1
|
Anton-Plagaro C, Sanchez N, Valle R, Mulet JM, Duncan MC, Roncero C. Exomer complex regulates protein traffic at the TGN through differential interactions with cargos and clathrin adaptor complexes. FASEB J 2021; 35:e21615. [PMID: 33978245 DOI: 10.1096/fj.202002610r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Protein sorting at the trans-Golgi network (TGN) usually requires the assistance of cargo adaptors. However, it remains to be examined how the same complex can mediate both the export and retention of different proteins or how sorting complexes interact among themselves. In Saccharomyces cerevisiae, the exomer complex is involved in the polarized transport of some proteins from the TGN to the plasma membrane (PM). Intriguingly, exomer and its cargos also show a sort of functional relationship with TGN clathrin adaptors that is still unsolved. Here, using a wide range of techniques, including time-lapse and BIFC microscopy, we describe new molecular implications of the exomer complex in protein sorting and address its different layers of functional interaction with clathrin adaptor complexes. Exomer mutants show impaired amino acid uptake because it facilitates not only the polarized delivery of amino acid permeases to the PM but also participates in their endosomal traffic. We propose a model for exomer where it modulates the recruitment of TGN clathrin adaptors directly or indirectly through the Arf1 function. Moreover, we describe an in vivo competitive relationship between the exomer and AP-1 complexes for the model cargo Chs3. These results highlight a broad role for exomer in regulating protein sorting at the TGN that is complementary to its role as cargo adaptor and present a model to understand the complexity of TGN protein sorting.
Collapse
Affiliation(s)
- Carlos Anton-Plagaro
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Noelia Sanchez
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Rosario Valle
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Jose Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Mara C Duncan
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, USA
| | - Cesar Roncero
- Instituto de Biología Funcional y Genómica (IBFG) and Departamento de Microbiología y Genética, CSIC-Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Jamalzadeh S, Pujari AN, Cullen PJ. A Rab escort protein regulates the MAPK pathway that controls filamentous growth in yeast. Sci Rep 2020; 10:22184. [PMID: 33335117 PMCID: PMC7746766 DOI: 10.1038/s41598-020-78470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
MAPK pathways regulate different responses yet can share common components. Although core regulators of MAPK pathways are well known, new pathway regulators continue to be identified. Overexpression screens can uncover new roles for genes in biological processes and are well suited to identify essential genes that cannot be evaluated by gene deletion analysis. In this study, a genome-wide screen was performed to identify genes that, when overexpressed, induce a reporter (FUS1-HIS3) that responds to ERK-type pathways (Mating and filamentous growth or fMAPK) but not p38-type pathways (HOG) in yeast. Approximately 4500 plasmids overexpressing individual yeast genes were introduced into strains containing the reporter by high-throughput transformation. Candidate genes were identified by measuring growth as a readout of reporter activity. Fourteen genes were identified and validated by re-testing: two were metabolic controls (HIS3, ATR1), five had established roles in regulating ERK-type pathways (STE4, STE7, BMH1, BMH2, MIG2) and seven represent potentially new regulators of MAPK signaling (RRN6, CIN5, MRS6, KAR2, TFA1, RSC3, RGT2). MRS6 encodes a Rab escort protein and effector of the TOR pathway that plays a role in nutrient signaling. MRS6 overexpression stimulated invasive growth and phosphorylation of the ERK-type fMAPK, Kss1. Overexpression of MRS6 reduced the osmotolerance of cells and phosphorylation of the p38/HOG MAPK, Hog1. Mrs6 interacted with the PAK kinase Ste20 and MAPKK Ste7 by two-hybrid analysis. Based on these results, Mrs6 may selectively propagate an ERK-dependent signal. Identifying new regulators of MAPK pathways may provide new insights into signal integration among core cellular processes and the execution of pathway-specific responses.
Collapse
Affiliation(s)
- Sheida Jamalzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA.
| |
Collapse
|
3
|
Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:1-35. [PMID: 30911887 DOI: 10.1007/978-3-030-13035-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.
Collapse
|
4
|
Gene dosage effects in yeast support broader roles for the LOG1, HAM1 and DUT1 genes in detoxification of nucleotide analogues. PLoS One 2018; 13:e0196840. [PMID: 29738539 PMCID: PMC5940212 DOI: 10.1371/journal.pone.0196840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
Purine and pyrimidine analogues have important uses in chemotherapies against cancer, and a better understanding of the mechanisms that cause resistance to these drugs is therefore of importance in cancer treatment. In the yeast Saccharomyces cerevisiae, overexpression of the HAM1 gene encoding inosine triphosphate pyrophosphatase confers resistance to both the purine analogue 6-N-hydroxylaminopurine (HAP) and the pyrimidine analogue 5-fluorouracil (5-FU) (Carlsson et al., 2013, PLoS One 8, e52094). To find out more about the mechanisms of resistance to nucleotide analogues, and possible interdependencies between purine and pyrimidine analogue resistance mechanisms, we screened a plasmid library in yeast for genes that confer HAP resistance when overexpressed. We cloned four such genes: ADE4, DUT1, APT2, and ATR1. We further looked for genetic interactions between these genes and genes previously found to confer resistance to 5-FU. We found that HMS1, LOG1 (YJL055W), HAM1, and ATR1 confer resistance to both 5-FU and HAP, whereas ADE4, DUT1 and APT2 are specific for HAP resistance, and CPA1 and CPA2 specific for 5-FU resistance. Possible mechanisms for 5-FU and HAP detoxification are discussed based on the observed genetic interactions. Based on the effect of LOG1 against both 5-FU and HAP toxicity, we propose that the original function of the LOG (LONELY GUY) family of proteins likely was to degrade non-canonical nucleotides, and that their role in cytokinin production is a later development in some organisms.
Collapse
|
5
|
Zhang J, Khan A, Kennard A, Grigg ME, Parkinson J. PopNet: A Markov Clustering Approach to Study Population Genetic Structure. Mol Biol Evol 2017; 34:1799-1811. [PMID: 28383661 PMCID: PMC5850731 DOI: 10.1093/molbev/msx110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With the advent of low cost, high-throughput genome sequencing technology, population genomic data sets are being generated for hundreds of species of pathogenic, industrial, and agricultural importance. The challenge is how best to analyze and visually display these complex data sets to yield intuitive representations capable of capturing complex evolutionary relationships. Here we present PopNet, a novel computational method that identifies regions of shared ancestry in the chromosomes of related strains through clustering patterns of genetic variation. These relationships are subsequently visualized within a network by a novel implementation of chromosome painting. We apply PopNet to three diverse populations that feature differential rates of recombination and demonstrate its ability to capture evolutionary relationships as well as associate traits to specific loci. Compared with existing tools, PopNet provides substantial advances by both removing the need to predefine a single reference genome that can bias interpretation of population structure, as well as its ability to visualize multiple evolutionary relationships, such as recombination events and shared ancestry, across hundreds of strains.
Collapse
Affiliation(s)
- Javi Zhang
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Asis Khan
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD
| | - Andrea Kennard
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Departments of Computer Science and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Lee JN, Kim SG, Lim JY, Dutta RK, Kim SJ, Choe SK, So HS, Park R. 3-Aminotriazole protects from CoCl2-induced ototoxicity by inhibiting the generation of reactive oxygen species and proinflammatory cytokines in mice. Arch Toxicol 2015; 90:781-91. [DOI: 10.1007/s00204-015-1506-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
|
7
|
Nicholson JM, Cimini D. Link between aneuploidy and chromosome instability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:299-317. [PMID: 25708466 DOI: 10.1016/bs.ircmb.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aneuploidy is widely acknowledged as a leading cause of miscarriage and birth defects in humans, and is generally known to be deleterious to the survival of individual cells. However, aneuploidy is also ubiquitous in cancer and is found to arise as an adaptive response in certain contexts. This dichotomy of aneuploidy has attracted the interest of researchers for over a century, but many studies have reached conflicting conclusions. The emergence of new technology has allowed scientists to revisit the aneuploidy problem and has fueled a number of recent studies aimed at understanding the effects of aneuploidy on cell physiology. Here, we review these studies, in light of previous observations and knowledge, specifically focusing on the effects of aneuploidy on cellular homeostasis, chromosome stability, and adaptation.
Collapse
Affiliation(s)
- Joshua M Nicholson
- Department of Biological Sciences and Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| | - Daniela Cimini
- Department of Biological Sciences and Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Loss of APD1 in yeast confers hydroxyurea sensitivity suppressed by Yap1p transcription factor. Sci Rep 2015; 5:7897. [PMID: 25600293 PMCID: PMC4298746 DOI: 10.1038/srep07897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023] Open
Abstract
Ferredoxins are iron-sulfur proteins that play important roles in electron transport and redox homeostasis. Yeast Apd1p is a novel member of the family of thioredoxin-like ferredoxins. In this study, we characterized the hydroxyurea (HU)-hypersensitive phenotype of apd1Δ cells. HU is an inhibitor of DNA synthesis, a cellular stressor and an anticancer agent. Although the loss of APD1 did not influence cell proliferation or cell cycle progression, it resulted in HU sensitivity. This sensitivity was reverted in the presence of antioxidant N-acetyl-cysteine, implicating a role for intracellular redox. Mutation of the iron-binding motifs in Apd1p abrogated its ability to rescue HU sensitivity in apd1Δ cells. The iron-binding activity of Apd1p was verified by a color assay. By mass spectrometry two irons were found to be incorporated into one Apd1p protein molecule. Surprisingly, ribonucleotide reductase genes were not induced in apd1Δ cells and the HU sensitivity was unaffected when dNTP production was boosted. A suppressor screen was performed and the expression of stress-regulated transcription factor Yap1p was found to effectively rescue the HU sensitivity in apd1Δ cells. Taken together, our work identified Apd1p as a new ferredoxin which serves critical roles in cellular defense against HU.
Collapse
|
9
|
Tanak H. Crystal structure of 4-[benzylideneamino]-3-thiophen-2-yl-methyl-4,5-dihydro-1H-[1,2,4]triazole-5-one. CRYSTALLOGR REP+ 2013. [DOI: 10.1134/s1063774513080087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Fehrmann S, Bottin-Duplus H, Leonidou A, Mollereau E, Barthelaix A, Wei W, Steinmetz LM, Yvert G. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability. Mol Syst Biol 2013; 9:695. [PMID: 24104478 PMCID: PMC3817403 DOI: 10.1038/msb.2013.53] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 09/06/2013] [Indexed: 01/29/2023] Open
Abstract
DNA polymorphisms that change cell-to-cell variability in gene expression are identified in a screen for ‘Probabilistic Trait Loci' in yeast. By modifying transmembrane transporter genes, these natural variants modulate intraclonal phenotypic diversification. ![]()
We mapped genetic loci affecting cell–cell variability in gene expression. One variant enhanced both expression of a transporter and variability in a metabolic pathway. A sequence change in another transporter also increased pathway variability. The study invites to apprehend complex traits from a nondeterministic angle.
Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent Pmet17-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced Pmet17-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation.
Collapse
Affiliation(s)
- Steffen Fehrmann
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
12
|
Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible Lignocellulose derived inhibitors. Int J Mol Sci 2012; 13:11881-11894. [PMID: 23109889 PMCID: PMC3472781 DOI: 10.3390/ijms130911881] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/24/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022] Open
Abstract
The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.
Collapse
|
13
|
Drobna E, Gazdag Z, Culakova H, Dzugasova V, Gbelska Y, Pesti M, Subik J. Overexpression of theYAP1,PDE2, andSTB3genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine. FEMS Yeast Res 2012; 12:958-68. [DOI: 10.1111/j.1567-1364.2012.00845.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/23/2012] [Accepted: 08/16/2012] [Indexed: 02/04/2023] Open
Affiliation(s)
- Eva Drobna
- Department of Microbiology and Virology, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovak Republic
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences; University of Pécs; Pécs; Hungary
| | - Hana Culakova
- Department of Microbiology and Virology, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovak Republic
| | - Vladimira Dzugasova
- Department of Genetics, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovak Republic
| | - Yvetta Gbelska
- Department of Microbiology and Virology, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovak Republic
| | - Miklos Pesti
- Department of General and Environmental Microbiology, Faculty of Sciences; University of Pécs; Pécs; Hungary
| | - Julius Subik
- Department of Genetics, Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava; Slovak Republic
| |
Collapse
|
14
|
Kubo I, Lee SH, Shimizu K. Combination Effect of Miconazole with Polygodial against <i>Candida albicans</i>. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ojmm.2011.11002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Teixeira MC, Cabrito TR, Hanif ZM, Vargas RC, Tenreiro S, Sá-Correia I. Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4. MICROBIOLOGY-SGM 2010; 157:945-956. [PMID: 21148207 DOI: 10.1099/mic.0.043661-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast QDR3 gene encodes a plasma membrane drug : H(+) antiporter of the DHA1 family that was described as conferring resistance against the drugs quinidine, cisplatin and bleomycin and the herbicide barban, similar to its close homologue QDR2. In this work, a new physiological role for Qdr3 in polyamine homeostasis is proposed. QDR3 is shown to confer resistance to the polyamines spermine and spermidine, but, unlike Qdr2, also a determinant of resistance to polyamines, Qdr3 has no apparent role in K(+) homeostasis. QDR3 transcription is upregulated in yeast cells exposed to spermine or spermidine dependent on the transcription factors Gcn4, which controls amino acid homeostasis, and Yap1, the main regulator of oxidative stress response. Yap1 was found to be a major determinant of polyamine stress resistance in yeast and is accumulated in the nucleus of yeast cells exposed to spermidine-induced stress. QDR3 transcript levels were also found to increase under nitrogen or amino acid limitation; this regulation is also dependent on Gcn4. Consistent with the concept that Qdr3 plays a role in polyamine homeostasis, QDR3 expression was found to decrease the intracellular accumulation of [(3)H]spermidine, playing a role in the maintenance of the plasma membrane potential in spermidine-stressed cells.
Collapse
Affiliation(s)
- Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Tânia R Cabrito
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Zaitunnissa M Hanif
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Rita C Vargas
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Sandra Tenreiro
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Isabel Sá-Correia
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
16
|
Kouidhi B, Ben Gaied M, Mhadhebi L, Bakhrouf A, Bouraoui A. Les pompes à efflux en mycologie médicale : mécanismes moléculaires et perspectives thérapeutiques. J Mycol Med 2010. [DOI: 10.1016/j.mycmed.2010.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Wang YG, Huang GB, Zhu BC. 1-[4-(Difluoro-meth-oxy)phen-yl]-N-(3,4-dimeth-oxy-phen-yl)-1H-1,2,4-triazole-3-carboxamide. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2267-8. [PMID: 21588626 PMCID: PMC3007844 DOI: 10.1107/s1600536810029661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/26/2010] [Indexed: 11/23/2022]
Abstract
Two crystallographically independent molecules, A and B, with similar conformations are present in the asymmetric unit of the title compound, C18H16F2N4O4. In molecule A, the plane of the 1,2,4-triazole ring is tilted relative of the 4-difluoromethoxy-substituted and the 3,4-dimethoxy-substituted benzene rings by 6.5 (2) and 16.4 (1)°, respectively. The –CHF2 group is twisted away from the plane of the benzene ring, with a dihedral angle between the O—C bond of the OCHF2 group and the plane of the adjacent phenyl ring of 38.6 (3)°. The corresponding parameters for molecule B are 7.7 (1), 9.5 (2) and 25.2 (2)°. In both molecules, the conformations are stabilized by intramolecular N—H⋯N and C—H⋯O hydrogen bonds. There are also C—H⋯π contacts between the methyl groups and the benzene rings, and π–π stacking interactions between the benzene rings of adjacent parallel A molecules [centroid–centroid distance = 3.8942 (17) Å]. π–π interactions are also observed between the triazole ring and one of the benzene rings of parallel B molecules [centroid–centroid distance = 3.7055 (16) Å].
Collapse
|
18
|
Abstract
Multiresistance plasmids and transposons, the integrons, the co-amplification of several resistance genes or finally the accumulation of independent mutations can lead to microorganisms resistant to multiple drugs. On the other hand multidrug resistance is due to an efflux pump conferring resistance to unrelated drugs. These microbial efflux pumps are belonging to various transporter families and are often encoded in microbial genomes. There is mounting evidence that these efflux systems are responsible for clinical multidrug resistance in bacteria, yeasts and parasites.
Collapse
Affiliation(s)
- M Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL, Québec, Canada
| | | |
Collapse
|
19
|
Alriksson B, Horváth IS, Jönsson LJ. Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.09.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Identification of Saccharomyces cerevisiae Genes Involved in the Resistance to Phenolic Fermentation Inhibitors. Appl Biochem Biotechnol 2009; 161:106-15. [DOI: 10.1007/s12010-009-8811-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
|
21
|
Wang YG, Huang GB, Zhu BC. 1-[4-(Difluoromethoxy)phenyl]- N-(2,3-dimethylphenyl)-1 H-1,2,4-triazole-3-carboxamide. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o1015-6. [PMID: 21583838 PMCID: PMC2977702 DOI: 10.1107/s160053680901263x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/03/2009] [Indexed: 11/17/2022]
Abstract
In the molecule of the title compound, C18H16F2N4O2, the 1,2,4-triazole ring forms dihedral angles of 3.6 (2) and 14.9 (6)° with the 4-difluoromethoxy-substituted benzene ring and the 2,3-dimethyl-substituted benzene ring, respectively. The OCHF2 group is twisted away from the plane of the benzene ring, as shown by the C—O—C—C torsion angle of 145.8 (2)°. The conformation is stabilized by an intermolecular N—H⋯N hydrogen bond. In the crystal, short C—H⋯O interactions lead to chains of molecules.
Collapse
|
22
|
Kuo MH, Xu XJ, Bolck HA, Guo D. Functional connection between histone acetyltransferase Gcn5p and methyltransferase Hmt1p. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:395-402. [PMID: 19358899 DOI: 10.1016/j.bbagrm.2009.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/10/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Histone acetylation and methylation are linked to a variety of nuclear activities, most notably transcriptional regulation. Both synergistic and antagonistic relationships between these two modifications have been reported in different systems. Here we show that the budding yeast histone H4 arginine 3 (R3) methyltransferase Hmt1p binds acetylated histones H3 and H4, and importantly, that acetylated H4 is a significantly better methylation substrate for Hmt1p. Kinetic studies show that acetylation at any of the four acetylatable lysine residues of histone H4 results in more efficient methylation. Among the four, K8 acetylation imposes the strongest effect on reducing K(M), consistent with the observed acetylation-stimulated interaction. In vivo, hmt1Delta cells rescue the transcriptional defect caused by GCN5 deletion, indicating that one of the functions of Gcn5p is to neutralize the negative effect of Hmt1p. Mutating either K8 or R3 to alanine causes similar growth defects in selective histone and gcn5 mutant background, suggesting that these two residues function in the same pathway for optimal vegetative growth. Together, these results reveal a functional connection between histone acetylation, methylation, and two of the responsible enzymes, Gcn5p and Hmt1p.
Collapse
Affiliation(s)
- Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Programs in Cell and Molecular Biology and in Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
23
|
Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol 2008; 17:22-31. [PMID: 19062291 DOI: 10.1016/j.tim.2008.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/03/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
The emergence of widespread multidrug resistance (MDR) is a serious challenge for therapeutics, food-preservation and crop protection. Frequently, MDR is a result of the action of drug-efflux pumps, which are able to catalyze the extrusion of unrelated chemical compounds. This review summarizes the current knowledge on the Saccharomyces cerevisiae drug:H+ antiporters of the major facilitator superfamily (MFS), a group of MDR transporters that is still characterized poorly in eukaryotes. Particular focus is given here to the physiological role and expression regulation of these transporters, while we provide a unified view of new data emerging from functional genomics approaches. Although traditionally described as drug pumps, evidence reviewed here corroborates the hypothesis that several MFS-MDR transporters might have a natural substrate and that drug transport might occur only fortuitously or opportunistically. Their role in MDR might even result from the transport of endogenous metabolites that affect the partition of cytotoxic compounds indirectly. Finally, the extrapolation of the gathered knowledge on the MDR phenomenon in yeast to pathogenic fungi and higher eukaryotes is discussed.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
24
|
Gaur M, Puri N, Manoharlal R, Rai V, Mukhopadhayay G, Choudhury D, Prasad R. MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics 2008; 9:579. [PMID: 19055746 PMCID: PMC2636803 DOI: 10.1186/1471-2164-9-579] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major facilitator superfamily (MFS) is one of the two largest superfamilies of membrane transporters present ubiquitously in bacteria, archaea, and eukarya and includes members that function as uniporters, symporters or antiporters. We report here the complete transportome of MFS proteins of a human pathogenic yeast Candida albicans. RESULTS Computational analysis of C. albicans genome enabled us to identify 95 potential MFS proteins which clustered into 17 families using Saier's Transport Commission (TC) system. Among these SP, DHA1, DHA2 and ACS represented major families consisting of 22, 22, 9 and 16 members, respectively. Family designations in C. albicans were validated by subjecting Saccharomyces cerevisiae genome to TC system. Based on the published available genomics/proteomics data, 87 of the putative MFS genes of C. albicans were found to express either at mRNA or protein levels. We checked the expression of the remaining 8 genes by using RT-PCR and observed that they are not expressed under basal growth conditions implying that either these 8 genes are expressed under specific growth conditions or they may be candidates for pseudogenes. CONCLUSION The in silico characterisation of MFS transporters in Candida albicans genome revealed a large complement of MFS transporters with most of them showing expression. Considering the clinical relevance of C. albicans and role of MFS members in antifungal resistance and nutrient transport, this analysis would pave way for identifying their physiological relevance.
Collapse
Affiliation(s)
- Manisha Gaur
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bayliak M, Gospodaryov D, Semchyshyn H, Lushchak V. Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells. BIOCHEMISTRY (MOSCOW) 2008; 73:420-6. [PMID: 18457571 DOI: 10.1134/s0006297908040068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers' yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed.
Collapse
Affiliation(s)
- M Bayliak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76025, Ukraine
| | | | | | | |
Collapse
|
26
|
Zareef M, Iqbal R, Arfan M, Parvez M. 2-[4-Benzyl-5-(2-fur-yl)-4H-1,2,4-triazol-3-ylsulfan-yl]acetamide. Acta Crystallogr Sect E Struct Rep Online 2008; 64:o1259. [PMID: 21202893 PMCID: PMC2961744 DOI: 10.1107/s1600536808017170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/07/2008] [Indexed: 11/12/2022]
Abstract
In the title compound, C15H14N4O2S, the phenyl ring is inclined at 70.25 (6)° with respect to the approximately planar furyl–triazolsulfanyl–acetamide unit. In the crystal structure, molecules related by inversion centers form dimers via intermolecular N—H⋯O hydrogen bonds between acetamide groups, resulting in eight-membered rings with an R22(8) motif. In addition, the other H atom of the acetamide group is involved in an intermolecular hydrogen bond with an N atom of the triazole ring, resulting in chains extended along the c axis. The overall effect is the formation of a hydrogen-bonded two-dimensional framework perpendicular to the a axis.
Collapse
|
27
|
Zareef M, Arfan M, Iqbal R, Parvez M. 4-Ethyl-3-(3-pyridyl)-1 H-1,2,4-triazole-5(4 H)-thione 0.095-hydrate. Acta Crystallogr Sect E Struct Rep Online 2008; 64:o945. [PMID: 21202426 PMCID: PMC2961273 DOI: 10.1107/s1600536808011744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 04/23/2008] [Indexed: 11/26/2022]
Abstract
The title compound, C9H10N4S·0.095H2O, consists of discrete 4-ethyl-3-(3-pyridyl)-1H-1,2,4-triazole-5(4H)-thione molecules and a disordered molecule of water of hydration with partial occupancy, lying on a twofold rotation axis. The dihedral angle between the pyridine and triazole rings is 41.73 (8)°. In the crystal structure, molecules are hydrogen bonded via triazole NH groups and pyridyl N atoms, forming chains parallel to the a axis.
Collapse
|
28
|
Zareef M, Iqbal R, Parvez M. 4-Benzyl-3-(2-fur-yl)-1H-1,2,4-triazole-5(4H)-thione hemihydrate. Acta Crystallogr Sect E Struct Rep Online 2008; 64:o952-3. [PMID: 21202686 PMCID: PMC2961370 DOI: 10.1107/s1600536808012361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 04/28/2008] [Indexed: 11/10/2022]
Abstract
In the asymmetric unit of the title compound, C(13)H(11)N(3)OS·0.5H(2)O, there are two independent mol-ecules of 4-benzyl-3-(2-fur-yl)-1H-1,2,4-triazole-5(4H)-thione and a water mol-ecule of hydration. The conformation of the two organic mol-ecules is slightly different, the dihedral angles formed by the furyl and triazole rings being 5.63 (15) and 17.66 (13)°. The water mol-ecule of hydration links three adjacent triazole mol-ecules to form a cluster via inter-molecular O-H⋯S, N-H⋯S and N-H⋯O hydrogen bonds, generating a 10-membered ring of graph set R(3) (3)(10). The crystal structure is further stabilized by intra- and inter-molecular C-H⋯S, C-H⋯O and C-H⋯N hydrogen bonds and by π-π stacking inter-actions involving the furyl and triazole rings of centrosymmetrically related mol-ecules, with a centroid-centroid separation of 3.470 (2) Å.
Collapse
|
29
|
Allouch F, Zouari F, Chabchoub F, Salem M. 5-Amino-3-methyl-1-phenyl-1H-1,2,4-triazole. Acta Crystallogr Sect E Struct Rep Online 2008; 64:o684. [PMID: 21202076 PMCID: PMC2961023 DOI: 10.1107/s1600536808005801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 03/01/2008] [Indexed: 11/30/2022]
Abstract
In the title compound, C9H10N4, the phenyl and triazole rings make a dihedral angle of 38.80 (2)°. N—H⋯N hydrogen bonds link the molecules, forming centrosymmetric R22(8) rings; these rings are interconnected through a C(5) chain, building up a zigzag layer parallel to the (100) plane.
Collapse
|
30
|
Marchi E, Lodi T, Donnini C. KNQ1, a Kluyveromyces lactis gene encoding a transmembrane protein, may be involved in iron homeostasis. FEMS Yeast Res 2007; 7:715-21. [PMID: 17428309 DOI: 10.1111/j.1567-1364.2007.00235.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The original purpose of the experiments described in this article was to identify, in the biotechnologically important yeast Kluyveromyces lactis, gene(s) that are potentially involved in oxidative protein folding within the endoplasmic reticulum (ER), which often represents a bottleneck for heterologous protein production. Because treatment with the membrane-permeable reducing agent dithiothreitol inhibits disulfide bond formation and mimics the reducing effect that the normal transit of folding proteins has in the ER environment, the strategy was to search for genes that conferred higher levels of resistance to dithiothreitol when present in multiple copies. We identified a gene (KNQ1) encoding a drug efflux permease for several toxic compounds that in multiple copies conferred increased dithiothreitol resistance. However, the KNQ1 product is not involved in the excretion of dithiothreitol or in recombinant protein secretion. We generated a knq1 null mutant, and showed that both overexpression and deletion of the KNQ1 gene resulted in increased resistance to dithiothreitol. KNQ1 amplification and deletion resulted in enhanced transcription of iron transport genes, suggesting, for the membrane-associated protein Knq1p, a new, unexpected role in iron homeostasis on which dithiothreitol tolerance may depend.
Collapse
Affiliation(s)
- Emmanuela Marchi
- Dipartimento di Genetica, Biologia dei Microrganismi, Antropologia, Evoluzione, University of Parma, Parma, Italy
| | | | | |
Collapse
|
31
|
Viau C, Pungartnik C, Schmitt MC, Basso TS, Henriques JAP, Brendel M. Sensitivity to Sn2+ of the yeast Saccharomyces cerevisiae depends on general energy metabolism, metal transport, anti-oxidative defences, and DNA repair. Biometals 2006; 19:705-14. [PMID: 16691319 DOI: 10.1007/s10534-006-9007-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 03/18/2006] [Indexed: 10/24/2022]
Abstract
Resistance to stannous chloride (SnCl(2)) of the yeast Saccharomyces cerevisiae is a product of several metabolic pathways of this unicellular eukaryote. Sensitivity testing of different null mutants of yeast to SnCl(2) revealed that DNA repair contributes to resistance, mainly via recombinational (Rad52p) and error-prone (Rev3p) steps. Independently, the membrane transporter Atr1p/Snq1p (facilitated transport) contributed significantly to Sn(2+)-resistance whereas absence of ABC export permease Snq2p did not enhance sensitivity. Sensitivity of the superoxide dismutase mutants sod1 and sod2 revealed the importance of these anti-oxidative defence enzymes against Sn(2+)-imposed DNA damage while a catalase-deficient mutant (ctt1) showed wild type (WT) resistance. Lack of transcription factor Yap1, responsible for the oxidative stress response in yeast, led to 3-fold increase in Sn(2+)-sensitivity. While loss of mitochondrial DNA did not change the Sn(2+)-resistance phenotype in any yeast strain, cells with defect cytochrome c oxidase (CcO mutants) showed gradually enhanced sensitivities to Sn(2+) and different spontaneous mutation rates. Highest sensitivity to Sn(2+) was observed when yeast was in exponential growth phase under glucose repression. During diauxic shift (release from glucose repression) Sn(2+)-resistance increased several hundred-fold and fully respiring and resting cells were sensitive only at more than 1000-fold exposure dose, i.e. they survived better at 25 mM than exponentially growing cells at 25 microM Sn(2+). This phenomenon was observed not only in WT but also in already Sn(2+)-sensitive rad52 as well as in sod1, sod2 and CcO mutant strains. The impact of metabolic steps in contribution to Sn(2+)-resistance had the following ranking: Resting WT cells > membrane transporter Snq1p > superoxide dismutases > transcription factor Yap1p >or= DNA repair >> exponentially growing WT cells.
Collapse
Affiliation(s)
- C Viau
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
32
|
Gbelska Y, Krijger JJ, Breunig KD. Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res 2006; 6:345-55. [PMID: 16630275 DOI: 10.1111/j.1567-1364.2006.00058.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The available genomic sequences of five closely related hemiascomycetous yeast species (Kluyveromyces lactis, Kluyveromyces waltii, Candida glabrata, Ashbya (Eremothecium) gossypii with Saccharomyces cerevisiae as a reference) were analysed to identify multidrug resistance (MDR) transport proteins belonging to the ATP-binding cassette (ABC) and major facilitator superfamilies (MFS), respectively. The phylogenetic trees clearly demonstrate that a similar set of gene (sub)families already existed in the common ancestor of all five fungal species studied. However, striking differences exist between the two superfamilies with respect to the evolution of the various subfamilies. Within the ABC superfamily all six half-size transporters with six transmembrane-spanning domains (TMs) and most full-size transporters with 12 TMs have one and only one gene per genome. An exception is the PDR family, in which gene duplications and deletions have occurred independently in individual genomes. Among the MFS transporters, the DHA2 family (TC 2.A.1.3) is more variable between species than the DHA1 family (TC 2.A.1.2). Conserved gene order relationships allow to trace the evolution of most (sub)families, for which the Kluyveromyces lactis genome can serve as an optimal scaffold. Cross-species sequence alignment of orthologous upstream gene sequences led to the identification of conserved sequence motifs ("phylogenetic footprints"). Almost half of them match known sequence motifs for the MDR regulators described in S. cerevisiae. The biological significance of those and of the novel predicted motifs awaits to be confirmed experimentally.
Collapse
Affiliation(s)
- Yvetta Gbelska
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | | | | |
Collapse
|
33
|
Srikanth CV, Chakraborti AK, Bachhawat AK. Acetaminophen toxicity and resistance in the yeast Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2005; 151:99-111. [PMID: 15632430 DOI: 10.1099/mic.0.27374-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetaminophen (paracetamol), one of the most widely used analgesics, is toxic under conditions of overdose or in certain disease conditions, but the mechanism of acetaminophen toxicity is still not entirely understood. To obtain fresh insights into acetaminophen toxicity, this phenomenon was investigated in yeast. Acetaminophen was found to be toxic to yeast cells, with erg mutants displaying hypersensitivity. Yeast cells grown in the presence of acetaminophen were found to accumulate intracellular acetaminophen, but no metabolic products of acetaminophen could be detected in these extracts. The toxicity response did not lead to an oxidative stress response, although it did involve Yap1p. The cytochrome P450 enzymes of yeast, Erg5p and Erg11p, did not appear to participate in this process, unlike the mammalian systems. Furthermore, we could not establish a central role for glutathione depletion or the cellular glutathione redox status in acetaminophen toxicity, suggesting differences from mammalian systems in the pathways causing toxicity. Investigations of the resistance mechanisms revealed that deletion of the glutathione-conjugate pumps Ycf1p (a target of Yap1p) and Bpt1p, surprisingly, led to acetaminophen resistance, while overexpression of the multidrug resistance pumps Snq2p and Flr1p (also targets of Yap1p) led to acetaminophen resistance. The Yap1p-dependent resistance to acetaminophen required a functional Pdr1p or Pdr3p protein, but not a functional Yrr1p. In contrast, resistance mediated by Pdr1p/Pdr3p did not require a functional Yap1p, and revealed a distinct hierarchy in the resistance to acetaminophen.
Collapse
Affiliation(s)
- Chittur V Srikanth
- Institute of Microbial Technology, Sector 39-A, Chandigarh - 160 036, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 002, India
| | - Anand K Bachhawat
- Institute of Microbial Technology, Sector 39-A, Chandigarh - 160 036, India
| |
Collapse
|
34
|
Moye-Rowley WS. Transcriptional control of multidrug resistance in the yeast Saccharomyces. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:251-79. [PMID: 12882520 DOI: 10.1016/s0079-6603(03)01008-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major problem in chemotherapeutic treatment of many pathological conditions including cancer and fungal infections is the development of a multidrug-resistant state in the target cell. Saccharomyces cerevisiae cells can be isolated that have single genetic alterations that cause the resulting mutant strains to become tolerant of a wide range of compounds that would otherwise be toxic. These mutant cells are referred to as having a pleiotropic drug-resistant (Pdr) phenotype. Studies of these Pdr cells have demonstrated that mutations either within genes encoding transcriptional regulators or in their regulatory inputs lead to overexpression of downstream transporter proteins with associated multidrug resistance. This review is aimed at providing a framework for understanding the networks modulating expression of PDR genes in S. cerevisiae.
Collapse
Affiliation(s)
- W Scott Moye-Rowley
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
35
|
Sengupta M, Datta A. Two membrane proteins located in the Nag regulon of Candida albicans confer multidrug resistance. Biochem Biophys Res Commun 2003; 301:1099-108. [PMID: 12589826 DOI: 10.1016/s0006-291x(03)00094-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pathogenic fungus Candida albicans can efficiently utilize the aminosugar N-acetylglucosamine (GlcNAc) as energy source. Since the mucosal membrane, the site of infection is rich in amino sugars, this specific adaptation is important for the establishment of infection. The genes encoding for the enzymes of the GlcNAc catabolic pathway, GlcNAc kinase (HXK1), GlcNAc-6-phosphate deacetylase (DAC1), and glucosamine-6-phosphate deaminase (NAG1), are present in a cluster, the Nag regulon, which is associated with virulence. In this study, we have characterized two genes, TMP1 and TMP2, present within the Nag regulon, upstream to DAC1. They encode two membrane associated sugar transporters of the major facilitator superfamily (MFS). The null mutant of TMP1 and TMP2 is able to grow in GlcNAc, implying that they are not involved in GlcNAc transport. However, it shows increased susceptibility to a number of unrelated antifungal compounds such as cycloheximide, 4-nitroquinoline-N-oxide, and 1-10 phenanthroline. Northern blot analysis revealed that TMP1 and TMP2 are upregulated in response to these drugs, suggesting that they function as multiple drug efflux pumps.
Collapse
Affiliation(s)
- Manjistha Sengupta
- Department of Molecular Biology, School of Life Sciences, Jawaharlal Nehru University, 110 067, New Delhi, India
| | | |
Collapse
|
36
|
Abstract
In view of the increasing threat posed by fungal infections in immunocompromised patients and due to the non-availability of effective treatments, it has become imperative to find novel antifungals and vigorously search for new drug targets. Fungal pathogens acquire resistance to drugs (antifungals), a well-established phenomenon termed multidrug resistance (MDR), which hampers effective treatment strategies. The MDR phenomenon is spread throughout the evolutionary scale. Accordingly, a host of responsible genes have been identified in the genetically tractable budding yeast Saccharomyces cerevisiae, as well as in a pathogenic yeast Candida albicans. Studies so far suggest that, while antifungal resistance is the culmination of multiple factors, there may be a unifying mechanism of drug resistance in these pathogens. ABC (ATP binding cassette) and MFS (major facilitator superfamily) drug transporters belonging to two different superfamilies, are the most prominent contributors to MDR in yeasts. Considering the abundance of the drug transporters and their wider specificity, it is believed that these drug transporters may not exclusively export drugs in fungi. It has become apparent that the drug transporters of the ABC superfamily of S. cerevisiae and C. albicans are multifunctional proteins, which mediate important physiological functions. This review summarizes current research on the molecular mechanisms underlying drug resistance, the emerging regulatory circuits of MDR genes, and the physiological relevance of drug transporters.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | |
Collapse
|
37
|
Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 2002; 111:369-79. [PMID: 12419247 DOI: 10.1016/s0092-8674(02)01005-x] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The functions of the SAGA and SWI/SNF complexes are interrelated and can form stable "epigenetic marks" on promoters in vivo. Here we show that stable promoter occupancy by SWI/SNF and SAGA in the absence of transcription activators requires the bromodomains of the Swi2/Snf2 and Gcn5 subunits, respectively, and nucleosome acetylation. This acetylation can be brought about by either the SAGA or NuA4 HAT complexes. The bromodomain in the Spt7 subunit of SAGA is dispensable for this activity but will anchor SAGA if it is swapped into Gcn5, indicating that specificity of bromodomain function is determined in part by the subunit it occupies. Thus, bromodomains within the catalytic subunits of SAGA and SWI/SNF anchor these complexes to acetylated promoter nucleosomes.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 306 Althouse Laboratory, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Sá-Correia I, Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 2002; 98:215-26. [PMID: 12141988 DOI: 10.1016/s0168-1656(02)00133-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The emergence of multidrug resistance (MDR) plays a crucial role in the failure of treatments of tumors and infectious diseases and in the control of plant pathogens, weeds and food-poisoning and food-spoilage microorganisms. Among the mechanisms underlying the MDR phenomenon in various organisms is the action of transmembrane transport proteins that presumably catalyse the active expulsion of structurally and functionally unrelated cytotoxic compounds out of the cell or their intracellular partitioning. On the basis of the complete genome sequence of Saccharomyces cerevisiae, numerous established and putative multidrug transporters were identified in this non-pathogenic, easy to manipulate eukaryotic model system. In yeast, the putative drug:H(+)-antiporters belong to the major facilitator superfamily; they comprise at least 23 proteins that have largely escaped characterisation by classical approaches. Other MDR determinants are membrane transporters belonging to the ATP binding cassette (ABC) superfamily, that utilize the energy of ATP hydrolysis for activity, and factors for transcriptional regulation of all the MDR transporters. This work reviews the current status of knowledge on the poorly characterized H(+)-antiporters, with 12 and 14 predicted spans, DHA12 and DHA14, drug efflux families. Consideration is given to the inventory and phylogenetic characterization, role as MDR determinants, regulation of gene expression, subcellular localisation and activity as solute transporters. Most of the present knowledge on these putative drug:H(+)-antiporters was driven by disclosure of S. cerevisiae genome sequence, in April 1996, being a paradigm of post-genomic research.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | |
Collapse
|
39
|
Abstract
The yeast membrane transporters play crucial roles in functions as diverse as nutrient uptake, drug resistance, salt tolerance, control of cell volume, efflux of undesirable metabolites and sensing of extracellular nutrients. A significant fraction of the many transporters inventoried after sequencing of the yeast genome has been characterised by classical experimental approaches. Post-genomic analysis has allowed a more extensive characterisation of transporter categories less tractable by genetics, for instance of transporters of intracellular membranes or transporters encoded by multigene families and displaying overlapping substrate specificities. A complete view of the role of membrane transporters in the metabolism of yeast may not be far off.
Collapse
Affiliation(s)
- D Van Belle
- Unité de Bioinformatique, Université Libre de Bruxelles CP300, Institut de Biologie et de Médecine Moléculaires, rue des Pr. Jeener et Brachet 10, 6041, Gosselies, Belgium.
| | | |
Collapse
|
40
|
de Bruijn DR, dos Santos NR, Thijssen J, Balemans M, Debernardi S, Linder B, Young BD, Geurts van Kessel A. The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene 2001; 20:3281-9. [PMID: 11423977 DOI: 10.1038/sj.onc.1204419] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2000] [Revised: 02/22/2001] [Accepted: 02/26/2001] [Indexed: 11/08/2022]
Abstract
As a result of the synovial sarcoma associated t(X;18) translocation, the human SYT gene on chromosome 18 is fused to either the SSX1 or the SSX2 gene on the X chromosome. Although preliminary evidence indicates that the (fusion) proteins encoded by these genes may play a role in transcriptional regulation, little is known about their exact function. We set out to isolate interacting proteins through yeast two hybrid screening of a human cDNA library using SYT as a bait. Of the positive clones isolated, two were found to correspond to the acute leukemia t(10;11) associated AF10 gene, a fusion partner of MLL. Confirmation of these results was obtained via co-immunoprecipitation of endogenous and exogenous, epitope-tagged, SYT and AF10 proteins from cell line extracts and colocalization of epitope-tagged SYT and AF10 proteins in transfected cells. Subsequent sequential mutation analysis revealed a highly specific interaction of N-terminal SYT fragments with C-terminal AF10 fragments. The N-terminal interaction domain of the SYT protein was also found to be present in several SYT orthologs and homologs. The C-terminal interaction domain of AF10 is located outside known functional domains. Based on these results, a model is proposed in which the SYT and AF10 proteins act in concert as bipartite transcription factors. This model has implications for the molecular mechanisms underlying the development of both human synovial sarcomas and acute leukemias.
Collapse
Affiliation(s)
- D R de Bruijn
- Department of Human Genetics, University Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Horecka J, Sprague GF. Use of imidazoleglycerolphosphate dehydratase (His3) as a biological reporter in yeast. Methods Enzymol 2001; 326:107-19. [PMID: 11036637 DOI: 10.1016/s0076-6879(00)26049-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Horecka
- Department of Molecular Biology, NIBH, Ibaraki, Japan
| | | |
Collapse
|
42
|
Tenreiro S, Rosa PC, Viegas CA, Sá-Correia I. Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 2000; 16:1469-81. [PMID: 11113970 DOI: 10.1002/1097-0061(200012)16:16<1469::aid-yea640>3.0.co;2-a] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this work, we report results on the functional analysis of Saccharomyces cerevisiae ORF YGR224w, predicted to code for an integral membrane protein, with 14 potential transmembrane segments, belonging to the major facilitator superfamily (MFS) of transporters which are required for multiple-drug resistance (MDR). This MFS-MDR homologue is required for yeast adaptation to high stress imposed by low-chain organic acids, in particular by acetic acid, and for resistance to azoles, especially to ketoconazole and fluconazole; the encoding gene was thus named the AZR1 gene. These conclusions were based on the higher susceptibility to these compounds of an azr1Delta deletion mutant strain compared with the wild-type and on the increased resistance of both azr1Delta and wild-type strains upon increased expression of the AZR1 gene from a centromeric plasmid clone. AZR1 gene expression reduces the duration of acetic acid-induced latency, although the growth kinetics of adapted cells under acetic acid stress is apparently independent of AZR1 expression level. Fluorescence microscopy observation of the distribution of the Azr1-GFP fusion protein in yeast living cells indicated that Azr1 is a plasma membrane protein. Studies carried out to gain some understanding of how this plasma membrane putative transporter facilitates yeast adaptation to acetic acid did not implicate Azr1p in the alteration of acetic acid accumulation into the cell through the active efflux of acetate.
Collapse
Affiliation(s)
- S Tenreiro
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
43
|
Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2743-2754. [PMID: 11065353 DOI: 10.1099/00221287-146-11-2743] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azole resistance in Candida albicans can be mediated by several resistance mechanisms. Among these, alterations of the azole target enzyme and the overexpression of multidrug efflux transporter genes are the most frequent. To identify additional putative azole resistance genes in C. albicans, a genomic library from this organism was screened for complementation of fluconazole hypersusceptibility in Saccharomyces cerevisiae YKKB-13 lacking the ABC (ATP-binding cassette) transporter gene PDR5. Among the C. albicans genes obtained, a new gene was isolated and named FLU1 (fluconazole resistance). The deduced amino acid sequence of FLU1 showed similarity to CaMDR1 (formerly BEN(r)), a member of the major facilitator superfamily of multidrug efflux transporters. The expression of FLU1 in YKKB-13 mediated not only resistance to fluconazole but also to cycloheximide among the different drugs tested. The disruption of FLU1 in C. albicans had only a slight effect on fluconazole susceptibility; however, it resulted in hypersusceptibility to mycophenolic acid, thus suggesting that this compound could be a substrate for the protein encoded by FLU1. Disruption of FLU1 in a background of C. albicans mutants with deletions in several multidrug efflux transporter genes, including CDR1, CDR2 and CaMDR1, resulted in enhanced susceptibility to several azole derivatives. FLU1 expression did not vary significantly between several pairs of azole-susceptible and azole-resistant C. albicans clinical isolates. Therefore, FLU1 seems not to be required for the development of azole resistance in clinical isolates.
Collapse
Affiliation(s)
- David Calabrese
- Institut de Microbiologie, Centre Hospitalier Universitaire Vaudois (CHUV), Rue de Bugnon, CH-1011 Lausanne, Switzerland1
| | - Jacques Bille
- Institut de Microbiologie, Centre Hospitalier Universitaire Vaudois (CHUV), Rue de Bugnon, CH-1011 Lausanne, Switzerland1
| | - Dominique Sanglard
- Institut de Microbiologie, Centre Hospitalier Universitaire Vaudois (CHUV), Rue de Bugnon, CH-1011 Lausanne, Switzerland1
| |
Collapse
|
44
|
Abstract
This review focuses on the molecular mechanisms involved in the regulation of multiple drug resistance in the model yeast Saccharomyces cerevisiae and the pathogenic fungus Candida albicans. Recent developments in the study of the transcription factors Pdr1p, Pdr3p and Yap1p are reported. Understanding the molecular basis leading to multiple drug resistance is a prerequisite for the development of new antifungal therapeutics. Copyright 1999 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Anna Kolaczkowska
- Unite de Biochimie Physiologique, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
45
|
Zimmermann S, Baumann A, Jaekel K, Marbach I, Engelberg D, Frohnmeyer H. UV-responsive genes of arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J Biol Chem 1999; 274:17017-24. [PMID: 10358052 DOI: 10.1074/jbc.274.24.17017] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A UV response that involves the Ras proteins and AP-1 transcription factors has recently been described in mammals and yeast. To test whether an equivalent response exists in plants, we monitored the expression of Arabidopsis histidinol dehydrogenase gene (HDH), a homologue of the yeast HIS4 gene, which is strongly induced by UV light and is a target of the transcriptional activator Gcn4. We show that HDH mRNA levels increase specifically in response to UV-B light. Only small increases were detected upon exposure to other wavelengths. To isolate plant genes involved in this UV response, a gcn4 mutant was transfected with an Arabidopsis thaliana cDNA library. A new type of nucleotide diphosphate kinase (NDPK Ia) with a significant homology to the human tumor suppressor protein Nm23 rescued the gcn4 phenotype. NDPK Ia specifically binds to the HIS4 promoter in vitro and induces HIS4 transcription in yeast. In Arabidopsis, the NDPK Ia protein is located in the nucleus and cytosol. Expression studies in seedlings revealed that the level of NDPK Ia mRNA, like that of HDH, increases in response to UV-B light. It appears that NDPK Ia and HDH are components of a novel UV-responsive pathway in A. thaliana.
Collapse
Affiliation(s)
- S Zimmermann
- Institut für Biologie II/Botanik, Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Gromadka R, Gora M, Zielenkiewicz U, Slonimski PP, Rytka J. Subtelomeric duplications in Saccharomyces cerevisiae chromosomes III and XI: Topology, arrangements, corrections of sequence and strain-specific polymorphism. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199605)12:6<583::aid-yea936>3.0.co;2-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
ZIEGELBAUER KARL. A dual labelling method for measuring uptake of low molecular weight compounds into the pathogenic yeast Candida albicans. Med Mycol 1998. [DOI: 10.1046/j.1365-280x.1998.00167.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Abstract
In this study, we report the further characterization of the Saccharomyces cerevisiae crystal violet-resistance protein Sge1. Sge1 is a highly hydrophobic 59 kDa protein with 14 predicted membrane-spanning domains. It shares homologies with several drug-resistance proteins and sugar transporters of the major facilitator superfamily. Here, we have demonstrated that Sge1 is not only a crystal violet-resistance protein, but that it also confers resistance to ethidium bromide and methylmethane sulfonate. Disruption of SGE1 leads to increased sensitivity towards all three compounds, thus designating Sge1 as a multiple drug-resistance protein. Subcellular fractionation as well as immunolocalization on whole yeast cells demonstrated that Sge1 was tightly associated with the yeast plasma membrane. Furthermore, Sge1 was highly enriched in preparations of yeast plasma membranes. In analogy to other multidrug-resistance proteins, we suggest that Sge1 functions as a drug export permease.
Collapse
|
49
|
Ziegelbauer K. A dual labelling method for measuring uptake of low molecular weight compounds into the pathogenic yeastCandida albicans. Med Mycol 1998. [DOI: 10.1080/02681219880000501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
50
|
Kolaczkowski M, Goffeau A. Active efflux by multidrug transporters as one of the strategies to evade chemotherapy and novel practical implications of yeast pleiotropic drug resistance. Pharmacol Ther 1997; 76:219-42. [PMID: 9535181 DOI: 10.1016/s0163-7258(97)00094-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mankind is faced by the increasing emergence of resistant pathogens, including cancer cells. An overview of the different strategies adopted by a variety of cells to evade chemotherapy is presented, with a focus on the mechanisms of multidrug transport. In particular, we analyze the yeast network for pleiotropic drug resistance and assess the potentiality of this system for further understanding of the mechanism of broad specificity and for development of novel practical applications.
Collapse
Affiliation(s)
- M Kolaczkowski
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain La Neuve, Belgium
| | | |
Collapse
|