1
|
Wolf S, Madanchi M, Turko P, Hollmén M, Tugues S, von Atzigen J, Giovanoli P, Dummer R, Lindenblatt N, Halin C, Detmar M, Levesque M, Gousopoulos E. Anti-CTLA4 treatment reduces lymphedema risk potentially through a systemic expansion of the FOXP3 + T reg population. Nat Commun 2024; 15:10784. [PMID: 39737964 DOI: 10.1038/s41467-024-55002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Secondary lymphedema is a common sequel of oncologic surgery and presents a global health burden still lacking pharmacological treatment. The infiltration of the lymphedematous extremities with CD4+T cells influences lymphedema onset and emerges as a promising therapy target. Here, we show that the modulation of CD4+FOXP3+CD25+regulatory T (Treg) cells upon anti-CTLA4 treatment protects against lymphedema development in patients with melanoma and in a mouse lymphedema model. A retrospective evaluation of a melanoma patient registry reveals that anti-CTLA4 reduces lymphedema risk; in parallel, anti-CTLA4 reduces edema and improves lymphatic function in a mouse-tail lymphedema model. This protective effect of anti-CTLA4 correlates with a systemic expansion of Tregs, both in the animal model and in patients with melanoma. Our data thus show that anti-CTLA4 with its lymphedema-protective and anti-tumor properties is a promising candidate for more diverse application in the clinics.
Collapse
Affiliation(s)
- Stefan Wolf
- Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matiar Madanchi
- Division of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Division of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Bioinformatic Department, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia von Atzigen
- Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Division of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Mitchell Levesque
- Division of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Epameinondas Gousopoulos
- Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Qu F, Wu S, Yu W. Progress of Immune Checkpoint Inhibitors Therapy for pMMR/MSS Metastatic Colorectal Cancer. Onco Targets Ther 2024; 17:1223-1253. [PMID: 39735789 PMCID: PMC11681808 DOI: 10.2147/ott.s500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024] Open
Abstract
Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs). Studies have shown that some pMMR/MSS colorectal cancer patients regulate the immune microenvironment by combining other treatments, such as multi-target tyrosine kinase inhibitors, anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, chemotherapy, radiotherapy, anti-epithelial growth factor receptor (EGFR) monoclonal antibodies, and mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and oncolytic viruses, etc. to transform "cold tumor" into "hot tumor", thereby improving the response to immunotherapy. In addition, screening for potential prognostic biomarkers can also enrich the population benefiting from immunotherapy for microsatellite stable colorectal cancer. Therefore, in pMMR or MSS metastatic colorectal cancer (mCRC), the optimization of immunotherapy regimens and the search for effective efficacy prediction biomarkers are currently important research directions. In this paper, we review the progress of efficacy of immunotherapy (mainly ICIs) in pMMR /MSS mCRC, challenges and potential markers, in order to provide research ideas for the development of immunotherapy for mCRC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - WeiWei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| |
Collapse
|
3
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Tünbekici S, Çelebi G, Karaca B. Efficacy and prognostic factors of anti-PD1 and nivolumab-ipilimumab therapy in advanced melanoma patients resistant to prior ICI treatment. Discov Oncol 2024; 15:813. [PMID: 39704850 DOI: 10.1007/s12672-024-01702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved the five-year survival rate for advanced melanoma. However, many patients exhibit resistance to ICI therapy. This study evaluated the efficacy and prognostic factors of anti-PD-1 (Group A) and nivolumab-ipilimumab (Group B) therapy in patients with advanced melanoma who were resistant to prior ICI therapy. We conducted a retrospective analysis of 56 patients with advanced melanoma who had previously shown resistance to ICI therapy. In the Group A (who have previously shown resistance to anti-CTLA-4, n = 28), the objective response rate (ORR) was 42.9%, with a disease control rate (DCR) of 53%. In the Group B (previously shown resistance to anti-PD-1, n = 28), the ORR was 17.9%, and the DCR was 25%. The ORR was lower in two subgroups: patients who showed progression or relapse in the the initial radiological assessment of prior ICI therapy (ORR 10.5%) and patients who had previously received ICI in the adjuvant setting (ORR 8.3%). A Royal Marsden Hospital (RMH) score of 2-3 was a predictor of OS in both groups (Group A: HR 3.789, 95% CI 1.356-10.589, p = 0.011; Group B: HR 4.281, 95% CI 1.490-12.300, p = 0.007) and for PFS in the Group B (HR 3.167, 95% CI 1.062-9.442, p = 0.039). Anti-PD-1 therapy demonstrated efficacy following resistance to anti-CTLA-4, whereas combination ICI therapy showed lower response rates in patients resistant to anti-PD-1. Further studies are needed to confirm the RMH scores and other prognostic markers and to evaluate subgroups with lower efficacy of nivolumab-ipilimumab therapy.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey.
| | - Haydar Çağatay Yüksel
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Gökhan Şahin
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Fatma Pinar Açar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Salih Tünbekici
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Gülçin Çelebi
- Department of Internal Medicine, Ege University Medical Faculty, Izmir, Turkey, 35100
| | - Burçak Karaca
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| |
Collapse
|
4
|
Reck M, Ciuleanu TE, Schenker M, Bordenave S, Cobo M, Juan-Vidal O, Reinmuth N, Richardet E, Felip E, Menezes J, Cheng Y, Mizutani H, Zurawski B, Alexandru A, Carbone DP, Lu S, John T, Aoyama T, Grootendorst DJ, Hu N, Eccles LJ, Paz-Ares LG. Five-year outcomes with first-line nivolumab plus ipilimumab with 2 cycles of chemotherapy versus 4 cycles of chemotherapy alone in patients with metastatic non-small cell lung cancer in the randomized CheckMate 9LA trial. Eur J Cancer 2024; 211:114296. [PMID: 39270380 DOI: 10.1016/j.ejca.2024.114296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND We report 5-year efficacy and safety outcomes from CheckMate 9LA in patients with metastatic non-small cell lung cancer (mNSCLC) and exploratory analyses in key patient subgroups. METHODS Adults with stage IV/recurrent NSCLC and no sensitizing EGFR/ALK alterations were randomized to receive nivolumab plus ipilimumab with chemotherapy (n = 361) or chemotherapy (n = 358). Outcomes were assessed in all randomized patients and subgroups. RESULTS With 57.3 months' minimum follow-up, patients continued to derive overall survival (OS) benefit with nivolumab plus ipilimumab with chemotherapy over chemotherapy (HR, 0.73; 95% CI, 0.62-0.85; 5-year OS rates, 18% vs. 11%), regardless of tumor programmed death ligand 1 (PD-L1) expression (PD-L1 < 1%, 22% vs. 8%; PD-L1 ≥ 1%, 18% vs. 11%), histology (squamous, 18% vs. 7%; non-squamous, 19% vs. 12%), or presence of baseline brain metastases (20% vs. 6%). Five-year duration of response (DOR) rates were 19% versus 8% with nivolumab plus ipilimumab with chemotherapy versus chemotherapy, with consistent benefit across subgroups. Patients who discontinued nivolumab plus ipilimumab with chemotherapy due to treatment-related adverse events had a 5-year OS rate of 37%. Five-year progression-free survival and DOR rates in 5-year survivors were 55% versus 38% and 59% versus 46%, respectively. No new safety signals were observed in 5-year survivors, regardless of the number of ipilimumab doses received. CONCLUSION This 5-year update supports the long-term, durable OS benefit and improved 5-year survivorship with nivolumab plus ipilimumab with chemotherapy over chemotherapy in patients with mNSCLC, regardless of tumor PD-L1 expression or histology. CLINICALTRIALS GOV REGISTRATION NCT03215706.
Collapse
Affiliation(s)
- Martin Reck
- Airway Research Center North, German Center for Lung Research, LungClinic, Grosshansdorf, Germany.
| | - Tudor-Eliade Ciuleanu
- Institutul Oncologic Prof Dr Ion Chiricuţă and University of Medicine and Pharmacy Iuliu Haţieganu, Cluj-Napoca, Romania
| | | | | | - Manuel Cobo
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | | | - Niels Reinmuth
- Asklepios Lung Clinic, member of the German Center for Lung Research, Munich-Gauting, Germany
| | | | - Enriqueta Felip
- Medical Oncology Service, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Ying Cheng
- Jilin Cancer Hospital, Changchun, Jilin, China
| | | | - Bogdan Zurawski
- Chemotherapy Department, Ambulatorium Chemioterapii, Bydgoszcz, Poland
| | - Aurelia Alexandru
- Department of Oncology, Institute of Oncology Prof Dr Alexandru Trestioreanu Bucha, Bucharest, Romania
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center and the Pelotonia Institute for Immuno-Oncology, Columbus, OH, United States
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Thomas John
- Austin Hospital, Heidelberg, Victoria, Australia
| | | | | | - Nan Hu
- Bristol Myers Squibb, Princeton, NJ, United States
| | | | - Luis G Paz-Ares
- Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Sposito M, Eccher S, Scaglione I, Avancini A, Rossi A, Pilotto S, Belluomini L. The frontier of neoadjuvant therapy in non-small cell lung cancer beyond PD-(L)1 agents. Expert Opin Biol Ther 2024; 24:1025-1037. [PMID: 39311630 DOI: 10.1080/14712598.2024.2408292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION While surgical resection is the cornerstone of treatment for resectable lung cancer, neoadjuvant/adjuvant chemotherapy has shown limited improvement in survival rates over the past decades. With the success of immune checkpoint inhibitors (ICIs) in advanced NSCLC, there is growing interest in their application in earlier stages of the disease. Recent approvals for neoadjuvant/adjuvant ICIs in stage II-IIIA NSCLC highlight this shift in treatment paradigms. AREAS COVERED In this review, we aim to explore available data regarding alternative agents beyond the PD-(L)1 inhibitors, such as monoclonal antibodies against CTLA4, LAG3, TIGIT, antiangiogenic drugs, and novel therapies (antibody drug conjugates, bispecific antibodies) in neoadjuvant/perioperative regimens. EXPERT OPINION Novel agents and combinations (with or without ICI or/and chemotherapy), guided by molecular profiling and immune phenotyping, showed promise in improving surgical and survival outcomes. Crucial is, also in early setting, to identifying biomarkers predictive of treatment efficacy in order to personalize neoadjuvant/perioperative treatment strategies.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Serena Eccher
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Scaglione
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, Milan, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
6
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00992-0. [PMID: 39325360 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
7
|
Brugiapaglia S, Spagnolo F, Intonti S, Novelli F, Curcio C. Fighting Pancreatic Cancer with a Vaccine-Based Winning Combination: Hope or Reality? Cells 2024; 13:1558. [PMID: 39329742 PMCID: PMC11430323 DOI: 10.3390/cells13181558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma (PDA) represents the fourth leading cause of cancer-related mortality in the USA. Only 20% of patients present surgically resectable and potentially curable tumors at diagnosis, while 80% are destined for poor survival and palliative chemotherapy. Accordingly, the advancement of innovative and effective therapeutic strategies represents a pivotal medical imperative. It has been demonstrated that targeting the immune system represents an effective approach against several solid tumors. The immunotherapy approach encompasses a range of strategies, including the administration of antibodies targeting checkpoint molecules (immune checkpoint inhibitors, ICIs) to disrupt tumor suppression mechanisms and active immunization approaches that aim to stimulate the host's immune system. While vaccines have proved effective against infectious agents, vaccines for cancer remain an unfulfilled promise. Vaccine-based therapy targeting tumor antigens has the potential to be a highly effective strategy for initiating and maintaining T cell recognition, enhancing the immune response, and ultimately promoting cancer treatment success. In this review, we examined the most recent clinical trials that employed diverse vaccine types to stimulate PDA patients' immune systems, either independently or in combination with chemotherapy, radiotherapy, ICIs, and monoclonal antibodies with the aim of ameliorating PDA patients' quality of life and extend their survival.
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Ferdinando Spagnolo
- School of Advanced Defence Studies, Defence Research & Analysis Institute, Piazza della Rovere 83, 00165 Rome, Italy
| | - Simona Intonti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| |
Collapse
|
8
|
Zhao Y, Jiang H, Xue L, Zhou M, Zhao X, Liu F, Jiang S, Huang J, Meng L. Exploring the safety profile of tremelimumab: an analysis of the FDA adverse event reporting system. Int J Clin Pharm 2024; 46:480-487. [PMID: 38245663 DOI: 10.1007/s11096-023-01678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/19/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Despite the approval of tremelimumab in 2022, there is a lack of pharmacovigilance studies investigating its safety profile in real-world settings using the FDA Adverse Event Reporting System (FAERS) database. AIM This pharmacovigilance study aimed to comprehensively explore the adverse events (AEs) associated with tremelimumab using data mining techniques on the FAERS database. METHOD The study utilized data from the FAERS database, covering the period from the first quarter of 2004 to the third quarter of 2022. Disproportionality analysis, the Benjamini Hochberg adjustment method and volcano plots were used to identify and evaluate AE signals associated with tremelimumab. RESULTS The study uncovered 233 AE cases associated with tremelimumab. Among these cases, pyrexia (n = 39), biliary tract infection (n = 23), and sepsis (n = 21) were the three main AEs associated with tremelimumab use. The study also investigated the system organ classes associated with tremelimumab-related AEs. The top three classes were gastrointestinal disorders (17.9%), infections and infestations (16.6%), and general disorders and administration site infections (11.2%). Several AEs were identified that were not listed on the drug label of tremelimumab. These AEs included pyrexia, biliary tract infection, sepsis, dyspnea, infusion site infection, hiccup, appendicitis, hypotension, dehydration, localised oedema, presyncope, superficial thrombophlebitis and thrombotic microangiopathy. CONCLUSION This pharmacovigilance study identified several potential adverse events signals related to tremelimumab including some adverse events not listed on the drug label. However, further basic and clinical research studies are needed to validate these results.
Collapse
Affiliation(s)
- Yibei Zhao
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Huiming Jiang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lifen Xue
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaobing Zhao
- The Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Fei Liu
- Department of Pharmacy, Shihezi People's Hospital, XingJiang, 832000, China
| | - SongJiang Jiang
- The People's Hospital of Qijiang District, Chongqing, 401420, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Long Meng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
9
|
Uprety D, Remon J, Peters S. First-Line Dual Immunotherapy, a Treatment Option in First-Line Metastatic Non-Small-Cell Lung Cancer: Are We Ready to Use It? J Clin Oncol 2024; 42:378-382. [PMID: 38033277 DOI: 10.1200/jco.23.01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
This article provides valuable insights into the use of dual immunotherapy for patients with metastatic NSCLC.
Collapse
Affiliation(s)
- Dipesh Uprety
- Department of Medical Oncology, Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Solange Peters
- Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
10
|
Stockem CF, Galsky MD, van der Heijden MS. Turning up the heat: CTLA4 blockade in urothelial cancer. Nat Rev Urol 2024; 21:22-34. [PMID: 37608154 DOI: 10.1038/s41585-023-00801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/24/2023]
Abstract
Anti-PD1 and anti-PDL1 monotherapies have shown clinical efficacy in stage IV urothelial cancer and are integrated into current clinical practice. However, only a small number of the patients treated with single-agent checkpoint blockade experience an antitumour response. Insufficient priming or inhibitory factors in the tumour immune microenvironment might have a role in the lack of response. CTLA4 is an inhibitory checkpoint on activated T cells that is being studied as a therapeutic target in combination with anti-PD1 or anti-PDL1 therapies in advanced urothelial cancer. In locally advanced urothelial cancer, this combination approach has shown encouraging antitumour effects when administered pre-operatively. We believe that the presence of pre-existing intratumoural T cell immunity is not a prerequisite for response to combination therapy and that the additional value of CTLA4 blockade might involve the broadening of peripheral T cell priming, thereby transforming immunologically cold tumours into hot tumours.
Collapse
Affiliation(s)
- Chantal F Stockem
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Matthew D Galsky
- Department of Genitourinary Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
11
|
Tanaka Y, Amano T, Takahashi A, Nishimura H, Yamanaka H, Yoneoka Y, Tsuji S, Murakami T. Locally advanced endometrial cancer with multiple immune-related adverse events coinciding with the complete response to radiotherapy after immune checkpoint inhibitor therapy: A case report. Gynecol Oncol Rep 2023; 49:101265. [PMID: 37705723 PMCID: PMC10495623 DOI: 10.1016/j.gore.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
We report a case of a 70-year-old female patient with locally advanced endometrial cancer with primary empty sella who developed multiple immune-related adverse events (irAEs), including hypopituitarism coinciding with the complete response to radiotherapy after receiving immune checkpoint inhibitors. A computed tomography scan acquired after a traffic accident led to the discovery of endometrial cancer that had invaded the vulva and primary empty sella. Following adriamycin and cisplatin, pembrolizumab was administered for three cycles. No irAEs were observed during treatment, but the tumor was progressive. The patient underwent radiotherapy for the residual tumor. Four months after the last dose of pembrolizumab, hypopituitarism caused secondary adrenal insufficiency, primary hypothyroidism, and pseudogout at the end of radiotherapy. The tumor later achieved a complete response. In conclusion, radiotherapy after immune checkpoint inhibitor (ICI) therapy is expected to have an antitumor effect by stimulating tumor-specific immunity. However, proper management of irAEs is necessary. Patients with primary empty sella may be prone to pituitary insufficiency induced by ICIs.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| | - Hiroki Nishimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| | - Hiroyuki Yamanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| | - Yutaka Yoneoka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192 / Seta Tsukinowa-cho, Otsu, Shiga, JAPAN
| |
Collapse
|
12
|
Matsumoto H, Somekawa K, Horita N, Ueda S, Kaneko M, Kaneko A, Fukuda N, Izawa A, Kamimaki C, Tanaka K, Murohashi K, Fuji H, Tagami Y, Aoki A, Watanabe K, Hara Y, Kobayashi N, Kaneko T. Adverse events induced by durvalumab and tremelimumab combination regimens: a systematic review and meta-analysis. Ther Adv Med Oncol 2023; 15:17588359231198453. [PMID: 37720498 PMCID: PMC10501063 DOI: 10.1177/17588359231198453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have shown remarkable therapeutic outcomes among cancer patients. Durvalumab plus tremelimumab (DT) is under investigation as a new ICI combination therapy, and its efficacy has been reported in various types of cancer. However, the safety profile of DT remains unclear, especially considering rare adverse events (AEs). Objective We aimed to assess the frequency of AEs associated with DT. Design This study type is a systematic review and meta-analysis. Data Sources and Methods Four databases were searched for articles. Randomized trials, single-arm trials, and prospective and retrospective observational studies were included. The type of cancer, previous treatment, and performance status were not questioned. Major AE indicators such as any AE and the pooled frequency of each specific AE were used as outcomes. As a subgroup analysis, we also compared cases in which DT was performed as first-line treatment with those in which it was performed as second-line or later treatment. The protocol for this systematic review was registered on the University Hospital Medical Information Network (UMIN) Center website (ID: UMIN000046751). Results Forty-one populations including 3099 patients were selected from 30 articles. Pooled frequencies of key AE indicators are shown below: any AEs, 77.8% [95% confidence interval (CI): 67.9-87.6]; grade ⩾ 3 AEs, 29.3% (95% CI: 24.2-34.4); serious AEs, 34.9% (95% CI: 28.1-41.7); AE leading to discontinuation, 13.3% (95% CI: 9.3-17.4); treatment-related deaths, 0.98% (95% CI: 0.5-1.5). AEs with a frequency exceeding 15% are shown below: fatigue, 30.1% (95% CI: 23.8-36.3); diarrhea, 21.7% (95% CI: 17.8-25.6); pruritus 17.9% (95% CI: 14.4-21.3); decreased appetite, 17.7% (95% CI: 13.7-22.0); nausea, 15.6% (95% CI: 12.1-19.6). There were no significant differences in these pooled frequencies between subgroups. Conclusions The incidence of any AE in DT therapy was approximately 78%, and the incidence of grade 3 or higher AEs was approximately 30%, which was independent of prior therapy.
Collapse
Affiliation(s)
- Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Suguru Ueda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Megumi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Fukuda
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fuji
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoichi Tagami
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
13
|
VanderWalde A, Bellasea SL, Kendra KL, Khushalani NI, Campbell KM, Scumpia PO, Kuklinski LF, Collichio F, Sosman JA, Ikeguchi A, Victor AI, Truong TG, Chmielowski B, Portnoy DC, Chen Y, Margolin K, Bane C, Dasanu CA, Johnson DB, Eroglu Z, Chandra S, Medina E, Gonzalez CR, Baselga-Carretero I, Vega-Crespo A, Garcilazo IP, Sharon E, Hu-Lieskovan S, Patel SP, Grossmann KF, Moon J, Wu MC, Ribas A. Ipilimumab with or without nivolumab in PD-1 or PD-L1 blockade refractory metastatic melanoma: a randomized phase 2 trial. Nat Med 2023; 29:2278-2285. [PMID: 37592104 PMCID: PMC10708907 DOI: 10.1038/s41591-023-02498-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
In this randomized phase 2 trial, blockade of cytotoxic T-lymphocyte protein 4 (CTLA-4) with continuation of programmed death protein 1 (PD-1) blockade in patients with metastatic melanoma who had received front-line anti-PD-1 or therapy against programmed cell death 1 ligand 1 and whose tumors progressed was tested in comparison with CTLA-4 blockade alone. Ninety-two eligible patients were randomly assigned in a 3:1 ratio to receive the combination of ipilimumab and nivolumab, or ipilimumab alone. The primary endpoint was progression-free survival. Secondary endpoints included the difference in CD8 T cell infiltrate among responding and nonresponding tumors, objective response rate, overall survival and toxicity. The combination of nivolumab and ipilimumab resulted in a statistically significant improvement in progression-free survival over ipilimumab (hazard ratio = 0.63, 90% confidence interval (CI) = 0.41-0.97, one-sided P = 0.04). Objective response rates were 28% (90% CI = 19-38%) and 9% (90% CI = 2-25%), respectively (one-sided P = 0.05). Grade 3 or higher treatment-related adverse events occurred in 57% and 35% of patients, respectively, which is consistent with the known toxicity profile of these regimens. The change in intratumoral CD8 T cell density observed in the present analysis did not reach statistical significance to support the formal hypothesis tested as a secondary endpoint. In conclusion, primary resistance to PD-1 blockade therapy can be reversed in some patients with the combination of CTLA-4 and PD-1 blockade. Clinicaltrials.gov identifier: NCT03033576 .
Collapse
Affiliation(s)
| | - Shay L Bellasea
- Southwest Oncology Group Statistics and Data Management Center, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kari L Kendra
- Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Katie M Campbell
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Philip O Scumpia
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Lawrence F Kuklinski
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Frances Collichio
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Jeffrey A Sosman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | - Thach-Giao Truong
- Kaiser Permanente Northern California, Kaiser Permanente National Cancer Institute Community Oncology Research Program, Vallejo, CA, USA
| | - Bartosz Chmielowski
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | | | - Yuanbin Chen
- Cancer and Hematology Centers of Western Michigan-Cancer Research Consortium of West Michigan, Grand Rapids, MI, USA
| | - Kim Margolin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- St. John's Cancer Institute, Santa Monica, CA, USA
| | - Charles Bane
- Dayton Physicians LLC, Miami Valley Hospital North, Dayton, OH, USA
| | | | | | | | - Sunandana Chandra
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Egmidio Medina
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Cynthia R Gonzalez
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | | | - Agustin Vega-Crespo
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Ivan Perez Garcilazo
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA
| | - Elad Sharon
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | | | - Sapna P Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth F Grossmann
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
- Merck & Co., Inc., Rahway, NJ, USA
| | - James Moon
- Southwest Oncology Group Statistics and Data Management Center, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael C Wu
- Southwest Oncology Group Statistics and Data Management Center, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Campbell KM, Amouzgar M, Pfeiffer SM, Howes TR, Medina E, Travers M, Steiner G, Weber JS, Wolchok JD, Larkin J, Hodi FS, Boffo S, Salvador L, Tenney D, Tang T, Thompson MA, Spencer CN, Wells DK, Ribas A. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell 2023; 41:791-806.e4. [PMID: 37037616 PMCID: PMC10187051 DOI: 10.1016/j.ccell.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
Collapse
Affiliation(s)
- Katie M Campbell
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Meelad Amouzgar
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | | | - Timothy R Howes
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Egmidio Medina
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Travers
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Gabriela Steiner
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Jeffrey S Weber
- Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - James Larkin
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Silvia Boffo
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Lisa Salvador
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Daniel Tenney
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Tracy Tang
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | | | | | - Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Antoni Ribas
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
15
|
Melssen MM, Sheybani ND, Leick KM, Slingluff CL. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023; 11:jitc-2022-006401. [PMID: 37072352 PMCID: PMC10124321 DOI: 10.1136/jitc-2022-006401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Increased immune cell infiltration into tumors is associated with improved patient survival and predicts response to immune therapies. Thus, identification of factors that determine the extent of immune infiltration is crucial, so that methods to intervene on these targets can be developed. T cells enter tumor tissues through the vasculature, and under control of interactions between homing receptors on the T cells and homing receptor ligands (HRLs) expressed by tumor vascular endothelium and tumor cell nests. HRLs are often deficient in tumors, and there also may be active barriers to infiltration. These remain understudied but may be crucial for enhancing immune-mediated cancer control. Multiple intratumoral and systemic therapeutic approaches show promise to enhance T cell infiltration, including both approved therapies and experimental therapies. This review highlights the intracellular and extracellular determinants of immune cell infiltration into tumors, barriers to infiltration, and approaches for intervention to enhance infiltration and response to immune therapies.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Natasha D Sheybani
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
16
|
Johnson ML, Cho BC, Luft A, Alatorre-Alexander J, Geater SL, Laktionov K, Kim SW, Ursol G, Hussein M, Lim FL, Yang CT, Araujo LH, Saito H, Reinmuth N, Shi X, Poole L, Peters S, Garon EB, Mok T. Durvalumab With or Without Tremelimumab in Combination With Chemotherapy as First-Line Therapy for Metastatic Non-Small-Cell Lung Cancer: The Phase III POSEIDON Study. J Clin Oncol 2023; 41:1213-1227. [PMID: 36327426 PMCID: PMC9937097 DOI: 10.1200/jco.22.00975] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The open-label, phase III POSEIDON study evaluated tremelimumab plus durvalumab and chemotherapy (T + D + CT) and durvalumab plus chemotherapy (D + CT) versus chemotherapy alone (CT) in first-line metastatic non-small-cell lung cancer (mNSCLC). METHODS Patients (n = 1,013) with EGFR/ALK wild-type mNSCLC were randomly assigned (1:1:1) to tremelimumab 75 mg plus durvalumab 1,500 mg and platinum-based chemotherapy for up to four 21-day cycles, followed by durvalumab once every 4 weeks until progression and one additional tremelimumab dose; durvalumab plus chemotherapy for up to four 21-day cycles, followed by durvalumab once every 4 weeks until progression; or chemotherapy for up to six 21-day cycles (with or without maintenance pemetrexed; all arms). Primary end points were progression-free survival (PFS) and overall survival (OS) for D + CT versus CT. Key alpha-controlled secondary end points were PFS and OS for T + D + CT versus CT. RESULTS PFS was significantly improved with D + CT versus CT (hazard ratio [HR], 0.74; 95% CI, 0.62 to 0.89; P = .0009; median, 5.5 v 4.8 months); a trend for improved OS did not reach statistical significance (HR, 0.86; 95% CI, 0.72 to 1.02; P = .0758; median, 13.3 v 11.7 months; 24-month OS, 29.6% v 22.1%). PFS (HR, 0.72; 95% CI, 0.60 to 0.86; P = .0003; median, 6.2 v 4.8 months) and OS (HR, 0.77; 95% CI, 0.65 to 0.92; P = .0030; median, 14.0 v 11.7 months; 24-month OS, 32.9% v 22.1%) were significantly improved with T + D + CT versus CT. Treatment-related adverse events were maximum grade 3/4 in 51.8%, 44.6%, and 44.4% of patients receiving T + D + CT, D + CT, and CT, respectively; 15.5%, 14.1%, and 9.9%, respectively, discontinued treatment because of treatment-related adverse events. CONCLUSION D + CT significantly improved PFS versus CT. A limited course of tremelimumab added to durvalumab and chemotherapy significantly improved OS and PFS versus CT, without meaningful additional tolerability burden, representing a potential new option in first-line mNSCLC.
Collapse
Affiliation(s)
- Melissa L. Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, PLLC, Nashville, TN
| | | | - Alexander Luft
- Leningrad Regional Clinical Hospital, St Petersburg, Russia
| | | | | | - Konstantin Laktionov
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Moscow, Russia
| | - Sang-We Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Maen Hussein
- Florida Cancer Specialists—Sarah Cannon Research Institute, Leesburg, FL
| | | | | | | | | | - Niels Reinmuth
- Asklepios Lung Clinic, member of the German Center for Lung Research (DZL), Munich-Gauting, Germany
| | | | | | - Solange Peters
- Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | | | - Tony Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Remon J, Hendriks LEL, Reck M. The POSEIDON Trial: Will Secondary End Points Change Our Clinical Practice? J Clin Oncol 2023; 41:1176-1179. [PMID: 36331243 DOI: 10.1200/jco.22.01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center of Lung Research, Lung Clinic, Grosshansdorf, Germany
| |
Collapse
|
18
|
Cheng Y, Zhou Q, Han B, Fan Y, Shan L, Chang J, Sun S, Fang J, Chen Y, Sun J, Wu G, Mann H, Naicker K, Shire N, Mok T, de Castro G. NEPTUNE China cohort: First-line durvalumab plus tremelimumab in Chinese patients with metastatic non-small-cell lung cancer. Lung Cancer 2023; 178:87-95. [PMID: 36806898 DOI: 10.1016/j.lungcan.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The phase 3 NEPTUNE study (NCT02542293) evaluated first-line durvalumab plus tremelimumab (DT) versus chemotherapy for metastatic NSCLC. Prespecified exploratory analyses were conducted in an extended cohort enrolled in China. MATERIALS AND METHODS Patients were randomized (1:1) to DT or standard chemotherapy, stratified by PD-L1 tumor cell (TC) expression (≥25 % vs < 25 %), histology, and smoking history. The primary analysis for this cohort was overall survival (OS) in patients with PD-L1 TC < 1 %. Secondary analyses included OS and progression-free survival (PFS) in the ITT population and PD-L1 subgroups, and safety. No alpha was allocated to these cohort analyses (data cut-off, 21-September-2020). RESULTS 78 and 82 patients were randomized to DT and chemotherapy, respectively; 26 and 29 had PD-L1 TC < 1 % (median follow-up, 31.2 and 29.7 months [censored patients]). Among patients with PD-L1 TC < 1 %, OS favored DT versus chemotherapy (HR 0.60; 95 % CI, 0.32-1.11), with medians of 15.0 months (95 % CI, 10.5-27.4) and 11.7 months (95 % CI, 8.6-20.5), respectively; 24-month rates were 36.0 % (95 % CI, 18.2-54.2) and 17.9 % (95 % CI, 6.5-33.7). In the ITT population, OS was prolonged with DT versus chemotherapy (HR 0.70; 95 % CI, 0.48-1.02); medians were 20.0 and 14.1 months and 24-month rates were 44.2 % and 30.4 %. PFS was similar in the PD-L1 TC < 1 % (HR 1.13; 95 % CI, 0.59-2.14) and ITT (HR 0.95; 95 % CI, 0.66-1.36) populations; 12-month rates were 15.6 % versus 11.3 % and 23.9 % versus 16.6 %. Grade 3/4 treatment-related adverse events (TRAEs) occurred in 31.2 % with DT and 52.6 % with chemotherapy; 3.9 % versus 10.3 % discontinued due to TRAEs. CONCLUSIONS In exploratory analyses, first-line DT showed a trend towards improved OS versus chemotherapy among Chinese patients in the PD-L1 TC < 1 % population and ITT population, with 24-month OS and 12-month PFS rates indicating benefit in survival curve tails. DT was well tolerated with no new safety signals.
Collapse
Affiliation(s)
- Ying Cheng
- Jilin Cancer Hospital, Changchun, China.
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohui Han
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yun Fan
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Shan
- The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Chang
- Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen and Fudan University Shanghai Cancer Center, Shanghai (during study conduct), China
| | - Si Sun
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Fang
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | - Tony Mok
- State Key Laboratory of South China, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
19
|
Lee D, Choi J, Oh HJ, Ham IH, Lee SH, Nomura S, Han SU, Hur H. Molecular and Immune Profiling of Syngeneic Mouse Models Predict Response to Immune Checkpoint Inhibitors in Gastric Cancer. Cancer Res Treat 2023; 55:167-178. [PMID: 35609622 PMCID: PMC9873335 DOI: 10.4143/crt.2022.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Appropriate preclinical mouse models are needed to evaluate the response to immunotherapeutic agents. Immunocompetent mouse models have rarely been reported for gastric cancer. Thus, we investigated immunophenotypes and responses to immune checkpoint inhibitor (ICI) in immunocompetent mouse models using various murine gastric cancer cell lines. MATERIALS AND METHODS We constructed subcutaneous syngeneic tumors with murine gastric cancer cell lines, YTN3 and YTN16, in C57BL/6J mice. Mice were intraperitoneally treated with IgG isotype control or an anti-programmed death-ligand 1 (PD-L1) neutralizing antibody. We used immunohistochemistry to evaluate the tumor-infiltrating immune cells of formalin-fixed paraffin-embedded mouse tumor tissues. We compared the protein and RNA expression between YTN3 and YTN16 cell lines using a mouse cytokine array and RNA sequencing. RESULTS The mouse tumors revealed distinct histological and molecular characteristics. YTN16 cells showed upregulation of genes and proteins related to immunosuppression, such as Ccl2 (CCL2) and Csf1 (M-CSF). Macrophages and exhausted T cells were more enriched in YTN16 tumors than in YTN3 tumors. Several YTN3 tumors were completely regressed by the PD-L1 inhibitor, whereas YTN16 tumors were unaffected. Although treatment with a PD-L1 inhibitor increased infiltration of T cells in both the tumors, the proportion of exhausted immune cells did not decrease in the non-responder group. CONCLUSION We confirmed the histological and molecular features of cancer cells with various responses to ICI. Our models can be used in preclinical research on ICI resistance mechanisms to enhance clinical efficacy.
Collapse
Affiliation(s)
- Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon,
Korea,Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon,
Korea,Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon,
Korea
| | - Junyong Choi
- Department of Surgery, Ajou University School of Medicine, Suwon,
Korea,Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon,
Korea,Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon,
Korea
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, Suwon,
Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon,
Korea,Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon,
Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo,
Japan
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon,
Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon,
Korea,Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon,
Korea,Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon,
Korea
| |
Collapse
|
20
|
Safaeifard F, Goliaei B, Aref AR, Foroughmand-Araabi MH, Goliaei S, Lorch J, Jenkins RW, Barbie DA, Shariatpanahi SP, Rüegg C. Distinct Dynamics of Migratory Response to PD-1 and CTLA-4 Blockade Reveals New Mechanistic Insights for Potential T-Cell Reinvigoration following Immune Checkpoint Blockade. Cells 2022; 11:3534. [PMID: 36428963 PMCID: PMC9688893 DOI: 10.3390/cells11223534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), two clinically relevant targets for the immunotherapy of cancer, are negative regulators of T-cell activation and migration. Optimizing the therapeutic response to CTLA-4 and PD-1 blockade calls for a more comprehensive insight into the coordinated function of these immune regulators. Mathematical modeling can be used to elucidate nonlinear tumor-immune interactions and highlight the underlying mechanisms to tackle the problem. Here, we investigated and statistically characterized the dynamics of T-cell migration as a measure of the functional response to these pathways. We used a previously developed three-dimensional organotypic culture of patient-derived tumor spheroids treated with anti-CTLA-4 and anti-PD-1 antibodies for this purpose. Experiment-based dynamical modeling revealed the delayed kinetics of PD-1 activation, which originates from the distinct characteristics of PD-1 and CTLA-4 regulation, and followed through with the modification of their contributions to immune modulation. The simulation results show good agreement with the tumor cell reduction and active immune cell count in each experiment. Our findings demonstrate that while PD-1 activation provokes a more exhaustive intracellular cascade within a mature tumor environment, the time-delayed kinetics of PD-1 activation outweighs its preeminence at the individual cell level and consequently confers a functional dominance to the CTLA-4 checkpoint. The proposed model explains the distinct immunostimulatory pattern of PD-1 and CTLA-4 blockade based on mechanisms involved in the regulation of their expression and may be useful for planning effective treatment schemes targeting PD-1 and CTLA-4 functions.
Collapse
Affiliation(s)
- Fateme Safaeifard
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614411, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614411, Iran
| | - Amir R. Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Xsphera Biosciences Inc., Boston, MA 02210, USA
| | | | - Sama Goliaei
- Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Jochen Lorch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Russell W. Jenkins
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Seyed Peyman Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614411, Iran
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology, and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
21
|
Fu J, Zhang W, Jiang T. Immunogenic cell death mediation patterns reveal novel paradigm for characterizing the immune microenvironment and immunotherapeutic responses in bladder cancer. Front Genet 2022; 13:1035484. [PMID: 36386817 PMCID: PMC9640952 DOI: 10.3389/fgene.2022.1035484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2023] Open
Abstract
Background: Immunogenic cell death (ICD) plays an important role in several malignancies. However, the role of ICD-mediated patterns in bladder cancer (BCA) remains unknown. Methods: For assessing the ICD-mediated patterns based on the expression of IRGs, 4 large BCA cohorts were obtained. The ICD-mediated patterns of individual samples were quantified as an ICD score by principal component analysis. The correlations of the ICD-mediated patterns with the tumor immune microenvironment (TIME) and responses to immunotherapy were comprehensively evaluated. The IRGs with predictive prognostic values were further validated by in vitro loss of function assays. Results: Two distinct ICD-mediated patterns were established, showing distinct clinical features and immune microenvironment features. Although ICD cluster A was associated with a poor prognosis with a high ICD score, it showed an immune activation state with a more favorable response to immunotherapy and treatment that induced ICD. The ICD-related gene, CALR, was significantly upregulated in the T24 BCA cell line relative to the control SV-HUC-1 cells. Knocking down CALR suppressed T24 cell viability and caused ER stress. Conclusion: We identified the existence of distinct ICD-mediated patterns in BCA closely associated with the remodeling of the TIME. Further in-depth examination of ICD-related features is warranted to obtain a broader prospect for therapeutic innovations and improved prognosis of BCA.
Collapse
Affiliation(s)
- Jialei Fu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| |
Collapse
|
23
|
Zhang J, Li R, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:951019. [PMID: 35965504 PMCID: PMC9365986 DOI: 10.3389/fonc.2022.951019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective.
Collapse
Affiliation(s)
| | - Renfeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Remon J, Levy A, Singh P, Hendriks LEL, Aldea M, Arrieta O. Current challenges of unresectable stage III NSCLC: are we ready to break the glass ceiling of the PACIFIC trial? Ther Adv Med Oncol 2022; 14:17588359221113268. [PMID: 35923929 PMCID: PMC9340398 DOI: 10.1177/17588359221113268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023] Open
Abstract
Consolidation anti-programmed death-ligand 1 has become a new standard of care in unresectable stage III non-small cell lung cancer (NSCLC) following chemo-radiotherapy (CTRT), based on the results of two phase III trials. Advances remain however needed, in particular to reduce the risk of distant relapse and for treatment personalization. Newer strategies are currently being tested, including consolidation with dual immune checkpoint inhibitors (ICIs), concurrent chemo-radioimmunotherapy and (chemo)-immunotherapy induction before CTRT. One randomized phase II reported better outcomes with a double ICI consolidation as compared with durvalumab alone. Three nonrandomized phase II trials also suggested that concurrent ICI-CTRT was feasible. Within this review, we summarize the current evidence, highlight ongoing trials and discuss challenges that will ideally lead to a cure for more patients with unresectable stage III NSCLC.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Medical Oncology, Centro Integral
Oncológico Clara Campal (HM-CIOCC), Hospital HM Nou Delfos, HM Hospitales,
Avinguda de Vallcarca, 151, Barcelona 08023, Spain
| | - Antonin Levy
- Department of Radiation Oncology, International
Center for Thoracic Cancers (CICT), Université Paris-Saclay, Gustave Roussy,
Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine,
Le Kremlin-Bicêtre, France
| | - Pawan Singh
- Department of Pulmonary and Critical Care
Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical
Sciences, Rohtak, Haryana, India
| | - Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW–School
for Oncology and Reproduction, Maastricht University Medical Center,
Maastricht, The Netherlands
| | - Mihaela Aldea
- Department of Medical Oncology, International
Center for Thoracic Cancers (CICT), Université Paris-Saclay, Gustave Roussy,
Gustave Roussy, Villejuif, France
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of
Personalized Medicine, Instituto Nacional de Cancerología, Mexico City,
Mexico
| |
Collapse
|
25
|
Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discov 2022; 21:529-540. [PMID: 35701637 DOI: 10.1038/s41573-022-00493-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Tumours employ various tactics to adapt and eventually resist immune attack. These mechanisms are collectively called adaptive immune resistance (AIR). The first defined and therapeutically validated AIR mechanism is the selective induction of programmed cell death 1 ligand 1 (PDL1) by interferon-γ in the tumour. Blockade of PDL1 binding to its receptor PD1 by antibodies (anti-PD therapy) has resulted in remission of a fraction of patients with advanced-stage cancer, especially in solid tumours. However, many clinical trials combining anti-PD therapy with other antitumour drugs conducted without a strong mechanistic rationale have failed to identify a synergistic or additive effect. In this Perspective article, we discuss why defining AIR mechanisms at the tumour site should be a key focus to direct future drug development as well as practical approaches to improve current cancer therapy.
Collapse
|
26
|
Long AH, Morgenstern DA, Leruste A, Bourdeaut F, Davis KL. Checkpoint Immunotherapy in Pediatrics: Here, Gone, and Back Again. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35580293 DOI: 10.1200/edbk_349799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers continues to evolve. Such therapies function by augmenting existing antitumor T-cell responses that have been rendered ineffective by inhibitory pathways. Although ICIs have proven highly effective for adult cancers, initial phase I/II clinical trials using single-agent ICIs against unselected pediatric cancers have been overall disappointing. With the exception of pediatric classic Hodgkin lymphoma, responses to ICIs have been infrequent, likely stemming from an inherent difference in the immunogenicity of childhood cancers, which, on average, have far fewer neoantigens than adult cancers. Recently, however, hope has reemerged that certain subsets of children with cancer may benefit from ICI therapies. In preliminary studies, patients with both pediatric hypermutated and SMARCB1-deficient cancers have had impressive responses to ICI therapies, likely as a result of underlying biologies that enhance neoantigen expression and tumoral inflammation. Dedicated trials are ongoing to fully evaluate the efficacy of ICIs for patients with these subsets of pediatric cancer.
Collapse
Affiliation(s)
- Adrienne H Long
- Division of Hematology, Oncology, and Stem Cell Transplant, Department of Pediatrics, Stanford University, Stanford, CA
| | - Daniel A Morgenstern
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Amaury Leruste
- SIREDO Oncology Center, Institut Curie, Paris Sciences et Lettres University, Paris, France
| | - Franck Bourdeaut
- SIREDO Oncology Center, Institut Curie, Laboratory of Translational Research in Pediatric Oncology, Paris, France
| | - Kara L Davis
- Division of Hematology, Oncology, and Stem Cell Transplant, Department of Pediatrics, Stanford University, Stanford, CA.,Center for Cancer Cellular Therapy, Stanford University, Stanford, CA
| |
Collapse
|
27
|
Ladányi A, Hegyi B, Balatoni T, Liszkay G, Rohregger R, Waldnig C, Dudás J, Ferrone S. HLA Class I Downregulation in Progressing Metastases of Melanoma Patients Treated With Ipilimumab. Pathol Oncol Res 2022; 28:1610297. [PMID: 35531074 PMCID: PMC9073691 DOI: 10.3389/pore.2022.1610297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022]
Abstract
Characterization of the molecular mechanisms underlying antitumor immune responses and immune escape mechanisms has resulted in the development of more effective immunotherapeutic strategies, including immune checkpoint inhibitor (ICI) therapy. ICIs can induce durable responses in patients with advanced cancer in a wide range of cancer types, however, the majority of the patients fail to respond to this therapy or develop resistance in the course of the treatment. Information about the molecular mechanisms underlying primary and acquired resistance is limited. Although HLA class I molecules are crucial in the recognition of tumor antigens by cytotoxic T lymphocytes, only a few studies have investigated the role of their expression level on malignant cells in ICI resistance. To address this topic, utilizing immunohistochemical staining with monoclonal antibodies (mAbs) we analyzed HLA class I expression level in pre-treatment and post-treatment tumor samples from melanoma patients treated with ipilimumab. Twenty-nine metastases removed from six patients were available for the study, including 18 pre-treatment and 11 post-treatment lesions. Compared to metastases excised before ipilimumab therapy, post-treatment lesions displayed a significantly lower HLA class I expression level on melanoma cells; HLA class I downregulation was most marked in progressing metastases from nonresponding patients. We also evaluated the level of infiltration by CD8+ T cells and NK cells but did not find consistent changes between pre- and post-treatment samples. Our results indicate the potential role of HLA class I downregulation as a mechanism of ICI resistance.
Collapse
Affiliation(s)
- Andrea Ladányi
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Barbara Hegyi
- Department of Thoracic and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, Budapest, Hungary.,Doctoral School of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - Tímea Balatoni
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Gabriella Liszkay
- Department of Oncodermatology, National Institute of Oncology, Budapest, Hungary
| | - Raphael Rohregger
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Waldnig
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - József Dudás
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Checkpoints and Immunity in Cancers: Role of GNG12. Pharmacol Res 2022; 180:106242. [DOI: 10.1016/j.phrs.2022.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
|
29
|
Unver N, Mohindroo C. Targets and Strategies for Cancer Immunoprevention. Methods Mol Biol 2022; 2435:7-17. [PMID: 34993936 DOI: 10.1007/978-1-0716-2014-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immune system plays a key role in cancer prevention, initiation, and progression. Antitumoral immune responses can be boosted by harnessing antitumorigenic immune activators and/or blocking tumorigenic proinflammatory factors. Here we define these targets as well as the strategies that could be developed for effective cancer immunoprevention.
Collapse
Affiliation(s)
- Nese Unver
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| | - Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021; 184:5309-5337. [PMID: 34624224 DOI: 10.1016/j.cell.2021.09.020] [Citation(s) in RCA: 791] [Impact Index Per Article: 197.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Unprecedented advances have been made in cancer treatment with the use of immune checkpoint blockade (ICB). However, responses are limited to a subset of patients, and immune-related adverse events (irAEs) can be problematic, requiring treatment discontinuation. Iterative insights into factors intrinsic and extrinsic to the host that impact ICB response and toxicity are critically needed. Our understanding of the impact of host-intrinsic factors (such as the host genome, epigenome, and immunity) has evolved substantially over the past decade, with greater insights on these factors and on tumor and immune co-evolution. Additionally, we are beginning to understand the impact of acute and cumulative exposures-both internal and external to the host (i.e., the exposome)-on host physiology and response to treatment. Together these represent the current day hallmarks of response, resistance, and toxicity to ICB. Opportunities built on these hallmarks are duly warranted.
Collapse
Affiliation(s)
- Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beth A Helmink
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Shirasawa M, Yoshida T, Shimoda Y, Takayanagi D, Shiraishi K, Kubo T, Mitani S, Matsumoto Y, Masuda K, Shinno Y, Okuma Y, Goto Y, Horinouchi H, Ichikawa H, Kohno T, Yamamoto N, Matsumoto S, Goto K, Watanabe SI, Ohe Y, Motoi N. Differential Immune-Related Microenvironment Determines Programmed Cell Death Protein-1/Programmed Death-Ligand 1 Blockade Efficacy in Patients With Advanced NSCLC. J Thorac Oncol 2021; 16:2078-2090. [PMID: 34419685 DOI: 10.1016/j.jtho.2021.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed death-ligand 1 (PD-L1) expression is not a completely reliable predictive marker of the efficacy of anti-programmed cell death protein-1 (PD-1)/PD-L1 therapy in patients with advanced NSCLC. Immune-related tumor microenvironment (TME) is classified into four different types based on the tumor-infiltrating lymphocyte (TIL) status and PD-L1 expression. METHODS We retrospectively reviewed patients with advanced NSCLC treated with anti-PD-1/PD-L1 therapy between 2015 and 2019. We investigated the association between the efficacy of anti-PD-1/PD-L1 therapy, the types of TME based on PD-L1 (clone: 22C3) expression, the density of CD8-positive TILs assessed by immunohistochemistry, and mutational profiles by next-generation sequencing. RESULTS Overall, 228 patients were included in the analysis. The patients were classified into the following four groups: type I: PD-L1High (tumor proportion score ≥ 50%)/TILHigh (≥85/mm2; n = 73); type II: PD-L1Low (tumor proportion score < 50%)/TILLow (<85/mm2; n = 70); type III: PD-L1High/TILLow (n = 37); and type IV: PD-L1Low/TILHigh (n = 48). The objective response rate (ORR) and progression-free survival (PFS) of anti-PD-1/PD-L1 therapy clearly differed according to the different TME types (ORR and PFS; type I: 64%, 14.5 mo; type II: 12%, 2.1 mo; type III: 24%, 3.6 mo; type IV; 41%, 10.8 mo). In patients with PD-L1High tumors, type I tumors had significantly better ORR and PFS than type III tumors (ORR: p < 0.001 and PFS: p < 0.001). The presence of TP53 and KRAS mutation was related to the density of CD8-positive TILs and PD-L1 expression, respectively. CONCLUSIONS Differential types of TME, including PD-L1 expression and TIL status, could accurately predict the efficacy of anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.
| | - Yukiko Shimoda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Takayanagi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Kubo
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Sachiyo Mitani
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuji Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Masuda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan; Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Noriko Motoi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
32
|
Kiaie SH, Sanaei MJ, Heshmati M, Asadzadeh Z, Azimi I, Hadidi S, Jafari R, Baradaran B. Immune checkpoints in targeted-immunotherapy of pancreatic cancer: New hope for clinical development. Acta Pharm Sin B 2021; 11:1083-1097. [PMID: 34094821 PMCID: PMC8144893 DOI: 10.1016/j.apsb.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has been recently considered as a promising alternative for cancer treatment. Indeed, targeting of immune checkpoint (ICP) strategies have shown significant success in human malignancies. However, despite remarkable success of cancer immunotherapy in pancreatic cancer (PCa), many of the developed immunotherapy methods show poor therapeutic outcomes in PCa with no or few effective treatment options thus far. In this process, immunosuppression in the tumor microenvironment (TME) is found to be the main obstacle to the effectiveness of antitumor immune response induced by an immunotherapy method. In this paper, the latest findings on the ICPs, which mediate immunosuppression in the TME have been reviewed. In addition, different approaches for targeting ICPs in the TME of PCa have been discussed. This review has also synopsized the cutting-edge advances in the latest studies to clinical applications of ICP-targeted therapy in PCa.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Saleh Hadidi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| |
Collapse
|
33
|
Cabezón-Gutiérrez L, Custodio-Cabello S, Palka-Kotlowska M, Alonso-Viteri S, Khosravi-Shahi P. Biomarkers of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Beyond PD-L1. Clin Lung Cancer 2021; 22:381-389. [PMID: 33875382 DOI: 10.1016/j.cllc.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Immunotherapy has markedly improved the survival rate of patients with non-small cell lung cancer (NSCLC) and has introduced a new era in lung cancer treatment. Although some patients achieve durable responses to checkpoint blockade, not all experience such benefits, and some suffer from significant immunotoxicities. Thus, it is crucial to identify potential biomarkers suitable for screening the population that may benefit from immunotherapy. Based on the current clinical trials, the aim of the present study was to review the biomarkers for immune checkpoint inhibition that may have the potential to predict the response to immunotherapy in patients with lung cancer. A non-systematic literature review was done. We searched for eligible randomized controlled trials (RCTs) from PubMed, Embase, and the Cochrane Central Register of Controlled Trials from January 2015 to January 2021. The keywords included biomarkers, immunotherapy, immune checkpoint inhibition, programmed death ligand 1 (PD-L1), and non-small cell lung cancer. Additional biomarkers beyond PD-L1 that have been shown to have predictive capacity include tumor mutational burden, microsatellite instability, lung immune prognostic index, gut microbiome, and certain alterations in genes (eg, STK11 deletion, LKB1 kinase mutation, MDM2/4 amplification) that confer immunoresistance. The biomarkers reviewed in this article could help us better select the appropriate immunotherapy treatment for patients with NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Parham Khosravi-Shahi
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
34
|
Identification of distinct immune landscapes using an automated nine-color multiplex immunofluorescence staining panel and image analysis in paraffin tumor tissues. Sci Rep 2021; 11:4530. [PMID: 33633208 PMCID: PMC7907283 DOI: 10.1038/s41598-021-83858-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Immune profiling is becoming a vital tool for identifying predictive and prognostic markers for translational studies. The study of the tumor microenvironment (TME) in paraffin tumor tissues such as malignant pleural mesothelioma (MPM) could yield insights to actionable targets to improve patient outcome. Here, we optimized and tested a new immune-profiling method to characterize immune cell phenotypes in paraffin tissues and explore the co-localization and spatial distribution between the immune cells within the TME and the stromal or tumor compartments. Tonsil tissues and tissue microarray (TMA) were used to optimize an automated nine-color multiplex immunofluorescence (mIF) panel to study the TME using eight antibodies: PD-L1, PD-1, CD3, CD8, Foxp3, CD68, KI67, and pancytokeratin. To explore the potential role of the cells into the TME with this mIF panel we applied this panel in twelve MPM cases to assess the multiple cell phenotypes obtained from the image analysis and well as their spatial distribution in this cohort. We successful optimized and applied an automated nine-color mIF panel to explore a small set of MPM cases. Image analysis showed a high degree of cell phenotype diversity with immunosuppression patterns in the TME of the MPM cases. Mapping the geographic cell phenotype distribution in the TME, we were able to identify two distinct, complex immune landscapes characterized by specific patterns of cellular distribution as well as cell phenotype interactions with malignant cells. Successful we showed the optimization and reproducibility of our mIF panel and their incorporation for comprehensive TME immune profiling into translational studies that could refine our ability to correlate immunologic phenotypes with specific patterns of cells distribution and distance analysis. Overall, this will improve our ability to understand the behavior of cells within the TME and predict new treatment strategies to improve patient outcome.
Collapse
|
35
|
Relecom A, Merhi M, Inchakalody V, Uddin S, Rinchai D, Bedognetti D, Dermime S. Emerging dynamics pathways of response and resistance to PD-1 and CTLA-4 blockade: tackling uncertainty by confronting complexity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:74. [PMID: 33602280 PMCID: PMC7893879 DOI: 10.1186/s13046-021-01872-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Immune checkpoint inhibitors provide considerable therapeutic benefit in a range of solid cancers as well as in a subgroup of hematological malignancies. Response rates are however suboptimal, and despite considerable efforts, predicting response to immune checkpoint inhibitors ahead of their administration in a given patient remains elusive. The study of the dynamics of the immune system and of the tumor under immune checkpoint blockade brought insight into the mechanisms of action of these therapeutic agents. Equally relevant are the mechanisms of adaptive resistance to immune checkpoint inhibitors that have been uncovered through this approach. In this review, we discuss the dynamics of the immune system and of the tumor under immune checkpoint blockade emanating from recent studies on animal models and humans. We will focus on mechanisms of action and of resistance conveying information predictive of therapeutic response.
Collapse
Affiliation(s)
- Allan Relecom
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Darawan Rinchai
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar
| | - Davide Bedognetti
- Cancer Research Program, Research Branch, Sidra Medicine, Doha, Qatar. .,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Said Dermime
- Department of Medical Oncology, Translational Research Institute, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
36
|
Jafarzadeh L, Khakpoor-Koosheh M, Mirzaei H, Mirzaei HR. Biomarkers for predicting the outcome of various cancer immunotherapies. Crit Rev Oncol Hematol 2021; 157:103161. [DOI: 10.1016/j.critrevonc.2020.103161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
|
37
|
Schofield DJ, Percival-Alwyn J, Rytelewski M, Hood J, Rothstein R, Wetzel L, McGlinchey K, Adjei G, Watkins A, Machiesky L, Chen W, Andrews J, Groves M, Morrow M, Stewart RA, Leinster A, Wilkinson RW, Hammond SA, Luheshi N, Dobson C, Oberst M. Activity of murine surrogate antibodies for durvalumab and tremelimumab lacking effector function and the ability to deplete regulatory T cells in mouse models of cancer. MAbs 2021; 13:1857100. [PMID: 33397194 PMCID: PMC7831362 DOI: 10.1080/19420862.2020.1857100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies of PD-L1 and CTLA-4 blockade have relied heavily on mouse syngeneic tumor models with intact immune systems, which facilitate dissection of immunosuppressive mechanisms in the tumor microenvironment. Commercially developed monoclonal antibodies (mAbs) targeting human PD-L1, PD-1, and CTLA-4 may not demonstrate cross-reactive binding to their mouse orthologs, and surrogate anti-mouse antibodies are often used in their place to inhibit these immune checkpoints. In each case, multiple choices exist for surrogate antibodies, which differ with respect to species of origin, affinity, and effector function. To develop relevant murine surrogate antibodies for the anti-human PD-L1 mAb durvalumab and the anti-human CTLA-4 mAb tremelimumab, rat/mouse chimeric or fully murine mAbs engineered for reduced effector function were developed and compared with durvalumab and tremelimumab. Characterization included determination of target affinity, in vivo effector function, pharmacokinetic profile, and anti-tumor efficacy in mouse syngeneic tumor models. Results showed that anti-PD-L1 and anti-CTLA-4 murine surrogates with pharmacologic properties similar to those of durvalumab and tremelimumab demonstrated anti-tumor activity in a subset of commonly used mouse syngeneic tumor models. This activity was not entirely dependent on antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis effector function, or regulatory T-cell depletion, as antibodies engineered to lack these features showed activity in models historically sensitive to checkpoint inhibition, albeit at a significantly lower level than antibodies with intact effector function.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/immunology
- CTLA-4 Antigen/immunology
- Cell Line, Tumor
- Female
- Humans
- Kaplan-Meier Estimate
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Rats, Sprague-Dawley
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tumor Burden/drug effects
- Tumor Burden/immunology
- Mice
- Rats
Collapse
Affiliation(s)
- Darren J. Schofield
- Antibody Development and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jennifer Percival-Alwyn
- Antibody Development and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - John Hood
- Clinical and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Raymond Rothstein
- Discovery Biosciences, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Leslie Wetzel
- Discovery Biosciences, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kelly McGlinchey
- Translational Medicine Department in Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Grace Adjei
- Discovery Biosciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Amanda Watkins
- Discovery Biosciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | - LeeAnn Machiesky
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Weimin Chen
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - John Andrews
- Antibody Development and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Maria Groves
- Antibody Development and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Michelle Morrow
- Discovery Biosciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ross A. Stewart
- Translational Medicine Department in Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
- Discovery Biosciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Andrew Leinster
- Discovery Biosciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Scott A. Hammond
- Discovery Biosciences, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nadia Luheshi
- Discovery Biosciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Claire Dobson
- Antibody Development and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Michael Oberst
- Discovery Biosciences, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
38
|
Rosen BC, Pedreño-Lopez N, Ricciardi MJ, Reed JS, Sacha JB, Rakasz EG, Watkins DI. Rhesus Cytomegalovirus-Specific CD8 + Cytotoxic T Lymphocytes Do Not Become Functionally Exhausted in Chronic SIVmac239 Infection. Front Immunol 2020; 11:1960. [PMID: 32922404 PMCID: PMC7457070 DOI: 10.3389/fimmu.2020.01960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) exert potent antiviral activity after HIV/SIV infection. However, efforts to harness the antiviral efficacy of CTLs for HIV/SIV prophylaxis and therapy have been severely hindered by two major problems: viral escape and exhaustion. By contrast, CTLs directed against human cytomegalovirus (HCMV), a ubiquitous chronic herpesvirus, seldom select for escape mutations and remain functional and refractory to exhaustion during chronic HCMV and HIV infection. Recently, attempts have been made to retarget HCMV-specific CTLs for cancer immunotherapy. We speculate that such a strategy may also be beneficial in the context of HIV/SIV infection, facilitating CTL-mediated control of HIV/SIV replication. As a preliminary assessment of the validity of this approach, we investigated the phenotypes and functionality of rhesus CMV (RhCMV)-specific CTLs in SIVmac239-infected Indian rhesus macaques (RMs), a crucial HIV animal model system. We recently identified two immunodominant, Mamu-A∗02-restricted CTL epitopes derived from RhCMV proteins and sought to evaluate the phenotypic and functional characteristics of these CTL populations in chronic SIVmac239 infection. We analyzed and directly compared RhCMV- and SIVmac239-specific CTLs during SIVmac239 infection in a cohort of Mamu-A∗01 + and Mamu-A∗02 + RMs. CTL populations specific for at least one of the RhCMV-derived CTL epitopes were detected in ten of eleven Mamu-A∗02 + animals tested, and both populations were detected in five of these animals. Neither RhCMV-specific CTL population exhibited significant changes in frequency, memory phenotype, granzyme B expression, exhaustion marker (PD-1 and CTLA-4) expression, or polyfunctionality between pre- and chronic SIVmac239 infection timepoints. In chronic SIVmac239 infection, RhCMV-specific CTLs exhibited higher levels of granzyme B expression and polyfunctionality, and lower levels of exhaustion marker expression, than SIVmac239-specific CTLs. Additionally, compared to SIVmac239-specific CTLs, greater proportions of RhCMV-specific CTLs were of the terminally differentiated effector memory phenotype (CD28- CCR7-) during chronic SIVmac239 infection. These results suggest that, in contrast to SIVmac239-specific CTLs, RhCMV-specific CTLs maintain their phenotypes and cytolytic effector functions during chronic SIVmac239 infection, and that retargeting RhCMV-specific CTLs might be a promising SIV immunotherapeutic strategy.
Collapse
Affiliation(s)
- Brandon C Rosen
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University School of Medicine, Washington, DC, United States
| | - Michael J Ricciardi
- Department of Pathology, George Washington University School of Medicine, Washington, DC, United States
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - David I Watkins
- Department of Pathology, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
39
|
Biomarkers, measured during therapy, for response of melanoma patients to immune checkpoint inhibitors: a systematic review. Melanoma Res 2020; 29:453-464. [PMID: 30855527 PMCID: PMC6727956 DOI: 10.1097/cmr.0000000000000589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs), which target CTLA-4 or PD-(L)1 molecules, have shown impressive therapeutic results. Durable responses, however, are only observed in a segment of the patient population and must be offset against severe off-target immune toxicity and high costs. This calls for biomarkers that predict response during ICI treatment. Although many candidate biomarkers exist, as yet, there has been no systematic overview of biomarkers predictive during. Here, we provide a systematic review of the current literature of ICI treatment to establish an overview of candidate predictive biomarkers during ICI treatment in melanoma patients. We performed a systematic Medline search (2000-2018, 1 January) on biomarkers for survival or response to ICI treatment in melanoma patients. We retrieved 735 publications, of which 79 were finally included in this systematic review. Blood markers were largely studied for CTLA-4 ICI, whereas tumor tissue markers were analyzed for PD-(L)1 ICI. Blood cytology and soluble factors were more frequently correlated to overall survival (OS) than response, indicating their prognostic rather than predictive nature. An increase in tumor-infiltrating CD8 + T-cells and a decrease in regulatory T-cells were correlated to response, in addition to mutational load, neoantigen load, and immune-related gene expression. Immune-related adverse events were also associated frequently with a favorable response and OS. This review shows the great variety of potential biomarkers published to date, in an attempt to better understand response to ICI therapy; it also highlights the candidate markers for future research. The most promising biomarkers for response to ICI treatment are the occurrence of immune-related adverse events (especially vitiligo), lowering of lactate dehydrogenase, and increase in activated CD8 + and decrease in regulatory T-cells.
Collapse
|
40
|
Trojaniello C, Vitale MG, Scarpato L, Esposito A, Ascierto PA. Melanoma immunotherapy: strategies to overcome pharmacological resistance. Expert Rev Anticancer Ther 2020; 20:289-304. [PMID: 32195606 DOI: 10.1080/14737140.2020.1745634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Although checkpoint inhibitors have provided a breakthrough in how melanoma is treated, about half of patients still do not respond due to primary or acquired resistance. New strategies are, therefore, required to increase the number of patients benefiting from immunotherapy. This systematic review investigates novel combinations that may overcome immune resistance in patients with melanoma.Areas covered: We provide an overview of immune-related resistance mechanisms and the various therapeutic strategies that can be considered in attempting to overcome these barriers, including combined immunotherapy approaches and combinations with chemotherapy, radiotherapy, and targeted therapy.Expert opinion: The immune response is a dynamic process in which the tumor microenvironment and immune cells interact in a variety of ways. New treatment approaches aim to enrich the tumor microenvironment with immune-infiltrate and increase response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Claudia Trojaniello
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | | | - Luigi Scarpato
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Assunta Esposito
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Paolo A Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
41
|
Plesca I, Tunger A, Müller L, Wehner R, Lai X, Grimm MO, Rutella S, Bachmann M, Schmitz M. Characteristics of Tumor-Infiltrating Lymphocytes Prior to and During Immune Checkpoint Inhibitor Therapy. Front Immunol 2020; 11:364. [PMID: 32194568 PMCID: PMC7064638 DOI: 10.3389/fimmu.2020.00364] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor immune contexture plays a major role for the clinical outcome of patients. High densities of CD45RO+ T helper 1 cells and CD8+ T cells are associated with improved survival of patients with various cancer entities. In contrast, a higher frequency of tumor-infiltrating M2 macrophages is correlated with poor prognosis. Recent studies provide evidence that the tumor immune architecture also essentially contributes to the clinical efficacy of immune checkpoint inhibitor (CPI) therapy in patients. Pretreatment melanoma samples from patients who experienced a clinical response to anti-programmed cell death protein 1 (PD-1) treatment show higher densities of infiltrating CD8+ T cells compared to samples from patients that progressed during therapy. Anti-PD-1 therapy results in an increased density of tumor-infiltrating T lymphocytes in treatment responders. In addition, elevated frequencies of melanoma-infiltrating TCF7+CD8+ T cells are correlated with beneficial clinical outcome of anti-PD-1-treated patients. In contrast, a high density of tumor-infiltrating, dysfunctional PD-1+CD38hi CD8+ cells in melanoma patients is associated with anti-PD-1 resistance. Such findings indicate that comprehensive tumor immune contexture profiling prior to and during CPI therapy may lead to the identification of underlying mechanisms for treatment response or resistance, and the design of improved immunotherapeutic strategies. Here, we focus on studies exploring the impact of intratumoral T and B cells at baseline on the clinical outcome of CPI-treated cancer patients. In addition, recent findings demonstrating the influence of CPIs on tumor-infiltrating lymphocytes are summarized.
Collapse
Affiliation(s)
- Ioana Plesca
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany
| | - Antje Tunger
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Luise Müller
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xixi Lai
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany
| | | | - Sergio Rutella
- John van Geest Cancer Research Center, College of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, Dresden, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Chen YP, Wang YQ, Lv JW, Li YQ, Chua MLK, Le QT, Lee N, Colevas AD, Seiwert T, Hayes DN, Riaz N, Vermorken JB, O'Sullivan B, He QM, Yang XJ, Tang LL, Mao YP, Sun Y, Liu N, Ma J. Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: implications for immunotherapy. Ann Oncol 2020; 30:68-75. [PMID: 30407504 DOI: 10.1093/annonc/mdy470] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Targeting the immune checkpoint pathway has demonstrated antitumor cytotoxicity in treatment-refractory head and neck squamous cell carcinoma (HNSC). To understand the molecular mechanisms underpinning its antitumor response, we characterized the immune landscape of HNSC by their tumor and stromal compartments to identify novel immune molecular subgroups. Patients and methods A training cohort of 522 HNSC samples from the Cancer Genome Atlas profiled by RNA sequencing was analyzed. We separated gene expression patterns from tumor, stromal, and immune cell gene using a non-negative matrix factorization algorithm. We correlated the expression patterns with a set of immune-related gene signatures, potential immune biomarkers, and clinicopathological features. Six independent datasets containing 838 HNSC samples were used for validation. Results Approximately 40% of HNSCs in the cohort (211/522) were identified to show enriched inflammatory response, enhanced cytolytic activity, and active interferon-γ signaling (all, P < 0.001). We named this new molecular class of tumors the Immune Class. Then we found it contained two distinct microenvironment-based subtypes, characterized by markers of active or exhausted immune response. The Exhausted Immune Class was characterized by enrichment of activated stroma and anti-inflammatory M2 macrophage signatures, WNT/transforming growth factor-β signaling pathway activation and poor survival (all, P < 0.05). An enriched proinflammatory M1 macrophage signature, enhanced cytolytic activity, abundant tumor-infiltrating lymphocytes, high human papillomavirus (HPV) infection, and favorable prognosis were associated with Active Immune Class (all, P < 0.05). The robustness of these immune molecular subgroups was verified in the validation cohorts, and Active Immune Class showed potential response to programmed cell death-1 blockade (P = 0.01). Conclusions This study revealed a novel Immune Class in HNSC; two subclasses characterized by active or exhausted immune responses were also identified. These findings provide new insights into tailoring immunotherapeutic strategies for different HNSC subgroups.
Collapse
Affiliation(s)
- Y-P Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Y-Q Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - J-W Lv
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Y-Q Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - M L K Chua
- Division of Radiation Oncology, National Cancer Centre, Singapore; Oncology Academic Clinical Programme Duke-NUS Medical School, Singapore
| | - Q-T Le
- Department of Radiation Oncology, Stanford University, Stanford
| | - N Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York
| | | | - T Seiwert
- Department of Medicine, The University of Chicago, Chicago
| | - D N Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - N Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York
| | - J B Vermorken
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - B O'Sullivan
- Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Q-M He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - X-J Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - L-L Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Y-P Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Y Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - N Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - J Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou; State Key Laboratory of Oncology in South China, Guangzhou; Collaborative Innovation Center for Cancer Medicine, Guangzhou; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China.
| |
Collapse
|
43
|
Sharma A, Subudhi SK, Blando J, Vence L, Wargo J, Allison JP, Ribas A, Sharma P. Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3 + Regulatory T Cells (Tregs) in Human Cancers-Response. Clin Cancer Res 2020; 25:3469-3470. [PMID: 31160495 DOI: 10.1158/1078-0432.ccr-19-0402] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Anu Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Blando
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis Vence
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Antoni Ribas
- Department of Hematology and Oncology, University of California Los Angeles, Los Angeles, California
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
44
|
Bodor JN, Boumber Y, Borghaei H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer 2020; 126:260-270. [PMID: 31691957 PMCID: PMC7372560 DOI: 10.1002/cncr.32468] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
The emergence of immunotherapy has dramatically changed how non-small cell lung cancer is treated, and longer survival is now possible for some patients, even those with advanced disease. Although some patients achieve durable responses to checkpoint blockade, not all experience such benefits, and some suffer from significant immunotoxicities. Given this, biomarkers that predict response to therapy are essential, and testing for tumor programmed death ligand 1(PD-L1) expression is the current standard. The extent of PD-L1 expression determined by immunohistochemistry (IHC) has demonstrated a correlation with treatment response, although limitations with this marker exist. Recently, tumor mutational burden has emerged as an alternative biomarker, and studies have demonstrated its utility, irrespective of the PD-L1 level of a tumor. Gene expression signatures, tumor genotype (such as the presence of an oncogenic driver mutation), as well as the density of tumor-infiltrating lymphocytes in the tumor microenvironment also seem to affect response to immunotherapy and are being researched. Peripheral serum markers are being studied, and some have demonstrated predictive ability, although most are still investigational and need prospective validation. In the current article, the authors review the biomarker PD-L1 as well as other emerging and investigational tissue-based and serum-based markers that have potential to better predict responders to immunotherapy.
Collapse
Affiliation(s)
- J. Nicholas Bodor
- Department of Hematology / Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Yanis Boumber
- Department of Hematology / Oncology, Fox Chase Cancer Center, Philadelphia, PA
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Hossein Borghaei
- Department of Hematology / Oncology, Fox Chase Cancer Center, Philadelphia, PA
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
45
|
Kim JY, Kim WG, Kwon CH, Park DY. Differences in immune contextures among different molecular subtypes of gastric cancer and their prognostic impact. Gastric Cancer 2019; 22:1164-1175. [PMID: 31152268 DOI: 10.1007/s10120-019-00974-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancers have been recently classified in accordance with their molecular characteristics, thus demonstrating the complex nature of cancers and an association with the immune contexture within the tumor microenvironment. This study aimed to investigate the correlation between the molecular subtype and immune contexture of gastric cancers. METHODS The immune contexture, including the type, density, and location of tumor-infiltrating lymphocytes (TILs), of gastric cancer patients was examined and immune subtypes were classified based on it. In particular, PD-L1 expression on tumor cells and TILs and Foxp3+ TILs was assessed in accordance with molecular subtypes. RESULTS High levels of visual TIL estimates and Foxp3+ TILs were markedly associated with increased overall survival (P = 0.001, P < 0.001, separately). Immune subtypes were associated with tumor size, gross type, depth of invasion, lymph node metastatic status, lymphovascular invasion, perineural invasion, and microsatellite instability status. EBV-positive (C1) and MSI (C2) gastric cancers, considered subtypes with better prognosis, were significantly associated with high TIL levels (P < 0.05). In contrast, epithelial-mesenchymal transition (EMT, C3) gastric cancers with poor overall survival displayed low levels of Foxp3+ TILs. Type II tumors (low level of TILs/low PD-L1 expression) displayed a significant correlation with poor overall survival (P = 0.004) and accounted for the highest proportion in the aberrant p53-expressing (C4) gastric cancers. CONCLUSION The molecular subtype of gastric cancers is correlated with the immune subtype, including immune contexture and PD-L1 expression, within the tumor microenvironment.
Collapse
Affiliation(s)
- Joo Yeon Kim
- Department of Pathology, Haeundae Paik Hospital, College of Medicine, Inje University, Busan, South Korea
| | - Woo Gyeong Kim
- Department of Pathology, Haeundae Paik Hospital, College of Medicine, Inje University, Busan, South Korea
| | - Chae Hwa Kwon
- BioMedical Research Institute, Pusan National University Hospital, 179, Gudeok-ro, Seo-gu, Busan, 49241, South Korea.
| | - Do Youn Park
- Department of Pathology, Pusan National University Hospital and Pusan National University School of Medicine, Busan, South Korea.
- BioMedical Research Institute, Pusan National University Hospital, 179, Gudeok-ro, Seo-gu, Busan, 49241, South Korea.
| |
Collapse
|
46
|
The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2019; 17:75-90. [PMID: 31548600 DOI: 10.1038/s41571-019-0266-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
The past decade has seen the emergence of immunotherapy as a prime approach to cancer treatment, revolutionizing the management of many types of cancer. Despite the promise of immunotherapy, most patients do not have a response or become resistant to treatment. Thus, identifying combinations that potentiate current immunotherapeutic approaches will be crucial. The combination of immune-checkpoint inhibition with epigenetic therapy is one such strategy that is being tested in clinical trials, encompassing a variety of cancer types. Studies have revealed key roles of epigenetic processes in regulating immune cell function and mediating antitumour immunity. These interactions make combined epigenetic therapy and immunotherapy an attractive approach to circumvent the limitations of immunotherapy alone. In this Review, we highlight the basic dynamic mechanisms underlying the synergy between immunotherapy and epigenetic therapies and detail current efforts to translate this knowledge into clinical benefit for patients.
Collapse
|
47
|
Di Giacomo AM, Covre A, Finotello F, Rieder D, Danielli R, Sigalotti L, Giannarelli D, Petitprez F, Lacroix L, Valente M, Cutaia O, Fazio C, Amato G, Lazzeri A, Monterisi S, Miracco C, Coral S, Anichini A, Bock C, Nemc A, Oganesian A, Lowder J, Azab M, Fridman WH, Sautès-Fridman C, Trajanoski Z, Maio M. Guadecitabine Plus Ipilimumab in Unresectable Melanoma: The NIBIT-M4 Clinical Trial. Clin Cancer Res 2019; 25:7351-7362. [PMID: 31530631 DOI: 10.1158/1078-0432.ccr-19-1335] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The immunomodulatory activity of DNA hypomethylating agents (DHAs) suggests they may improve the effectiveness of cancer immunotherapies. The phase Ib NIBIT-M4 trial tested this hypothesis using the next-generation DHA guadecitabine combined with ipilimumab. PATIENTS AND METHODS Patients with unresectable stage III/IV melanoma received escalating doses of guadecitabine 30, 45, or 60 mg/m2/day subcutaneously on days 1 to 5 every 3 weeks, and ipilimumab 3 mg/kg intravenously on day 1 every 3 weeks, starting 1 week after guadecitabine, for four cycles. Primary endpoints were safety, tolerability, and MTD of treatment; secondary were immune-related (ir) disease control rate (DCR) and objective response rate (ORR); and exploratory were changes in methylome, transcriptome, and immune contextures in sequential tumor biopsies, and pharmacokinetics. RESULTS Nineteen patients were treated; 84% had grade 3/4 adverse events, and neither dose-limiting toxicities per protocol nor overlapping toxicities were observed. Ir-DCR and ir-ORR were 42% and 26%, respectively. Median CpG site methylation of tumor samples (n = 8) at week 4 (74.5%) and week 12 (75.5%) was significantly (P < 0.05) lower than at baseline (80.3%), with a median of 2,454 (week 4) and 4,131 (week 12) differentially expressed genes. Among the 136 pathways significantly (P < 0.05; Z score >2 or ←2) modulated by treatment, the most frequently activated were immune-related. Tumor immune contexture analysis (n = 11) demonstrated upregulation of HLA class I on melanoma cells, an increase in CD8+, PD-1+ T cells and in CD20+ B cells in posttreatment tumor cores. CONCLUSIONS Treatment of guadecitabine combined with ipilimumab is safe and tolerable in advanced melanoma and has promising immunomodulatory and antitumor activity.
Collapse
Affiliation(s)
| | - Alessia Covre
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Francesca Finotello
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Riccardo Danielli
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Florent Petitprez
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Programme Cartes d'Identitié des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Lacroix
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Monica Valente
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Ornella Cutaia
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Carolina Fazio
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Giovanni Amato
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Andrea Lazzeri
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Santa Monterisi
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Clelia Miracco
- Pathology Unit, Department of Medical, Surgical and Neurological Science, University of Siena, S. Maria alle Scotte Hospital, Siena, Italy
| | - Sandra Coral
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Andrea Anichini
- HumanTumors Immunobiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Amelie Nemc
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - James Lowder
- Astex Pharmaceuticals Inc., Pleasanton, California
| | | | - Wolf H Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Team Cancer, Immune Control and Escape, Paris, France
- University Paris Descartes Paris 5, Sorbonne Paris Cite, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne University, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Zlatko Trajanoski
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michele Maio
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy.
| |
Collapse
|
48
|
Khunger A, Rytlewski JA, Fields P, Yusko EC, Tarhini AA. The impact of CTLA-4 blockade and interferon-α on clonality of T-cell repertoire in the tumor microenvironment and peripheral blood of metastatic melanoma patients. Oncoimmunology 2019; 8:e1652538. [PMID: 31646098 PMCID: PMC6791420 DOI: 10.1080/2162402x.2019.1652538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with metastatic melanoma were treated with tremelimumab and interferon-α (IFN) in a previously reported clinical trial [NCT00610857]. Responses were assessed by RECIST criteria as complete (CR) or partial (PR), stable disease (SD) or progressive disease (PD). In this study, T-cell receptor (TCR) beta-chain repertoire was immunosequenced in peripheral blood mononuclear cells (PBMC) specimens (N = 33) and tumor samples (N = 18) utilizing the immunoSEQ® Assay to determine repertoire clonality and T cell fractions at pre-treatment (tumor and PBMC), one month (PBMC) and 3 months (PBMC) time points and evaluate its association with clinical outcomes. In the pretreatment tumor microenvironment (TME), T cell clonality was significantly (p = .035) different and greater in patients who achieved disease control (CR, PR, SD) versus those with non-disease control (PD) as best response to treatment. Further, there was significantly (p = .001) increased TCR fraction in tissue of responders (CR, PR) versus non-responders (PD, SD). In examining T cell clonality in the circulation (PBMC), no significant associations were found in the pretreatment samples. However, early on-treatment (4 weeks) there was a significant decrease in T cell clonality that was associated with improved overall survival (p = .01) and progression-free survival (p = .04). In addition, analysis of temporal changes in tumor-infiltrating lymphocytes (TIL) and peripheral TCR repertoire revealed that responders had significantly higher clonal expansion of TIL in the circulation at 4 weeks than non-responders (p = .036). Our study provided interesting mechanistic data related to CTLA-4 Blockade and IFN and potential biomarkers of immunotherapeutic benefit.
Collapse
Affiliation(s)
- Arjun Khunger
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, Moffitt Comprehensive Cancer Center, Tampa, Florida, USA
| |
Collapse
|
49
|
Ladányi A, Tímár J. Immunologic and immunogenomic aspects of tumor progression. Semin Cancer Biol 2019; 60:249-261. [PMID: 31419526 DOI: 10.1016/j.semcancer.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Tumor progression to metastatic disease is characterized by continuous genetic alterations due to instability of the genome. Immune sensitivity was found to be linked to tumor mutational burden (TMB) and the resulting amount of neoantigens. However, APOBEC activity resulting in increase in TMB causes immune evasion. On the other hand, clonal or acquired genetic loss of HLA class I also hampers immune sensitivity of tumors. Rare amplification of the PD-L1 gene in cancers may render them sensitive to immune checkpoint inhibitors but involvement of broader regions of chromosome 9p may ultimately lead again to immune evasion due to inactivation of the IFN-γ signaling pathway. Such genetic changes may occur not only in the primary tumor but at any phase of progression: in lymphatic as well as in visceral metastases. Accordingly, it is rational to monitor these changes continuously during disease progression similar to target therapies. Moreover, beside temporal variability, genomic features of tumors such as mutation profiles, as well as the tumor immune microenvironment also show considerable inter- and intratumoral spatial heterogeneity, suggesting the necessity of multiple sampling in biomarker studies.
Collapse
Affiliation(s)
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
50
|
Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Semin Cancer Biol 2019; 65:13-27. [PMID: 31362073 DOI: 10.1016/j.semcancer.2019.07.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
In the tumor microenvironment (TME), tumor cells are constantly evolving to reduce neoantigen generation and the mutational burden to escape the anti-tumor response. This will lower tumor reactivity to the adaptive immune response and give rise to tumor intrinsic factors, such as altered expression of immune regulatory molecules on tumor cells. Tumor-extrinsic factors, such as immunosuppressive cells, soluble suppressive molecules or inhibitory receptors expressed by immune cells will alter the composition and activity of tumor-infiltrating lymphocytes (TILs) (by increasing T regulatory cells:T effector cells ratio and inhibiting T effector cell function) and promote tumor growth and metastasis. Together, these factors limit the response rates and clinical outcomes to a particular cancer therapy. Within the TME, the cross-talks between immune and non-immune cells result in the generation of positive feedback loops, which augment immunosuppression and support tumor growth and survival (termed as tumor-mediated immunosuppression). Cancer immunotherapies, such as immune checkpoint inhibitors (ICIs) and adoptive cell transfer (ACT), have shown therapeutic efficacy in hematologic cancers and different types of solid tumors. However, achieving durable response rates in some cancer patients remains a challenge as a result of acquired resistance and tumor immune evasion. This could be driven by the cellular and molecular suppressive network within the TME or due to the loss of tumor antigens. In this review, we describe the contribution of the immunosuppressive cellular and molecular tumor network to the development of acquired resistance against cancer immunotherapies. We also discuss potential combined therapeutic strategies which could help to overcome such resistance against cancer immunotherapies, and to enhance anti-tumor immune responses and improve clinical outcomes in patients.
Collapse
|