1
|
Chen J, Su S, Pickar-Oliver A, Chiarella A, Hahn Q, Goldfarb D, Cloer E, Small G, Sivashankar S, Ramsden D, Major M, Hathaway N, Gersbach C, Liu P. Engineered Cas9 variants bypass Keap1-mediated degradation in human cells and enhance epigenome editing efficiency. Nucleic Acids Res 2024; 52:11536-11551. [PMID: 39228373 PMCID: PMC11514467 DOI: 10.1093/nar/gkae761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
As a potent and convenient genome-editing tool, Cas9 has been widely used in biomedical research and evaluated in treating human diseases. Numerous engineered variants of Cas9, dCas9 and other related prokaryotic endonucleases have been identified. However, as these bacterial enzymes are not naturally present in mammalian cells, whether and how bacterial Cas9 proteins are recognized and regulated by mammalian hosts remain poorly understood. Here, we identify Keap1 as a mammalian endogenous E3 ligase that targets Cas9/dCas9/Fanzor for ubiquitination and degradation in an 'ETGE'-like degron-dependent manner. Cas9-'ETGE'-like degron mutants evading Keap1 recognition display enhanced gene editing ability in cells. dCas9-'ETGE'-like degron mutants exert extended protein half-life and protein retention on chromatin, leading to improved CRISPRa and CRISPRi efficacy. Moreover, Cas9 binding to Keap1 also impairs Keap1 function by competing with Keap1 substrates or binding partners for Keap1 binding, while engineered Cas9 mutants show less perturbation of Keap1 biology. Thus, our study reveals a mammalian specific Cas9 regulation and provides new Cas9 designs not only with enhanced gene regulatory capacity but also with minimal effects on disrupting endogenous Keap1 signaling.
Collapse
Affiliation(s)
- Jianfeng Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Anna M Chiarella
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Quentin Hahn
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University, St. Louis, MO 63110, USA
| | - Erica W Cloer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Center for Pharmacogenomics and Individualized Therapy, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Smaran Sivashankar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Nathaniel A Hathaway
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27710, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Irfan M, Majeed H, Iftikhar T, Ravi PK. A review on molecular scissoring with CRISPR/Cas9 genome editing technology. Toxicol Res (Camb) 2024; 13:tfae105. [PMID: 39006883 PMCID: PMC11240166 DOI: 10.1093/toxres/tfae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Genome editing is a technology to make specific changes in the DNA of a cell or an organism. It has significantly altered the landscape of life sciences, facilitating the establishment of exceedingly customized genetic modifications. Among various genome editing technologies, the CRISPR/Cas9 system, a specific endonuclease induces a double stranded DNA break and enabling modifications to the genome, has surfaced as a formidable and adaptable instrument. Its significance cannot be overstated, as it not only allows for the manipulation of genomes in model organisms but also holds great potential for revolutionary advances in medicine, particularly in treating genetic diseases. This review paper explores the remarkable journey of CRISPR/Cas9, its natural function, mechanisms, and transformative impact on genome editing and finally the use of artificial intelligence and other intelligent manufacturing tools used. The introduction provides the background on genome editing, emphasizing the emergence and significance of CRISPR/Cas9. Subsequent sections comprehensively elucidate its natural function, disease modeling, agriculture, and biotechnology, address therapeutic applications, and ongoing clinical trials while also discussing prospects and ethical implications. We summarized the key findings, indicating that CRISPR/Cas9 has empowered the creation of disease-specific animal models. This provides invaluable insights into pathogenic mechanisms and opens new avenues for drug discovery, reaffirming the transformative impact of CRISPR/Cas9 on genome editing. Finally we discussed the importance of continued research and collaboration for comprehensive utilization of the inherent capabilities of this molecular precision tool in shaping forthcoming advancements.
Collapse
Affiliation(s)
- Muskan Irfan
- Department of Biotechnology, University of Management and Technology (UMT), Lahore, Sialkot Campus, Sialkot 51310, Pakistan
| | - Hammad Majeed
- Department of Chemistry, University of Management and Technology (UMT), Lahore, Sialkot Campus, Sialkot 51310, Pakistan
| | - Tehreema Iftikhar
- Applied Botany Lab, Department of Botany, Government College University, 54000, Lahore, Pakistan
| | - Pritam Kumar Ravi
- Computer Applications Department, Ganesh Lal Agarwal College, Nilamber-Pitamber University, Jharkhand, 822101, India
| |
Collapse
|
3
|
Smith DJ, Lunj S, Adamson AD, Nagarajan S, Smith TAD, Reeves KJ, Hoskin PJ, Choudhury A. CRISPR-Cas9 potential for identifying novel therapeutic targets in muscle-invasive bladder cancer. Nat Rev Urol 2024:10.1038/s41585-024-00901-y. [PMID: 38951705 DOI: 10.1038/s41585-024-00901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/03/2024]
Abstract
Gene editing technologies help identify the genetic perturbations driving tumour initiation, growth, metastasis and resistance to therapeutics. This wealth of information highlights tumour complexity and is driving cancer research towards precision medicine approaches based on an individual's tumour genetics. Bladder cancer is the 11th most common cancer in the UK, with high rates of relapse and low survival rates in patients with muscle-invasive bladder cancer (MIBC). MIBC is highly heterogeneous and encompasses multiple molecular subtypes, each with different responses to therapeutics. This evidence highlights the need to identify innovative therapeutic targets to address the challenges posed by this heterogeneity. CRISPR-Cas9 technologies have been used to advance our understanding of MIBC and determine novel drug targets through the identification of drug resistance mechanisms, targetable cell-cycle regulators, and novel tumour suppressor and oncogenes. However, the use of these technologies in the clinic remains a substantial challenge and will require careful consideration of dosage, safety and ethics. CRISPR-Cas9 offers considerable potential for revolutionizing bladder cancer therapies, but substantial research is required for validation before these technologies can be used in the clinical setting.
Collapse
Affiliation(s)
- Danielle J Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health Research and Innovation, University of Manchester, Manchester, UK
| | - Sankari Nagarajan
- Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Tim A D Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Nuclear Futures Institute, Bangor University, Bangor, UK
| | | | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
4
|
Yun Y, Wang M, Guo S, Xie X. Topoisomerase Inhibitors and PIM1 Kinase Inhibitors Improve Gene Editing Efficiency Mediated by CRISPR-Cas9 and Homology-Directed Repair. Molecules 2024; 29:2890. [PMID: 38930955 PMCID: PMC11206257 DOI: 10.3390/molecules29122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The CRISPR-Cas9 system has emerged as the most prevalent gene editing technology due to its simplicity, high efficiency, and low cost. However, the homology-directed repair (HDR)-mediated gene knock-in in this system suffers from low efficiency, which limits its application in animal model preparation, gene therapy, and agricultural genetic improvement. Here, we report the design and optimization of a simple and efficient reporter-based assay to visualize and quantify HDR efficiency. Through random screening of a small molecule compound library, two groups of compounds, including the topoisomerase inhibitors and PIM1 kinase inhibitors, have been identified to promote HDR. Two representative compounds, etoposide and quercetagetin, also significantly enhance the efficiency of CRISPR-Cas9 and HDR-mediated gene knock-in in mouse embryos. Our study not only provides an assay to screen compounds that may facilitate HDR but also identifies useful tool compounds to facilitate the construction of genetically modified animal models with the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Min Wang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (M.W.); (S.G.)
| | - Shimeng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (M.W.); (S.G.)
| | - Xin Xie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (M.W.); (S.G.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
5
|
Yao J, Chen Y, Huang Y, Sun X, Shi X. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Hum Cell 2024; 37:607-624. [PMID: 38498133 DOI: 10.1007/s13577-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuqing Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Madhan S, Dhar R, Devi A. Plant-derived exosomes: a green approach for cancer drug delivery. J Mater Chem B 2024; 12:2236-2252. [PMID: 38351750 DOI: 10.1039/d3tb02752j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Plant-derived exosomes (PDEs) are natural extracellular vesicles (EVs). In the current decade, they have been highlighted for cancer therapeutic development. Cancer is a global health crisis and it requires an effective, affordable, and less side effect-based treatment. Emerging research based on PDEs suggests that they have immense potential to be considered as a therapeutic option. Research evidences indicate that PDEs' internal molecular cargos show impressive cancer prevention activity with less toxicity. PDEs-based drug delivery systems overcome several limitations of traditional drug delivery tools. Extraction of PDEs from plant sources employ diverse methodologies, encompassing ultracentrifugation, immunoaffinity, size-based isolation, and precipitation, each with distinct advantages and limitations. The core constituents of PDEs comprise of lipids, proteins, DNA, and RNA. Worldwide, a few clinical trials on plant-derived exosomes are underway, and regulatory affairs for their use as therapeutic agents are still not understood with clarity. This review aims to comprehensively analyze the current state of research on plant-derived exosomes as a promising avenue for drug delivery, highlighting anticancer activity, challenges, and future orientation in effective cancer therapeutic development.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| |
Collapse
|
7
|
Bhushan B, Singh K, Kumar S, Bhardwaj A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr Gene Ther 2024; 25:34-45. [PMID: 38738727 DOI: 10.2174/0115665232292246240426125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anjali Bhardwaj
- Department of Pharmaceutics, Durga College of Pharmacy, Sambhal, Uttar Pradesh, India
| |
Collapse
|
8
|
Rotte A. Development of Cell and Gene Therapies for Clinical Use in the US and EU: Summary of Regulatory Guidelines. Curr Gene Ther 2024; 25:10-21. [PMID: 38676481 DOI: 10.2174/0115665232306205240419091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Recent decades have seen advancements in the management and treatment of difficultto- treat diseases such as cancer. A special class of therapeutics called cell and gene therapy has been introduced in the past 10 years. Cell and gene therapy products have strengthened the treatment options for life-threatening diseases with unmet clinical needs and also provided the possibility of a potential cure for the disease in some of the patients. Cell and gene therapy products are gaining recognition, and the interest in clinical development of cell and gene therapy products is increasing. Moreover, as the class of cell and gene therapy products is relatively new, there is a limited regulatory experience in the development, and the developers of the cell and gene therapy products can often be puzzled with an array of questions on regulations. The current review intends to provide a basic understanding of regulatory guidelines from the FDA and EMA that are applicable to cell and gene therapy products. Essentials such as which office is responsible for the evaluation of applications, which regulatory class/pathway is appropriate for development, and what are the quality, nonclinical and clinical studies that are needed to support the application are discussed in the article. In addition, a summary of regulatory designations and the post-approval requirements, such as Risk Evaluation and Mitigation Strategies (REMS) and long-term follow- up, is included in the article. Developers (referred to as 'sponsors' in this article) of cell and gene therapies can use the respective guidance documents and other specific review articles cited in this review for detailed information on the topics.
Collapse
Affiliation(s)
- Anand Rotte
- Clinical and Regulatory Affairs, Arcellx Inc, Redwood City, California, CA, USA
| |
Collapse
|
9
|
Ge N, Liu M, Li R, Allen NM, Galvin J, Shen S, O'Brien T, Prendiville TW. Using Ribonucleoprotein-based CRISPR/Cas9 to Edit Single Nucleotide on Human Induced Pluripotent Stem Cells to Model Type 3 Long QT Syndrome (SCN5A ±). Stem Cell Rev Rep 2023; 19:2774-2789. [PMID: 37653182 PMCID: PMC10661835 DOI: 10.1007/s12015-023-10602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been widely used in cardiac disease modelling, drug discovery, and regenerative medicine as they can be differentiated into patient-specific cardiomyocytes. Long QT syndrome type 3 (LQT3) is one of the more malignant congenital long QT syndrome (LQTS) variants with an SCN5A gain-of-function effect on the gated sodium channel. Moreover, the predominant pathogenic variants in LQTS genes are single nucleotide substitutions (missense) and small insertion/deletions (INDEL). CRISPR/Cas9 genome editing has been utilised to create isogenic hiPSCs to control for an identical genetic background and to isolate the pathogenicity of a single nucleotide change. In this study, we described an optimized and rapid protocol to introduce a heterozygous LQT3-specific variant into healthy control hiPSCs using ribonucleoprotein (RNP) and single-stranded oligonucleotide (ssODN). Based on this protocol, we successfully screened hiPSCs carrying a heterozygous LQT3 pathogenic variant (SCN5A±) with high efficiency (6 out of 69) and confirmed no off-target effect, normal karyotype, high alkaline phosphatase activity, unaffected pluripotency, and in vitro embryonic body formation capacity within 2 weeks. In addition, we also provide protocols to robustly differentiate hiPSCs into cardiomyocytes and evaluate the electrophysiological characteristics using Multi-electrode Array. This protocol is also applicable to introduce and/or correct other disease-specific variants into hiPSCs for future pharmacological screening and gene therapeutic development.
Collapse
Affiliation(s)
- Ning Ge
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Min Liu
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Rui Li
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Nicholas M Allen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- Department of Paediatrics, University of Galway, Galway, Ireland
| | - Joseph Galvin
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
| | - Terence W Prendiville
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland.
- National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin 12, Ireland.
| |
Collapse
|
10
|
Zhang YR, Yin TL, Zhou LQ. CRISPR/Cas9 technology: applications in oocytes and early embryos. J Transl Med 2023; 21:746. [PMID: 37875936 PMCID: PMC10594749 DOI: 10.1186/s12967-023-04610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
CRISPR/Cas9, a highly versatile genome-editing tool, has garnered significant attention in recent years. Despite the unique characteristics of oocytes and early embryos compared to other cell types, this technology has been increasing used in mammalian reproduction. In this comprehensive review, we elucidate the fundamental principles of CRISPR/Cas9-related methodologies and explore their wide-ranging applications in deciphering molecular intricacies during oocyte and early embryo development as well as in addressing associated diseases. However, it is imperative to acknowledge the limitations inherent to these technologies, including the potential for off-target effects, as well as the ethical concerns surrounding the manipulation of human embryos. Thus, a judicious and thoughtful approach is warranted. Regardless of these challenges, CRISPR/Cas9 technology undeniably represents a formidable tool for genome and epigenome manipulation within oocytes and early embryos. Continuous refinements in this field are poised to fortify its future prospects and applications.
Collapse
Affiliation(s)
- Yi-Ran Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Wu DD, Salah YA, Ngowi EE, Zhang YX, Khattak S, Khan NH, Wang Y, Li T, Guo ZH, Wang YM, Ji XY. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 2023; 26:107321. [PMID: 37554468 PMCID: PMC10405259 DOI: 10.1016/j.isci.2023.107321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases are one of the most pressing issues in modern times worldwide. It thus possesses explicit attention from researchers and medical health providers to guard public health against such an expanding threat. Various treatment modalities have been developed in a remarkably short time but, unfortunately, have yet to lead to the wished-for efficacy or the sought-after clinical improvement. The main hurdle in delivering therapeutics to the brain has always been the blood-brain barrier which still represents an elusive area with lots of mysteries yet to be solved. Meanwhile, nanotechnology has emerged as an optimistic platform that is potentially holding the answer to many of our questions on how to deliver drugs and treat CNS disorders using novel technologies rather than the unsatisfying conventional old methods. Nanocarriers can be engineered in a way that is capable of delivering a certain therapeutic cargo to a specific target tissue. Adding to this mind-blowing nanotechnology, the revolutionizing gene-altering biologics can have the best of both worlds, and pave the way for the long-awaited cure to many diseases, among those diseases thus far are Alzheimer's disease (AD), brain tumors (glioma and glioblastoma), Down syndrome, stroke, and even cases with HIV. The review herein collects the studies that tested the mixture of both sciences, nanotechnology, and epigenetics, in the context of brain therapeutics using three main categories of gene-altering molecules (siRNA, miRNA, and CRISPR) with a special focus on the advancements regarding the new favorite, intranasal route of administration.
Collapse
Affiliation(s)
- Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yasmine Ahmed Salah
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11517, Egypt
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hua Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475000, China
| | - Yan-Mei Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
12
|
Lučanský V, Holubeková V, Kolková Z, Halašová E, Samec M, Golubnitschaja O. Multi-faceted CRISPR/Cas technological innovation aspects in the framework of 3P medicine. EPMA J 2023; 14:201-217. [PMID: 37275547 PMCID: PMC10201107 DOI: 10.1007/s13167-023-00324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Since 2009, the European Association for Predictive, Preventive and Personalised Medicine (EPMA, Brussels) promotes the paradigm change from reactive approach to predictive, preventive, and personalized medicine (PPPM/3PM) to protect individuals in sub-optimal health conditions from the health-to-disease transition, to increase life-quality of the affected patient cohorts improving, therefore, ethical standards and cost-efficacy of healthcare to great benefits of the society at large. The gene-editing technology utilizing CRISPR/Cas gene-editing approach has demonstrated its enormous value as a powerful tool in a broad spectrum of bio/medical research areas. Further, CRISPR/Cas gene-editing system is considered applicable to primary and secondary healthcare, in order to prevent disease spread and to treat clinically manifested disorders, involving diagnostics of SARS-Cov-2 infection and experimental treatment of COVID-19. Although the principle of the proposed gene editing is simple and elegant, there are a lot of technological challenges and ethical considerations to be solved prior to its broadly scaled clinical implementation. This article highlights technological innovation beyond the state of the art, exemplifies current achievements, discusses unsolved technological and ethical problems, and provides clinically relevant outlook in the framework of 3PM.
Collapse
Affiliation(s)
- Vincent Lučanský
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubeková
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolková
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halašová
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
13
|
Salama II, Sami SM, Salama SI, Abdel-Latif GA, Shaaban FA, Fouad WA, Abdelmohsen AM, Raslan HM. Current and novel modalities for management of chronic hepatitis B infection. World J Hepatol 2023; 15:585-608. [PMID: 37305370 PMCID: PMC10251278 DOI: 10.4254/wjh.v15.i5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over 296 million people are estimated to have chronic hepatitis B viral infection (CHB), and it poses unique challenges for elimination. CHB is the result of hepatitis B virus (HBV)-specific immune tolerance and the presence of covalently closed circular DNA as mini chromosome inside the nucleus and the integrated HBV. Serum hepatitis B core-related antigen is the best surrogate marker for intrahepatic covalently closed circular DNA. Functional HBV “cure” is the durable loss of hepatitis B surface antigen (HBsAg), with or without HBsAg seroconversion and undetectable serum HBV DNA after completing a course of treatment. The currently approved therapies are nucleos(t)ide analogues, interferon-alpha, and pegylated-interferon. With these therapies, functional cure can be achieved in < 10% of CHB patients. Any variation to HBV or the host immune system that disrupts the interaction between them can lead to reactivation of HBV. Novel therapies may allow efficient control of CHB. They include direct acting antivirals and immunomodulators. Reduction of the viral antigen load is a crucial factor for success of immune-based therapies. Immunomodulatory therapy may lead to modulation of the host immune system. It may enhance/restore innate immunity against HBV (as toll-like-receptors and cytosolic retinoic acid inducible gene I agonist). Others may induce adaptive immunity as checkpoint inhibitors, therapeutic HBV vaccines including protein (HBsAg/preS and hepatitis B core antigen), monoclonal or bispecific antibodies and genetically engineered T cells to generate chimeric antigen receptor-T or T-cell receptor-T cells and HBV-specific T cells to restore T cell function to efficiently clear HBV. Combined therapy may successfully overcome immune tolerance and lead to HBV control and cure. Immunotherapeutic approaches carry the risk of overshooting immune responses causing uncontrolled liver damage. The safety of any new curative therapies should be measured in relation to the excellent safety of currently approved nucleos(t)ide analogues. Development of novel antiviral and immune modulatory therapies should be associated with new diagnostic assays used to evaluate the effectiveness or to predict response.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Samia M Sami
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Centre, Giza 12411, Dokki, Egypt
| |
Collapse
|
14
|
CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
β-Thalassemia is an inherited hematological disorder that results from genetic changes in the β-globin gene, leading to the reduced or absent synthesis of β-globin. For several decades, the only curative treatment option for β-thalassemia has been allogeneic hematopoietic cell transplantation (allo-HCT). Nonetheless, rapid progress in genome modification technologies holds great potential for treating this disease and will soon change the current standard of care for β-thalassemia. For instance, the emergence of the CRISPR/Cas9 genome editing platform has opened the door for precision gene editing and can serve as an effective molecular treatment for a multitude of genetic diseases. Investigational studies were carried out to treat β-thalassemia patients utilizing CRISPR-based CTX001 therapy targeting the fetal hemoglobin silencer BCL11A to restore γ-globin expression in place of deficient β-globin. The results of recently carried out clinical trials provide hope of CTX001 being a promising one-time therapeutic option to treat β-hemoglobinopathies. This review provides an insight into the key scientific steps that led to the development and application of novel CRISPR/Cas9–based gene therapies as a promising therapeutic platform for transfusion-dependent β-thalassemia (TDT). Despite the resulting ethical, moral, and social challenges, CRISPR provides an excellent treatment option against hemoglobin-associated genetic diseases.
Collapse
|
15
|
Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:315-339. [DOI: 10.1007/978-981-19-5642-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Muñoz H, Enríquez G, Ortega X, Pinto M, Hosiasson S, Germain A, Díaz C, Cortés F. Diagnóstico de cardiopatías congénitas: ecografía de cribado, ecocardiografía fetal y medicina de precisión. REVISTA MÉDICA CLÍNICA LAS CONDES 2023. [DOI: 10.1016/j.rmclc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
17
|
Su C, Lu Y, Wang Z, Guo J, Hou Y, Wang X, Qin Z, Gao J, Sun Z, Dai Y, Liu Y, Liu G, Xian X, Cui X, Zhang J, Tang J. Atherosclerosis: The Involvement of Immunity, Cytokines and Cells in Pathogenesis, and Potential Novel Therapeutics. Aging Dis 2022:AD.2022.1208. [PMID: 37163428 PMCID: PMC10389830 DOI: 10.14336/ad.2022.1208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 05/12/2023] Open
Abstract
As a leading contributor to coronary artery disease (CAD) and stroke, atherosclerosis has become one of the major cardiovascular diseases (CVD) negatively impacting patients worldwide. The endothelial injury is considered to be the initial step of the development of atherosclerosis, resulting in immune cell migration and activation as well as inflammatory factor secretion, which further leads to acute and chronic inflammation. In addition, the inflammation and lipid accumulation at the lesions stimulate specific responses from different types of cells, contributing to the pathological progression of atherosclerosis. As a result, recent studies have focused on using molecular biological approaches such as gene editing and nanotechnology to mediate cellular response during atherosclerotic development for therapeutic purposes. In this review, we systematically discuss inflammatory pathogenesis during the development of atherosclerosis from a cellular level with a focus on the blood cells, including all types of immune cells, together with crucial cells within the blood vessel, such as smooth muscle cells and endothelial cells. In addition, the latest progression of molecular-cellular based therapy for atherosclerosis is also discussed. We hope this review article could be beneficial for the clinical management of atherosclerosis.
Collapse
Affiliation(s)
- Chang Su
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yongzheng Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zeyu Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yachen Hou
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Xiaofang Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhen Qin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiamin Gao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhaowei Sun
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yichen Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yu Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, Peking University, Beijing, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
19
|
Mayuramart O, Poomipak W, Rattanaburi S, Khongnomnan K, Anuntakarun S, Saengchoowong S, Chavalit T, Chantaravisoot N, Payungporn S. IRF7-deficient MDCK cell based on CRISPR/Cas9 technology for enhancing influenza virus replication and improving vaccine production. PeerJ 2022; 10:e13989. [PMID: 36164603 PMCID: PMC9508885 DOI: 10.7717/peerj.13989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The influenza virus is a cause of seasonal epidemic disease and enormous economic injury. The best way to control influenza outbreaks is through vaccination. The Madin-Darby canine kidney cell line (MDCK) is currently approved to manufacture influenza vaccines. However, the viral load from cell-based production is limited by host interferons (IFN). Interferon regulating factor 7 (IRF7) is a transcription factor for type-I IFN that plays an important role in regulating the anti-viral mechanism and eliminating viruses. We developed IRF7 knock-out MDCK cells (IRF7-/ - MDCK) using CRISPR/Cas9 technology. The RNA expression levels of IRF7 in the IRF7-/ - MDCK cells were reduced by 94.76% and 95.22% under the uninfected and infected conditions, respectively. Furthermore, the IRF7 protein level was also significantly lower in IRF7-/ - MDCK cells for both uninfected (54.85% reduction) and viral infected conditions (32.27% reduction) compared to WT MDCK. The differential expression analysis of IFN-related genes demonstrated that the IRF7-/ - MDCK cell had a lower interferon response than wildtype MDCK under the influenza-infected condition. Gene ontology revealed down-regulation of the defense response against virus and IFN-gamma production in IRF7-/ - MDCK. The evaluation of influenza viral titers by RT-qPCR and hemagglutination assay (HA) revealed IRF7-/ - MDCK cells had higher viral titers in cell supernatant, including A/pH1N1 (4 to 5-fold) and B/Yamagata (2-fold). Therefore, the IRF7-/ - MDCK cells could be applied to cell-based influenza vaccine production with higher capacity and efficiency.
Collapse
Affiliation(s)
- Oraphan Mayuramart
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somruthai Rattanaburi
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Songtham Anuntakarun
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Saengchoowong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Chavalit
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Hawsawi YM, Shams A, Theyab A, Siddiqui J, Barnawee M, Abdali WA, Marghalani NA, Alshelali NH, Al-Sayed R, Alzahrani O, Alqahtani A, Alsulaiman AM. The State-of-the-Art of Gene Editing and its Application to Viral Infections and Diseases Including COVID-19. Front Cell Infect Microbiol 2022; 12:869889. [PMID: 35782122 PMCID: PMC9241565 DOI: 10.3389/fcimb.2022.869889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gene therapy delivers a promising hope to cure many diseases and defects. The discovery of gene-editing technology fueled the world with valuable tools that have been employed in various domains of science, medicine, and biotechnology. Multiple means of gene editing have been established, including CRISPR/Cas, ZFNs, and TALENs. These strategies are believed to help understand the biological mechanisms of disease progression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been designated the causative virus for coronavirus disease 2019 (COVID-19) that emerged at the end of 2019. This viral infection is a highly pathogenic and transmissible disease that caused a public health pandemic. As gene editing tools have shown great success in multiple scientific and medical areas, they could eventually contribute to discovering novel therapeutic and diagnostic strategies to battle the COVID-19 pandemic disease. This review aims to briefly highlight the history and some of the recent advancements of gene editing technologies. After that, we will describe various biological features of the CRISPR-Cas9 system and its diverse implications in treating different infectious diseases, both viral and non-viral. Finally, we will present current and future advancements in combating COVID-19 with a potential contribution of the CRISPR system as an antiviral modality in this battle.
Collapse
Affiliation(s)
- Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Jumana Siddiqui
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mawada Barnawee
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada A. Marghalani
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada H. Alshelali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Rawan Al-Sayed
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alanoud Alqahtani
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
21
|
Mir TUG, Wani AK, Akhtar N, Shukla S. CRISPR/Cas9: Regulations and challenges for law enforcement to combat its dual-use. Forensic Sci Int 2022; 334:111274. [DOI: 10.1016/j.forsciint.2022.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
|
22
|
Medicina de precisión de Enfermedades Raras. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Lu HJ, Li J, Yang G, Yi CJ, Zhang D, Yu F, Ma Z. Circular RNAs in stem cells: from basic research to clinical implications. Biosci Rep 2022; 42:BSR20212510. [PMID: 34908111 PMCID: PMC8738868 DOI: 10.1042/bsr20212510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, microRNA (miRNA) sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNA-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.
Collapse
Affiliation(s)
- Hui-Juan Lu
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei 438000, China
| | - Cun-Jian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Daping Zhang
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Fenggang Yu
- Institute of Life Science, Yinfeng Biological Group, Jinan 250000, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| |
Collapse
|
24
|
Katzmann JL, Cupido AJ, Laufs U. Gene Therapy Targeting PCSK9. Metabolites 2022; 12:metabo12010070. [PMID: 35050192 PMCID: PMC8781734 DOI: 10.3390/metabo12010070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
The last decades of research in cardiovascular prevention have been characterized by successful bench-to-bedside developments for the treatment of low-density lipoprotein (LDL) hypercholesterolemia. Recent examples include the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) with monoclonal antibodies, small interfering RNA and antisense RNA drugs. The cumulative effects of LDL cholesterol on atherosclerosis make early, potent, and long-term reductions in LDL cholesterol desirable-ideally without the need of regular intake or application of medication and importantly, without side effects. Current reports show durable LDL cholesterol reductions in primates following one single treatment with PCSK9 gene or base editors. Use of the CRISPR/Cas system enables precise genome editing down to single-nucleotide changes. Provided safety and documentation of a reduction in cardiovascular events, this novel technique has the potential to fundamentally change our current concepts of cardiovascular prevention. In this review, the application of the CRISPR/Cas system is explained and the current state of in vivo approaches of PCSK9 editing is presented.
Collapse
Affiliation(s)
- Julius L. Katzmann
- Department of Cardiology, University Hospital Leipzig, 04103 Leipzig, Germany;
- Correspondence:
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, 1105 AZ Amsterdam, The Netherlands;
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ulrich Laufs
- Department of Cardiology, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
25
|
Sohail M, Qin L, Li S, Chen Y, Zaman MH, Zhang X, Li B, Huang H. Molecular reporters for CRISPR/Cas: from design principles to engineering for bioanalytical and diagnostic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Gao C, Wu P, Yu L, Liu L, Liu H, Tan X, Wang L, Huang X, Wang H. The application of CRISPR/Cas9 system in cervical carcinogenesis. Cancer Gene Ther 2022; 29:466-474. [PMID: 34349239 PMCID: PMC9113934 DOI: 10.1038/s41417-021-00366-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023]
Abstract
Integration of high-risk HPV genomes into cellular chromatin has been confirmed to promote cervical carcinogenesis, with HPV16 being the most prevalent high-risk type. Herein, we evaluated the therapeutic effect of the CRISPR/Cas9 system in cervical carcinogenesis, especially for cervical precancerous lesions. In cervical cancer/pre-cancer cell lines, we transfected the HPV16 E7 targeted CRISPR/Cas9, TALEN, ZFN plasmids, respectively. Compared to previous established ZFN and TALEN systems, CRISPR/Cas9 has shown comparable efficiency and specificity in inhibiting cell growth and colony formation and inducing apoptosis in cervical cancer/pre-cancer cell lines, which seemed to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. Furthermore, in xenograft formation assays, CRISPR/Cas9 inhibited tumor formation of the S12 cell line in vivo and affected the corresponding protein expression. In the K14-HPV16 transgenic mice model of HPV-driven spontaneous cervical carcinogenesis, cervical application of CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively revert the HPV-related cervical carcinogenesis in vitro, as well as in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment for cervical precancerous lesions.
Collapse
Affiliation(s)
- Chun Gao
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Ping Wu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lan Yu
- grid.488530.20000 0004 1803 6191Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liting Liu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hong Liu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiangyu Tan
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Liming Wang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiaoyuan Huang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hui Wang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.431048.a0000 0004 1757 7762Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
27
|
Shanahan MA, Aagaard KM, McCullough LB, Chervenak FA, Shamshirsaz AA. Society for Maternal-Fetal Medicine Special Statement: Beyond the scalpel: in utero fetal gene therapy and curative medicine. Am J Obstet Gynecol 2021; 225:B9-B18. [PMID: 34537158 DOI: 10.1016/j.ajog.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With the recent advances in gene editing with systems such as CRISPR-Cas9, precise genome editing in utero is on the horizon. Sickle cell disease is an excellent candidate for in utero fetal gene therapy, because the disease is monogenic, causes irreversible harm, and has life-limiting morbidity. Gene therapy has recently been proven to be effective in an adolescent patient. Several hurdles still impede the progress for fetal gene therapy in humans, including an incomplete understanding of the fetal immune system, unclear maternal immune responses to in utero gene therapy, risks of off-target effects from gene editing, gestational age constraints, and ethical questions surrounding fetal genetic intervention. However, none of these barriers appears insurmountable, and the journey to in utero gene therapy for sickle cell disease and other conditions should be well underway.
Collapse
Affiliation(s)
- Matthew A Shanahan
- Society for Maternal-Fetal Medicine, 409 12 St. SW, Washington, DC 20024, USA.
| | - Kjersti M Aagaard
- Society for Maternal-Fetal Medicine, 409 12 St. SW, Washington, DC 20024, USA.
| | | | - Francis A Chervenak
- Society for Maternal-Fetal Medicine, 409 12 St. SW, Washington, DC 20024, USA.
| | | |
Collapse
|
28
|
Xie YX, Lv WQ, Chen YK, Hong S, Yao XP, Chen WJ, Zhao M. Advances in gene therapy for neurogenetic diseases: a brief review. J Mol Med (Berl) 2021; 100:385-394. [PMID: 34837498 DOI: 10.1007/s00109-021-02167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Neurogenetic diseases are neurological conditions with a genetic cause (s). There are thousands of neurogenetic diseases, and most of them are incurable. The development of bioinformatics and elucidation of the mechanism of pathogenesis have allowed the development of gene therapy approaches, which show great potential in treating neurogenetic diseases. Viral vectors delivery, antisense oligonucleotides, gene editing, RNA interference, and burgeoning viroid delivery technique are promising gene therapy strategies, and commendable therapeutic effects in the treatment of neurogenetic diseases have been achieved (Fig. 1). This review highlights a sampling of advances in gene therapies for neurogenetic disorders. Fig. 1 Examples of gene therapy strategies used in the treatment of neurogenetic diseases. The schematic diagram shows different gene therapy approaches used for treating a sampling of neurogenetic disorders, such as ASO therapy, gene editing, gene augmentation, and RNA interference.
Collapse
Affiliation(s)
- Ying-Xuan Xie
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wen-Qi Lv
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yi-Kun Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Shunyan Hong
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Xiang-Ping Yao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Miao Zhao
- Department of Neurology, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, the First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
29
|
Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021; 28:77. [PMID: 34781949 PMCID: PMC8591907 DOI: 10.1186/s12929-021-00772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.
Collapse
Affiliation(s)
- Guzide Bender
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Rezan Fahrioglu Yamaci
- Faculty of Applied Natural Sciences and Cultural Studies, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, via Mersin-10, Famagusta, 99628, North Cyprus, Turkey.
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
30
|
Shao M, Qi Y, Sui D, Xu FJ. Phenylboronic acid-functionalized polyaminoglycoside as an effective CRISPR/Cas9 delivery system. Biomater Sci 2021; 9:7104-7114. [PMID: 34704559 DOI: 10.1039/d1bm00185j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing technology is a promising approach for cancer therapy, and its application practice urgently requires a safe and effective gene carrier. In this work, we focus on the design of a phenylboronic acid (PBA)-functionalized, disulfide bonded branched polyaminoglycoside (SS-HPT-P) as a robust delivery vector of the CRISPR-Cas9 system. SS-HPT-P showed great tumor-targeting performance, reduction-responsive degradability, and gene transfection ability. The typical pCas9-surv (one CRISPR-Cas9 plasmid that targets and knocks out the survivin gene) delivery mediated by SS-HPT-P exhibited gene editing performance in the A549 cell line, confirming the feasibility of SS-HPT-P to effectively deliver the CRISPR-Cas9 system. SS-HPT-P/pCas9-surv could effectively inhibit the proliferation of tumor cells both in vitro and in vivo, suggesting the potential of PBA-functionalized nanocarriers for cancer gene therapy. The present work provides a promising approach for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Meiyu Shao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yu Qi
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dandan Sui
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
31
|
Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The Role of p38γ in Cancer: From review to outlook. Int J Biol Sci 2021; 17:4036-4046. [PMID: 34671218 PMCID: PMC8495394 DOI: 10.7150/ijbs.63537] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
p38γ is a member of the p38 Mitogen Activated Protein Kinases (p38 MAPKs). It contains four subtypes in mammalian cells encoded by different genes including p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). Recent studies revealed that p38γ may exhibit a crucial role in tumorigenesis and cancer aggressiveness. Despite the large number of published literatures, further researches are demanded to clarify its role in cancer development, the tissue-specific function and associated novel treatment strategies. In this article, we provide the latest view on the connection between p38γ and malignant tumors, highlighting the function of p38γ. The clinical value of p38γ is also discussed, helping the translation into the remarkable therapeutic strategy in tumor diseases.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shaocheng Hong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huke Dong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
32
|
Pattan V, Kashyap R, Bansal V, Candula N, Koritala T, Surani S. Genomics in medicine: A new era in medicine. World J Methodol 2021; 11:231-242. [PMID: 34631481 PMCID: PMC8472545 DOI: 10.5662/wjm.v11.i5.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
The sequencing of complete human genome revolutionized the genomic medicine. However, the complex interplay of gene-environment-lifestyle and influence of non-coding genomic regions on human health remain largely unexplored. Genomic medicine has great potential for diagnoses or disease prediction, disease prevention and, targeted treatment. However, many of the promising tools of genomic medicine are still in their infancy and their application may be limited because of the limited knowledge we have that precludes its use in many clinical settings. In this review article, we have reviewed the evolution of genomic methodologies/tools, their limitations, and scope, for current and future clinical application.
Collapse
Affiliation(s)
- Vishwanath Pattan
- Division of Endocrinology, Wyoming Medical Center, Casper, WY 82601, United States
| | - Rahul Kashyap
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Vikas Bansal
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Narsimha Candula
- Hospital Medicine, University Florida Health, Jacksonville, FL 32209, United States
| | - Thoyaja Koritala
- Hospital Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Salim Surani
- Department of Internal Medicine, Texas A&M University, Corpus Christi, TX 78405, United States
| |
Collapse
|
33
|
Yun Y, Zhang C, Guo S, Liang X, Lan Y, Wang M, Zhuo N, Yin J, Liu H, Gu M, Li J, Xie X, Nan F. Identification of Betulinic Acid Derivatives as Potent TGR5 Agonists with Antidiabetic Effects via Humanized TGR5 H88Y Mutant Mice. J Med Chem 2021; 64:12181-12199. [PMID: 34406006 DOI: 10.1021/acs.jmedchem.1c00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a promising target for treating metabolic syndrome and inflammatory diseases. Herein, we identified a new series of betulinic acid derivatives as potent TGR5 agonists, which show remarkable activity on human (h) and canine (c) TGR5 but exhibit unpromising activity on murine (m) TGR5. Species difference was also observed with many other reported TGR5 agonists. Therefore, we screened 29 amino acids which were conserved in hTGR5 and cTGR5 but different in mTGR5 and found a key amino acid, H88 in mTGR5 (Y89 in hTGR5), which contributed to the species difference. With the CRISPR/Cas9 system, the mTGR5H88Y mutation was introduced into mice, and the optimized compound 11d-Na displayed a significant glucose-lowering effect and stimulated GLP-1 and insulin secretion in TGR5H88Y mice but not in wild-type animals. Taken together, our study provides a useful tool to bridge the gap of species difference and discovers a potent TGR5 agonist for further investigation.
Collapse
Affiliation(s)
- Ying Yun
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiaoying Liang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Lan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Zhuo
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Huanan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Li
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fajun Nan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
34
|
Pan X, Pei X, Huang H, Su N, Wu Z, Wu Z, Qi X. One-in-one individual package and delivery of CRISPR/Cas9 ribonucleoprotein using apoferritin. J Control Release 2021; 337:686-697. [PMID: 34389365 DOI: 10.1016/j.jconrel.2021.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/27/2022]
Abstract
So far, most reported delivery of CRISPR/Cas9 is achieved by internalized or encapsulated multiple ribonucleoprotein units into only one carrier unit, with relatively large size. Here, we report a novel, small-sized, individual package of CRISPR/Cas9, via using tetralysine modified H-chian apoferritin (TL-HFn) as packaging material. In this paper, each CRISPR/Cas9 complex is proved to be successfully installed into one TL-HFn (~26 nm), and delivered into the targeting cell via TfR1-mediated endocytosis. We found that after 6 h of treatment, the CRISPR/Cas9 complex can be tracked within the nuclear of Hela cells for the purpose of gene editing of enhanced green fluorescent protein (EGFP). Moreover, TL-HFn individually packed CRISPR/Cas9 displayed higher genome editing activity compared with that of free CRISPR/Cas9 treated group both in vitro (up to 28.96%) and in vivo. Such satisfied genome editing efficiency could be attributed to the endosomal escape and pH-induced disassembly abilities given by TL-HFn after uptake into cytoplasm, which had been verified in our previous research. In all, those results prompted that TL-HFn possessed more potential for intracellular delivery of CRISPR/Cas9, with potential biocompatibility, stability and delivery efficiency.
Collapse
Affiliation(s)
- Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaochen Pei
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haiqin Huang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Su
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ziheng Wu
- Parkville campus, Monash University, VIC 3052, Australia
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
35
|
Cervera ST, Rodríguez-Martín C, Fernández-Tabanera E, Melero-Fernández de Mera RM, Morin M, Fernández-Peñalver S, Iranzo-Martínez M, Amhih-Cardenas J, García-García L, González-González L, Moreno-Pelayo MA, Alonso J. Therapeutic Potential of EWSR1-FLI1 Inactivation by CRISPR/Cas9 in Ewing Sarcoma. Cancers (Basel) 2021; 13:cancers13153783. [PMID: 34359682 PMCID: PMC8345183 DOI: 10.3390/cancers13153783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Ewing sarcoma is an aggressive tumor with still unacceptable survival rates, particularly in patients with metastatic disease and for which it is necessary to develop new and innovative therapies. These tumors are characterized by the presence of chromosomal translocations that give rise to chimeric transcription factors (i.e., EWSR1–FLI1) that govern the oncogenic process. In this article, we describe an efficient strategy to permanently inactivate the EWSR1–FLI1 oncogene characteristic of Ewing sarcoma using CRISPR/Cas9 gene editing technology. Although the application of gene therapy in cancer still has many limitations, for example, the strategy for delivery, studies like ours show that gene therapy can be a promising alternative, particularly for those tumors that are highly dependent on a particular oncogene as is the case in Ewing sarcoma. Abstract Ewing sarcoma is an aggressive bone cancer affecting children and young adults. The main molecular hallmark of Ewing sarcoma are chromosomal translocations that produce chimeric oncogenic transcription factors, the most frequent of which is the aberrant transcription factor EWSR1–FLI1. Because this is the principal oncogenic driver of Ewing sarcoma, its inactivation should be the best therapeutic strategy to block tumor growth. In this study, we genetically inactivated EWSR1–FLI1 using CRISPR-Cas9 technology in order to cause permanent gene inactivation. We found that gene editing at the exon 9 of FLI1 was able to block cell proliferation drastically and induce senescence massively in the well-studied Ewing sarcoma cell line A673. In comparison with an extensively used cellular model of EWSR1–FLI1 knockdown (A673/TR/shEF), genetic inactivation was more effective, particularly in its capability to block cell proliferation. In summary, genetic inactivation of EWSR1–FLI1 in A673 Ewing sarcoma cells blocks cell proliferation and induces a senescence phenotype that could be exploited therapeutically. Although efficient and specific in vivo CRISPR-Cas9 editing still presents many challenges today, our data suggest that complete inactivation of EWSR1–FLI1 at the cell level should be considered a therapeutic approach to develop in the future.
Collapse
Affiliation(s)
- Saint T. Cervera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Matias Morin
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.M.); (S.F.-P.); (M.A.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Sergio Fernández-Peñalver
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.M.); (S.F.-P.); (M.A.M.-P.)
| | - Maria Iranzo-Martínez
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Jorge Amhih-Cardenas
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Laura García-García
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Laura González-González
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Miguel Angel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.M.); (S.F.-P.); (M.A.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
36
|
Sun J, Wang J, Zheng D, Hu X. Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genomics 2021; 19:164-174. [PMID: 31769791 DOI: 10.1093/bfgp/elz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.
Collapse
Affiliation(s)
- Jinyu Sun
- Sparkfire Scientific Research Group, Nanjing Medical University, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
37
|
Abeyratne-Perera HK, Basu S, Chandran PL. Shells of compacted DNA as nanocontainers transporting proteins in multiplexed delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112184. [PMID: 34225845 DOI: 10.1016/j.msec.2021.112184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Polyethyleneimine (PEI) polymers are known to compact DNA strands into spheroid, toroid, or rod structures. A formulation with mannose-grafted PEI (PEIm), however, was reported to compact DNA into ~100 nm spheroids that indented like thin-walled pressurized shells. The goal of the study is to understand why mannose bristles divert the traditional pathway of PEI-DNA compaction to produce shell-like structures, and to manipulate the process so that proteins can be packed into the core of the assembling shells for co-delivering DNA and proteins into cells. DLS, AFM, and TEM imaging provide a consistent picture that BSA proteins can be packed into the shells without altering the shell architecture, as long as the proteins were added during the time course of shell assembly. Force spectroscopy studies reveal that DNA shells that buckle also have a rich surface-coating of mannose, indicating that a micelle-like partitioning of hydrophobic and hydrophilic layers governs shell assembly. When HEK293T cells are spiked with BSA-laden DNA shells, co-transfection of DNA and BSA is observed at higher levels than control formulations. Distinct micron-sized features appear having both green fluorescence from BSA-FITC and blue fluorescence from NucBlue DNA stain, suggesting BSA release in nucleus and secretory granules. With DNA nanocontainers, proteins can take advantage of the efficiency of PEI-based DNA transfection for hitchhiking into cells while being shielded from the challenges of the intracellular route. DNA nanocontainers are rapid to assemble, not dependent on the DNA sequence, and can be adapted for different protein types; thereby having potential to serve as a high-throughput platform in scenarios where DNA and protein have to be released at the same site and time within cells (e.g., theranostics, multiplexed co-delivery, gene editing).
Collapse
Affiliation(s)
- Hashanthi K Abeyratne-Perera
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America
| | - Saswati Basu
- Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America
| | - Preethi L Chandran
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America; Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America.
| |
Collapse
|
38
|
Li S, Datta S, Brabbit E, Love Z, Woytowicz V, Flattery K, Capri J, Yao K, Wu S, Imboden M, Upadhyay A, Arumugham R, Thoreson WB, DeAngelis MM, Haider NB. Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Ther 2021; 28:223-241. [PMID: 32123325 PMCID: PMC7483267 DOI: 10.1038/s41434-020-0134-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Collapse
Affiliation(s)
- Sujun Li
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shyamtanu Datta
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Brabbit
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zoe Love
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Victoria Woytowicz
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kyle Flattery
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jessica Capri
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katie Yao
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Siqi Wu
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Xu M, Zhang K, Song J. Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Front Pharmacol 2021; 12:623674. [PMID: 33935716 PMCID: PMC8085499 DOI: 10.3389/fphar.2021.623674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy refers to exploiting the specific therapeutic drugs against the pathogenic molecules (a protein or a gene) or cells. The drug specifically binds to disease-causing molecules or cells without affecting normal tissue, thus enabling personalized and precision treatment. Initially, therapeutic drugs included antibodies and small molecules, (e.g. nucleic acid drugs). With the advancement of the biology technology and immunotherapy, the gene editing and cell editing techniques are utilized for the disease treatment. Currently, targeted therapies applied to treat cardiovascular diseases (CVDs) mainly include protein drugs, gene editing technologies, nucleic acid drugs and cell therapy. Although targeted therapy has demonstrated excellent efficacy in pre-clinical and clinical trials, several limitations need to be recognized and overcome in clinical application, (e.g. off-target events, gene mutations, etc.). This review introduces the mechanisms of different targeted therapies, and mainly describes the targeted therapy applied in the CVDs. Furthermore, we made comparative analysis to clarify the advantages and disadvantages of different targeted therapies. This overview is expected to provide a new concept to the treatment of the CVDs.
Collapse
Affiliation(s)
- Mengda Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailun Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| |
Collapse
|
40
|
Schellinger IN, Dannert AR, Mattern K, Raaz U, Tsao PS. Unresolved Issues in RNA Therapeutics in Vascular Diseases With a Focus on Aneurysm Disease. Front Cardiovasc Med 2021; 8:571076. [PMID: 33937351 PMCID: PMC8081859 DOI: 10.3389/fcvm.2021.571076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
New technologies have greatly shaped the scientific and medical landscape within the last years. The unprecedented expansion of data and information on RNA biology has led to the discovery of new RNA classes with unique functions and unexpected modifications. Today, the biggest challenge is to transfer the large number of findings in basic RNA biology into corresponding clinical RNA-based therapeutics. Lately, this research begins to yield positive outcomes. RNA drugs advance to the final phases of clinical trials or even receive FDA approval. Furthermore, the introduction of the RNA-guided gene-editing technology CRISPR and advances in the delivery of messenger RNAs have triggered a major progression in the field of RNA-therapeutics. Especially short interfering RNAs and antisense oligonucleotides are promising examples for novel categories of therapeutics. However, several issues need to be addressed including intracellular delivery, toxicity, and immune responses before utilizing RNAs in a clinical setting. In this review, we provide an overview on opportunities and challenges for clinical translation of RNA-based therapeutics, with an emphasis on advances in novel delivery technologies and abdominal aortic aneurysm disease where non-coding RNAs have been shown to play a crucial regulatory role.
Collapse
Affiliation(s)
- Isabel N Schellinger
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) e.V., Partner Site Göttingen, Göttingen, Germany.,Department for Endocrinology, Nephrology and Rheumatology, University Medical Center Leipzig, University of Leipzig, Leipzig, Germany.,Department for Angiology, University Medical Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Angelika R Dannert
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany
| | - Karin Mattern
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) e.V., Partner Site Göttingen, Göttingen, Germany
| | - Uwe Raaz
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) e.V., Partner Site Göttingen, Göttingen, Germany
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Veteran Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
41
|
Siva N, Gupta S, Gupta A, Shukla JN, Malik B, Shukla N. Genome-editing approaches and applications: a brief review on CRISPR technology and its role in cancer. 3 Biotech 2021; 11:146. [PMID: 33732568 PMCID: PMC7910401 DOI: 10.1007/s13205-021-02680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
The development of genome-editing technologies in 1970s has discerned a new beginning in the field of science. Out of different genome-editing approaches such as Zing-finger nucleases, TALENs, and meganucleases, clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR/Cas9) is a recent and versatile technology that has the ability of making changes to the genome of different organisms with high specificity. Cancer is a complex process that is characterized by multiple genetic and epigenetic changes resulting in abnormal cell growth and proliferation. As cancer is one of the leading causes of deaths worldwide, a large number of studies are done to understand the molecular mechanisms underlying the development of cancer. Because of its high efficiency and specificity, CRISPR/Cas9 has emerged as a novel and powerful tool in the field of cancer research. CRISPR/Cas9 has the potential to accelerate cancer research by dissecting tumorigenesis process, generating animal and cellular models, and identify drug targets for chemotherapeutic approaches. However, despite having tremendous potential, there are certain challenges associated with CRISPR/Cas9 such as safe delivery to the target, potential off-target effects and its efficacy which needs to be addressed prior to its clinical application. In this review, we give a gist of different genome-editing technologies with a special focus on CRISPR/Cas9 development, its mechanism of action and its applications, especially in different type of cancers. We also highlight the importance of CRISPR/Cas9 in generating animal models of different cancers. Finally, we present an overview of the clinical trials and discuss the challenges associated with translating CRISPR/Cas9 in clinical use.
Collapse
Affiliation(s)
- Narmadhaa Siva
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur, India
| | - Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur, India
| | - Ayam Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer, India
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur, Jaipur, India
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur, India
- Department of Chemistry, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
42
|
Hu Y, Zhou Y, Zhang M, Ge W, Li Y, Yang L, Wei G, Han L, Wang H, Yu S, Chen Y, Wang Y, He X, Zhang X, Gao M, Yang J, Li X, Ren J, Huang H. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia. Clin Cancer Res 2021; 27:2764-2772. [PMID: 33627493 DOI: 10.1158/1078-0432.ccr-20-3863] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/03/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Autologous chimeric antigen receptor T (CAR-T) cell therapy is an effective treatment for relapsed/refractory acute lymphoblastic leukemia (r/r ALL). However, certain characteristics of autologous CAR-T cells can delay treatment availability. Relapse caused by antigen escape after single-targeted CAR-T therapy is another issue. Therefore, we aim to develop CRISPR-edited universal off-the-shelf CD19/CD22 dual-targeted CAR-T cells as a novel therapy for r/r ALL. PATIENTS AND METHODS In this open-label dose-escalation phase I study, universal CD19/CD22-targeting CAR-T cells (CTA101) with a CRISPR/Cas9-disrupted TRAC region and CD52 gene to avoid host immune-mediated rejection were infused in patients with r/r ALL. Safety, efficacy, and CTA101 cellular kinetics were evaluated. RESULTS CRISPR/Cas9 technology mediated highly efficient, high-fidelity gene editing and production of universal CAR-T cells. No gene editing-associated genotoxicity or chromosomal translocation was observed. Six patients received CTA101 infusions at doses of 1 (3 patients) and 3 (3 patients) × 106 CAR+ T cells/kg body weight. Cytokine release syndrome occurred in all patients. No dose-limiting toxicity, GvHD, neurotoxicity, or genome editing-associated adverse events have occurred to date. The complete remission (CR) rate was 83.3% on day 28 after CTA101 infusion. With a median follow-up of 4.3 months, 3 of the 5 patients who achieved CR or CR with incomplete hematologic recovery (CR/CRi) remained minimal residual disease (MRD) negative. CONCLUSIONS CRISPR/Cas9-engineered universal CD19/CD22 CAR-T cells exhibited a manageable safety profile and prominent antileukemia activity. Universal dual-targeted CAR-T cell therapy may offer an alternative therapy for patients with r/r ALL.
Collapse
Affiliation(s)
- Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Yali Zhou
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Wengang Ge
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| | - Lu Han
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Hao Wang
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Shuhui Yu
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Yi Chen
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Yanbin Wang
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Xiaohong He
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | | | - Ming Gao
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Jingjing Yang
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Xiuju Li
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China
| | - Jiangtao Ren
- Nanjing Bioheng Biotech Co., Ltd, Nanjing, P.R. China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China. .,Institute of Hematology, Zhejiang University, Hangzhou, P.R. China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, P.R. China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, P.R. China
| |
Collapse
|
43
|
Fenner BP, Darden DB, Kelly LS, Rincon J, Brakenridge SC, Larson SD, Moore FA, Efron PA, Moldawer LL. Immunological Endotyping of Chronic Critical Illness After Severe Sepsis. Front Med (Lausanne) 2021; 7:616694. [PMID: 33659259 PMCID: PMC7917137 DOI: 10.3389/fmed.2020.616694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Improved management of severe sepsis has been one of the major health care accomplishments of the last two decades. Due to enhanced recognition and improved management of severe sepsis, in-hospital mortality has been reduced by up to 40%. With that good news, a new syndrome has unfortunately replaced in-hospital multi-organ failure and death. This syndrome of chronic critical illness (CCI) includes sepsis patients who survive the early "cytokine or genomic storm," but fail to fully recover, and progress into a persistent state of manageable organ injury requiring prolonged intensive care. These patients are commonly discharged to long-term care facilities where sepsis recidivism is high. As many as 33% of sepsis survivors develop CCI. CCI is the result, at least in part, of a maladaptive host response to chronic pattern-recognition receptor (PRR)-mediated processes. This maladaptive response results in dysregulated myelopoiesis, chronic inflammation, T-cell atrophy, T-cell exhaustion, and the expansion of suppressor cell functions. We have defined this panoply of host responses as a persistent inflammatory, immune suppressive and protein catabolic syndrome (PICS). Why is this important? We propose that PICS in survivors of critical illness is its own common, unique immunological endotype driven by the constant release of organ injury-associated, endogenous alarmins, and microbial products from secondary infections. While this syndrome can develop as a result of a diverse set of pathologies, it represents a shared outcome with a unique underlying pathobiological mechanism. Despite being a common outcome, there are no therapeutic interventions other than supportive therapies for this common disorder. Only through an improved understanding of the immunological endotype of PICS can rational therapeutic interventions be designed.
Collapse
Affiliation(s)
- Brittany P Fenner
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - D B Darden
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lauren S Kelly
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar Rincon
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
44
|
Zhou CY, Zheng XD, Yang DQ. Knockout fth1b affects early mineralization of zebrafish pharyngeal teeth. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:32-37. [PMID: 33723934 DOI: 10.7518/hxkq.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES A study was conducted to explore the expression pattern and function of ferritin heavy polypeptide gene (fth1b) in zebrafish pharyngeal teeth development and lay the foundation for subsequent research on teeth development and mineralization. METHODS The zebrafish embryos were harvested at 56, 72, 96, and 120 h after fertilization. The expression of fth1b in zebrafish pharyngeal teeth development was detected by whole embryo in situ hybridization and compared with the known pharyngeal teeth marker dlx2b. The specific knockout of fth1b gene was performed using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology. The development of zebrafish pharyngeal teeth was detected in the fth1b-/- mutant. RESULTS The expression pattern of fth1b gene was very similar to that of the known zebrafish pharyngeal teeth marker dlx2b and was specifically expressed in the zebrafish pharyngeal teeth during development. After the specific knockout of the gene fth1b, the earliest gene that can be detect in zebrafish pharyngeal teeth-pitx2 was expressed normally during early development. The dlx2b expression was not significantly different from that of wild type zebrafish, but the mineralization of pharyngeal teeth in the mutant was weaker than that of wild type zebrafish. CONCLUSIONS The gene fth1b is specifically expressed in zebrafish pharyngeal teeth and acts on their early mineralization.
Collapse
Affiliation(s)
- Chun-Yan Zhou
- Dept. of Endodontics, Stomatological Hospital of Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xue-Dan Zheng
- Dept. of Endodontics, Stomatological Hospital of Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - De-Qin Yang
- Dept. of Endodontics, Stomatological Hospital of Chongqing Medical University; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
45
|
Dong R, Zhang B, Tan B, Lin N. Long non-coding RNAs as the regulators and targets of macrophage M2 polarization. Life Sci 2021; 266:118895. [PMID: 33310042 DOI: 10.1016/j.lfs.2020.118895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
Macrophages are immune cells with high heterogeneity and plasticity. M2 polarization is one extreme of the well-established phenotypes of macrophage polarization, and involves in diverse biological processes. The polarization process is initiated at the command of numerous components. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides with limited protein-coding capacity. Recent studies have revealed a newly found subset of lncRNAs engaged in the M2 polarization and their potent and multifunctional roles in developing diseases. By interfering with specific signaling pathways and altering the active mode, acting as the sponges of microRNAs or decoys of transcription factors, lncRNAs prompted macrophages to an M2 phenotype. Further, lncRNAs can bind to the genome to regulate the chromatin dynamics or work as a platform for protein complexes tether. Exosomal lncRNAs can also orchestrate the polarization in a paracrine way. To make it easier to interpret the roles of lncRNAs in the M2 polarization, we review the reported lncRNAs according to the underlying mechanisms. Moreover, we discuss the possibilities of targeting macrophages' M2 polarization using the oligonucleotides drugs or clustered regularly interspaced palindromic repeats (CRISPR) technologies to provoke wisdom on the therapeutic strategies.
Collapse
Affiliation(s)
- Rong Dong
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bo Zhang
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China
| | - Biqin Tan
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 31006, China.
| |
Collapse
|
46
|
Yan Q, Chen BJ, Hu S, Qi SL, Li LY, Yang JF, Zhou H, Yang CC, Chen LJ, Du J. Emerging role of RNF2 in cancer: From bench to bedside. J Cell Physiol 2021; 236:5453-5465. [PMID: 33400276 DOI: 10.1002/jcp.30260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
RNF2 (also known as ding, Ring1B or Ring2) is a member of the Ring finger protein family, which functions as E3 ubiquitin ligase for monoubiquitination of histone H2A at lysine 119 (H2AK119ub). RNF2 gene is located at the 1q25.3 site of human chromosome and the coding region is composed of 9 exons, encoding 336 amino acids in total. Many studies have demonstrated that overexpressed RNF2 was involved in the pathological progression of multiple cancers and has an impact on their clinical features. For instance, the upregulated expression level of RNF2 is positively correlated with the occurrence and progression of hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, pancreatic cancer, gastric cancer, and bladder urothelial carcinoma, as well as with the radioresistance of lung cancer and chemoresistance of ovarian cancer. This review provides an up-to-date perspective on the relationship between RNF2 and several cancers and highlights recent studies on RNF2 regulation. In particular, the relevant cellular signaling pathways and potential clinical value of RNF2 in cancers are also discussed, suggesting its potential as an epigenetic biomarker and therapeutic target for these cancers.
Collapse
Affiliation(s)
- Qi Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bang-Jie Chen
- First Clinical Medical College of Anhui Medical university, Hefei, China
| | - Shuang Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shun-Li Qi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang-Yun Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun-Fa Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hong Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chen-Chen Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li-Jian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Abstract
Knockout (KO) of long non-coding RNAs (lncRNAs) enables functional characterization of this still poorly described group of transcripts. One of the most efficient and simplest methods to achieve complete KO of a lncRNA is by employing CRISPR/Cas gene editing. As most lncRNAs are not well annotated, their individual functional regions are often not defined, and the majority of the transcripts are not affected by single nucleotide mutations. Therefore, CRISPR/Cas KO is more challenging for lncRNAs as compared to KO of protein coding genes. Strategies for lncRNAs KO include complete removal of the entire gene, removal of the promoter and transcriptional start site, abolishing exon-exon junctions, or removing the transcriptional termination site. Here, we describe the methodology to perform CRISPR/Cas9 KO of lncRNAs in vitro using electroporation as the method of transfection of presynthesized single guide RNAs (sgRNAs) and Cas9 enzyme.
Collapse
Affiliation(s)
- Ingrid Arctander Rosenlund
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
48
|
Batabyal S, Kim S, Wright W, Mohanty S. Laser-assisted targeted gene delivery to degenerated retina improves retinal function. JOURNAL OF BIOPHOTONICS 2021; 14:e202000234. [PMID: 33026157 DOI: 10.1002/jbio.202000234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Delivery of therapeutic genes into retina is proving to reverse degeneration and restore vision, however, viral vector-based gene delivery is prone to immunorejection, inflammatory/immune-response and nontargeted. Here, we report nonviral gene delivery and expression of opsin encoding genes in mouse retina in-vitro and in-vivo by use of pulsed femtosecond laser microbeam. In-vitro patch-clamp recording of the opsin-sensitized retinal cells and visually evoked in-vivo electrical recording from laser-transfected eye of mouse with degenerated retina showed functional response. The ultrafast laser-based naked gene delivery showed minimal damage and reliable expression of therapeutic opsin in cell membrane of the selected cells and in targeted retinal region. Laser-based "naked DNA gene therapy" in a spatially targeted manner will pave the way for treatment of inherited retinal diseases.
Collapse
|
49
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
50
|
Uçkan-Çetinkaya D, Haider KH. Induced Pluripotent Stem Cells in Pediatric Research and Clinical Translation. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|