1
|
Guo H, Zhang Y, Xiang X, Tang N, Gao W, Cui X. Single-cell RNA sequencing analysis provides novel insights into the role of apoptosis-related genes in muscle aging. Arch Gerontol Geriatr 2024; 125:105499. [PMID: 38852373 DOI: 10.1016/j.archger.2024.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE This study employed a comprehensive single-cell analysis approach to explore the role of cell apoptosis-related genes in muscle aging. METHODS The single-cell RNA sequencing data from the GSE143704 dataset were used to identify distinct cell clusters and assess gene expression patterns related to apoptosis activation. The "limma" package was used to identify hub genes, after which we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify relevant pathways. Additionally, Gene Set Enrichment Analysis(GSEA) and Gene Set Variation Analysis (GSVA) were used to uncover relevant biological pathways. The Receiver Operating Characteristic Curve (ROC) was used to evaluate the diagnostic value of the hub genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the immune cell infiltration levels. RESULTS Single-cell sequencing data from muscle aging patients allowed the identification of various cell types, including epithelial cells, adipocytes, and tissue-resident macrophages. By conducting a differential expression analysis that intersected active and nonactive apoptosis, as well as comparing elderly and young samples, a total of 22 hub genes were identified (p < 0.05). The 22 hub genes have discriminative ability as potential biomarkers for diagnosing muscle aging. The enrichment analysis indicated that these genes were closely associated with diverse pathways, including "response to UV-B" and "extracellular matrix organization" (p < 0.05). Furthermore, GSEA and GSVA indicated that multiple pathways emerged-for example, the "complement and coagulation cascades", "proteasome", "insulin signaling pathway", and "MAPK signaling pathway". Additionally, the analysis of immune cell infiltration revealed positive correlations between most of the hub genes and immune cells. CONCLUSION Our study identified 22 apoptosis-related genes involved in muscle aging and indicated their potential diagnostic value. These findings offer a novel perspective on the pathogenesis of muscle aging and present potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Hua Guo
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Yunyun Zhang
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Xin Xiang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Tang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Xiaochuan Cui
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China.
| |
Collapse
|
2
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
3
|
Wu Y, Wu Y, Yu J, Zhang Y, Dai X, Chen J, Sun Y, Yang Y, Zhao K, Xiao Q. Irisin alters D-galactose-induced apoptosis by increasing caveolin-1 expression in C2C12 myoblasts and skeletal muscle fibroblasts. Mol Cell Biochem 2024:10.1007/s11010-024-04990-6. [PMID: 38581552 DOI: 10.1007/s11010-024-04990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
Muscle atrophy and skeletal muscle fibrosis are significant pathological manifestations of primary sarcopenia. The regulation of C2C12 myoblast and skeletal muscle fibroblast apoptosis is associated with these pathological changes. Previous studies have indicated that irisin, the cleaved form of fibronectin type III domain-containing protein 5 (FNDC5), can alleviate primary sarcopenia. However, the mechanisms of the effect of irisin in age-related apoptosis remain unknown. Our present research aimed to explore the effect of irisin and the underlying mechanism of D-galactose (D-gal)-induced apoptosis in skeletal muscle fibroblasts and C2C12 myoblasts. We found the opposite effects of D-gal on C2C12 myoblasts and fibroblasts. We also found that irisin suppressed C2C12 cell apoptosis and promoted fibroblast apoptosis. Mechanistically, irisin altered D-gal-induced apoptosis by increasing caveolin-1 expression. Taken together, these findings further demonstrated that irisin is a potential agent that can treat aged-relative muscle atrophy and fibrosis.
Collapse
Affiliation(s)
- Yaoxuan Wu
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Yongxin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Yingxiao Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Xin Dai
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310001, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| | - Yongxue Yang
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China.
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China.
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1St You Yi Road, Yu Zhong District, Chongqing, 400010, China
| |
Collapse
|
4
|
Li C, Yin X, Xue P, Wang F, Song R, Song Q, Su J, Zhang H. Apoptosis and autophagy of muscle cell during pork postmortem aging. Anim Biosci 2024; 37:284-294. [PMID: 37905320 PMCID: PMC10766493 DOI: 10.5713/ab.23.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Pork is an important source of animal protein in many countries. Subtle physiochemical changes occur during pork postmortem aging. The changes of apoptosis and autophagy in pork at 6 h to 72 h after slaughter were studied to provide evidence for pork quality. METHODS In this article, morphological changes of postmortem pork was observed through Hematoxylin-eosin staining, apoptotic nuclei were observed by TdT-mediated dUTP nick end labeling assay, protein related to apoptosis and autophagy expressions were tested by western blot and LC3 level were expressed according to immunofluorescence assay. RESULTS In this study, we found the occurrence of apoptosis in postmortem pork, and the process was characterized by nucleus condensation and fragmentation, formation of apoptotic bodies, increase in apoptosis-related Bax/Bcl-2 levels, and activation of caspases. Autophagy reached its peak between 24 and 48 h after slaughter, accompanied by the formation of autophagosomes on the cell membrane and expression of autophagy-related proteins beclin-1, P62, LC3-I, LC3-II, and ATG5. CONCLUSION Obvious apoptosis was observed at 12 h and autophagy reached its peak at 48 h. The present work provides the evidence for the occurrence of apoptosis and autophagy during postmortem aging of pork. In conclusion, the apoptosis and autophagy of muscle cells discovered in this study have important implications for pork in the meat industry.
Collapse
Affiliation(s)
- Chunmei Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009,
China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225009,
China
| | - Xialian Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009,
China
| | - Panpan Xue
- Jiangsu Food & Pharmaceutical Science College, Huaian 223023,
China
| | - Feng Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009,
China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009,
China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009,
China
| | - Qi Song
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009,
China
| | - Jiamin Su
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009,
China
| | - Haifeng Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009,
China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou 225009,
China
| |
Collapse
|
5
|
Mitteldorf J. Biological Clocks: Why We Need Them, Why We Cannot Trust Them, How They Might Be Improved. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:356-366. [PMID: 38622101 DOI: 10.1134/s0006297924020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024]
Abstract
Late in life, the body is at war with itself. There is a program of self-destruction (phenoptosis) implemented via epigenetic and other changes. I refer to these as type (1) epigenetic changes. But the body retains a deep instinct for survival, and other epigenetic changes unfold in response to a perception of accumulated damage (type (2)). In the past decade, epigenetic clocks have promised to accelerate the search for anti-aging interventions by permitting prompt, reliable, and convenient measurement of their effects on lifespan without having to wait for trial results on mortality and morbidity. However, extant clocks do not distinguish between type (1) and type (2). Reversing type (1) changes extends lifespan, but reversing type (2) shortens lifespan. This is why all extant epigenetic clocks may be misleading. Separation of type (1) and type (2) epigenetic changes will lead to more reliable clock algorithms, but this cannot be done with statistics alone. New experiments are proposed. Epigenetic changes are the means by which the body implements phenoptosis, but they do not embody a clock mechanism, so they cannot be the body's primary timekeeper. The timekeeping mechanism is not yet understood, though there are hints that it may be (partially) located in the hypothalamus. For the future, we expect that the most fundamental measurement of biological age will observe this clock directly, and the most profound anti-aging interventions will manipulate it.
Collapse
|
6
|
Panier S, Wang S, Schumacher B. Genome Instability and DNA Repair in Somatic and Reproductive Aging. ANNUAL REVIEW OF PATHOLOGY 2024; 19:261-290. [PMID: 37832947 DOI: 10.1146/annurev-pathmechdis-051122-093128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Genetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.
Collapse
Affiliation(s)
- Stephanie Panier
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Siyao Wang
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Rahman FA, Hian-Cheong DJ, Boonstra K, Ma A, Thoms JP, Zago AS, Quadrilatero J. Augmented mitochondrial apoptotic signaling impairs C2C12 myoblast differentiation following cellular aging through sequential passaging. J Cell Physiol 2024. [PMID: 38212955 DOI: 10.1002/jcp.31155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
Aging is associated with the steady decline of several cellular processes. The loss of skeletal muscle mass, termed sarcopenia, is one of the major hallmarks of aging. Aged skeletal muscle exhibits a robust reduction in its regenerative capacity due to dysfunction (i.e., senescence, lack of self-renewal, and impaired differentiation) of resident muscle stem cells, called satellite cells. To replicate aging in vitro, immortalized skeletal muscle cells (myoblasts) can be treated with various agents to mimic age-related dysfunction; however, these come with their own set of limitations. In the present study, we used sequential passaging of mouse myoblasts to mimic impaired differentiation that is observed in aged skeletal muscle. Further, we investigated mitochondrial apoptotic mechanisms to better understand the impaired differentiation in these "aged" cells. Our data shows that sequential passaging (>20 passages) of myoblasts is accompanied with significant reductions in differentiation and elevated cell death. Furthermore, high-passage (HP) myoblasts exhibit greater mitochondrial-mediated apoptotic signaling through mitochondrial BAX translocation, CYCS and AIFM1 release, and caspase-9 activation. Finally, we show that inhibition of mitochondrial outer membrane permeability partly recovered differentiation in HP myoblasts. Together, our findings suggests that mitochondrial apoptotic signaling is a contributing factor to the diminished differentiation that is observed in aged myoblasts.
Collapse
Affiliation(s)
- Fasih A Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Dylan J Hian-Cheong
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Kristen Boonstra
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Andrew Ma
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - James P Thoms
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Anderson S Zago
- Department of Physical Education, School of Sciences, Sao Paulo State University, Bauru, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
8
|
Faitg J, D'Amico D, Rinsch C, Singh A. Mitophagy Activation by Urolithin A to Target Muscle Aging. Calcif Tissue Int 2024; 114:53-59. [PMID: 37925671 PMCID: PMC10791945 DOI: 10.1007/s00223-023-01145-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
The age-related loss of skeletal muscle function starts from midlife and if left unaddressed can lead to an impaired quality of life. A growing body of evidence indicates that mitochondrial dysfunction is causally involved with muscle aging. Muscles are tissues with high metabolic requirements, and contain rich mitochondria supply to support their continual energy needs. Cellular mitochondrial health is maintained by expansing of the mitochondrial pool though mitochondrial biogenesis, by preserving the natural mitochondrial dynamic process, via fusion and fission, and by ensuring the removal of damaged mitochondria through mitophagy. During aging, mitophagy levels decline and negatively impact skeletal muscle performance. Nutritional and pharmacological approaches have been proposed to manage the decline in muscle function due to impaired mitochondria bioenergetics. The natural postbiotic Urolithin A has been shown to promote mitophagy, mitochondrial function and improved muscle function across species in different experimental models and across multiple clinical studies. In this review, we explore the biology of Urolithin A and the clinical evidence of its impact on promoting healthy skeletal muscles during age-associated muscle decline.
Collapse
Affiliation(s)
- Julie Faitg
- Amazentis SA, EPFL Innovation Park, 1024, Ecublens, Switzerland.
| | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, 1024, Ecublens, Switzerland
| | - Chris Rinsch
- Amazentis SA, EPFL Innovation Park, 1024, Ecublens, Switzerland
| | - Anurag Singh
- Amazentis SA, EPFL Innovation Park, 1024, Ecublens, Switzerland.
| |
Collapse
|
9
|
Ma M, Chen M, Wu X, Sooranna SR, Liu Q, Shi D, Wang J, Li H. A newly identified lncRNA lnc000100 regulates proliferation and differentiation of cattle skeletal muscle cells. Epigenetics 2023; 18:2270864. [PMID: 37910666 PMCID: PMC10768731 DOI: 10.1080/15592294.2023.2270864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
Cattle skeletal muscle development is a complex and highly coordinated biological process mediated by a series of myogenic regulators, which plays a critical role in beef yield and quality. Long non-coding RNAs (lncRNAs) have been shown to regulate skeletal muscle development. However, the molecular mechanism by which lncRNAs regulate skeletal muscle development is largely unknown. We performed transcriptome analysis of muscle tissues of adult and embryo Angus cattle to investigate the mechanism by which lncRNA regulates skeletal muscle development between adult and embryo cattle. A total of 37,115 candidate lncRNAs were detected, and a total of 1,998 lncRNAs were differentially expressed between the muscle tissue libraries of adult and embryo cattle, including 1,229 up-regulated lncRNAs and 769 down-regulated lncRNAs (adult cattle were the control group). We verified the expression of 7 differentially expressed lncRNAs by quantitative real-time PCR (RT-qPCR), and analysed the tissue expression profile of lnc000100, which is down-regulated in the longest dorsal muscle during foetal life and which is highly specifically expressed in muscle tissue. We found that the interference of lnc000100 significantly inhibited cell proliferation and promoted cell differentiation. Lnc000100 was located in the nucleus by RNA-FISH. Our research provides certain resources for the analysis of lncRNA regulating cattle skeletal muscle development, and may also provide new insights for improving beef production and breed selection.
Collapse
Affiliation(s)
- Mengke Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Suren R. Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Kim JY, Lee B, Kim EJ, Choi YM. Effects of apoptotic factor levels on palatability variation during postmortem aging of Holstein longissimus thoracis muscles classified as Warner-Bratzler shear force change value. Food Chem 2023; 428:136741. [PMID: 37423112 DOI: 10.1016/j.foodchem.2023.136741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
This study compared the caspase levels and myofibrillar protein degradation of longissimus thoracis muscles between the two groups with varying extents of tenderization during postmortem aging to investigate the cause of tenderness variation between aged beef from Holstein-Friesian steers. The change value (CV) of Warner-Bratzler shear force (WBS) was determined as the difference in WBS between 0 and 14 d of aging. The higher change (HC) value group exhibited lower WBS and higher initial tenderness values than the lower change (LC) value group aged 14 and 28 d (P < 0.05), even though there was no difference between the CV groups aged 0 d (P > 0.05). The higher tenderness improvement in the HC group at 14 d might be related to the lower cytochrome C and caspase values and higher degradation of desmin and troponin T compared to the LC group (P < 0.05).
Collapse
Affiliation(s)
- Jae Yeong Kim
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea
| | - Boin Lee
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea
| | - Eun Joong Kim
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea
| | - Young Min Choi
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju-si 37224, South Korea.
| |
Collapse
|
11
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
12
|
Hernández-Álvarez D, Rosado-Pérez J, Gavia-García G, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review. Biomedicines 2023; 11:598. [PMID: 36831134 PMCID: PMC9952920 DOI: 10.3390/biomedicines11020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| |
Collapse
|
13
|
Peña-Toledo MA, Luque E, LaTorre M, Jimena I, Leiva-Cepas F, Ruz-Caracuel I, Agüera E, Peña-Amaro J, Tunez I. The ultrastructure of muscle fibers and satellite cells in experimental autoimmune encephalomyelitis after treatment with transcranial magnetic stimulation. Ultrastruct Pathol 2022; 46:401-412. [PMID: 35994513 DOI: 10.1080/01913123.2022.2112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.
Collapse
Affiliation(s)
- María Angeles Peña-Toledo
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, Cordoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Ignacio Jimena
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Fernando Leiva-Cepas
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Department of Pathology, Reina Sofía University Hospital, Córdoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Department of Pathology, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Eduardo Agüera
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, Cordoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain
| | - J Peña-Amaro
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Isaac Tunez
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministery for Economy, Industry and Competitiveness, Madrid, Spain
| |
Collapse
|
14
|
Hyun J, Ryu B, Oh S, Chung DM, Seo M, Park SJ, Byun K, Jeon YJ. Reversibility of sarcopenia by Ishige okamurae and its active derivative diphloroethohydroxycarmalol in female aging mice. Biomed Pharmacother 2022; 152:113210. [PMID: 35689860 DOI: 10.1016/j.biopha.2022.113210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
With the rapid increase in the elderly population worldwide, the number of people with sarcopenia has also increased significantly, and this disease is emerging as a medical and social issue. The development of pharmaceutics targeting sarcopenia is limited owing to the occurrence of side effects, and exercise therapy also has a limited scope of application. Therefore, it is necessary to develop safe and biocompatible agents to treat age-related sarcopenia. Ishige okamurae (IO), an edible brown alga, and its active substance, diphloroethohydroxycarmalol (DPHC), have been reported to have various physiological functions, including skeletal muscle regeneration ability. However, this effect has not been verified in an in vivo aging model. As an aging model, the oral IO extracts and DPHC supplemented 14-month-old female C57BL/6J mice were compared to the young group in this study; the mice model showed a substantial restoration of physical exercise ability with the imbalance of famine hormone and senescence-associated secretary phenotypes compared with those in young mice. Regarding the lean mass increase in aging mice following IO extract and DPHC administration, the muscular characteristics and molecular alterations in the gastrocnemius and soleus muscles, which are sensitive to the damage that occurs during the aging process, were significantly improved. Collectively, the current study reveals that the natural agent IO extract and its derivative DPHC can reverse sarcopenia that occurs during the process of aging by improving the imbalance of muscle regeneration in vivo.
Collapse
Affiliation(s)
- Jimin Hyun
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, the Republic of Korea
| | - Bomi Ryu
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, the Republic of Korea.
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, the Republic of Korea
| | - Dong-Min Chung
- Shinwoo corperation. Ltd. Jinju 52839, the Republic of Korea
| | - Minyoung Seo
- Shinwoo corperation. Ltd. Jinju 52839, the Republic of Korea
| | - Shin Jae Park
- Shinwoo corperation. Ltd. Jinju 52839, the Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, the Republic of Korea; Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, the Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, the Republic of Korea; Marine Science Institute, Jeju National University, Jeju 63333, the Republic of Korea.
| |
Collapse
|
15
|
Zou B, Yu Q, Shao L, Sun Y, Li X, Dai R. Alteration of Mitochondrial Lipidome and Its Potential Effect on Apoptosis, Mitochondrial Reactive Oxygen Species Production, and Muscle Oxidation in Beef during Early Postmortem. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8064-8074. [PMID: 35709527 DOI: 10.1021/acs.jafc.2c02519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid molecules are important participants in mitochondria-mediated apoptosis. This study explored the effect of mitochondrial lipids on mitochondria-mediated apoptosis, mitochondrial reactive oxygen species (ROS) production, and muscle oxidation of beef longissimus lumborum (LL, n = 6) and psoas major (PM, n = 6) during 24 h postmortem. A total of 432 lipid species matched with 21 lipid classes were identified. Remarkably, at 12 h postmortem, the levels of cardiolipin and phosphatidylserine in PM and ceramide, cardiolipin, phosphatidylserine, and sphingosine in LL increased significantly compared with 1 h postmortem, indicating that mitochondria-mediated apoptosis in beef muscle was accelerated during early postmortem. Moreover, PM had higher levels of cardiolipin and phosphatidylserine than LL, also suggesting a higher degree of apoptosis in PM during postmortem. Lipid molecules may assist the production of mitochondrial ROS and decrease the mitochondrial membrane potential (MMP) during postmortem apoptosis, resulting in muscle oxidation and the damage of antioxidant system. Notably, compared with LL, PM had higher abundance of apoptosis-related lipid molecules, a higher amount of ROS, faster diminishment in MMP, and then a higher degree of apoptosis. These findings provided new insights into the apoptosis and muscle biochemistry in beef during early postmortem.
Collapse
Affiliation(s)
- Bo Zou
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, P. R. China
| | - Lele Shao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Yingying Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Xingmin Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P. R. China
| | - Ruitong Dai
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, P. R. China
| |
Collapse
|
16
|
Su H, Wen T, Liu D, Shao J, Zhao L, Gao Q. Effect of 32-Weeks High-Intensity Interval Training and Resistance Training on Delaying Sarcopenia: Focus on Endogenous Apoptosis. Front Physiol 2022; 13:811369. [PMID: 35574455 PMCID: PMC9095960 DOI: 10.3389/fphys.2022.811369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia caused by aging is an important factor leading to a decline in the quality of life of older people. Apoptosis in muscle atrophy accelerates the process of muscle loss in older populations. The present study aimed to investigate the effects of 32 weeks of high-intensity interval training (HIIT) and resistance training (RT) on the skeletal muscle-related indices and provide a theoretical basis for regulating the mitochondrial-mediated pathway to delay sarcopenia. We randomly selected 10 from eight-month-old male SD rats (N = 130) as the baseline group; after 1 week of adaptive feeding, the rats were sacrificed. The remaining rats were randomly assigned to one of three groups: control group (C, N = 40, natural aging for 32 weeks), HIIT group (H, N = 40, performed six loops of 3 min at 90% and 3 min at 50% VO2 max speed treadmill running, with 5 min at 70% VO2 max speed at the beginning and the end of the training, 3 times a week for 32 weeks), and resistance group (R, n = 40, 46 min per day, 3 days per week, with a 30% maximum load on a treadmill with a slope of 35°, 15 m/min). The soleus muscles were collected for analysis at baseline and every 8 weeks. Aging resulted in decreased soleus muscle mass and Bcl-2 levels in the mitochondria, while the levels of reactive oxygen species (ROS) and Bax did not change. HIIT reversed the age-associated activation of pro-apoptotic processes, but RT did not. In addition, when rats were aged from 8 to 16 months, the level of Cyt-C did not change, the Caspase-9 levels and Caspase-3 levels decreased gradually in the soleus muscles, the rats of both the HIIT and RT groups had these indices decreased at 32 weeks. The results suggest that the age-associated loss of muscle mass was reversed by training, and the effect of RT was better than that of HIIT. Both the HIIT and RT rats showed a decrease in the apoptosis of skeletal muscle cells after 32 weeks of intervention. HIIT performed better for long-term intervention regarding the pro-apoptotic factors. This study warranted further research to delineate the underlying mechanism of effects of different exercise methods on the changes of aging skeletal muscle at in vivo level.
Collapse
Affiliation(s)
- Hao Su
- Department of Exercise Biochemistry, Beijing Sport University, Beijing, China
| | - Tianhao Wen
- Military Common Subject Teaching and Research Section, PLA Rocket Force University of Engineering, Xi’an, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- Sport physical therapy and therapeutic exercise, sports health, Beijing Sport University, Beijing, China
| | - Jia Shao
- School of Sport Science, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Lei Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Qi Gao
- Sport physical therapy and therapeutic exercise, sports health, Beijing Sport University, Beijing, China
- *Correspondence: Qi Gao,
| |
Collapse
|
17
|
Ma J, Yu Q, Han L. The effect of postmortem pH decline rate on caspase-3 activation and tenderness of bovine skeletal muscle during aging. J Food Biochem 2022; 46:e14215. [PMID: 35484879 DOI: 10.1111/jfbc.14215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the effect of postmortem pH decline rate on caspase-3 activity and bovine muscle tenderness during aging. Protein denaturation, reactive oxygen species (ROS) levels, mitochondrial apoptosis factors, and shear force were assessed in bovine muscles with different pH decline rates. The results showed that, compared with the slow group, the fast pH decline group had a 1.79% and 1.39% higher sarcoplasmic protein denaturation at 6 and 12 h, respectively (p < .05), and a significantly or extremely significantly higher ROS levels at 6-24 (p < .05, p < .01). Moreover, the fast group had a 14.05%, 22.39%,18.34%, and 25.28% of higher mitochondrial dysfunction at 6, 12, 24, and 72 h, respectively (p < .05); a 16.71%, 23.39%, 17.05%, and 26.61% of lower cytochrome c reduction levels at 6, 12, 24, and 120 h, respectively (p < .05); a significantly increased caspase-3 activity and proportion of apoptotic nuclei at 12-168 and 24-168 h, respectively (p < .05); and a 5.70%, 7.24%, 12.16%, 10.10% and 10.49% decreased shear force at 12, 24, 72,120, and 168 h, respectively (p < .05). These results demonstrated that the fast postmortem pH decline enhanced caspase-3 activation and bovine muscle tenderization by mitochondrial dysfunction-induced apoptosis during aging. PRACTICAL APPLICATIONS: Beef tenderness has long been one of the most important concerns for consumers and the meat industry. To date, the postmortem aging process has been an effective way to improve the tenderness of chilled beef. However, changes in many of the elements in a cattle's muscle after slaughter might actually determine the final tenderness of the meat. The present study suggested that the fast postmortem pH decline could promote the activation of caspase-3 and improve the tenderness of beef during aging. This finding can provide a basis for the meat processing industry to produce beef with high tenderness. In the future, beef tenderness could even be improved by adjusting the glycolytic rate and pH of muscle for a short time after slaughter.
Collapse
Affiliation(s)
- Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Lee SM, Lee MC, Bae WR, Yoon KJ, Moon HY. Muscle fiber type-dependence effect of exercise on genomic networks in aged mice models. Aging (Albany NY) 2022; 14:3337-3364. [PMID: 35440516 PMCID: PMC9085230 DOI: 10.18632/aging.204024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
Skeletal muscles are made up of various muscle fiber type including slow and fast-twitch fibers. Because each muscle fiber has its own physiological characteristics, the effects of aging and exercise vary depending on the type of muscle fiber. We used bioinformatics screening techniques such as differentially expressed gene analysis, gene ontology analysis and gene set enrichment analysis, to try to understand the genetic differences between muscle fiber types. The experiment and gene expression profiling in this study used the soleus (SOL, slow-twitch muscle) and gastrocnemius (GAS, fast-twitch muscle). According to our findings, fatty acid metabolism is significantly up-regulated in SOL compared to GAS, whereas the glucose metabolism pathway is significantly down-regulated in SOL compared to GAS. Furthermore, apoptosis and myogenesis patterns differ between SOL and GAS. SOL did not show differences in apoptosis due to the aging effect, but apoptosis in GAS was significantly up-regulated with age. Apoptosis in GAS of old groups is significantly reduced after 4 weeks of aerobic exercise, but no such finding was found in SOL. In terms of myogenesis, exercise intervention up-regulated this process in GAS of old groups but not in SOL. Taken together, muscle fiber type significantly interacts with aging and exercise. Despite the importance of the interaction between these factors, large-scale gene expression data has rarely been studied. We hope to contribute to a better understanding of the relationship between muscle fiber type, aging and exercise at the molecular level.
Collapse
Affiliation(s)
- Sun Min Lee
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Min Chul Lee
- Department of Sports Medicine, College of Health Science, CHA University, Pocheon, South Korea
| | - Woo Ri Bae
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Kyung Jin Yoon
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, South Korea.,Institute of Sport Science, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Kim SJ, Devgan A, Miller B, Lee SM, Kumagai H, Wilson KA, Wassef G, Wong R, Mehta HH, Cohen P, Yen K. Humanin-induced autophagy plays important roles in skeletal muscle function and lifespan extension. Biochim Biophys Acta Gen Subj 2022; 1866:130017. [PMID: 34624450 PMCID: PMC8595716 DOI: 10.1016/j.bbagen.2021.130017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Autophagy, a highly conserved homeostatic mechanism, is essential for cell survival. The decline of autophagy function has been implicated in various diseases as well as aging. Although mitochondria play a key role in the autophagy process, whether mitochondrial-derived peptides are involved in this process has not been explored. METHODS We developed a high through put screening method to identify potential autophagy inducers among mitochondrial-derived peptides. We used three different cell lines, mice, c.elegans, and a human cohort to validate the observation. RESULTS Humanin, a mitochondrial-derived peptide, increases autophagy and maintains autophagy flux in several cell types. Humanin administration increases the expression of autophagy-related genes and lowers accumulation of harmful misfolded proteins in mice skeletal muscle, suggesting that humanin-induced autophagy potentially contributes to the improved skeletal function. Moreover, autophagy is a critical role in humanin-induced lifespan extension in C. elegans. CONCLUSIONS Humanin is an autophagy inducer. GENERAL SIGNIFICANCE This paper presents a significant, novel discovery regarding the role of the mitochondrial derived peptide humanin in autophagy regulation and as a possible therapeutic target for autophagy in various age-related diseases.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anjali Devgan
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sam Mool Lee
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Gabriella Wassef
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Richard Wong
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Kim N, Kang Y, Choi YJ, Lee Y, Park SJ, Park HS, Kwon M, Chung YS, Park YK. Musculoskeletal Health of the Adults Over 50 Years of Age in Relation to Antioxidant Vitamin Intakes. Clin Nutr Res 2022; 11:84-97. [PMID: 35559002 PMCID: PMC9065398 DOI: 10.7762/cnr.2022.11.2.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022] Open
Abstract
As the proportion of the elderly population increases rapidly, interest in musculoskeletal health is also emerging. Here, we investigated how antioxidant vitamin intake and musculoskeletal health are related. Adults aged 50 to 80 years with a body mass index (BMI) of 18.5 to 27.0 kg/m2 were included. Bone mineral density (BMD), lean mass (LM), appendicular skeletal muscle mass index (ASMI) were measured using dual-energy X-ray absorptiometry (DXA), and the grip strength and knee extension using hand dynamometer. Nutrient intakes were measured using a 24-hour recall questionnaire. A total of 153 adults (44 men and 109 women) participated in this study. A partial correlation analysis showed a significant positive relationship between vitamin E and BMD and between vitamin C and LM/Height. Participants were classified into three groups according to whether their vitamin E and C intake met the recommended intake for Dietary Reference Intakes for Koreans (KDRIs). The prevalence of having low T-score (< −1.0) and low ASMI (< 7.0 for men and < 5.4 for women) was 51.3% and 15.4% in the group with vitamins C and E intakes below KDRIs. After adjusting for sex, smoking status and energy, protein, vitamin D, and calcium intake, the group with vitamins C and E both below the KDRIs displayed a significantly lower BMD at all test sites and LM/Height compared with vitamin C and/or E intake above the KDRIs groups. We conclude that sufficient intake of vitamin E and C is important for maintaining BMD and lean mass in Korean adults over 50 years of age.
Collapse
Affiliation(s)
- Namhee Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | - Yeji Kang
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | - Yong Jun Choi
- Department of Endocrinology and Metabolism, Ajou University, Suwon 16499, Korea
| | - Yunhwan Lee
- Department of Preventive Medicine and Public Health, Ajou University, Suwon 16499, Korea
| | - Seok Jun Park
- R&D Unit, Maeil Health Nutrition Co., Ltd., Seoul 03142, Korea
| | - Hyoung Su Park
- R&D Unit, Maeil Health Nutrition Co., Ltd., Seoul 03142, Korea
| | - Miyoung Kwon
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
- Nutritional Science Research Group, Maeil Dairies Co., Ltd., Pyeongtaek 17714, Korea
| | - Yoon-Sok Chung
- Department of Endocrinology and Metabolism, Ajou University, Suwon 16499, Korea
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
21
|
Ma J, Chen C, Yu Q, Han L. AMP-activated protein kinase contributes to myofibrillar protein hydrolysis in bovine skeletal muscle through postmortem mitochondrial dysfunction-induced apoptosis. J Food Biochem 2021; 46:e14028. [PMID: 34894156 DOI: 10.1111/jfbc.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to verify the role of AMP-activated protein kinase (AMPK) in mitochondrial dysfunction-induced apoptosis and postmortem bovine muscle tenderization. AMPK phosphorylation levels, mitochondrial dysfunction, mitochondrial apoptotic factors, and myofibrillar protein hydrolysis were assessed in the control group and Compound C (AMPK inhibitor) group over a 168 hr aging period. Compared with the Compound C group, the control group had an extremely significantly increased AMPK activity at 6-120 hr (p < .01) and a 62.3% and 42.1% higher mitochondrial Bax/Bcl-2 ratio at 6 and 12 hr, respectively (p < .05). Moreover, the control group had a significantly or extremely significantly higher mitochondrial dysfunction and cytoplasmic cytochrome c content at 6-72 and 12-72 hr, respectively (p < .05, p < .01); a 23.2%, 26.5%, and 26.1% increased caspase-3 expression levels at 12, 24, and 72 hr, respectively (p < .05); a significantly higher proportion of apoptotic nuclei at 24-168 hr (p < .05); and a 30.8%, 35.8%, 43.9%, and 39.5% increased production of 45-, 38-, 36-, 30-, and 28-kDa proteins at 168 hr, respectively (p < .05). Taken together, these results suggested that activated AMPK promoted mitochondrial apoptosis and bovine muscle tenderization during postmortem aging by increasing the Bax/Bcl-2 ratio on the mitochondrial membrane. PRACTICAL APPLICATIONS: Based on consumer preference, chilled fresh meat is gradually becoming the future trend of the meat industry. Poorly tenderized beef often affects consumers' desire to make secondary purchases and leads to large losses to the meat industry. Therefore, AMP-activated protein kinase, which regulates postmortem mitochondrial apoptosis and bovine muscle tenderization, is a valid research target.
Collapse
Affiliation(s)
- Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Age-related structural changes show that loss of fibers is not a significant contributor to muscle atrophy in old mice. Exp Gerontol 2021; 156:111618. [PMID: 34737004 DOI: 10.1016/j.exger.2021.111618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/10/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Age-related loss of skeletal muscle mass is widely considered a consequence of both fiber atrophy and fiber death. Evidence for fiber death derives largely from an age-related reduction in fiber numbers in muscle cross-sections, however it is unclear how age-related alterations in muscle morphology affect accuracy of such counts. To explore this we performed an examination of muscle and tendon length, muscle mass and girth, and pennation angle, in addition to histological section fiber counts of parallel-fibered (sternomastoid), fusiform (biceps brachii), and pennate (tibialis anterior, extensor digitorum longus, soleus) muscles from 31 mice aged 6-32 months. Age-related decline in mass and girth occurred in soleus (p = 0.026; p = 0.040), tibialis anterior (p = 0.004; p = 0.039), and extensor digitorum longus (p = 0.040; p = 0.022) muscles, for which location of maximal girth also changed. Tendon length and pennation angle remained consistent across the lifespan in all except soleus which showed elongation of both proximal and distal tendons coupled with alterations in pennation angle. Age-related decreases in fiber number were observed in transversely sectioned soleus and extensor digitorum longus muscles however when age-related changes in morphology were accounted for via oblique sectioning the age-related decrease in fiber number was eliminated. Findings show loss of fibers is not a significant contributor to age-related muscle wasting in mice, and that age-related changes in connective tissue selectively impact muscle structure. Fiber shortening is a likely contributor to loss of mass and change in function in muscles of old mice.
Collapse
|
23
|
Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int J Mol Sci 2021; 22:ijms22158179. [PMID: 34360946 PMCID: PMC8348122 DOI: 10.3390/ijms22158179] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy—the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Correspondence: ; Tel.: +1-514-476-6688
| | - Sabah N. A. Hussain
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting & Cachexia in Chronic Respiratory Diseases & Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Gilles Gouspillou
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada
| |
Collapse
|
24
|
Gras S, Blasco A, Mòdol-Caballero G, Tarabal O, Casanovas A, Piedrafita L, Barranco A, Das T, Rueda R, Pereira SL, Navarro X, Esquerda JE, Calderó J. Beneficial effects of dietary supplementation with green tea catechins and cocoa flavanols on aging-related regressive changes in the mouse neuromuscular system. Aging (Albany NY) 2021; 13:18051-18093. [PMID: 34319911 PMCID: PMC8351677 DOI: 10.18632/aging.203336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Besides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles. Additionally, both supplements significantly augmented the number of innervated NMJs and their degree of maturity compared to controls. GTE, but not cocoa, prominently increased the density of VAChT and VGluT2 afferent synapses on MNs, which were lost in control aged spinal cords; conversely, cocoa, but not GTE, significantly augmented the proportion of VGluT1 afferent synapses on aged MNs. Moreover, GTE, but not cocoa, reduced aging-associated microgliosis and increased the proportion of neuroprotective microglial phenotypes. Our data indicate that certain plant flavonoids may be beneficial in the nutritional management of age-related deterioration of the neuromuscular system.
Collapse
Affiliation(s)
- Sílvia Gras
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Guillem Mòdol-Caballero
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Alejandro Barranco
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Tapas Das
- Abbott Nutrition, Research and Development, Columbus, OH 43215, USA
| | - Ricardo Rueda
- Abbott Nutrition, Research and Development, Granada, Spain
| | | | - Xavier Navarro
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain
| | - Josep E. Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
25
|
Silvera S, Wilkinson JA, LeBlanc PJ. Characterization of neutral sphingomyelinase activity and isoform expression in rodent skeletal muscle mitochondria. Mitochondrion 2021; 59:184-189. [PMID: 34089907 DOI: 10.1016/j.mito.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Skeletal muscle is composed of fiber types that differ in mitochondrial content, antioxidant capacity, and susceptibility to apoptosis. Ceramides have been linked to oxidative stress-mediated apoptotic intracellular signalling and the enzyme neutral sphingomyelinase (nSMase) is, in part, responsible for generating these ceramides through the hydrolysis of sphingomyelin. Despite the role of ceramides in mediating apoptosis, there is a gap in the literature regarding nSMase in skeletal muscle mitochondria. This study aimed to characterize total nSMase activity and individual isoform expression in isolated subsarcolemmal (SS) mitochondria from soleus, diaphragm, plantaris, and extensor digitorum longus (EDL). Total nSMase activity did not differ between muscle types. nSMase2 content was detectable in all muscles and higher in EDL, soleus, and plantaris compared to diaphragm whereas nSMase3 was undetectable in all muscles. Finally, total nSMase activity positively correlated to nSMase2 protein content in soleus but not the other muscles. These findings suggest that nSMase associated with SS mitochondria may play a role in intracellular signalling processes involving ceramides in skeletal muscle and nSMase2 may be the key isoform, specifically in slow twitch muscle like soleus. Further studies are needed to fully elucidate the specific contribution of nSMase, along with the role of the various isoforms and mitochondrial subpopulation in generating mitochondrial ceramides in skeletal muscle, and its potential effects on mediating apoptosis.
Collapse
Affiliation(s)
- Sebastian Silvera
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada
| | - Jennifer A Wilkinson
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada
| | - Paul J LeBlanc
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada.
| |
Collapse
|
26
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
27
|
Estradiol deficiency and skeletal muscle apoptosis: Possible contribution of microRNAs. Exp Gerontol 2021; 147:111267. [PMID: 33548486 PMCID: PMC9897888 DOI: 10.1016/j.exger.2021.111267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Menopause leads to estradiol (E2) deficiency that is associated with decreases in muscle mass and strength. Here we studied the effect of E2 deficiency on microRNA (miR) signaling that targets apoptotic pathways. METHODS C57BL6 mice were divided into control (normal estrous cycle, n = 8), OVX (E2 deficiency, n = 7) and OVX + E2 groups (E2-pellet, n = 4). Six weeks following the OVX surgery, mice were sacrificed and RNA isolated from gastrocnemius muscles. miR-profiles were studied with Next-Generation Sequencing (NGS) and candidate miRs verified using qPCR. The target proteins of the miRs were found using in silico analysis and measured at mRNA (qPCR) and protein levels (Western blot). RESULTS Of the apoptosis-linked miRs present, eleven (miRs-92a-3p, 122-5p, 133a-3p, 214-3p, 337-3p, 381-3p, 483-3p, 483-5p, 491-5p, 501-5p and 652-3p) indicated differential expression between OVX and OVX + E2 mice in NGS analysis. In qPCR verification, muscle from OVX mice had lower expression of all eleven miRs compared with OVX + E2 (p < 0.050). Accordingly, OVX had higher expression of cytochrome C and caspases 6 and 9 compared with OVX + E2 at the mRNA level (p < 0.050). At the protein level, OVX also had lower anti-apoptotic BCL-W and greater pro-apoptotic cytochrome C and active caspase 9 compared with OVX + E2 (p < 0.050). CONCLUSION E2 deficiency downregulated several miRs related to apoptotic pathways thus releasing their targets from miR-mediated suppression, which may lead to increased apoptosis and contribute to reduced skeletal muscle mass.
Collapse
|
28
|
Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021; 10:cells10051054. [PMID: 33946883 PMCID: PMC8146406 DOI: 10.3390/cells10051054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Sarcopenia is the loss of both muscle mass and function with age. Although the molecular underpinnings of sarcopenia are not fully understood, numerous pathways are implicated, including autophagy, in which defective cargo is selectively identified and degraded at the lysosome. The specific tagging and degradation of mitochondria is termed mitophagy, a process important for the maintenance of an organelle pool that functions efficiently in energy production and with relatively low reactive oxygen species production. Emerging data, yet insufficient, have implicated various steps in this pathway as potential contributors to the aging muscle atrophy phenotype. Included in this is the lysosome, the end-stage organelle possessing a host of proteolytic and degradative enzymes, and a function devoted to the hydrolysis and breakdown of defective molecular complexes and organelles. This review provides a summary of our current understanding of how the autophagy-lysosome system is regulated in aging muscle, highlighting specific areas where knowledge gaps exist. Characterization of the autophagy pathway with a particular focus on the lysosome will undoubtedly pave the way for the development of novel therapeutic strategies to combat age-related muscle loss.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +(416)-736-2100 (ext. 66640)
| |
Collapse
|
29
|
Hughes LD, Wang Y, Meli AP, Rothlin CV, Ghosh S. Decoding Cell Death: From a Veritable Library of Babel to Vade Mecum? Annu Rev Immunol 2021; 39:791-817. [PMID: 33902311 DOI: 10.1146/annurev-immunol-102819-072601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance-spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider (a) the varying contexts during which different cell death modalities are observed, (b) the nature of the information that can be passed on by cell corpses, and (c) the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.
Collapse
Affiliation(s)
- Lindsey D Hughes
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Yaqiu Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Alexandre P Meli
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , ,
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , , , .,Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA;
| | - Sourav Ghosh
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA; .,Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
30
|
Kim TY, Kang JH, Lee SB, Kang TB, Lee KH. Down-regulation of pro-necroptotic molecules blunts necroptosis during myogenesis. Biochem Biophys Res Commun 2021; 557:33-39. [PMID: 33862457 DOI: 10.1016/j.bbrc.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Cell death and differentiation are closely related at the molecular level. Differentiation of skeletal muscle cells attenuates susceptibility to apoptosis. Necroptosis has recently been recognized as a form of regulated cell death but its role in myogenesis has not been studied. This study aimed to compare the sensitivity to TNF-induced necroptosis in skeletal muscle at the undifferentiated (myoblasts) and differentiated (myotubes) stages. Surprisingly, our results showed that TNF-induced necroptosis was blunted during myoblast differentiation. Moreover, our data revealed that the key molecules involved in necroptosis, including receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL), were significantly down-regulated during myogenic differentiation, resulting in suppression of necroptosis signal transduction in differentiated myotubes. In addition, RIPK1, RIPK3, and MLKL expression levels were significantly lower in the skeletal muscle of adult mice than in newborn mice, suggesting that the susceptibility to necroptosis might be attenuated in differentiated muscle tissue. In conclusion, this study revealed that expression of key molecules involved in necroptosis is down-regulated during muscle differentiation, which results in the differentiation of muscles becoming insensitive to necroptotic cell death.
Collapse
Affiliation(s)
- Tae-Yeon Kim
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ju-Hui Kang
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea
| | - Se-Bin Lee
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea
| | - Tae-Bong Kang
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, 27487, Republic of Korea.
| | - Kwang-Ho Lee
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, 27487, Republic of Korea
| |
Collapse
|
31
|
Lee DY, Chun YS, Kim JK, Lee JO, Lee YJ, Ku SK, Shim SM. Curcumin Ameliorated Oxidative Stress and Inflammation-Related Muscle Disorders in C2C12 Myoblast Cells. Antioxidants (Basel) 2021; 10:476. [PMID: 33802935 PMCID: PMC8002759 DOI: 10.3390/antiox10030476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of the current study was to investigate antioxidant and anti-inflammatory effects of spray dry powder containing 40% curcumin (CM-SD) in C2C12 myoblast cells. CM-SD increased DPPH radical scavenging activity in a dose-dependent manner, and up to 30 μg/mL of CM-SD did not express cytotoxicity in C2C12 cells. Exposure to hydrogen peroxide (H2O2) drastically decreased the viability of C2C12 cells, but pre-treatment of CM-SD significantly increased the cell viability (p < 0.01). CM-SD significantly transactivated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent luciferase activity in a dose-dependent manner and enhanced the levels of heme oxygenase (HO)-1, glutamate cysteine ligase catalytic subunit (GCLC), and NAD(P)H-dependent quinone oxidoreductase (NQO)-1. CM-SD also significantly reduced reactive oxygen species (ROS) production and lipid peroxidation and restored glutathione (GSH) depletion in H2O2-treated C2C12 cells. Moreover, CM-SD significantly reduced lipopolysaccharides (LPS)-mediated interleukin (IL)-6 production in the conditioned medium. Results from the current study suggest that CM-SD could be a useful candidate against oxidative stress and inflammation-related muscle disorders.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Yoon-Seok Chun
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Jong-Kyu Kim
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Jeong-Ok Lee
- Aribio H&B Co., Ltd., #710, Yongin Techno Valley, 357, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Korea; (Y.-S.C.); (J.-K.K.); (J.-O.L.)
| | - Young-Joon Lee
- Department of Preventive Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Korea;
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| |
Collapse
|
32
|
Chen M, Wei X, Song M, Jiang R, Huang K, Deng Y, Liu Q, Shi D, Li H. Circular RNA circMYBPC1 promotes skeletal muscle differentiation by targeting MyHC. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:352-368. [PMID: 33868781 PMCID: PMC8027698 DOI: 10.1016/j.omtn.2021.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle development is a complex and highly orchestrated biological process mediated by a series of myogenesis regulatory factors. Numerous studies have demonstrated that circular RNAs (circRNAs) are involved in muscle differentiation, but the exact molecular mechanisms involved remain unclear. Here, we analyzed the expression of circRNAs at the adult and embryo development stages of cattle musculus longissimus. A stringent set of 1,318 circRNAs candidates were identified, and we found that 495 circRNAs were differentially expressed between embryonic and adult tissue libraries. We subsequently focused on one of the most downregulated circRNAs (using the adult stage expression as control), and this was named muscle differentiation-associated circular RNA (circMYBPC1). With RNA binding protein immunoprecipitation (RIP) and RNA pull-down assays, circMYBPC1 was identified to promote myoblast differentiation by directly binding miR-23a to relieve its inhibition on myosin heavy chain (MyHC). In addition, RIP assays demonstrated that circMYBPC1 could directly bind MyHC protein. In vivo observations also suggested that circMYBPC1 may stimulate skeletal muscle regeneration after muscle damage. These results revealed that the novel non-coding circRNA circMYBPC1 promotes differentiation of myoblasts and may promote skeletal muscle regeneration. Our results provided a basis for in-depth analysis of the role of circRNA in myogenesis and muscle diseases.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Rui Jiang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Corresponding author: Deshun Shi, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Corresponding author: Hui Li, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
33
|
Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Adenosine plays the role of regulating cell differentiation, proliferation, and apoptosis in various kinds of cells through the B-cell lymphoma 2 (BCL2) pathway. Objectives: Since anti-apoptotic (BCL2) expression plays a role in controlling apoptosis in some cell lines, this study was designed to investigate whether adenosine analogue, NECA (non-selective adenosine receptors agonist), selective adenosine A2B receptor antagonist, PSB 603, and a selective adenosine A2A receptor agonist, CG21680, affect BCL2-gene expression in the skeletal muscle cells of rats. The purpose of this investigation was to test the hypothesis that CG21680 treatment would significantly intensify BCL2 gene expression in rat skeletal muscle. Methods: Flasks measuring 25 cm2 were employed in culturing the rat L6 skeletal muscle cells. After treating these differential cells, the relative mRNA expression level for the BCL2 gene, at varying conditions of treatment, was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: From the qRT-PCR analysis results, it was concluded that BCL2 expression was markedly amplified after selective adenosine A2A receptor agonist, CGS21680 (p < 0.01) treatment. More prospective validation for the adenosine receptors’ contribution in modulating apoptosis by NECA was delivered by the outcomes from the combined pre-treatment of the cells with NECA and PSB 603. These outcomes show that when starved skeletal muscle cells are treated with a combination of NECA and 100 nM PSB 603, there was a substantial decrease in comparison to either treatment used on its own. Conclusions: This study’s results showed, for the first time, an increase in BCL2 gene expression within skeletal muscle after CGS21680 treatment. Hence, the prospective escalation in BCL2 protein expression might have a protective role to play against apoptosis and avert damage to the skeletal muscle.
Collapse
|
34
|
Palmer D, Fabris F, Doherty A, Freitas AA, de Magalhães JP. Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues. Aging (Albany NY) 2021; 13:3313-3341. [PMID: 33611312 PMCID: PMC7906136 DOI: 10.18632/aging.202648] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
By combining transcriptomic data with other data sources, inferences can be made about functional changes during ageing. Thus, we conducted a meta-analysis on 127 publicly available microarray and RNA-Seq datasets from mice, rats and humans, identifying a transcriptomic signature of ageing across species and tissues. Analyses on subsets of these datasets produced transcriptomic signatures of ageing for brain, heart and muscle. We then applied enrichment analysis and machine learning to functionally describe these signatures, revealing overexpression of immune and stress response genes and underexpression of metabolic and developmental genes. Further analyses revealed little overlap between genes differentially expressed with age in different tissues, despite ageing differentially expressed genes typically being widely expressed across tissues. Additionally we show that the ageing gene expression signatures (particularly the overexpressed signatures) of the whole meta-analysis, brain and muscle tend to include genes that are central in protein-protein interaction networks. We also show that genes underexpressed with age in the brain are highly central in a co-expression network, suggesting that underexpression of these genes may have broad phenotypic consequences. In sum, we show numerous functional similarities between the ageing transcriptomes of these important tissues, along with unique network properties of genes differentially expressed with age in both a protein-protein interaction and co-expression networks.
Collapse
Affiliation(s)
- Daniel Palmer
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock, Germany
| | - Fabio Fabris
- School of Computing, University of Kent, Canterbury, Kent, UK
| | - Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Alex A Freitas
- School of Computing, University of Kent, Canterbury, Kent, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Huang K, Chen M, Zhong D, Luo X, Feng T, Song M, Chen Y, Wei X, Shi D, Liu Q, Li H. Circular RNA Profiling Reveals an Abundant circEch1 That Promotes Myogenesis and Differentiation of Bovine Skeletal Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:592-601. [PMID: 33346638 DOI: 10.1021/acs.jafc.0c06400] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Beef is considered to be a good quality meat product because it contains linoleic acid and specific proteins, which can bring significant benefits to health. Circular RNAs (circRNAs) have been reported to regulate skeletal myogenesis. RNA-seq was used to investigate the circRNA molecular regulatory mechanisms with respect to differences in muscle quality between buffalo and cattle. A total of 10,449 circRNA candidates were detected, and 1128 of these were found to be differentially expressed between cattle and buffalo muscle tissue libraries. Differentially expressed 23 circRNAs were verified by qPCR. CircEch1, one of the most up-regulated circRNAs during muscle development, was subsequently characterized. CCK-8 (65.05 ± 2.33%, P < 0.0001), EdU (72.99 ± 0.04%, P < 0.001), and Western blotting assays showed that overexpression of circEch1 inhibited the proliferation of bovine myoblasts but promoted differentiation. In vivo studies suggested that circEch1 stimulates skeletal muscle regeneration. These results demonstrate that the novel regulator circEch1 induces myoblast differentiation and skeletal muscle regeneration. They also provide new insights into the mechanisms of circRNA regulation of beef quality.
Collapse
Affiliation(s)
- Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xier Luo
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
36
|
Bellanti F, Lo Buglio A, Vendemiale G. Mitochondrial Impairment in Sarcopenia. BIOLOGY 2021; 10:biology10010031. [PMID: 33418869 PMCID: PMC7825073 DOI: 10.3390/biology10010031] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenia is defined by the age-related loss of skeletal muscle quality, which relies on mitochondrial homeostasis. During aging, several mitochondrial features such as bioenergetics, dynamics, biogenesis, and selective autophagy (mitophagy) are altered and impinge on protein homeostasis, resulting in loss of muscle mass and function. Thus, mitochondrial dysfunction contributes significantly to the complex pathogenesis of sarcopenia, and mitochondria are indicated as potential targets to prevent and treat this age-related condition. After a concise presentation of the age-related modifications in skeletal muscle quality and mitochondrial homeostasis, the present review summarizes the most relevant findings related to mitochondrial alterations in sarcopenia.
Collapse
|
37
|
Effect of Quercetin on Dexamethasone-Induced C2C12 Skeletal Muscle Cell Injury. Molecules 2020; 25:molecules25143267. [PMID: 32709024 PMCID: PMC7397304 DOI: 10.3390/molecules25143267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoids are widely used anti-inflammatory drugs in clinical settings. However, they can induce skeletal muscle atrophy by reducing fiber cross-sectional area and myofibrillar protein content. Studies have proven that antioxidants can improve glucocorticoid-induced skeletal muscle atrophy. Quercetin is a potent antioxidant flavonoid widely distributed in fruits and vegetables and has shown protective effects against dexamethasone-induced skeletal muscle atrophy. In this study, we demonstrated that dexamethasone significantly inhibited cell growth and induced cell apoptosis by stimulating hydroxyl free radical production in C2C12 skeletal muscle cells. Our results evidenced that quercetin increased C2C12 skeletal cell viability and exerted antiapoptotic effects on dexamethasone-treated C2C12 cells by regulating mitochondrial membrane potential (ΔΨm) and reducing oxidative species. Quercetin can protect against dexamethasone-induced muscle atrophy by regulating the Bax/Bcl-2 ratio at the protein level and abnormal ΔΨm, which leads to the suppression of apoptosis.
Collapse
|
38
|
Lo JHT, U KP, Yiu T, Ong MTY, Lee WYW. Sarcopenia: Current treatments and new regenerative therapeutic approaches. J Orthop Translat 2020; 23:38-52. [PMID: 32489859 PMCID: PMC7256062 DOI: 10.1016/j.jot.2020.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia is characterized by loss of muscle and reduction in muscle strength that contributes to higher mortality rate and increased incidence of fall and hospitalization in the elderly. Mitochondria dysfunction and age-associated inflammation in muscle are two of the main attributors to sarcopenia progression. Recent clinical trials on sarcopenia therapies such as physical exercise, nutraceutical, and pharmaceutical interventions have revealed that exercise is the only effective strategy shown to alleviate sarcopenia. Unlike nutraceutical and pharmaceutical interventions that showed controversial results in sarcopenia alleviation, exercise was found to restore mitochondria homeostasis and dampen inflammatory responses via a complex exchange of myokines and osteokines signalling between muscle and bone. However, as exercise have limited benefit to immobile patients, the use of stem cells and their secretome are being suggested to be novel therapeutics that can be catered to a larger patient population owing to their mitochondria restoration effects and immune modulatory abilities. As such, we reviewed the potential pros and cons associated with various stem cell types/secretome in sarcopenia treatment and the regulatory and production barriers that need to be overcome to translate such novel therapeutic agents into bedside application. Translational potential: This review summarizes the causes underlying sarcopenia from the perspective of mitochondria dysfunction and age-associated inflammation, and the progress of clinical trials for the treatment of sarcopenia. We also propose therapeutic potential of stem cell therapy and bioactive secretome for sarcopenia.
Collapse
Affiliation(s)
- Jessica Hiu-Tung Lo
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Kin Pong U
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Tszlam Yiu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| |
Collapse
|
39
|
Wahwah N, Kras KA, Roust LR, Katsanos CS. Subpopulation-specific differences in skeletal muscle mitochondria in humans with obesity: insights from studies employing acute nutritional and exercise stimuli. Am J Physiol Endocrinol Metab 2020; 318:E538-E553. [PMID: 31990577 DOI: 10.1152/ajpendo.00463.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria from skeletal muscle of humans with obesity often display alterations with respect to their morphology, proteome, biogenesis, and function. These changes in muscle mitochondria are considered to contribute to metabolic abnormalities observed in humans with obesity. Most of the evidence describing alterations in muscle mitochondria in humans with obesity, however, lacks reference to a specific subcellular location. This is despite data over the years showing differences in the morphology and function of subsarcolemmal (found near the plasma membrane) and intermyofibrillar (nested between the myofibrils) mitochondria in skeletal muscle. Recent studies reveal that impairments in mitochondrial function in obesity with respect to the subcellular location of the mitochondria in muscle are more readily evident following exposure of the skeletal muscle to physiological stimuli. In this review, we highlight the need to understand skeletal muscle mitochondria metabolism in obesity in a subpopulation-specific manner and in the presence of physiological stimuli that modify mitochondrial function in vivo. Experimental approaches employed under these conditions will allow for more precise characterization of impairments in skeletal muscle mitochondria and their implications in inducing metabolic dysfunction in human obesity.
Collapse
Affiliation(s)
- Nisreen Wahwah
- Center for Metabolic and Vascular Biology and School of Life Sciences, Arizona State University, Scottsdale, Arizona
| | - Katon A Kras
- Center for Metabolic and Vascular Biology and School of Life Sciences, Arizona State University, Scottsdale, Arizona
| | - Lori R Roust
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Christos S Katsanos
- Center for Metabolic and Vascular Biology and School of Life Sciences, Arizona State University, Scottsdale, Arizona
| |
Collapse
|
40
|
Kidera H, Hatabu T, Takahashi KH. Apoptosis inhibition mitigates aging effects in Drosophila melanogaster. Genetica 2020; 148:69-76. [PMID: 32219590 DOI: 10.1007/s10709-020-00088-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
Aging is a natural biological process that results in progressive loss of cell, tissue, and organ function. One of the causing factors of the aging process is the decrease in muscle mass, which has not been fully verified in Drosophila. Apoptotic cell death may result in aberrant cell loss and can eventually diminish tissue function and muscle atrophy. If so, inhibition of apoptosis may prolong longevity and reduce motor function and muscle mass decline with age in Drosophila flies. Here, we used Drosophila melanogaster as study material, and induced the overexpression of Drosophila inhibitor of apoptosis protein 1 gene to inhibit apoptosis, and investigated the effect of apoptosis inhibition on the longevity and age-related declines in flight and climbing ability and muscle mass. As a result, the inhibition of apoptosis tended to mitigate the aging effects and prolonged longevity and reduced climbing ability decline with age. The current study suggests that apoptosis inhibition could mitigate the aging effects in D. melanogaster. Although such effects have already been known in mammals, the current results suggest that the apoptosis may play a similar role in insects as well.
Collapse
Affiliation(s)
- Hiroaki Kidera
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Toshimitsu Hatabu
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuo H Takahashi
- Graduate School of Environmental Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
41
|
Petr MA, Tulika T, Carmona-Marin LM, Scheibye-Knudsen M. Protecting the Aging Genome. Trends Cell Biol 2020; 30:117-132. [DOI: 10.1016/j.tcb.2019.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
|
42
|
Pronsato L, Milanesi L, Vasconsuelo A. Testosterone induces up-regulation of mitochondrial gene expression in murine C2C12 skeletal muscle cells accompanied by an increase of nuclear respiratory factor-1 and its downstream effectors. Mol Cell Endocrinol 2020; 500:110631. [PMID: 31676390 DOI: 10.1016/j.mce.2019.110631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
The reduction in muscle mass and strength with age, sarcopenia, is a prevalent condition among the elderly, linked to skeletal muscle dysfunction and cell apoptosis. We demonstrated that testosterone protects against H2O2-induced apoptosis in C2C12 muscle cells. Here, we analyzed the effect of testosterone on mitochondrial gene expression in C2C12 skeletal muscle cells. We found that testosterone increases mRNA expression of genes encoded by mitochondrial DNA, such as NADPH dehydrogenase subunit 1 (ND1), subunit 4 (ND4), cytochrome b (CytB), cytochrome c oxidase subunit 1 (Cox1) and subunit 2 (Cox2) in C2C12. Additionally, the hormone induced the expression of the nuclear respiratory factors 1 and 2 (Nrf-1 and Nrf-2), the mitochondrial transcription factors A (Tfam) and B2 (TFB2M), and the optic atrophy 1 (OPA1). The simultaneous treatment with testosterone and the androgen receptor antagonist, Flutamide, reduced these effects. H2O2-oxidative stress induced treatment, significantly decreased mitochondrial gene expression. Computational analysis revealed that mitochondrial DNA contains specific sequences, which the androgen receptor could recognize and bind, probably taking place a direct regulation of mitochondrial transcription by the receptor. These findings indicate that androgen plays an important role in the regulation of mitochondrial transcription and biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- Lucía Pronsato
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Lorena Milanesi
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Andrea Vasconsuelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina
| |
Collapse
|
43
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019; 18:5691-5698. [PMID: 31788041 PMCID: PMC6865693 DOI: 10.3892/ol.2019.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
44
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019. [PMID: 31788041 DOI: 10.3892/ol.2019.10981/abstract] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
45
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019; 20:536-546. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Several molecular mechanisms are involved in the regulation of skeletal muscle function. Among them, mitochondrial activity can be identified. The mitochondria is an important and essential organelle in the skeletal muscle that is involved in metabolic regulation and ATP production, which are two key elements of muscle contractibility and plasticity. Thus, in this review, we present the critical and recent antecedents regarding the mechanisms through which mitochondrial dysfunction can be involved in the generation and development of skeletal muscle pathologies, its contribution to detrimental functioning in skeletal muscle and its crosstalk with other typical signaling pathways related to muscle diseases. In addition, an update on the development of new strategies with therapeutic potential to inhibit the deleterious impact of mitochondrial dysfunction in skeletal muscle is discussed.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Laboratory of Integrative Physiopathology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.,Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine. Universidad d e Talca, Talca, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
46
|
Grote C, Reinhardt D, Zhang M, Wang J. Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J Orthop Res 2019; 37:1475-1488. [PMID: 30919498 PMCID: PMC9202363 DOI: 10.1002/jor.24292] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/13/2019] [Indexed: 02/04/2023]
Abstract
Aging is the strongest risk factor for degenerative bone and joint diseases. Clinical therapies for age-related musculoskeletal disorders face significant challenges as their pathogenic mechanisms remain largely unclear. This review article focuses on the recent advances in the understanding of regulatory mechanisms of musculoskeletal aging and their clinical relevance. We begin with the prevalence and socioeconomic impacts of major age-related musculoskeletal disorders such as sarcopenia, osteoporosis, osteoarthritis, and degenerative tendinopathy. The current understanding of responsible biological mechanisms involved in general aging is then summarized. Proposed molecular, cellular, and biomechanical mechanisms relevant to the clinical manifestations of aging in the musculoskeletal system are discussed in detail, with a focus on the disorders affecting muscle, bone, articular cartilage, and tendon. Although musculoskeletal aging processes share many common pathways with the aging of other body systems, unique molecular and cellular mechanisms may be involved in the aging processes of musculoskeletal tissues. Advancements in the understanding of regulatory mechanisms of musculoskeletal aging may promote the development of novel treatments for age-related musculoskeletal disorders. Finally, future research directions for major musculoskeletal tissues including functional interaction between the tissues and their clinical relevance to age-related musculoskeletal disorders are highlighted in the Future Prospects section. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1475-1488, 2019.
Collapse
Affiliation(s)
- Caleb Grote
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Reinhardt
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mingcai Zhang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jinxi Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
47
|
Allen KN, Vázquez-Medina JP, Lawler JM, Mellish JAE, Horning M, Hindle AG. Muscular apoptosis but not oxidative stress increases with old age in a long-lived diver, the Weddell seal. ACTA ACUST UNITED AC 2019; 222:jeb.200246. [PMID: 31171605 DOI: 10.1242/jeb.200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023]
Abstract
Seals experience repeated bouts of ischemia-reperfusion while diving, potentially exposing their tissues to increased oxidant generation and thus oxidative damage and accelerated aging. We contrasted markers of oxidative damage with antioxidant profiles across age and sex for propulsive (longissismus dorsi) and maneuvering (pectoralis) muscles of Weddell seals to determine whether previously observed morphological senescence is associated with oxidative stress. In longissismus dorsi, old (age 17-26 years) seals exhibited a nearly 2-fold increase in apoptosis over young (age 9-16 years) seals. There was no evidence of age-associated changes in lipid peroxidation or enzymatic antioxidant profiles. In pectoralis, 4-hydroxynonenal-Lys (4-HNE-Lys) levels increased 1.5-fold in old versus young seals, but lipid hydroperoxide levels and apoptotic index did not vary with age. Glutathione peroxidase activity was 1.5-fold higher in pectoralis of old versus young animals, but no other antioxidants changed with age in this muscle. With respect to sex, no differences in lipid hydroperoxides or apoptosis were observed in either muscle. Males had higher HSP70 expression (1.4-fold) and glutathione peroxidase activity (1.3-fold) than females in longissismus dorsi, although glutathione reductase activity was 1.4-fold higher in females. No antioxidants varied with sex in pectoralis. These results show that apoptosis is not associated with oxidative stress in aged Weddell seal muscles. Additionally, the data suggest that adult seals utilize sex-specific antioxidant strategies in longissismus dorsi but not pectoralis to protect skeletal muscles from oxidative damage.
Collapse
Affiliation(s)
- Kaitlin N Allen
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| | - John M Lawler
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77840, USA
| | - Jo-Ann E Mellish
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Markus Horning
- Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664, USA.,Department of Fisheries & Wildlife, Marine Mammal Institute, Oregon State University, 2030 Marine Science Drive, Newport, OR 97365, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
48
|
Faitg J, Leduc-Gaudet JP, Reynaud O, Ferland G, Gaudreau P, Gouspillou G. Effects of Aging and Caloric Restriction on Fiber Type Composition, Mitochondrial Morphology and Dynamics in Rat Oxidative and Glycolytic Muscles. Front Physiol 2019; 10:420. [PMID: 31114501 PMCID: PMC6503296 DOI: 10.3389/fphys.2019.00420] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a progressive decline in muscle mass and strength, a process known as sarcopenia. Evidence indicates that mitochondrial dysfunction plays a causal role in sarcopenia and suggests that alterations in mitochondrial dynamics/morphology may represent an underlying mechanism. Caloric restriction (CR) is among the most efficient nonpharmacological interventions to attenuate sarcopenia in rodents and is thought to exert its beneficial effects by improving mitochondrial function. However, CR effects on mitochondrial morphology and dynamics, especially in aging muscle, remain unknown. To address this issue, we investigated mitochondrial morphology and dynamics in the oxidative soleus (SOL) and glycolytic white gastrocnemius (WG) muscles of adult (9-month-old) ad libitum-fed (AL; A-AL), old (22-month-old) AL-fed (O-AL), and old CR (O-CR) rats. We show that CR attenuates the aging-related decline in the muscle-to-body-weight ratio, a sarcopenic index. CR also prevented the effects of aging on muscle fiber type composition in both muscles. With aging, the SOL displayed fragmented SubSarcolemmal (SS) and InterMyoFibrillar (IMF) mitochondria, an effect attenuated by CR. Aged WG displayed enlarged SS and more complex/branched IMF mitochondria. CR had marginal anti-aging effects on WG mitochondrial morphology. In the SOL, DRP1 (pro-fission protein) content was higher in O-AL vs YA-AL, and Mfn2 (pro-fusion) content was higher in O-CR vs A-AL. In the gastrocnemius, Mfn2, Drp1, and Fis1 (pro-fission) contents were higher in O-AL vs A-AL. CR reduced this aging-related increase in Mfn2 and Fis1 content. Overall, these results reveal for the first time that aging differentially impacts mitochondrial morphology and dynamics in different muscle fiber types, by increasing fission/fragmentation in oxidative fibers while enhancing mitochondrial size and branching in glycolytic fibers. Our results also indicate that although CR partially attenuates aging-related changes in mitochondrial dynamics in glycolytic fibers, its anti-aging effect on mitochondrial morphology is restricted to oxidative fibers.
Collapse
Affiliation(s)
- Julie Faitg
- Département de Biologie, Faculté des Sciences, UQAM, Montreal, QC, Canada.,Groupe de recherche en Activité Physique Adaptée, Montreal, QC, Canada
| | - Jean-Philippe Leduc-Gaudet
- Groupe de recherche en Activité Physique Adaptée, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine and Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montreal, QC, Canada
| | - Olivier Reynaud
- Groupe de recherche en Activité Physique Adaptée, Montreal, QC, Canada.,Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montreal, QC, Canada
| | - Guylaine Ferland
- Institut de cardiologie de Montréal Research Center, Montreal, QC, Canada.,Department of Nutrition, University of Montreal, Montreal, QC, Canada
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center (CRCHUM), Montreal, QC, Canada.,Department of Medicine,University of Montreal, Montreal, QC, Canada
| | - Gilles Gouspillou
- Groupe de recherche en Activité Physique Adaptée, Montreal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|
49
|
|
50
|
Combination of Coenzyme Q 10 Intake and Moderate Physical Activity Counteracts Mitochondrial Dysfunctions in a SAMP8 Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8936251. [PMID: 30473743 PMCID: PMC6220380 DOI: 10.1155/2018/8936251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Aging skeletal muscles are characterized by a progressive decline in muscle mass and muscular strength. Such muscular dysfunctions are usually associated with structural and functional alterations of skeletal muscle mitochondria. The senescence-accelerated mouse-prone 8 (SAMP8) model, characterized by premature aging and high degree of oxidative stress, was used to investigate whether a combined intervention with mild physical exercise and ubiquinol supplementation was able to improve mitochondrial function and preserve skeletal muscle health during aging. 5-month-old SAMP8 mice, in a presarcopenia phase, have been randomly divided into 4 groups (n = 10): untreated controls and mice treated for two months with either physical exercise (0.5 km/h, on a 5% inclination, for 30 min, 5/7 days per week), ubiquinol 10 (500 mg/kg/day), or a combination of exercise and ubiquinol. Two months of physical exercise significantly increased mitochondrial damage in the muscles of exercised mice when compared to controls. On the contrary, ubiquinol and physical exercise combination significantly improved the overall status of the skeletal muscle, preserving mitochondrial ultrastructure and limiting mitochondrial depolarization induced by physical exercise alone. Accordingly, combination treatment while promoting mitochondrial biogenesis lowered autophagy and caspase 3-dependent apoptosis. In conclusion, the present study shows that ubiquinol supplementation counteracts the deleterious effects of physical exercise-derived ROS improving mitochondrial functionality in an oxidative stress model, such as SAMP8 in the presarcopenia phase.
Collapse
|