | - Hans A Kestler
- Research Group for Bioinformatics and Systems Biology, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Daniel Moreno-Andrés
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076, Tübingen, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, James-Franck-Ring N27, 89081, Ulm, Germany.
| |
Collapse
|
38
|
Neller J, Dünkler A, Rösler R, Johnsson N. A protein complex containing Epo1p anchors the cortical endoplasmic reticulum to the yeast bud tip. ACTA ACUST UNITED AC 2014; 208:71-87. [PMID: 25547157 PMCID: PMC4284228 DOI: 10.1083/jcb.201407126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a component of the polarisome, Epo1p promotes cortical ER tethering at sites of polarized growth in budding yeast. The cortical endoplasmic reticulum (cER) of yeast underlies the plasma membrane (PM) at specific contact sites to enable a direct transfer of information and material between both organelles. During budding, directed movement of cER to the young bud followed by subsequent anchorage at its tip ensures the faithful inheritance of this organelle. The ER membrane protein Scs2p tethers the cER to the PM and to the bud tip through so far unknown receptors. We characterize Epo1p as a novel member of the polarisome that interacts with Scs2p exclusively at the cell tip during bud growth and show that Epo1p binds simultaneously to the Cdc42p guanosine triphosphatase–activating protein Bem3p. Deletion of EPO1 or deletion of BEM3 in a polarisome-deficient strain reduces the amount of cER at the tip. This analysis therefore identifies Epo1p as a novel and important component of the polarisome that promotes cER tethering at sites of polarized growth.
Collapse
Affiliation(s)
- Joachim Neller
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, D-89081 Ulm, Germany
| | - Alexander Dünkler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, D-89081 Ulm, Germany
| | - Reinhild Rösler
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, D-89081 Ulm, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, D-89081 Ulm, Germany
| |
Collapse
|
39
|
Ren L, Willet AH, Roberts-Galbraith RH, McDonald NA, Feoktistova A, Chen JS, Huang H, Guillen R, Boone C, Sidhu SS, Beckley JR, Gould KL. The Cdc15 and Imp2 SH3 domains cooperatively scaffold a network of proteins that redundantly ensure efficient cell division in fission yeast. Mol Biol Cell 2014; 26:256-69. [PMID: 25428987 PMCID: PMC4294673 DOI: 10.1091/mbc.e14-10-1451] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fission yeast F-BAR proteins Cdc15 and Imp2 and their combined SH3-domain partners appear to act as “molecular glue” to stabilize the interaction between the plasma membrane and a complex network of proteins at the division site that mediates cell division. Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in numerous biological processes, including cytokinesis, typically by bridging the plasma membrane via their F-BAR domains to the actin cytoskeleton. Two SH3 domain–containing PCH family members, Cdc15 and Imp2, play critical roles in S. pombe cytokinesis. Although both proteins localize to the contractile ring, with Cdc15 preceding Imp2, only cdc15 is an essential gene. Despite these distinct roles, the SH3 domains of Cdc15 and Imp2 cooperate in the essential process of recruiting other proteins to stabilize the contractile ring. To better understand the connectivity of this SH3 domain–based protein network at the CR and its function, we used a biochemical approach coupled to proteomics to identify additional proteins (Rgf3, Art1, Spa2, and Pos1) that are integrated into this network. Cell biological and genetic analyses of these SH3 partners implicate them in a range of activities that ensure the fidelity of cell division, including promoting cell wall metabolism and influencing cell morphogenesis.
Collapse
Affiliation(s)
- Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Haiming Huang
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Rodrigo Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Sachdev S Sidhu
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
40
|
Song Q, Johnson C, Wilson TE, Kumar A. Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth. PLoS Genet 2014; 10:e1004570. [PMID: 25144783 PMCID: PMC4140661 DOI: 10.1371/journal.pgen.1004570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
The pseudohyphal growth response is a dramatic morphological transition and presumed foraging mechanism wherein yeast cells form invasive and surface-spread multicellular filaments. Pseudohyphal growth has been studied extensively as a model of conserved signaling pathways controlling stress responses, cell morphogenesis, and fungal virulence in pathogenic fungi. The genetic contribution to pseudohyphal growth is extensive, with at least 500 genes required for filamentation; as such, pseudohyphal growth is a complex trait, and linkage analysis is a classical means to dissect the genetic basis of a complex phenotype. Here, we implemented linkage analysis by crossing each of two filamentous strains of Saccharomyces cerevisiae (Σ1278b and SK1) with an S288C-derived non-filamentous strain. We then assayed meiotic progeny for filamentation and mapped allelic linkage in pooled segregants by whole-genome sequencing. This analysis identified linkage in a cohort of genes, including the negative regulator SFL1, which we find contains a premature stop codon in the invasive SK1 background. The S288C allele of the polarity gene PEA2, encoding Leu409 rather than Met, is linked with non-invasion. In Σ1278b, the pea2-M409L mutation results in decreased invasive filamentation and elongation, diminished activity of a Kss1p MAPK pathway reporter, decreased unipolar budding, and diminished binding of the polarisome protein Spa2p. Variation between SK1 and S288C in the mitochondrial inner membrane protein Mdm32p at residues 182 and 262 impacts invasive growth and mitochondrial network structure. Collectively, this work identifies new determinants of pseudohyphal growth, while highlighting the coevolution of protein complexes and organelle structures within a given genome in specifying complex phenotypes.
Collapse
Affiliation(s)
- Qingxuan Song
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cole Johnson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas E. Wilson
- Departments of Pathology and Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
A spindle pole antigen gene MoSPA2 is important for polar cell growth of vegetative hyphae and conidia, but is dispensable for pathogenicity in Magnaporthe oryzae. Curr Genet 2014; 60:255-63. [DOI: 10.1007/s00294-014-0431-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
42
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
43
|
Mishra M, Huang J, Balasubramanian MK. The yeast actin cytoskeleton. FEMS Microbiol Rev 2014; 38:213-27. [PMID: 24467403 DOI: 10.1111/1574-6976.12064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Mithilesh Mishra
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | |
Collapse
|
44
|
Stephenson KS, Gow NAR, Davidson FA, Gadd GM. Regulation of vectorial supply of vesicles to the hyphal tip determines thigmotropism in Neurospora crassa. Fungal Biol 2014; 118:287-94. [PMID: 24607352 DOI: 10.1016/j.funbio.2013.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 01/03/2023]
Abstract
Thigmotropism is the ability of an organism to respond to a topographical stimulus by altering its axis of growth. The thigmotropic response of the model fungus Neurospora crassa was quantified using microfabricated glass slides with ridges of defined height. We show that the polarity machinery at the hyphal tip plays a role in the thigmotropic response of N. crassa. Deletion of N. crassa genes encoding the formin, BNI-1, and the Rho-GTPase, CDC-42, an activator of BNI-1 in yeast, CDC-24, its guanine nucleotide exchange factor (GEF), and BEM-1, a scaffold protein in the same pathway, were all shown to significantly decrease the thigmotropic response. In contrast, deletion of genes encoding the cell end-marker protein, TEA-1, and KIP-1, the kinesin responsible for the localisation of TEA-1, significantly increased the thigmotropic response. These results suggest a mechanism of thigmotropism involving vesicle delivery to the hyphal tip via the actin cytoskeleton and microtubules. Neurospora crassa thigmotropic response differed subtly from that of Candida albicans where the stretch-activated calcium channel, Mid1, has been linked with thigmotropic behaviour. The MID-1 deficient mutant of N. crassa (Δmid-1) and the effects of calcium depletion were examined here but no change in the thigmotropic response was observed. However, SPRAY, a putative calcium channel protein, was shown to be required for N. crassa thigmotropism. We propose that the thigmotropic response is a result of changes in the polarity machinery at the hyphal tip which are thought to be downstream effects of calcium signalling pathways triggered by mechanical stress at the tip.
Collapse
Affiliation(s)
- Karen S Stephenson
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, United Kingdom
| | - Neil A R Gow
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical, Sciences, University of Aberdeen, Aberdeen, AB25 2ZD Scotland, United Kingdom
| | - Fordyce A Davidson
- Division of Mathematics, University of Dundee, Dundee, DD14HN Scotland, United Kingdom
| | - Geoffrey M Gadd
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, United Kingdom.
| |
Collapse
|
45
|
Moreno D, Neller J, Kestler HA, Kraus J, Dünkler A, Johnsson N. A fluorescent reporter for mapping cellular protein-protein interactions in time and space. Mol Syst Biol 2013; 9:647. [PMID: 23511205 PMCID: PMC3619943 DOI: 10.1038/msb.2013.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/28/2013] [Indexed: 11/24/2022] Open
Abstract
A method based on a combination of the Split-Ubiquitin system with two spectrally different fluorescent proteins (SPLIFF) is shown to enable measurement of protein interactions in vivo with high spatial and temporal resolution in yeast. ![]()
SPLIFF visualizes protein interactions with high spatial and temporal resolution. Spc72p and Kar9p interact with the MAP Stu2p at opposite poles of microtubules. Histone chaperone Nap1p and Kcc4 kinase interact preferentially at the bud site. F-BAR protein Hof1p associates with the polarisome during cell fusion and cytokinesis.
We introduce a fluorescent reporter for monitoring protein–protein interactions in living cells. The method is based on the Split-Ubiquitin method and uses the ratio of two auto-fluorescent reporter proteins as signal for interaction (SPLIFF). The mating of two haploid yeast cells initiates the analysis and the interactions are followed online by two-channel time-lapse microscopy of the diploid cells during their first cell cycle. Using this approach we could with high spatio-temporal resolution visualize the differences between the interactions of the microtubule binding protein Stu2p with two of its binding partners, monitor the transient association of a Ran-GTPase with its receptors at the nuclear pore, and distinguish between protein interactions at the polar cortical domain at different phases of polar growth. These examples further demonstrate that protein–protein interactions identified from large-scale screens can be effectively followed up by high-resolution single-cell analysis.
Collapse
Affiliation(s)
- Daniel Moreno
- Department of Biology, Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Li X, Ferro-Novick S, Novick P. Different polarisome components play distinct roles in Slt2p-regulated cortical ER inheritance in Saccharomyces cerevisiae. Mol Biol Cell 2013; 24:3145-54. [PMID: 23924898 PMCID: PMC3784387 DOI: 10.1091/mbc.e13-05-0268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Slt2p kinase activity controls cortical ER inheritance by regulating the association of the ER with the actin-based cytoskeleton. The polarisome complex affects ER inheritance through its effects on Slt2p, with different components playing distinct roles: some are required for Slt2p retention at the bud tip, whereas others affect Slt2p activation. Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644 Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0644
| | | | | |
Collapse
|
47
|
Prosser DC, Wendland B. Conserved roles for yeast Rho1 and mammalian RhoA GTPases in clathrin-independent endocytosis. Small GTPases 2013; 3:229-35. [PMID: 23238351 PMCID: PMC3520887 DOI: 10.4161/sgtp.21631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells use numerous endocytic pathways for nutrient uptake, protein turnover and response to the extracellular environment. While clathrin-mediated endocytosis (CME) has been extensively studied in yeast and mammalian cells, recent studies in higher eukaryotes have described multiple clathrin-independent endocytic pathways that depend upon Rho family GTPases and their effector proteins. In contrast, yeast cells have been thought to rely solely on CME. In a recent study, we used CME-defective yeast cells lacking clathrin-binding endocytic adaptor proteins in a genetic screen to identify novel factors involved in endocytosis. This approach revealed the existence of a clathrin-independent endocytic pathway involving the GTPase Rho1, which is the yeast homolog of RhoA. Further characterization of the yeast Rho1-mediated endocytic pathway suggested that the Rho1 pathway requires additional proteins that appear to play conserved roles in RhoA-dependent, clathrin-independent endocytic pathways in mammalian cells. Here, we discuss the parallels between the yeast Rho1-dependent and mammalian RhoA-dependent endocytic pathways, as well as the applications of yeast as a model for studying clathrin-independent endocytosis in higher eukaryotes.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Biology, The John Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
48
|
Schneider C, Grois J, Renz C, Gronemeyer T, Johnsson N. Septin rings act as template for myosin higher-order structures and inhibit redundant polarity establishment. J Cell Sci 2013; 126:3390-400. [DOI: 10.1242/jcs.125302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of the coordinated assembly and disassembly of the septin/myosin ring is central for the understanding of polar growth and cytokinesis in yeast and other organisms. The septin- and myosin-binding protein Bni5p provides a dual function during the formation and disassembly of septin/myosin rings. Early in the cell cycle Bni5p captures Myo1p at the incipient bud site and actively transforms it into higher-order structures. Additionally, Bni5p stabilizes the septin/myosin ring and is released from the septins shortly before the onset of cytokinesis. Once this Bni5p-dissociation from the septins is artificially prevented, ring disassembly is impaired and the untimely appearance of septin/myosin ring is induced. The prematurely formed septin/myosin rings delay the establishment of a new polarity axis and the progression into a new cell cycle. This observation suggests a negative feedback between septin/myosin ring formation and polarity establishment that might help to guarantee the singular assembly of this structure and the synchronization of its formation with the cell cycle.
Collapse
|
49
|
Abstract
BACKGROUND Many cells are remarkably proficient at tracking very shallow chemical gradients, despite considerable noise from stochastic receptor-ligand interactions. Motile cells appear to undergo a biased random walk: spatial noise in receptor activity may determine the instantaneous direction, but because noise is spatially unbiased, it is filtered out by time averaging, resulting in net movement upgradient. How nonmotile cells might filter out noise is unknown. RESULTS Using yeast chemotropic mating as a model, we demonstrate that a polarized patch of polarity regulators "wanders" along the cortex during gradient tracking. Computational and experimental findings suggest that actin-directed membrane traffic contributes to wandering by diluting local polarity factors. The pheromone gradient appears to bias wandering via interactions between receptor-activated Gβγ and polarity regulators. Artificially blocking patch wandering impairs gradient tracking. CONCLUSIONS We suggest that the polarity patch undergoes an intracellular biased random walk that enables noise filtering by time averaging, allowing nonmotile cells to track shallow gradients.
Collapse
|
50
|
Potenza L, Saltarelli R, Polidori E, Ceccaroli P, Amicucci A, Zeppa S, Zambonelli A, Stocchi V. Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields on Tuber borchii mycelium. Can J Microbiol 2012; 58:1174-82. [DOI: 10.1139/w2012-093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work aimed to investigate whether exposure to static magnetic field (SMF) and extremely low frequency magnetic field (ELF-MF) can induce biomolecular changes on Tuber borchii hyphal growth. Tuber borchii mycelium was exposed for 1 h for 3 consecutive days to a SMF of 300 mT or an ELF-MF of 0.1 mT 50 Hz. Gene expression and biochemical analyses were performed. In mycelia exposed to ELF-MF, some genes involved in hyphal growth, investigated using quantitative real-time polymerase chain reaction, were upregulated, and the activity of many glycolytic enzymes was increased. On the contrary, no differences were observed in gene expression after exposure to SMF treatment, and only the activities of glucose 6-phosphate dehydrogenase and hexokinase increased. The data herein presented suggest that the electromagnetic field can act as an environmental factor in promoting hyphal growth and can be used for applicative purposes, such as the set up of new in vitro cultivation techniques.
Collapse
Affiliation(s)
- Lucia Potenza
- Department of Biomolecular Science, Universiy of Urbino “Carlo Bo,” Via A. Saffi 2, 61029 Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Science, Universiy of Urbino “Carlo Bo,” Via A. Saffi 2, 61029 Urbino, Italy
| | - Emanuela Polidori
- Department of Biomolecular Science, Universiy of Urbino “Carlo Bo,” Via A. Saffi 2, 61029 Urbino, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Science, Universiy of Urbino “Carlo Bo,” Via A. Saffi 2, 61029 Urbino, Italy
| | - Antonella Amicucci
- Department of Biomolecular Science, Universiy of Urbino “Carlo Bo,” Via A. Saffi 2, 61029 Urbino, Italy
| | - Sabrina Zeppa
- Department of Biomolecular Science, Universiy of Urbino “Carlo Bo,” Via A. Saffi 2, 61029 Urbino, Italy
| | - Alessandra Zambonelli
- Department of Agri-food Protection and Improvement, University of Bologna, 40127 Bologna, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Science, Universiy of Urbino “Carlo Bo,” Via A. Saffi 2, 61029 Urbino, Italy
| |
Collapse
|