1
|
Ouyang Y, Gu Y, Zhang X, Huang Y, Wei X, Tang F, Zhang S. AMPKα2 promotes tumor immune escape by inducing CD8+ T-cell exhaustion and CD4+ Treg cell formation in liver hepatocellular carcinoma. BMC Cancer 2024; 24:276. [PMID: 38424484 PMCID: PMC10905944 DOI: 10.1186/s12885-024-12025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Adenosine monophosphate-activated protein kinase (AMPK) is associated with the development of liver hepatocellular carcinoma (LIHC). AMPKα2, an α2 subunit of AMPK, is encoded by PRKAA2, and functions as the catalytic core of AMPK. However, the role of AMPKα2 in the LIHC tumor immune environment is unclear. METHODS RNA-seq data were obtained from the Cancer Genome Atlas and Genotype-Tissue Expression databases. Using the single-cell RNA-sequencing dataset for LIHC obtained from the China National Genebank Database, the communication between malignant cells and T cells in response to different PRKAA2 expression patterns was evaluated. In addition, the association between PRKAA2 expression and T-cell evolution during tumor progression was explored using Pseudotime analysis, and the role of PRKAA2 in metabolic reprogramming was explored using the R "scMetabolis" package. Functional experiments were performed in LIHC HepG2 cells. RESULTS AMPK subunits were expressed in tissue-specific and substrate-specific patterns. PRKAA2 was highly expressed in LIHC tissues and was associated with poor patient prognosis. Tumors with high PRKAA2 expression displayed an immune cold phenotype. High PRKAA2 expression significantly promoted LIHC immune escape. This result is supported by the following evidence: 1) the inhibition of major histocompatibility complex class I (MHC-I) expression through the regulation of interferon-gamma activity in malignant cells; 2) the promotion of CD8+ T-cell exhaustion and the formation of CD4+ Treg cells in T cells; 3) altered interactions between malignant cells and T cells in the tumor immune environment; and 4) induction of metabolic reprogramming in malignant cells. CONCLUSIONS Our study indicate that PRKAA2 may contribute to LIHC progression by promoting metabolic reprogramming and tumor immune escape through theoretical analysis, which offers a theoretical foundation for developing PRKAA2-based strategies for personalized LIHC treatment.
Collapse
Affiliation(s)
- Yan Ouyang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Gu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Xinhai Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Xianpeng Wei
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| | - Shichao Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
A Quality Control Mechanism of Splice Site Selection Abrogated under Stress and in Cancer. Cancers (Basel) 2022; 14:cancers14071750. [PMID: 35406522 PMCID: PMC8996931 DOI: 10.3390/cancers14071750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Splicing and alternative splicing play a major role in regulating gene expression, and mis-regulation of splicing can lead to several diseases, including cancer. The aim of this review is to summarize the current knowledge of a quality control mechanism of splice site selection termed Suppression of Splicing (SOS), proposed to protect cells from splicing at the numerous intronic unused 5′ splice sites, and emphasize its relevance to cancer. This relevance stems from the finding that SOS is abrogated under stress and in cancer resulting in the expression of thousands of aberrant nonsense mRNAs that may be toxic to cells. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies. Abstract Latent 5’ splice sites, highly abundant in human introns, are not normally used. This led to the proposal of a quality control mechanism, Suppression of Splicing (SOS), which protects cells from splicing at the numerous intronic latent sites, and whose activation can generate nonsense mRNAs. SOS was shown to be independent of Nonsense-Mediated mRNA Decay (NMD). Efforts to decipher the SOS mechanism revealed a pivotal role for initiator-tRNA, independent of protein translation. Recently, nucleolin (a multifunctional protein) was found to directly and specifically bind the initiator-tRNA in the nucleus and was shown to be a protein component of SOS, enabling an updated model of the SOS mechanism. Importantly, SOS is abrogated under stress and in cancer (e.g., in breast cancer cells and gliomas), generating thousands of nonsense mRNAs due to activation of latent splicing. The resulting affected human genes cover a variety of functional groups, including genes involved in cell proliferation and differentiation. Furthermore, in oligodendroglioma, the extent of activation of latent splicing increases with the severity of the cancer. Interesting examples are genes expressing aberrant nonsense mRNAs in both breast cancer and glioma, due to latent splicing activation. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies.
Collapse
|
3
|
Second-Generation JK-206 Targets the Oncogenic Signal Mediator RHOA in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14071604. [PMID: 35406376 PMCID: PMC8997135 DOI: 10.3390/cancers14071604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Ras homologous A (RHOA), a signal mediator and a GTPase, is known to be associated with the progression of gastric cancer (GC), which is the fourth most common cause of death in the world. Previously, we designed pharmacologically optimized inhibitors against RHOA, including JK-136 and JK-139. Based on this previous work, we performed lead optimization and designed novel RHOA inhibitors for greater anti-GC potency. Two of these compounds, JK-206 and JK-312, could successfully inhibit the viability and migration of GC cell lines. Furthermore, using transcriptomic analysis of GC cells treated with JK-206, we revealed that the inhibition of RHOA might be associated with the inhibition of the mitogenic pathway. Therefore, JK-206 treatment for RHOA inhibition may be a new therapeutic strategy for regulating GC proliferation and migration.
Collapse
|
4
|
Yang S, Zhang J, Chen D, Cao J, Zheng Y, Han Y, Jin Y, Wang S, Wang T, Ma L, Luo T, Wang Y, Qin W, Dong L. CARM1 promotes gastric cancer progression by regulating TFE3 mediated autophagy enhancement through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. Cancer Cell Int 2022; 22:102. [PMID: 35246137 PMCID: PMC8895580 DOI: 10.1186/s12935-022-02522-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of CARM1 in tumors is inconsistent. It acts as an oncogene in most cancers but it inhibits the progression of liver and pancreatic cancers. CARM1 has recently been reported to regulate autophagy, but this function is also context-dependent. However, the effect of CARM1 on gastric cancer (GC) has not been studied. We aimed to explore whether CARM1 was involved in the progression of GC by regulating autophagy. METHODS The clinical values of CARM1 and autophagy in GC were evaluated by immunohistochemistry and qRT-PCR. Transmission electron microscopy, immunofluorescence and western blotting were employed to identify autophagy. The role of CARM1 in GC was investigated by CCK-8, colony formation and flow cytometry assays in vitro and a xenograft model in vivo. Immunoprecipitation assays were performed to determine the interaction of CARM1 and TFE3. RESULTS CARM1 was upregulated in clinical GC tissues and cell lines, and higher CARM1 expression predicted worse prognosis. CARM1 enhanced GC cell proliferation, facilitated G1-S transition and inhibited ER stress-induced apoptosis by regulating autophagy. Importantly, treatment with a CARM1 inhibitor rescued the tumor-promoting effects of CARM1 both in vitro and in vivo. Furthermore, we demonstrated that CARM1 promoted TFE3 nuclear translocation to induce autophagy through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. CONCLUSION CARM1 promoted GC cell proliferation, accelerated G1-S transition and reduced ER stress-induced apoptosis by regulating autophagy. Mechanistically, CARM1 triggered autophagy by facilitating TFE3 nuclear translocation through the AMPK-mTOR and AMPK-CARM1-TFE3 signaling pathways.
Collapse
Affiliation(s)
- Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jing Zhang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jiayi Cao
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuying Han
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shuhui Wang
- Department of Infectious Diseases, Shenzhen Shekou People's Hospital, Shenzhen, 518067, People's Republic of China
| | - Ting Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lin Ma
- Shaanxi Provincial People's Hospital, Xi'an, 710043, Shaanxi, People's Republic of China
| | - Tingting Luo
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Yan Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
5
|
Nam S, Lee S, Park S, Lee J, Park A, Kim YH, Park T. PATHOME-Drug: a subpathway-based polypharmacology drug-repositioning method. Bioinformatics 2022; 38:444-452. [PMID: 34515762 DOI: 10.1093/bioinformatics/btab566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Drug repositioning reveals novel indications for existing drugs and in particular, diseases with no available drugs. Diverse computational drug repositioning methods have been proposed by measuring either drug-treated gene expression signatures or the proximity of drug targets and disease proteins found in prior networks. However, these methods do not explain which signaling subparts allow potential drugs to be selected, and do not consider polypharmacology, i.e. multiple targets of a known drug, in specific subparts. RESULTS Here, to address the limitations, we developed a subpathway-based polypharmacology drug repositioning method, PATHOME-Drug, based on drug-associated transcriptomes. Specifically, this tool locates subparts of signaling cascading related to phenotype changes (e.g. disease status changes), and identifies existing approved drugs such that their multiple targets are enriched in the subparts. We show that our method demonstrated better performance for detecting signaling context and specific drugs/compounds, compared to WebGestalt and clusterProfiler, for both real biological and simulated datasets. We believe that our tool can successfully address the current shortage of targeted therapy agents. AVAILABILITY AND IMPLEMENTATION The web-service is available at http://statgen.snu.ac.kr/software/pathome. The source codes and data are available at https://github.com/labnams/pathome-drug. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Seungyoon Nam
- Department of Genome Medicine and Science, College of Medicine, Gachon University, 21565 Incheon, Korea.,Department of Life Sciences, Gachon University, 13120 Seongnam, Korea.,Gachon Institute of Genomic Medicine and Science, Gachon University Gil Medical Center, 21565 Incheon, Korea.,Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, 21999 Incheon, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, 03080 Seoul, Korea.,Center for Precision Medicine, Seoul National University Hospital, 03080 Seoul, Korea
| | - Sungjin Park
- Department of Genome Medicine and Science, College of Medicine, Gachon University, 21565 Incheon, Korea.,Gachon Institute of Genomic Medicine and Science, Gachon University Gil Medical Center, 21565 Incheon, Korea
| | - Jinhyuk Lee
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Korea.,Department of Bioinformatics, University of Sciences and Technology, 34113 Daejeon, Korea
| | - Aron Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, 21999 Incheon, Korea
| | - Yon Hui Kim
- Department of Biomedical Science, Hanyang University, 04763 Seoul, Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, Korea.,Department of Statistics, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
6
|
Gao X, Jia ZQ, Tao HZ, Xu Y, Li YZ, Liu YT. Use of deep sequencing to profile small RNAs derived from tomato spotted wilt orthotospovirus and hippeastrum chlorotic ringspot orthotospovirus in infected Capsicum annuum. Virus Res 2021; 309:198648. [PMID: 34910964 DOI: 10.1016/j.virusres.2021.198648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Virus-derived small RNAs are one of the key factors of RNA silencing in plant defence against viruses. We obtained virus-derived small interfering RNA profiles from Tomato spotted wilt orthotospovirus and Hippeastrum chlorotic ringspot orthotospovirus infected Capsicum annuum XX19 and XY11 by deep sequencing one day after inoculation. The vsiRNAs data were mapped to the TSWV and HCRV genomes, and the results showed that the vsiRNAs measured 19-24 nucleotides in length. Most of the vsiRNAs were mapped to the S segment of the viral genome. For XX19 and XY11 infected with HCRV, the distribution range of vsiRNAs in S RNA was 52.06-55.20%, while for XX19 and XY11 infected with TSWV, the distribution range of vsiRNAs in S RNA was 87.76-89.07%. The first base at the 5' end of the siRNA from TSWV and HCRV was primarily biased towards A, U, or C. Compared with mock-inoculated XX19 and XY11, the expression level of CaRDR1 was upregulated in TSWV- and HCRV-inoculated XX19 and XY11. CaAGO2 and CaAGO5 were upregulated in XY11 against HCRV infection, and CaRDR2 was downregulated in TSWV-infected XY11 and XX19. The profile of HCRV and TSWV vsiRNA verified in this study could be useful for selecting key vsiRNA such as those in disease-resistant varieties by artificially synthesizing amiRNA.
Collapse
Affiliation(s)
- Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhi-Qiang Jia
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Zheng Tao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China; School of Life Science and Technology, Honghe University, Mengzi, 661199, China
| | - Ye Xu
- College of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Zhong Li
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Ya-Ting Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
7
|
Cho AR, Park WY, Lee HJ, Sim DY, Im E, Park JE, Ahn CH, Shim BS, Kim SH. Antitumor Effect of Morusin via G1 Arrest and Antiglycolysis by AMPK Activation in Hepatocellular Cancer. Int J Mol Sci 2021; 22:10619. [PMID: 34638959 PMCID: PMC8508967 DOI: 10.3390/ijms221910619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Though Morusin isolated from the root of Morus alba was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells. Moreover, Morusin significantly increased G1 arrest, attenuated the expression of cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) and upregulated p21 and p27 in Hep3B and Huh7 cells. Interestingly, Morusin significantly activated phosphorylation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but attenuated the expression of the p-mammalian target of protein kinase B (AKT), rapamycin (mTOR), c-Myc, hexokinase 2(HK2), pyruvate kinases type M2 (PKM2), and lactate dehydrogenase (LDH) in Hep3B and Huh7 cells. Consistently, Morusin suppressed lactate, glucose, and adenosine triphosphate (ATP) in Hep3B and Huh7 cells. Conversely, the AMPK inhibitor compound C reduced the ability of Morusin to activate AMPK and attenuate the expression of p-mTOR, HK2, PKM2, and LDH-A and suppressed G1 arrest induced by Morusin in Hep3B cells. Overall, these findings suggest that Morusin exerts an antitumor effect in HCCs via AMPK mediated G1 arrest and antiglycolysis as a potent dietary anticancer candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bum-Sang Shim
- Molecular Cancer Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (A.-R.C.); (W.-Y.P.); (H.-J.L.); (D.-Y.S.); (E.I.); (J.-E.P.); (C.-H.A.)
| | - Sung-Hoon Kim
- Molecular Cancer Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (A.-R.C.); (W.-Y.P.); (H.-J.L.); (D.-Y.S.); (E.I.); (J.-E.P.); (C.-H.A.)
| |
Collapse
|
8
|
Carino A, Graziosi L, Marchianò S, Biagioli M, Marino E, Sepe V, Zampella A, Distrutti E, Donini A, Fiorucci S. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Front Oncol 2021; 11:663771. [PMID: 34012923 PMCID: PMC8126708 DOI: 10.3389/fonc.2021.663771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy but the third leading cause of cancer-associated mortality worldwide. Therapy for gastric cancer remain largely suboptimal making the identification of novel therapeutic targets an urgent medical need. In the present study we have carried out a high-throughput sequencing of transcriptome expression in patients with gastric cancers. Twenty-four patients, among a series of 53, who underwent an attempt of curative surgery for gastric cancers in a single center, were enrolled. Patients were sub-grouped according to their histopathology into diffuse and intestinal types, and the transcriptome of the two subgroups assessed by RNAseq analysis and compared to the normal gastric mucosa. The results of this investigation demonstrated that the two histopathology phenotypes express two different patterns of gene expression. A total of 2,064 transcripts were differentially expressed between neoplastic and non-neoplastic tissues: 772 were specific for the intestinal type and 407 for the diffuse type. Only 885 transcripts were simultaneously differentially expressed by both tumors. The per pathway analysis demonstrated an enrichment of extracellular matrix and immune dysfunction in the intestinal type including CXCR2, CXCR1, FPR2, CARD14, EFNA2, AQ9, TRIP13, KLK11 and GHRL. At the univariate analysis reduced levels AQP9 was found to be a negative predictor of 4 years survival. In the diffuse type low levels CXCR2 and high levels of CARD14 mRNA were negative predictors of 4 years survival. In summary, we have identified a group of genes differentially regulated in the intestinal and diffuse histotypes of gastric cancers with AQP9, CARD14 and CXCR2 impacting on patients' prognosis, although CXCR2 is the only factor independently impacting overall survival.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Marino
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Chu H, Han N, Xu J. CMPK1 Regulated by miR-130b Attenuates Response to 5-FU Treatment in Gastric Cancer. Front Oncol 2021; 11:637470. [PMID: 33816278 PMCID: PMC8013733 DOI: 10.3389/fonc.2021.637470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) remains a major world-wide challenge, especially in Asian countries. Chemotherapy with 5-fluorouracil (5-FU) and cisplatin is used as the first-line treatment and development of chemoresistance is a major cause of progression. UMP/CMP kinase is responsible for the phosphorylation of the ribonucleotide metabolite 5-fluoro-5′-monophosphate (FUMP) in 5-FU metabolic process, and recognized as a key step in the conversion of 5-FU to cytotoxic metabolites. Our bioinformatics analysis and molecular experiments demonstrated that high expression of CMPK1 was associated with prolonged survival and response to 5-FU treatment in GC samples. Further analysis demonstrated that miR-130b as a key epigenetic regulator of CMPK1, and miR-130b-mediated attenuation of CMPK1 resulted in resistance of gastric cancer cells to DNA damage and cell death after treatment with 5-FU. Rescue experiments with augmented CMPK1 expression abolished the effect of miR-130b demonstrating the key function of this miRNA in this pathway. Thus, this newly identified miR-130b-CMPK1 axis suggests a potentially new chemotherapeutic strategy for improved response to 5-FU therapy.
Collapse
Affiliation(s)
- Huaizhu Chu
- Department of Oncological Surgery, Qinghai Provincial People's Hospital, Xining, China
| | - Nahui Han
- Department of Pain Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Jianguo Xu
- Department of Oncological Surgery, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
10
|
Huang KK, Huang J, Wu JKL, Lee M, Tay ST, Kumar V, Ramnarayanan K, Padmanabhan N, Xu C, Tan ALK, Chan C, Kappei D, Göke J, Tan P. Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer. Genome Biol 2021; 22:44. [PMID: 33482911 PMCID: PMC7821541 DOI: 10.1186/s13059-021-02261-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Deregulated gene expression is a hallmark of cancer; however, most studies to date have analyzed short-read RNA sequencing data with inherent limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short-read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality. RESULTS We performed full-length transcriptome analysis across 10 GC cell lines covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr positive, genome stable and microsatellite unstable). We identify 60,239 non-redundant full-length transcripts, of which > 66% are novel compared to current transcriptome databases. Novel isoforms are more likely to be cell line and subtype specific, expressed at lower levels with larger number of exons, with longer isoform/coding sequence lengths. Most novel isoforms utilize an alternate first exon, and compared to other alternative splicing categories, are expressed at higher levels and exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting potential changes in their coding sequences. Mapping these alternate promoters to TCGA GC samples, we identify several cancer-associated isoforms, including novel variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding sequences to a larger extent than other isoforms. Analysis of outcome data suggests that novel isoforms may impart additional prognostic information. CONCLUSIONS Our results provide a rich resource of full-length transcriptome data for deeper studies of GC and other gastrointestinal malignancies.
Collapse
Affiliation(s)
- Kie Kyon Huang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Jiawen Huang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Jeanie Kar Leng Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Minghui Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Su Ting Tay
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Vikrant Kumar
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Kalpana Ramnarayanan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Nisha Padmanabhan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Chang Xu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Angie Lay Keng Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596 Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, Singapore, 138672 Singapore
| | - Patrick Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857 Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599 Singapore
- Genome Institute of Singapore, Singapore, 138672 Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169609 Singapore
| |
Collapse
|
11
|
Zhang X, Ou X, Kuang X, Li Z, Fu N, Zhou J. Diallyl disulfide regulates energy metabolism by targeting AMP-activated protein kinase alpha1 in human gastric cancer cells. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Song J, Chen Y, He D, Tan W, Lv F, Liang B, Xia T, Li J. Astragalus Polysaccharide Promotes Adriamycin-Induced Apoptosis in Gastric Cancer Cells. Cancer Manag Res 2020; 12:2405-2414. [PMID: 32280276 PMCID: PMC7131994 DOI: 10.2147/cmar.s237146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Astragalus polysaccharide (APS), a common Chinese herbal compound extracted from Astragalus membranaceus, has been proposed to increase the tumour response of and stabilize chemotherapy drugs while reducing their toxicity. Here, we examined the effects of APS on apoptosis in gastric cancer (GC) cells in the presence or absence of adriamycin (0.1 µg/mL). Methods GC cells cultured in the presence or absence of adriamycin (0.1 µg/mL) were administered APS (50–200 µg/mL) for 24–72 h and subjected to an MTT assay to examine cell viability. Active caspase-3 expression and DNA fragmentation were assessed to evaluate apoptosis, and real-time PCR was used to analyse the expression levels of multidrug resistance (MDR1) genes and tumour suppressor genes. Western blot analysis was applied to detect cleaved caspase-3 and phosphorylated AMPK (p-AMPK). Results Cellular viability was profoundly reduced by APS, and GC cell apoptosis was strongly increased by APS in a time- and dose-dependent manner; these changes may be linked to an increase in p-AMPK levels because the AMPK inhibitor compound C blocked the effects of APS. Similarly, adriamycin-induced decreases in cellular viability and apoptosis of GC cells were enhanced by APS administration. The expression of tumour suppressor genes (SEMA3F, P21WAF1/CIP1, FBXW7), but not of MDR1, was increased by APS compared to the control, and p-AMPK levels were lower in adriamycin-resistant GC cells than in either adriamycin-sensitive GC cells or an immortalized human gastric epithelial cell line. Conclusion APS induces apoptosis independently and strengthens the proapoptotic effect of adriamycin on GC cells, suggesting that APS may act as a chemotherapeutic sensitizer.
Collapse
Affiliation(s)
- Jie Song
- Center of Digestive Endoscopy, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Youming Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Donghong He
- Center of Digestive Endoscopy, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Wenhui Tan
- Center of Digestive Endoscopy, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Fang Lv
- Center of Digestive Endoscopy, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Tingting Xia
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Li
- Center of Digestive Endoscopy, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis 2020; 11:10. [PMID: 31907353 PMCID: PMC6944706 DOI: 10.1038/s41419-019-2194-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is a large E2 ubiquitin-conjugating enzyme that possesses both E2 and E3 ligase activities. Ectopic UBE2O overexpression is associated with a variety of human diseases, especially cancers. However, the expression profile and functional biology of UBE2O in human breast cancer (BC) remain unclear. In this study, we found that UBE2O was significantly overexpressed in human BC tissues and cells. Patients with high UBE2O expression tended to have a high risk of metastasis and poor prognosis. In vitro assays revealed that UBE2O promoted BC cell proliferation and epithelial-mesenchymal transformation (EMT) and endowed BC cells with cancer stemness properties (CSPs). UBE2O knockdown in MDA-MB-231 cells suppressed tumour growth and lung metastasis in MDA-MB-231 xenograft mouse models. Mechanistically, UBE2O functioned as a ubiquitin enzyme of AMPKα2, promoting its ubiquitination and degradation and thus activating the mTORC1 signal pathway and contributing to BC oncogenesis and metastasis. Furthermore, as a downstream factor of the UBE2O/AMPKα2/mTORC1 axis, the oncoprotein MYC transcriptionally promoted UBE2O and formed a positive feedback loop in human BC. Collectively, our study demonstrated that UBE2O/AMPKα2/mTORC1-MYC forms a positive feedback loop in human BC cells that regulates BC cell proliferation and EMT and endows BC cells with CSPs.
Collapse
|
14
|
Cai H, Hou X, Ding Y, Fu Z, Wang L, Du Y. Prediction of gastric cancer prognosis in the next-generation sequencing era. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies worldwide, and is caused by complex interactions of multiple risk factors such as environmental (Helicobacter pylori and Epstein–Barr Virus), hereditary (genetic alterations and epigenetic modifications), as well as dietary and lifestyle factors. GC is usually detected at an advanced stage, with a dismal prognosis. Even for patients with similar clinical or pathologic stage receiving similar treatment, the outcomes are still uneven and unpredictable. To better incorporate genetic and epigenetic profiles into GC prognostic predication, gene expression signatures have been developed to predict GC outcomes. More recently, the advancement of high-throughput sequencing technology, also known as next-generation sequencing (NGS) technology, and analysis has provided the basis for accurate molecular classification of GC tumors. Here, we summarized and updated the literature related to NGS studies of GC, including whole-genome sequencing, whole-exome sequencing, RNA sequencing, and targeted sequencing, and discussed current progresses. NGS has facilitated the identification of genetic/epigenetic targets for screening as well as development of targeted agent therapy, thus enabling individualized patient management and treatment.
Collapse
Affiliation(s)
- Hui Cai
- Department of General Surgery, Changhai Hospital, Second Military Medical University Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- PLA Marine Corps Hospital, Chaozhou, Guangdong 521000, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, P. R. China
| | - Zhongxing Fu
- Ningguo Bio-Leader Biotechnology Co., Ltd., Anhui, Hefei, P. R. China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-related Diseases, Shanghai, P. R. China
| | - Yan Du
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
15
|
Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin. Biochem Pharmacol 2019; 174:113787. [PMID: 31884044 DOI: 10.1016/j.bcp.2019.113787] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
Immunotherapy-based cancer treatment has revolutionized the era of cancer patients recuperation and it has brought a strong hope to treatment of some types of cancers. Metformin, a widely used antidiabetic drug, which has intensely been studied for its anticancer effects, is believed to have positive influences on immune responses against tumor cells. Metformin can affect metabolic pathways within cells mainly through activation of AMPK. Metabolic restriction of tumor microenvironment on effector immune cells is one of the important strategies favoring tumor cells to escape from immunogenic cell death. The metabolism of T cells has an axial role in shaping and supporting immune responses and may have an important role in anticancer immunity, suggesting that the functionality and durability of tumor-specific T cells need sufficient energy and nutrients. Energy biogenesis of tumor-specific cytotoxic T cells has become an interesting field of study and it is suggested that activation and maintenance of effector T cell responses in tumor microenvironment may occur by metabolic reprogramming of T cells. AMPK has been noticed as the main intracellular energy sensor and mitochondrial biogenesis key regulator which can control and regulate metabolic reprogramming in immune cells and increase antitumor immunity. Metabolic reprogramming of T cells to overcome metabolic restriction in tumor microenvironment, maiming effector T cell responses against tumor cells, has been noticed by several studies. Here we represent metformin, an AMPK activator, as a new candidate drug for metabolic reprogramming of tumor-specific T cells to increase the efficacy and accountability of cancer immunotherapy.
Collapse
|
16
|
Large-scale analyses identify a cluster of novel long noncoding RNAs as potential competitive endogenous RNAs in progression of hepatocellular carcinoma. Aging (Albany NY) 2019; 11:10422-10453. [PMID: 31761783 PMCID: PMC6914412 DOI: 10.18632/aging.102468] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
The abnormal expression of noncoding RNAs has attracted increasing interest in the field of hepatocellular carcinoma progression. However, the underlying molecular mechanisms mediated by noncoding RNAs in these processes are unclear. Here, we obtained the expression profiles of long noncoding RNAs, microRNAs, and mRNAs from the Gene Expression Omnibus database and identified hepatocarcinogenesis-specific differentially expressed transcripts. Next, we identified significant Gene Ontology and pathway terms that the differentially expressed transcripts involved in. Using functional analysis and target prediction, we constructed a hepatocellular carcinoma-associated deregulated competitive endogenous RNA network to reveal the potential mechanisms underlying tumor progression. By analyzing The Cancer Genome Atlas dataset, six key long noncoding RNAs showed significant association with overall survival as well as strong correlation with some microRNAs and mRNAs in the competitive endogenous RNA network. We further validated the above results and determined their diagnostic and prognostic value in clinical samples. Importantly, by large-scale analyses, we identified a cluster of long noncoding RNAs, GBAP1, MCM3AP-AS1, SLC16A1-AS1, C3P1, DIO3OS, and HNF4A-AS1 as candidate biomarkers for the diagnosis and prognosis of hepatocellular carcinoma, which will improve our understanding of competitive endogenous RNA-mediated regulatory mechanisms underlying hepatocellular carcinoma development and will provide novel therapeutic targets in the future.
Collapse
|
17
|
Zhang Y, Zhou X, Cheng L, Wang X, Zhang Q, Zhang Y, Sun S. PRKAA1 Promotes Proliferation and Inhibits Apoptosis of Gastric Cancer Cells Through Activating JNK1 and Akt Pathways. Oncol Res 2019; 28:213-223. [PMID: 31558185 PMCID: PMC7851536 DOI: 10.3727/096504019x15668125347026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PRKAA1 (protein kinase AMP-activated catalytic subunit α 1) is a catalytic subunit of AMP-activated protein kinase (AMPK), which plays a key role in regulating cellular energy metabolism through phosphorylation, and genetic variations in the PRKAA1 have been found to be associated with gastric cancer risk. However, the effect and underlying molecular mechanism of PRKAA1 on gastric cancer tumorigenesis, especially the proliferation and apoptosis, are not fully understood. Our data showed that PRKAA1 is highly expressed in BGC-823 and MKN45 cells and is expressed low in SGC-7901 and MGC-803 cells in comparison with the other gastric cancer cells. PRKAA1 downregulation by shRNA or treatment of AMPK inhibitor compound C significantly inhibited proliferation as well as promoted cell cycle arrest and apoptosis of BGC-823 and MKN45 cells. Moreover, the expression of PCNA and Bcl-2 and the activity of JNK1 and Akt signaling were also reduced in BGC-823 and MKN45 cells after PRKAA1 downregulation. In vivo experiments demonstrated that tumor growth in nude mice was significantly inhibited after PRKAA1 silencing. Importantly, inactivation of JNK1 or Akt signaling pathway significantly inhibited PRKAA1 overexpression-induced increased cell proliferation and decreased cell apoptosis in MGC-803 cells. In conclusion, our findings suggest that PRKAA1 increases proliferation and restrains apoptosis of gastric cancer cells through activating JNK1 and Akt pathways.
Collapse
Affiliation(s)
- Yangmei Zhang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical UniversityXuzhouP.R. China
| | - Xichang Zhou
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical UniversityXuzhouP.R. China
| | - Long Cheng
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical UniversityXuzhouP.R. China
| | - Xiang Wang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical UniversityXuzhouP.R. China
| | - Qinglin Zhang
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Medical UniversityXuzhouP.R. China
| | - Youwei Zhang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical UniversityXuzhouP.R. China
| | - Sanyuan Sun
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Medical UniversityXuzhouP.R. China
| |
Collapse
|
18
|
Thirupathi A, Chang YZ. Role of AMPK and its molecular intermediates in subjugating cancer survival mechanism. Life Sci 2019; 227:30-38. [DOI: 10.1016/j.lfs.2019.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
|
19
|
Zhang Z, Dong Y, Hua J, Xue H, Hu J, Jiang T, Shi L, Du J. A five-miRNA signature predicts survival in gastric cancer using bioinformatics analysis. Gene 2019; 699:125-134. [DOI: 10.1016/j.gene.2019.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
|
20
|
Okubo K, Isono M, Asano T, Sato A. Metformin Augments Panobinostat's Anti-Bladder Cancer Activity by Activating AMP-Activated Protein Kinase. Transl Oncol 2019; 12:669-682. [PMID: 30849634 PMCID: PMC6402380 DOI: 10.1016/j.tranon.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/09/2023] Open
Abstract
Panobinostat, a histone deacetylase inhibitor, induces histone acetylation and acts against cancer but attenuates its anticancer activity by activating the mammalian target of rapamycin (mTOR) pathway. AMP-activated protein kinase (AMPK) is a cellular energy sensor that reportedly inhibits the mTOR pathway. The antidiabetic drug metformin is also a potent AMPK activator and we investigated whether it augmented panobinostat's antineoplastic activity in bladder cancer cells (UMUC3, J82, T24 and MBT-2). Metformin enhanced panobinostat-induced apoptosis and the combination inhibited the growth of bladder cancer cells cooperatively in vitro and in vivo. As expected, metformin increased the phosphorylation of AMPK and decreased the panobinostat-caused phosphorylation of S6 ribosomal protein, thus inhibiting the panobinostat-activated mTOR pathway. The AMPK activation was shown to play a pivotal role in the combination's action because the AMPK inhibitor compound C attenuated the combination's anticancer activity. Furthermore, the AMPK activation by metformin enhanced panobinostat-induced histone and non-histone acetylation. This acetylation was especially remarkable in the proteins in the detergent-insoluble fraction, which would be expected if the combination also induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
21
|
Differential effects, on oncogenic pathway signalling, by derivatives of the HNF4 α inhibitor BI6015. Br J Cancer 2019; 120:488-498. [PMID: 30792535 PMCID: PMC6461897 DOI: 10.1038/s41416-018-0374-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/05/2023] Open
Abstract
Background Gastric cancer (GC) is a highly heterogeneous disease with few “targeted” therapeutic options. Previously, we demonstrated involvement of the transcription factor HNF4α in human GC tumours, and the developmental signal mediator, WNT5A, as a prognostic GC biomarker. One previously developed HNF4α antagonist, BI6015, while not advancing beyond preclinical stages, remains useful for studying GC. Methods Here, we characterised the antineoplastic signalling activity of derivatives of BI6015, including transfer of the nitro group from the para position, relative to a methyl group on its benzene ring, to the ortho- and meta positions. We assessed binding efficacy, through surface plasmon resonance and docking studies, while biologic activity was assessed by antimitogenic efficacy against a panel of GC cell lines, and dysregulated transcriptomes, followed by pathway and subpathway analysis. Results The para derivative of BI6105 was found substantially more growth inhibitory, and effective, in downregulating numerous oncogenic signal pathways, including the embryonic cascade WNT. The ortho and meta derivatives, however, failed to downregulate WNT or other embryonic signalling pathways, unable to suppress GC growth. Conclusion Straightforward strategies, employing bioinformatics analyses, to facilitate the effective design and development of “druggable” transcription factor inhibitors, are useful for targeting specific oncogenic signalling pathways, in GC and other cancers.
Collapse
|
22
|
Lyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti OD, Liu P, Liu T, Long Y, Chong T, Yang X, Huang J, He M, Tsang CM, Tsao SW, Wang Q, Jiang Q, Li X. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog 2018; 14:e1007484. [PMID: 30557400 PMCID: PMC6312352 DOI: 10.1371/journal.ppat.1007484] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/31/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022] Open
Abstract
Abnormal metabolism and uncontrolled angiogenesis are two important characteristics of malignant tumors. The occurrence of both events involves many key molecular changes including miRNA. However, EBV encoded miRNAs are rarely mentioned as capable of regulating tumor metabolism and tumor angiogenesis. Here, we reported that one of the key miRNAs encoded by EBV, EBV-miR-Bart1-5P, can significantly promote nasopharyngeal carcinoma (NPC) cell glycolysis and induces angiogenesis in vitro and in vivo. Mechanistically, EBV-miR-Bart1-5P directly targets the α1 catalytic subunit of AMP-activated protein kinase (AMPKα1) and consequently regulates the AMPK/mTOR/HIF1 pathway which impelled NPC cell anomalous aerobic glycolysis and angiogenesis, ultimately leads to uncontrolled growth of NPC. Our findings provide new insights into metabolism and angiogenesis of NPC and new opportunities for the development of targeted NPC therapy in the future. The Epstein-Barr virus (EBV), the first reported human tumor virus found to encode miRNAs, which closely related to malignant progression of tumors. In our study, we have observed that EBV-miR-BART1-5P, an EBV-BARTs encoded miRNA, promotes glycolysis and induces angiogenesis in NPC. Interestingly, we showed that overexpression of EBV-miR -BART1-5P and restored PTEN at the same time, did not completely reverse the phenotypes of glycolysis, angiogenesis and proliferation, suggesting that EBV-miR-BART1-5P can mediate glycolysis and induction angiogenesis by a PTEN-independent manner. Further mechanism exploration demonstrated that EBV-miR-BART1-5P has important roles in cancer cell glucose metabolism and angiogenesis by inhibiting AMPKα1 and PTEN, which provides a molecular basis for the regulation of AMPK/mTOR/HIF1 and PTEN/FAK, Shc, AKT pathways, respectively.
Collapse
Affiliation(s)
- Xiaoming Lyu
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, P.R. China
- * E-mail: (XL); (QJ); (XL)
| | - Jianguo Wang
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gongfa Wu
- Department of Pathology, Zengcheng District People’s Hospital of Guangzhou City, Guangzhou, P.R. China
| | - Yang Jiao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | | | - Pengfei Liu
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Tielian Liu
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yufei Long
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tuotuo Chong
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Huang
- Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mingliang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Chi Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Qian Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qiang Jiang
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou, P.R. China
- * E-mail: (XL); (QJ); (XL)
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
- * E-mail: (XL); (QJ); (XL)
| |
Collapse
|
23
|
Zhang W, Liu S, Zhan H, Yan Z, Zhang G. Transcriptome sequencing identifies key pathways and genes involved in gastric adenocarcinoma. Mol Med Rep 2018; 18:3673-3682. [PMID: 30106143 PMCID: PMC6131596 DOI: 10.3892/mmr.2018.9370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to investigate the key pathways and genes associated with gastric adenocarcinoma via transcriptome sequencing. Five pairs of gastric adenocarcinoma tissue and normal tumor-adjacent tissue were harvested. After sequencing, raw data were processed and differentially expressed genes (DEGs) between tumor and control groups were screened, followed by functional enrichment analysis and gene clustering analysis. The effect of DEGs on patient prognosis was analyzed on the basis of the survival data from gastric adenocarcinoma patients in The Cancer Genome Atlas database. Several genes were validated through reverse transcription-quantitative polymerase chain reaction. In total, 1,477 upregulated and 282 downregulated DEGs were screened in tumor groups. These genes were segregated into four clusters. Genes in cluster 1 were significantly involved in metabolism of xenobiotics by cytochrome P450, genes in cluster 2 were majorly involved in apoptosis, tight junction formation, and platelet activation, genes in cluster 3 were primarily enriched in the p53 signaling pathway and genes in cluster 4 were significantly enriched in the insulin resistance pathway. Furthermore, 15 DEGs significantly influenced prognosis, including F2R, CTHRC1, and RASGRP3. The expression levels of CYP2B6, MAPK13, CTHRC, RASGRP3 and PYGM were consistent with our analysis results. In conclusion, pathways for metabolism of xenobiotics via cytochrome P450, apoptosis, tight junction formation, platelet activation, and insulin resistance may serve important roles in the progression of gastric adenocarcinoma. Notably, CTHRC1 and RASGRP3 may serve as key prognostic markers.
Collapse
Affiliation(s)
- Wenhu Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
24
|
Park JB, Lee JS, Lee MS, Cha EY, Kim S, Sul JY. Corosolic acid reduces 5‑FU chemoresistance in human gastric cancer cells by activating AMPK. Mol Med Rep 2018; 18:2880-2888. [PMID: 30015846 PMCID: PMC6102703 DOI: 10.3892/mmr.2018.9244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
5‑Fluorouracil (5‑FU) is one of the most commonly used chemotherapeutic agents for gastric cancer. Resistance to 5‑FU‑based chemotherapy remains the major obstacle in the treatment of gastric cancer. A growing body of evidence has suggested that adenosine monophosphate‑activated protein kinase (AMPK) is pivotal for chemoresistance. However, the mechanism by which AMPK regulates the chemosensitivity of gastric cancer remains unclear. In the present study, how corosolic acid enhanced the chemosensitivity of gastric cancer cells to 5‑FU via AMPK activation was investigated. A 5‑FU‑resistant gastric cancer cell line (SNU‑620/5‑FUR) was established, which had a marked increase in thymidine synthase (TS) expression but reduced AMPK phosphorylation when compared with the parental cell line, SNU‑620. AMPK regulation by 5‑aminoimidazole‑4‑carboxamide ribonucleotide or compound c was revealed to be markedly associated with TS expression and 5‑FU‑resistant cell viability. In addition, corosolic acid activated AMPK, and decreased TS expression and the phosphorylation of mammalian target of rapamycin/4E‑binding protein 1 in a dose‑dependent manner. Corosolic acid treatment significantly reduced cell viability while compound c reversed corosolic acid‑induced cell growth inhibition. The 5‑FU‑resistance sensitization effect of corosolic acid was determined by the synergistic reduction of TS expression and inhibition of cell viability in the presence of 5‑FU. The corosolic acid‑induced AMPK activation was markedly increased by additional 5‑FU treatment, while compound c reversed AMPK phosphorylation. In addition, compound c treatment reversed corosolic acid‑induced apoptotic markers such as capase‑3 and PARP cleavage, and cytochrome c translocation to cytosol, in the presence of 5‑FU. Corosolic acid treatment in the presence of 5‑FU induced an increase in the apoptotic cell population based on flow cytometry analysis. This increase was abolished by compound c. In conclusion, these results implied that corosolic acid may have therapeutic potential to sensitize the resistance of gastric cancer to 5‑FU by activating AMPK.
Collapse
Affiliation(s)
- Jun Beom Park
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jin Sun Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Myung Sun Lee
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eun Young Cha
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Soyeon Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ji Young Sul
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| |
Collapse
|
25
|
Jiang Y, Li W, Lu J, Zhao X, Li L. Association between PRKAA1 rs13361707 T>C polymorphism and gastric cancer risk: Evidence based on a meta-analysis. Medicine (Baltimore) 2018; 97:e0302. [PMID: 29620653 PMCID: PMC5902272 DOI: 10.1097/md.0000000000010302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recently, several published studies investigating the relationship between protein kinase catalytic subunit alpha-1 gene (PRKAA1) rs13361707 T>C polymorphism and gastric cancer (GC) susceptibility reported controversial results. The purpose of this meta-analysis was to estimate the strength of the relationship. METHODS Qualified studies were identified form a comprehensive search conducted in the Embase, Pubmed, Wangfang, and China National Knowledge Infrastructure (CNKI) databases for studies published before February 12, 2018. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the relationship between the PRKAA1 rs13361707 T>C polymorphism and GC risk. RESULTS Fifteen independent case-control studies, which included 14,615 GC patients and 18,143 control subjects, were included in this present meta-analysis. The overall analysis of the 15 studies indicated that the PRKAA1 rs13361707 T>C polymorphism significantly increased susceptibility for GC in all genetic models. When stratified analysis was carried out by country and source of controls, similar results were found in each subgroup, except for the Hispanic Americans. There was no publication bias in our study. Omitting each study 1 at a time in the sensitivity analysis of the PRKAA1 rs13361707 T>C polymorphism and GC risk had no noticeable influence on the pooled OR, which identified the reliability of the meta-analysis. False-positive report probability analysis and trial sequential analysis demonstrated that such relationship was confirmed in the present study. CONCLUSIONS The meta-analysis reveals that the PRKAA1 rs13361707 T>C polymorphism has a significant relationship with increased GC risk. To confirm the risk identified in the present meta-analysis, well-designed and large-scale case-control studies are warranted to investigate the relationship, especially among non-Asian ethnicity.
Collapse
Affiliation(s)
- You Jiang
- Department of General Surgery, Hefei Second People's Hospital
| | - Wenbo Li
- Department of General Surgery, Hefei Second People's Hospital
| | - Jun Lu
- Department of General Surgery, Hefei Second People's Hospital
| | - Xin Zhao
- Department of Emergency, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Liang Li
- Department of General Surgery, Hefei Second People's Hospital
| |
Collapse
|
26
|
Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer. Oncotarget 2018; 7:81435-81451. [PMID: 27806312 PMCID: PMC5348404 DOI: 10.18632/oncotarget.12963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is a highly heterogeneous disease, in dire need of specific, biomarker-driven cancer therapies. While the accumulation of cancer “Big Data” has propelled the search for novel molecular targets for GC, its specific subpathway and cellular functions vary from patient to patient. In particular, mutations in the small GTPase gene RHOA have been identified in recent genome-wide sequencing of GC tumors. Moreover, protein overexpression of RHOA was reported in Chinese populations, while RHOA mutations were found in Caucasian GC tumors. To develop evidence-based precision medicine for heterogeneous cancers, we established a systematic approach to integrate transcriptomic and genomic data. Predicted signaling subpathways were then laboratory-validated both in vitro and in vivo, resulting in the identification of new candidate therapeutic targets. Here, we show: i) differences in RHOA expression patterns, and its pathway activity, between Asian and Caucasian GC tumors; ii) in vitro and in vivo perturbed RHOA expression inhibits GC cell growth in high RHOA-expressing cell lines; iii) inverse correlation between RHOA and RHOB expression; and iv) an innovative small molecule design strategy for RHOA inhibitors. In summary, RHOA, and its oncogenic signaling pathway, represent a strong biomarker-driven therapeutic target for Asian GC. This comprehensive strategy represents a promising approach for the development of “hit” compounds.
Collapse
|
27
|
Nam S. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:217-224. [PMID: 28388297 PMCID: PMC5393410 DOI: 10.1089/omi.2016.0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.
Collapse
Affiliation(s)
- Seungyoon Nam
- 1 Department of Genome Medicine and Science, College of Medicine, Gachon University , Incheon, Korea.,2 Department of Life Sciences, Gachon University , Seongnam, Korea.,3 Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center , Incheon, Korea
| |
Collapse
|
28
|
Wang Z, Xiong F, Wang X, Qi Y, Yu H, Zhu Y, Zhu H. Nuclear receptor retinoid-related orphan receptor alpha promotes apoptosis but is reduced in human gastric cancer. Oncotarget 2017; 8:11105-11113. [PMID: 28052040 PMCID: PMC5355250 DOI: 10.18632/oncotarget.14364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Retinoid-related orphan receptor α (RORα) is a nuclear receptor, which regulates inflammation and immune responses, lipid metabolism and circadian rhythm. Although RORα suppresses breast tumor invasion, it is unknown whether RORα is dysregulated in gastric cancer leading to cellular survival. Therefore, we hypothesize that RORα is dysfunctional in gastric carcinoma and this causes decreased apoptosis in gastric cancer cells. To test this hypothesis, we employed human gastric cancer tissues with different stages to determine RORα expression, as well as in vitro human gastric cancer cells to determine how RORα is reduced during apoptosis. We found that the expression of RORα was reduced in gastric tissues with cancer, and this correlated with increased TNM stages. The mechanisms underlying RORα reduction is due to the reduced activation of AMP-activated protein kinase (AMPK), as a selective AMPK activator AICAR increased RORα activation and level in human gastric cancer cells. Furthermore, AICAR treatment increased RORα recruitment on the promoters of tumor suppressor genes (i.e., FBXM7, SEMA3F and p21) leading to apoptosis in human gastric cancer cells. Taken together, RORα reduction occurs in gastric cancer leading to the survival of tumor cells, which is attenuated by AMPK. Therefore, both RORα and AMPK are potential targets for the intervention and therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Fangyuan Xiong
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xiaoshan Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yijun Qi
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Haoyuan Yu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yong Zhu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
29
|
He X, Li C, Ke R, Luo L, Huang D. Down-regulation of adenosine monophosphate–activated protein kinase activity: A driver of cancer. Tumour Biol 2017; 39:1010428317697576. [PMID: 28381161 DOI: 10.1177/1010428317697576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine monophosphate–activated protein kinase (AMPK), a serine/threonine protein kinase, is known as “intracellular energy sensor and regulator.” AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of “Warburg effect” in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.
Collapse
Affiliation(s)
- Xiaoling He
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cong Li
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Ke
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingyu Luo
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Vila IK, Yao Y, Kim G, Xia W, Kim H, Kim SJ, Park MK, Hwang JP, González-Billalabeitia E, Hung MC, Song SJ, Song MS. A UBE2O-AMPKα2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy. Cancer Cell 2017; 31:208-224. [PMID: 28162974 PMCID: PMC5463996 DOI: 10.1016/j.ccell.2017.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
Abstract
UBE2O is localized in the 17q25 locus, which is known to be amplified in human cancers, but its role in tumorigenesis remains undefined. Here we show that Ube2o deletion in MMTV-PyVT or TRAMP mice profoundly impairs tumor initiation, growth, and metastasis, while switching off the metabolic reprogramming of tumor cells. Mechanistically, UBE2O specifically targets AMPKα2 for ubiquitination and degradation, and thereby promotes activation of the mTOR-HIF1α pathway. Notably, inactivation of AMPKα2, but not AMPKα1, abrogates the tumor attenuation caused by UBE2O loss, while treatment with rapamycin or inhibition of HIF1α ablates UBE2O-dependent tumor biology. Finally, pharmacological blockade of UBE2O inhibits tumorigenesis through the restoration of AMPKα2, suggesting the UBE2O-AMPKα2 axis as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Goeun Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sun-Joong Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mi-Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James P Hwang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Abstract
BACKGROUND To identify gastric cancer (GC)-associated genes and transcription factors (TFs) using RNA-sequencing (RNA-seq) data of Asians. MATERIALS AND METHODS The RNA-seq data (GSE36968) were downloaded from Gene Expression Omnibus database, including 6 noncancerous gastric tissue samples, 5 stage I GC samples, 5 stage II GC samples, 8 stage III GC samples, and 6 stage IV GC samples. The gene expression values in each sample were calculated using Cuffdiff. Following, stage-specific genes were identified by 1-way analysis of variance and hierarchical clustering analysis. Upstream TFs were identified using Seqpos. Besides, functional enrichment analysis of stage-specific genes was performed by DAVID. In addition, the underlying protein-protein interactions (PPIs) information among stage IV-specific genes were extracted from STRING database and PPI network was constructed using Cytoscape software. RESULTS A total of 3576 stage-specific genes were identified, including 813 specifically up-regulated genes in the normal gastric tissues, 2224 stage I and II-specific genes, and 539 stage IV-specific genes. Also, a total of 9 and 11 up-regulated TFs were identified for the stage I and II-specific genes and stage IV-specific genes, respectively. Functional enrichment showed SPARC, MMP17, and COL6A3 were related to extracellular matrix. Notably, 2 regulatory pathways HOXA4-GLI3-RUNX2-FGF2 and HMGA2-PRKCA were obtained from the PPI network for stage IV-specific genes. In the PPI network, TFs HOXA4 and HMGA2 might function via mediating other genes. CONCLUSION These stage-specific genes and TFs might act in the pathogenesis of GC in Asians.
Collapse
|
32
|
Kopsiaftis S, Hegde P, Taylor JA, Claffey KP. AMPKα Is Suppressed in Bladder Cancer through Macrophage-Mediated Mechanisms. Transl Oncol 2016; 9:606-616. [PMID: 27916296 PMCID: PMC5143351 DOI: 10.1016/j.tranon.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer presents as either low- or high-grade disease, each with distinct mutational profiles; however, both display prominent mTORC1 activation. One major negative regulator of mTORC1 is AMPK, which is a critical metabolic regulator that suppresses cellular growth in response to metabolic stress by negatively regulating mTORC1. Alterations in the activation and protein levels of AMPK have been reported in breast, gastric, and hepatocellular carcinoma. To investigate whether AMPK suppression is responsible for mTOR activation in bladder cancer, the levels of AMPKα were quantified in a cohort of primary human bladder cancers and adjacent nontumor tissues. The levels of p-AMPKα, AMPKα1, AMPKα2, and total AMPKα were significantly suppressed in both low- and high-grade disease when compared with nontumor tissue. To elucidate the AMPKα suppression mechanism, we focused on inflammation, particularly tumor-infiltrating macrophages, due to their reported role in regulating AMPK expression. Treatment of HTB2 cancer cells with varying doses of differentiated U937 macrophage conditioned medium (CM) demonstrated a dose-dependent reduction of AMPKα protein. Additionally, macrophage CM treatment of HTB2 and HT1376 bladder cells for various times also reduced AMPKα protein but not mRNA levels. Direct TNFα treatment also suppressed AMPKα at the protein but not RNA level. Finally, staining of the human cohort for CD68, a macrophage marker, revealed that CD68+ cell counts correlated with reduced AMPKα levels. In summary, these data demonstrate the potential role for inflammation and inflammatory cytokines in regulating the levels of AMPKα and promoting mTORC1 activation in bladder cancer.
Collapse
Affiliation(s)
- Stavros Kopsiaftis
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA; Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Poornima Hegde
- Department of Pathology, University of Connecticut Health Center, Farmington, CT, USA
| | - John A Taylor
- Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | - Kevin P Claffey
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA; Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA; Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
33
|
Kim J, Yang G, Ha J. Targeting of AMP-activated protein kinase: prospects for computer-aided drug design. Expert Opin Drug Discov 2016; 12:47-59. [PMID: 27797589 DOI: 10.1080/17460441.2017.1255194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Dysregulation of energy homeostasis has been implicated in a number of human chronic diseases including diabetes, obesity, cancer, and inflammation. Given the functional attributes as a central regulator of energy homeostasis, AMP-activated protein kinase (AMPK) is emerging as a therapeutic target for these diseases, and lines of evidence have highlighted the need for rational and robust screening systems for identifying specific AMPK modulators with a therapeutic potential for preventing and/or curing these diseases. Areas covered: Here, the authors review the recent advances in the understanding of three-dimensional structures of AMPK in relationship with the regulatory mechanisms, potentials of AMPK as a therapeutic target in human chronic diseases, and prospects of computer-based drug design for AMPK. Expert opinion: Accumulating information of AMPK structure has provided us with deep insight into the molecular basis underlying the regulatory mechanisms, and further discloses several structural domains, which can be served for a target site for computer-based drug design. Molecular docking and simulations provides useful information about the binding sites between potent drugs and AMPK as well as a rational screening format to discover isoform-specific AMPK modulators. For these reasons, the authors suggest that computer-aided virtual screening methods hold promise as a rational approach for discovering more specific AMPK modulators.
Collapse
Affiliation(s)
- Joungmok Kim
- a Department of Oral Biochemistry and Molecular Biology, School of Dentistry , Kyung Hee University , Dongdaemun-gu , Republic of Korea
| | - Goowon Yang
- b Department of Biochemistry and Molecular Biology, Graduate School , Kyung Hee University , Seoul , Republic of Korea
| | - Joohun Ha
- b Department of Biochemistry and Molecular Biology, Graduate School , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
34
|
Zhao W, Zhang X, Liu J, Sun B, Tang H, Zhang H. miR-27a-mediated antiproliferative effects of metformin on the breast cancer cell line MCF-7. Oncol Rep 2016; 36:3691-3699. [DOI: 10.3892/or.2016.5199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
|
35
|
Kopsiaftis S, Sullivan KL, Garg I, Taylor JA, Claffey KP. AMPKα2 Regulates Bladder Cancer Growth through SKP2-Mediated Degradation of p27. Mol Cancer Res 2016; 14:1182-1194. [PMID: 27638620 DOI: 10.1158/1541-7786.mcr-16-0111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
AMP-activated protein kinase (AMPK) is the central metabolic regulator of the cell and controls energy consumption based upon nutrient availability. Due to its role in energy regulation, AMPK has been implicated as a barrier for cancer progression and is suppressed in multiple cancers. To examine whether AMPK regulates bladder cancer cell growth, HTB2 and HT1376 bladder cells were treated with an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). AICAR treatment reduced proliferation and induced the expression of p27Kip1 (CDKN1B), which was mediated through an mTOR-dependent mechanism. Interestingly, AMPKα2 knockdown resulted in reduced p27 levels, whereas AMPKα1 suppression did not. To further determine the exact mechanism by which AMPKa2 regulates p27, HTB2 and HT1376 cells were transduced with an shRNA targeting AMPKα2. Stable knockdown of AMPKα2 resulted in increased proliferation and decreased p27 protein. The reduced p27 protein was determined to be dependent upon SKP2. Additionally, loss of AMPKα2 in a xenograft and a chemical carcinogen model of bladder cancer resulted in larger tumors with less p27 protein and high SKP2 levels. Consistent with the regulation observed in the bladder cancer model systems, a comprehensive survey of human primary bladder cancer clinical specimens revealed low levels of AMPKα2 and p27 and high levels of SKP2. IMPLICATIONS These results highlight the contribution of AMPKα2 as a mechanism for controlling bladder cancer growth by regulating proliferation through mTOR suppression and induction of p27 protein levels, thus indicating how AMPKα2 loss may contribute to tumorigenesis. Mol Cancer Res; 14(12); 1182-94. ©2016 AACR.
Collapse
Affiliation(s)
- Stavros Kopsiaftis
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut.,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut
| | - Katie L Sullivan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut.,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut
| | - Isha Garg
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut.,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut
| | - John A Taylor
- Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Kevin P Claffey
- Center for Vascular Biology, University of Connecticut Health Center, Farmington Connecticut. .,Department of Cell Biology, University of Connecticut Health Center, Farmington Connecticut.,Neag Comprehensive Cancer Center, University of Connecticut Health Center, Farmington Connecticut
| |
Collapse
|
36
|
Identification of a five-lncRNA signature for the diagnosis and prognosis of gastric cancer. Tumour Biol 2016; 37:13265-13277. [PMID: 27460075 DOI: 10.1007/s13277-016-5185-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive malignancies and has a poor prognosis. Identifying novel diagnostic and prognostic markers is of great importance for the management and treatment of GC. Long non-coding RNAs (lncRNAs), which are involved in multiple processes during the development and progression of cancer, may act as potential biomarkers of GC. Here, by performing data mining using four microarray data sets of GC downloaded from the Gene Expression Omnibus (GEO) database with different classifiers and risk score analyses, we identified a five-lncRNA signature (AK001094, AK024171, AK093735, BC003519 and NR_003573) displaying both diagnostic and prognostic values for GC. The results of the Kaplan-Meier survival analysis and log-rank test showed that the risk score based on this five-lncRNA signature was closely associated with overall survival time (p = 0.0001). Further analysis revealed that the risk score is an independent predictor of prognosis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of 30 pairs of GC tissue samples confirmed that the five lncRNAs were dysregulated in GC, and receiver operating characteristic (ROC) curves showed the high diagnostic ability of combining the five lncRNAs, with an area under the curve (AUC) of 0.95 ± 0.025. The five lncRNAs involved in several cancer-related pathways were identified using gene set enrichment analysis (GSEA). These findings indicate that the five-lncRNA signature may have a good clinical applicability for determining the diagnosis and predicting the prognosis of GC.
Collapse
|
37
|
Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016; 48:e245. [PMID: 27416781 PMCID: PMC4973318 DOI: 10.1038/emm.2016.81] [Citation(s) in RCA: 715] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022] Open
Abstract
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that was originally identified as the key player in maintaining cellular energy homeostasis. Intensive research over the last decade has identified diverse molecular mechanisms and physiological conditions that regulate the AMPK activity. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes and cancer. On the basis of its critical roles in physiology and pathology, AMPK is emerging as one of the most promising targets for both the prevention and treatment of these diseases. In this review, we discuss the current understanding of the molecular and physiological regulation of AMPK and its metabolic and physiological functions. In addition, we discuss the mechanisms underlying the versatile roles of AMPK in diabetes and cancer.
Collapse
|
38
|
López M, Nogueiras R, Tena-Sempere M, Diéguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 2016; 12:421-32. [PMID: 27199291 DOI: 10.1038/nrendo.2016.67] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain
- FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| |
Collapse
|
39
|
Martinez VD, Enfield KSS, Rowbotham DA, Lam WL. An atlas of gastric PIWI-interacting RNA transcriptomes and their utility for identifying signatures of gastric cancer recurrence. Gastric Cancer 2016; 19:660-665. [PMID: 25779424 PMCID: PMC4573768 DOI: 10.1007/s10120-015-0487-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023]
Abstract
The poor survival and recurrence rate in gastric adenocarcinoma highlights the need for cancer gene discovery. Towards this end, we globally assessed the expression of an emerging class of small non-coding RNAs, called PIWI-interacting RNAs (piRNAs). We analysed the transcriptomes of 358 non-malignant stomach tissue and gastric adenocarcinoma samples, and found that nearly half of the expressed piRNAs were overexpressed in tumours. Our gastric piRNA atlas showed that most piRNAs were embedded in protein-coding sequences rather than known piRNA clusters. Furthermore, we identified a three-piRNA signature associated with recurrence-free survival. In this proof-of-principle study, we demonstrate the potential clinical utility of piRNAs in gastric cancer.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada
| | - Katey SS Enfield
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada
| | | | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada
| |
Collapse
|
40
|
Chang HR, Park HS, Ahn YZ, Nam S, Jung HR, Park S, Lee SJ, Balch C, Powis G, Ku JL, Kim YH. Improving gastric cancer preclinical studies using diverse in vitro and in vivo model systems. BMC Cancer 2016; 16:200. [PMID: 26955870 PMCID: PMC4784390 DOI: 10.1186/s12885-016-2232-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND "Biomarker-driven targeted therapy," the practice of tailoring patients' treatment to the expression/activity levels of disease-specific genes/proteins, remains challenging. For example, while the anti-ERBB2 monoclonal antibody, trastuzumab, was first developed using well-characterized, diverse in vitro breast cancer models (and is now a standard adjuvant therapy for ERBB2-positive breast cancer patients), trastuzumab approval for ERBB2-positive gastric cancer was largely based on preclinical studies of a single cell line, NCI-N87. Ensuing clinical trials revealed only modest patient efficacy, and many ERBB2-positive gastric cancer (GC) patients failed to respond at all (i.e., were inherently recalcitrant), or succumbed to acquired resistance. METHOD To assess mechanisms underlying GC insensitivity to ERBB2 therapies, we established a diverse panel of GC cells, differing in ERBB2 expression levels, for comprehensive in vitro and in vivo characterization. For higher throughput assays of ERBB2 DNA and protein levels, we compared the concordance of various laboratory quantification methods, including those of in vitro and in vivo genetic anomalies (FISH and SISH) and xenograft protein expression (Western blot vs. IHC), of both cell and xenograft (tissue-sectioned) microarrays. RESULTS The biomarker assessment methods strongly agreed, as did correlation between RNA and protein expression. However, although ERBB2 genomic anomalies showed good in vitro vs. in vivo correlation, we observed striking differences in protein expression between cultured cells and mouse xenografts (even within the same GC cell type). Via our unique pathway analysis, we delineated a signaling network, in addition to specific pathways/biological processes, emanating from the ERBB2 signaling cascade, as a potential useful target of clinical treatment. Integrated analysis of public data from gastric tumors revealed frequent (10 - 20 %) amplification of the genes NFKBIE, PTK2, and PIK3CA, each of which resides in an ERBB2-derived subpathway network. CONCLUSION Our comprehensive bioinformatics analyses of highly heterogeneous cancer cells, combined with tumor "omics" profiles, can optimally characterize the expression patterns and activity of specific tumor biomarkers. Subsequent in vitro and in vivo validation, of specific disease biomarkers (using multiple methodologies), can improve prediction of patient stratification according to drug response or nonresponse.
Collapse
Affiliation(s)
- Hae Ryung Chang
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Cancer Biology Research Laboratory, Institut Pasteur Korea, Bundang, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Hee Seo Park
- Animal Sciences Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Young Zoo Ahn
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Seungyoon Nam
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam, South Korea. .,College of Medicine, Gachon University, Incheon, South Korea.
| | - Hae Rim Jung
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Sungjin Park
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam, South Korea. .,College of Medicine, Gachon University, Incheon, South Korea.
| | - Sang Jin Lee
- Animal Sciences Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Curt Balch
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy, Toledo, OH, USA.
| | - Garth Powis
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Ja-Lok Ku
- SNU Korean Cell Line Bank, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Yon Hui Kim
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Cancer Biology Research Laboratory, Institut Pasteur Korea, Bundang, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
41
|
Chia NY, Tan P. Molecular classification of gastric cancer. Ann Oncol 2016; 27:763-9. [PMID: 26861606 DOI: 10.1093/annonc/mdw040] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC), a heterogeneous disease characterized by epidemiologic and histopathologic differences across countries, is a leading cause of cancer-related death. Treatment of GC patients is currently suboptimal due to patients being commonly treated in a uniform fashion irrespective of disease subtype. With the advent of next-generation sequencing and other genomic technologies, GCs are now being investigated in great detail at the molecular level. High-throughput technologies now allow a comprehensive study of genomic and epigenomic alterations associated with GC. Gene mutations, chromosomal aberrations, differential gene expression and epigenetic alterations are some of the genetic/epigenetic influences on GC pathogenesis. In addition, integrative analyses of molecular profiling data have led to the identification of key dysregulated pathways and importantly, the establishment of GC molecular classifiers. Recently, The Cancer Genome Atlas (TCGA) network proposed a four subtype classification scheme for GC based on the underlying tumor molecular biology of each subtype. This landmark study, together with other studies, has expanded our understanding on the characteristics of GC at the molecular level. Such knowledge may improve the medical management of GC in the future.
Collapse
Affiliation(s)
- N-Y Chia
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School
| | - P Tan
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School Genome Institute of Singapore, Agency for Science, Technology, and Research Cancer Science Institute of Singapore, National University of Singapore Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| |
Collapse
|
42
|
Chang HR, Nam S, Kook MC, Kim KT, Liu X, Yao H, Jung HR, Lemos R, Seo HH, Park HS, Gim Y, Hong D, Huh I, Kim YW, Tan D, Liu CG, Powis G, Park T, Liang H, Kim YH. HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer. Gut 2016; 65:19-32. [PMID: 25410163 PMCID: PMC4717359 DOI: 10.1136/gutjnl-2014-307918] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/25/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Worldwide, gastric cancer (GC) is the fourth most common malignancy and the most common cancer in East Asia. Development of targeted therapies for this disease has focused on a few known oncogenes but has had limited effects. OBJECTIVE To determine oncogenic mechanisms and novel therapeutic targets specific for GC by identifying commonly dysregulated genes from the tumours of both Asian-Pacific and Caucasian patients. METHODS We generated transcriptomic profiles of 22 Caucasian GC tumours and their matched non-cancerous samples and performed an integrative analysis across different GC gene expression datasets. We examined the inhibition of commonly overexpressed oncogenes and their constituent signalling pathways by RNAi and/or pharmacological inhibition. RESULTS Hepatocyte nuclear factor-4α (HNF4α) upregulation was a key signalling event in gastric tumours from both Caucasian and Asian patients, and HNF4α antagonism was antineoplastic. Perturbation experiments in GC tumour cell lines and xenograft models further demonstrated that HNF4α is downregulated by AMPKα signalling and the AMPK agonist metformin; blockade of HNF4α activity resulted in cyclin downregulation, cell cycle arrest and tumour growth inhibition. HNF4α also regulated WNT signalling through its target gene WNT5A, a potential prognostic marker of diffuse type gastric tumours. CONCLUSIONS Our results indicate that HNF4α is a targetable oncoprotein in GC, is regulated by AMPK signalling through AMPKα and resides upstream of WNT signalling. HNF4α may regulate 'metabolic switch' characteristic of a general malignant phenotype and its target WNT5A has potential prognostic values. The AMPKα-HNF4α-WNT5A signalling cascade represents a potentially targetable pathway for drug development.
Collapse
Affiliation(s)
- Hae Ryung Chang
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Seungyoon Nam
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Myeong-Cherl Kook
- Department of Pathology, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Kyung-Tae Kim
- Molecular Epidemiology Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hae Rim Jung
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Robert Lemos
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Hye Hyun Seo
- Animal Sciences Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Hee Seo Park
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Youme Gim
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Dongwan Hong
- Cancer Genomics Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Iksoo Huh
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Young-Woo Kim
- Gastric Cancer Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Garth Powis
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yon Hui Kim
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Goyang-si, Kyeonggi-do, Republic of Korea
| |
Collapse
|
43
|
Abstract
This chapter focuses on the role of AMPK as a stress-response molecule with an emphasis on its duplex implication in carcinogenesis and cancer drug resistance. AMPK is closely correlated to the tumor-suppressive functions of LKB1 and P53, consequently modulating the activity of cellular survival signaling such as mTOR and Akt, leading to cell growth inhibition and cell cycle arrest. On the contrary, AMPK is tightly involved in cancer drug resistance via interacting with multiple known mechanisms of chemoresistance such as ABCG2 expression, autophagy induction, and cancer stem cells enrichment. Targeting AMPK has become a novel strategy for cancer prevention and treatment.
Collapse
|
44
|
Dasgupta B, Chhipa RR. Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Trends Pharmacol Sci 2015; 37:192-206. [PMID: 26711141 DOI: 10.1016/j.tips.2015.11.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023]
Abstract
AMP kinase (AMPK) is an evolutionarily conserved enzyme required for adaptive responses to various physiological and pathological conditions. AMPK executes numerous cellular functions, some of which are often perceived at odds with each other. While AMPK is essential for embryonic growth and development, its full impact in adult tissues is revealed under stressful situations that organisms face in the real world. Conflicting reports about its cellular functions, particularly in cancer, are intriguing and a growing number of AMPK activators are being developed to treat human diseases such as cancer and diabetes. Whether these drugs will have only context-specific benefits or detrimental effects in the treatment of human cancer will be a subject of intense research. Here we review the current state of AMPK research with an emphasis on cancer and discuss the yet unresolved context-dependent functions of AMPK in human cancer.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Rishi Raj Chhipa
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
45
|
Qiu LX, He J, Cheng L, Zhou F, Wang MY, Sun MH, Zhou XY, Li J, Guo WJ, Wang YN, Yang YJ, Wang JC, Jin L, Zhu XD, Wei QY. Genetic variant of PRKAA1 and gastric cancer risk in an eastern Chinese population. Oncotarget 2015; 6:42661-6. [PMID: 26485766 PMCID: PMC4767461 DOI: 10.18632/oncotarget.6124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023] Open
Abstract
Published data on the association between PRKAA1 rs13361707 T > C polymorphism and gastric cancer (GCa) susceptibility were inconclusive. To derive a more precise estimation of the association, we conducted a large-scale GCa study of 1,124 cases and 1,194 controls to confirm this association in an eastern Chinese population. Our results showed that the C allele of PRKAA1 rs13361707 increased the GC risk in the study population [CT vs. TT, odds ratio (OR) = 1.72, 95% confidence interval (CI) = 1.40-2.12; CC vs. TT, OR = 2.15, 95%CI = 1.70-2.71; CT/CC vs. TT, OR = 1.86, 95%CI = 1.53-2.26; CC vs.TT/CT, OR = 1.49, 95%CI = 1.24-1.79]. In addition, the association of C allele with an increased GCa risk was still significant in subgroups, when stratified by age, sex, tumor site, drinking and smoking status. Moreover, the findings in the present study were validated by our further meta-analysis. In summary, these results indicated that the C allele of PRKAA1 rs13361707 was a low-penetrate risk factor for GCa.
Collapse
Affiliation(s)
- Li-Xin Qiu
- 1 Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- 2 Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing He
- 3 Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Cheng
- 2 Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fei Zhou
- 2 Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Meng-Yun Wang
- 2 Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Meng-Hong Sun
- 4 Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Yan Zhou
- 4 Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jin Li
- 1 Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Jian Guo
- 1 Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nong Wang
- 5 Department of Gastric Cancer & Soft Tissue Sarcoma Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ya-Jun Yang
- 6 Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- 7 Fudan-Taizhou Institute of Health Sciences, Jiangsu, China
| | - Jiu-Cun Wang
- 6 Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- 7 Fudan-Taizhou Institute of Health Sciences, Jiangsu, China
| | - Li Jin
- 6 Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- 7 Fudan-Taizhou Institute of Health Sciences, Jiangsu, China
| | - Xiao-Dong Zhu
- 1 Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Yi Wei
- 2 Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- 8 Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
46
|
The antileukemia effect of metformin in the Philadelphia chromosome-positive leukemia cell line and patient primary leukemia cell. Anticancer Drugs 2015; 26:913-22. [PMID: 26186064 DOI: 10.1097/cad.0000000000000266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, there have been considerable research advances on the antileukemic mechanisms of the antidiabetic drug metformin. Our current studies have shown that metformin suppresses cell viability, induces apoptosis, and downregulates the mTORC1 signaling pathway both in the Ph+ALL cell line and primary blasts from Ph+ ALL patients, as well as the CML cell lines K562 (imatinib-sensitive) and K562R (imatinib-resistance). We have also shown that metformin activates the ERK pathway in Ph+ALL cells, SUP-B15, a side effect that can be overcome by U0126 (MEK1/2 inhibitor) or imatinib. Moreover, this activation of ERK signaling in SUP-B15 induces autophagy. Inhibition of the autophagic process by 3-MA, promoting the death of these cells, suggests that autophagy may be a cytoprotective factor in cell survival after metformin treatment. Finally, metformin is shown to potentiate the anticancer efficacy of imatinib in Ph+ALL and CML cells, resensitizing the CML imatinib-resistance cells to imatinib. Overall, our data suggest that metformin represents a promising and attractive agent for Ph+ALL or CML therapy.
Collapse
|
47
|
Wu Y, Qi Y, Liu H, Wang X, Zhu H, Wang Z. AMPK activator AICAR promotes 5-FU-induced apoptosis in gastric cancer cells. Mol Cell Biochem 2015; 411:299-305. [PMID: 26497305 DOI: 10.1007/s11010-015-2592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to determine the effect of AICAR, an AMPK activator, on apoptosis in gastric carcinoma cells (SGC-7901) with or without 5-fluorouracil (5-FU). SGC-7901 cells were treated with AICAR (0.2-5 mM, for 24-48 h) with or without 5-FU. Cell viability was determined using MTT assay, while apoptosis were measured through the evaluation of active caspase-3 activity and DNA fragmentation. Real-time PCR was employed to determine the expression of tumor suppressor and multi-drug resistant (mdr1) gene. Cleaved caspase-3 and phosphorylated AMPK (p-AMPK) were measured by Western blot. AICAR significant reduced cellular viability but increased apoptosis in a time- and dose-dependent manner, which is associated with an increase in p-AMPK levels. Importantly, AICAR enhanced the sensitivity to 5-FU-induced reduction of cellular viability and increased apoptosis in SGC-7901 cells. Furthermore, AICAR increased tumor suppressor genes [F-box and WD repeat domain containing 7 (FBXW7), semaphorin III/F (SEMA3F), and p21(Cip1) (p21)] but reduced mdr1 expression. Finally, p-AMPK levels were reduced in 5-FU-resistant gastric cancer cells compared to human immortalized gastric epithelial cell line and 5-FU-sensitive gastric cancer cells. AICAR not only induces apoptosis alone but also enhances pro-apoptotic effect of 5-FU in SGC-7901 cells, which lays an experimental foundation to develop AICAR as a chemotherapeutic sensitizer against gastric cancer.
Collapse
Affiliation(s)
- Yan Wu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yijun Qi
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hu Liu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaoshan Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Zhengguang Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
48
|
Tan P, Yeoh KG. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015; 149:1153-1162.e3. [PMID: 26073375 DOI: 10.1053/j.gastro.2015.05.059] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is globally the fifth most common cancer and third leading cause of cancer death. A complex disease arising from the interaction of environmental and host-associated factors, key contributors to GC's high mortality include its silent nature, late clinical presentation, and underlying biological and genetic heterogeneity. Achieving a detailed molecular understanding of the various genomic aberrations associated with GC will be critical to improving patient outcomes. The recent years has seen considerable progress in deciphering the genomic landscape of GC, identifying new molecular components such as ARID1A and RHOA, cellular pathways, and tissue populations associated with gastric malignancy and progression. The Cancer Genome Atlas (TCGA) project is a landmark in the molecular characterization of GC. Key challenges for the future will involve the translation of these molecular findings to clinical utility, by enabling novel strategies for early GC detection, and precision therapies for individual GC patients.
Collapse
Affiliation(s)
- Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| | - Khay-Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore; Singapore Gastric Cancer Consortium, Singapore.
| |
Collapse
|
49
|
Lin Y, Wu Z, Guo W, Li J. Gene mutations in gastric cancer: a review of recent next-generation sequencing studies. Tumour Biol 2015; 36:7385-94. [PMID: 26364057 DOI: 10.1007/s13277-015-4002-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Although some driver genes have been identified in GC, the molecular compositions of GC have not been fully understood. The development of next-generation sequencing (NGS) provides a high-throughput and systematic method to identify all genetic alterations in the cancer genome, especially in the field of mutation detection. NGS studies in GC have discovered some novel driver mutations. In this review, we focused on novel gene mutations discovered by NGS studies, along with some well-known driver genes in GC. We organized mutated genes from the perspective of related biological pathways. Mutations in genes relating to genome integrity (TP53, BRCA2), chromatin remodeling (ARID1A), cell adhesion (CDH1, FAT4, CTNNA1), cytoskeleton and cell motility (RHOA), Wnt pathway (CTNNB1, APC, RNF43), and RTK pathway (RTKs, RAS family, MAPK pathway, PIK pathway) are discussed. Efforts to establish a molecular classification based on NGS data which is valuable for future targeted therapy for GC are introduced. Comprehensive dissection of the molecular profile of GC cannot only unveil the molecular basis for GC but also identify genes of clinical utility, especially potential and specific therapeutic targets for GC.
Collapse
Affiliation(s)
- Y Lin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Z Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - W Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - J Li
- Tongji University Tianyou Hospital, Shanghai, 200331, China.
| |
Collapse
|
50
|
Zhang S, Qi Q, Chan CB, Zhou W, Chen J, Luo HR, Appin C, Brat DJ, Ye K. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity. Cell Death Differ 2015; 23:52-63. [PMID: 26001218 DOI: 10.1038/cdd.2015.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.
Collapse
Affiliation(s)
- S Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - Q Qi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - C B Chan
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104 OK, USA
| | - W Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, 30322 GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - J Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, 30322 GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - H R Luo
- Department of Pathology and Lab Medicine, Harvard Medical School and Children's Hospital, Boston, 02115 MA, USA
| | - C Appin
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - D J Brat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA
| | - K Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, 30322 GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, 30322 GA, USA
| |
Collapse
|