1
|
Yu W, Cai X, Wang C, Peng X, Xu L, Gao Y, Tian T, Zhu G, Pan Y, Chu H, Liang S, Chen C, Kim NH, Yuan B, Zhang J, Jiang H. FOXM1 affects oxidative stress, mitochondrial function, and the DNA damage response by regulating p21 in aging oocytes. Theriogenology 2024; 229:66-74. [PMID: 39163804 DOI: 10.1016/j.theriogenology.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Fertilization capacity and embryo survival rate are decreased in postovulatory aging oocytes, which results in a reduced reproductive rate in female animals. However, the key regulatory genes and related regulatory mechanisms involved in the process of postovulatory aging in oocytes remain unclear. In this study, RNA-Seq revealed that 3237 genes were differentially expressed in porcine oocytes between the MII and aging stages (MII + 24 h). The expression level of FOXM1 was increased at the aging stage, and FOXM1 was also observed to be enriched in many key biological processes, such as cell senescence, response to oxidative stress, and transcription, during porcine oocyte aging. Previous studies have shown that FOXM1 is involved in the regulation of various biological processes, such as oxidative stress, DNA damage repair, mitochondrial function, and cellular senescence, which suggests that FOXM1 may play a crucial role in the process of postovulatory aging. Therefore, in this study, we investigated the effects and mechanisms of FOXM1 on oxidative stress, mitochondrial function, DNA damage, and apoptosis during oocyte aging. Our study revealed that aging oocytes exhibited significantly increased ROS levels and significantly decreased GSH, SOD, T-AOC, and CAT levels than did oocytes at the MII stage and that FOXM1 inhibition exacerbated the changes in these levels in aging oocytes. In addition, FOXM1 inhibition increased the levels of DNA damage, apoptosis, and cell senescence in aging oocytes. A p21 inhibitor alleviated the effects of FOXM1 inhibition on oxidative stress, mitochondrial function, and DNA damage and thus alleviated the degree of senescence in aging oocytes. These results indicate that FOXM1 plays a crucial role in porcine oocyte aging. This study contributes to the understanding of the function and mechanism of FOXM1 during porcine oocyte aging and provides a theoretical basis for preventing oocyte aging and optimizing conditions for the in vitro culture of oocytes.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoshi Cai
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chen Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xinyue Peng
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Lingxia Xu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Tian Tian
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China; Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Guangying Zhu
- Department of Mental Health, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Yuan Pan
- Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Hongzhong Chu
- General Animal Husbandry Center of Ili Kazakh Autonomous Prefecture, Yining, 835000, China
| | - Shuang Liang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chengzhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
2
|
Yang L, Wang X, Lin Q, Shen G, Chen H. CLDN11 deficiency upregulates FOXM1 to facilitate breast tumor progression through hedgehog signaling pathway. J Mol Histol 2024:10.1007/s10735-024-10267-5. [PMID: 39438406 DOI: 10.1007/s10735-024-10267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Claudins (CLDNs) play a crucial role in regulating the permeability of epithelial barriers and can impact tumor behavior through alterations in their expression. However, the precise mechanisms underlying the involvement of CLDNs in breast cancer progression remain unclear. This study aimed to investigate the role of CLDN11 in breast cancer progression. Utilizing the TCGA database and clinical specimens from breast cancer patients, we observed reduced expression of CLDN11 in tumor tissues, which correlated with poor prognosis in breast cancer patients. In vitro, silencing of CLDN11 enhanced the proliferative and migratory characteristics of breast cancer cell lines MCF-7 and MDA-MB-231. Mechanistically, CLDN11 deficiency promoted the upregulation of Forkhead Box M1 (FOXM1) by activating the hedgehog signaling pathway, thereby sustaining tumor progression in breast cancer. In vivo, blockade of hedgehog signaling suppressed the tumor progression induced by CLDN11 silencing. Our study highlights the significance of the CLDN11/FOXM1 axis in breast cancer progression, suggesting CLDN11 as a potential diagnostic indicator and therapeutic target for clinical therapy.
Collapse
Affiliation(s)
- Leyi Yang
- Department of Breast Surgery, Zhangzhou Hospital, Fujian Medical University, No 59 Shengli West Road, Xiangcheng district, Zhangzhou, Fujian province, 363000, China
| | - Xiaoping Wang
- Department of Breast Surgery, Zhangzhou Hospital, Fujian Medical University, No 59 Shengli West Road, Xiangcheng district, Zhangzhou, Fujian province, 363000, China
| | - Qinghai Lin
- Department of Breast Surgery, Zhangzhou Hospital, Fujian Medical University, No 59 Shengli West Road, Xiangcheng district, Zhangzhou, Fujian province, 363000, China.
| | - Guoyi Shen
- Department of Thoracic Surgery, Zhangzhou Hospital, Fujian Medical University, Zhangzhou, China
| | - Hong Chen
- Department of Ultrasound, Zhangzhou Hospital, Fujian Medical University, Zhangzhou, China
| |
Collapse
|
3
|
Dong Q, Wang D, Song C, Gong C, Liu Y, Zhou X, Yue J, Hu Y, Liu H, Zhu L, Niu X, Zheng T, Zhang X, Jin J, Wang T, Ju R, Wang C, Jiang Q, Gao T, Jin Y, Li P, Wang Y, Zhang C, Wang GF, Cao C, Liu X. ABL1-mediated phosphorylation promotes FOXM1-related tumorigenicity by Increasing FOXM1 stability. Cell Death Differ 2024; 31:1285-1301. [PMID: 39060421 PMCID: PMC11445503 DOI: 10.1038/s41418-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The transcription factor FOXM1, which plays critical roles in cell cycle progression and tumorigenesis, is highly expressed in rapidly proliferating cells and various tumor tissues, and high FOXM1 expression is related to a poor prognosis. However, the mechanism responsible for FOXM1 dysregulation is not fully understood. Here, we show that ABL1, a nonreceptor tyrosine kinase, contributes to the high expression of FOXM1 and FOXM1-dependent tumor development. Mechanistically, ABL1 directly binds FOXM1 and mediates FOXM1 phosphorylation at multiple tyrosine (Y) residues. Among these phospho-Y sites, pY575 is indispensable for FOXM1 stability as phosphorylation at this site protects FOXM1 from ubiquitin-proteasomal degradation. The interaction of FOXM1 with CDH1, a coactivator of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which is responsible for FOXM1 degradation, is significantly inhibited by Y575 phosphorylation. The phospho-deficient FOXM1(Y575F) mutant exhibited increased ubiquitination, a shortened half-life, and consequently a substantially decreased abundance. Compared to wild-type cells, a homozygous Cr-Y575F cell line expressing endogenous FOXM1(Y575F) that was generated by CRISPR/Cas9 showed obviously delayed mitosis progression, impeded colony formation and inhibited xenotransplanted tumor growth. Overall, our study demonstrates that ABL1 kinase is involved in high FOXM1 expression, providing clear evidence that ABL1 may act as a therapeutic target for the treatment of tumors with high FOXM1 expression.
Collapse
Affiliation(s)
- Qincai Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Caiwei Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Chunxue Gong
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Yue Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Xinwei Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Junjie Yue
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Yong Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Hainan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Xiayang Niu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Tong Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Xun Zhang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Jing Jin
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Tingting Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ruixia Ju
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Chen Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Qian Jiang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ting Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Yanwen Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Yan Wang
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, 100853, Beijing, China
| | - Chunmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guang-Fei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China.
| | - Cheng Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China.
| | - Xuan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China.
| |
Collapse
|
4
|
Abusharkh KAN, Comert Onder F, Çınar V, Onder A, Sıkık M, Hamurcu Z, Ozpolat B, Ay M. Novel benzothiazole/benzothiazole thiazolidine-2,4-dione derivatives as potential FOXM1 inhibitors: In silico, synthesis, and in vitro studies. Arch Pharm (Weinheim) 2024:e2400504. [PMID: 39318080 DOI: 10.1002/ardp.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
The oncogenic transcription factor FOXM1 overexpressed in breast and other solid cancers, is a key driver of tumor growth and progression through complex interactions, making it an attractive molecular target for the development of targeted therapies. Despite the availability of small-molecule inhibitors, their limited specificity, potency, and efficacy hinder clinical translation. To identify effective FOXM1 inhibitors, we synthesized novel benzothiazole derivatives (KC10-KC13) and benzothiazole hybrids with thiazolidine-2,4-dione (KC21-KC36). These compounds were evaluated for FOXM1 inhibition. Molecular docking and molecular dynamics simulation analysis revealed their binding patterns and affinities for the FOXM1-DNA binding domain. The interactions with key amino acids such as Asn283, His287, and Arg286, crucial for FOXM1 inhibition, have been determined with the synthesized compounds. Additionally, the molecular modeling study indicated that KC12, KC21, and KC30 aligned structurally and interacted similarly to the reference compound FDI-6. In vitro studies with the MDA-MB-231 breast cancer cell line demonstrated that KC12, KC21, and KC30 significantly inhibited FOXM1, showing greater potency than FDI-6, with IC50 values of 6.13, 10.77, and 12.86 µM, respectively, versus 20.79 µM for FDI-6. Our findings suggest that KC12, KC21, and KC30 exhibit strong activity as FOXM1 inhibitors and may be suitable for in vivo animal studies.
Collapse
Affiliation(s)
- Khaled A N Abusharkh
- Department of Chemistry, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Quds University, East Jerusalem, Palestine
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Venhar Çınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Alper Onder
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Merve Sıkık
- Department of Medical System Biology, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Mehmet Ay
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
5
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
6
|
Kuo HH, Yao JS, Yih LH. Thiostrepton induces spindle abnormalities and enhances Taxol cytotoxicity in MDA-MB-231 cells. Mol Biol Rep 2024; 51:927. [PMID: 39168955 PMCID: PMC11339111 DOI: 10.1007/s11033-024-09863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Thiostrepton (TST) is a known inhibitor of the transcription factor Forkhead box M1 (FoxM1) and inducer of heat shock response (HSR) and autophagy. TST thus may be one potential candidate of anticancer drugs for combination chemotherapy. METHODS AND RESULTS Immunofluorescence staining of mitotic spindles and flow cytometry analysis revealed that TST induces mitotic spindle abnormalities, mitotic arrest, and apoptotic cell death in the MDA-MB-231 triple-negative breast cancer cell line. Interestingly, overexpression or depletion of FoxM1 in MDA-MB-231 cells did not affect TST induction of spindle abnormalities; however, TST-induced spindle defects were enhanced by inhibition of HSP70 or autophagy. Moreover, TST exhibited low affinity for tubulin and only slightly inhibited in vitro tubulin polymerization, but it severely impeded tubulin polymerization and destabilized microtubules in arrested mitotic MDA-MB-231 cells. Additionally, TST significantly enhanced Taxol cytotoxicity. TST also caused cytotoxicity and spindle abnormalities in a Taxol-resistant cell line, MDA-MB-231-T4R. CONCLUSIONS These results suggest that, in addition to inhibiting FoxM1, TST may induce proteotoxicity and autophagy to disrupt cellular tubulin polymerization, and this mechanism might account for its antimitotic effects, enhancement of Taxol anticancer effects, and ability to overcome Taxol resistance in MDA-MB-231 cells. These data further imply that TST may be useful to improve the therapeutic efficacy of Taxol.
Collapse
Affiliation(s)
- Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jhong-Syuan Yao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Anwar S, Zafar M, Hussain MA, Iqbal N, Ali A, Sadaf, Kaur S, Najm MZ, Kausar MA. Unravelling the therapeutic potential of forkhead box proteins in breast cancer: An update (Review). Oncol Rep 2024; 52:92. [PMID: 38847267 PMCID: PMC11177173 DOI: 10.3892/or.2024.8751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer, a prominent cause of mortality among women, develops from abnormal growth of breast tissue, thereby rendering it one of the most commonly detected cancers in the female population. Although numerous treatment strategies are available for breast cancer, discordance in terms of effective treatment and response still exists. Recently, the potential of signaling pathways and transcription factors has gained substantial attention in the cancer community; therefore, understanding their role will assist researchers in comprehending the onset and advancement of breast cancer. Forkhead box (FOX) proteins, which are important transcription factors, are considered crucial regulators of various cellular activities, including cell division and proliferation. The present study explored several subclasses of FOX proteins and their possible role in breast carcinogenesis, followed by the interaction between microRNA (miRNA) and FOX proteins. This interaction is implicated in promoting cell infiltration into surrounding tissues, ultimately leading to metastasis. The various roles that FOX proteins play in breast cancer development, their intricate relationships with miRNA, and their involvement in therapeutic resistance highlight the complexity of breast cancer dynamics. Therefore, recognizing the progress and challenges in current treatments is crucial because, despite advancements, persistent disparities in treatment effectiveness underscore the need for ongoing research, with future studies emphasizing the necessity for targeted strategies that account for the multifaceted aspects of breast cancer.
Collapse
Affiliation(s)
- Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Mubashir Zafar
- Department of Family and Community Medicine, College of Medicine, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Malik Asif Hussain
- Department of Pathology, College of Medicine, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Naveed Iqbal
- Department of Obstetrics and Gynecology, College of Medicine, University of Ha'il 2440, Saudi Arabia
| | - Abrar Ali
- Department of Ophthalmology, College of Medicine, University of Ha'il 2440, Saudi Arabia
| | - Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram, Haryana 122103, India
| | - Mohammad Zeeshan Najm
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram, Haryana 122103, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 2440, Saudi Arabia
| |
Collapse
|
8
|
Liu C, Vorderbruggen M, Muñoz-Trujillo C, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS, Karpf AR. NB compounds are potent and efficacious FOXM1 inhibitors in high-grade serous ovarian cancer cells. J Ovarian Res 2024; 17:94. [PMID: 38704607 PMCID: PMC11069232 DOI: 10.1186/s13048-024-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Genetic studies implicate the oncogenic transcription factor Forkhead Box M1 (FOXM1) as a potential therapeutic target in high-grade serous ovarian cancer (HGSOC). We evaluated the activity of different FOXM1 inhibitors in HGSOC cell models. RESULTS We treated HGSOC and fallopian tube epithelial (FTE) cells with a panel of previously reported FOXM1 inhibitors. Based on drug potency, efficacy, and selectivity, determined through cell viability assays, we focused on two compounds, NB-73 and NB-115 (NB compounds), for further investigation. NB compounds potently and selectively inhibited FOXM1 with lesser effects on other FOX family members. NB compounds decreased FOXM1 expression via targeting the FOXM1 protein by promoting its proteasome-mediated degradation, and effectively suppressed FOXM1 gene targets at both the protein and mRNA level. At the cellular level, NB compounds promoted apoptotic cell death. Importantly, while inhibition of apoptosis using a pan-caspase inhibitor rescued HGSOC cells from NB compound-induced cell death, it did not rescue FOXM1 protein degradation, supporting that FOXM1 protein loss from NB compound treatment is specific and not a general consequence of cytotoxicity. Drug washout studies indicated that FOXM1 reduction was retained for at least 72 h post-treatment, suggesting that NB compounds exhibit long-lasting effects in HGSOC cells. NB compounds effectively suppressed both two-dimensional and three-dimensional HGSOC cell colony formation at sub-micromolar concentrations. Finally, NB compounds exhibited synergistic activity with carboplatin in HGSOC cells. CONCLUSIONS NB compounds are potent, selective, and efficacious inhibitors of FOXM1 in HGSOC cells and are worthy of further investigation as HGSOC therapeutics.
Collapse
Affiliation(s)
- Cassie Liu
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
| | - Makenzie Vorderbruggen
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
| | - Catalina Muñoz-Trujillo
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Adam R Karpf
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68918-6805, USA.
| |
Collapse
|
9
|
Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Zhou C, Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int J Biol Sci 2024; 20:2698-2726. [PMID: 38725864 PMCID: PMC11077374 DOI: 10.7150/ijbs.91832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.
Collapse
Affiliation(s)
- Yuhan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada, T6G2R3
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
10
|
González-Penagos CE, Zamora-Briseño JA, Améndola-Pimenta M, Cruz-Quintana Y, Santana-Piñeros AM, Torres-García JR, Cañizares-Martínez MA, Pérez-Vega JA, Peñuela-Mendoza AC, Rodríguez-Canul R. Sargassum spp. Ethanolic Extract Elicits Toxic Responses and Malformations in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38477677 DOI: 10.1002/etc.5840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
The amount of Sargassum spp. arriving in the Caribbean Sea has increased steadily in the last few years, producing a profound environmental impact on the ecological dynamics of the coasts of the Yucatan Peninsula. We characterized the toxicological effects of an ethanolic extract of Sargassum spp. on zebrafish (Danio rerio) embryos (ZFEs) in a 96-h static bioassay using T1 (0.01 mg/L), T2 (0.1 mg/L), T3 (1 mg/L), T4 (10 mg/L), T5 (25 mg/L), T6 (50 mg/L), T7 (75 mg/L), T8 (100 mg/L), T9 (200 mg/L), and T10 (400 mg/L). In this extract, we detected 74 compounds by gas chromatography-mass spectrometry (GC-MS), of which hexadecanoic acid methyl ester, and 2-pentanone 4-hydroxy-4-methyl, were the most abundant. In ZFEs, a median lethal concentration of 251 mg/L was estimated. Exposed embryos exhibited extensive morphological changes, including edema in the yolk sac, scoliosis, and loss of pigmentation, as well as malformations of the head, tail, and eyes. By integrating these abnormalities using the Integrated Biological Response (IBRv2) and General Morphological Score (GMS) indices, we were able to determine that ZFEs exposed to 200 mg/L (T9) exhibited the most pronounced biological response in comparison with the other groups. In the comparative transcriptomic analysis, 66 genes were upregulated, and 246 genes were downregulated in the group exposed to 200 mg/L compared with the control group. In the upregulated genes, we identified several gene ontology-enriched terms, such as response to xenobiotic stimuli, cellular response to chemical stimulus, transcriptional regulation, pigment metabolic process, erythrocyte differentiation and embryonic hemopoiesis, extracellular matrix organization, and chondrocyte differentiation involved in endochondral bone morphogenesis, among others. In the down-regulated genes, we found many genes associated with nervous system processes, sensory and visual perception, response to abiotic stimulus, and the nucleoside phosphate biosynthetic process. The probable connections among the morphological changes observed in the transcriptome are thoroughly discussed. Our findings suggest that Sargassum spp. exposure can induce a wide negative impact on zebrafish embryos. Environ Toxicol Chem 2024;00:1-15. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Carlos E González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | | | - Mónica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Yanis Cruz-Quintana
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador
| | - Ana M Santana-Piñeros
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador
| | - Jesús R Torres-García
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, México
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México, México
| | - Mayra A Cañizares-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Juan A Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Ana C Peñuela-Mendoza
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
11
|
Khan I, Amin MA, Eklund EA, Gartel AL. Regulation of HOX gene expression in AML. Blood Cancer J 2024; 14:42. [PMID: 38453907 PMCID: PMC10920644 DOI: 10.1038/s41408-024-01004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
As key developmental regulators, HOX cluster genes have varied and context-specific roles in normal and malignant hematopoiesis. A complex interaction of transcription factors, epigenetic regulators, long non-coding RNAs and chromatin structural changes orchestrate HOX expression in leukemia cells. In this review we summarize molecular mechanisms underlying HOX regulation in clinical subsets of AML, with a focus on NPM1 mutated (NPM1mut) AML comprising a third of all AML patients. While the leukemia initiating function of the NPM1 mutation is clearly dependent on HOX activity, the favorable treatment responses in these patients with upregulation of HOX cluster genes is a poorly understood paradoxical observation. Recent data confirm FOXM1 as a suppressor of HOX activity and a well-known binding partner of NPM suggesting that FOXM1 inactivation may mediate the effect of cytoplasmic NPM on HOX upregulation. Conversely the residual nuclear fraction of mutant NPM has also been recently shown to have chromatin modifying effects permissive to HOX expression. Recent identification of the menin-MLL interaction as a critical vulnerability of HOX-dependent AML has fueled the development of menin inhibitors that are clinically active in NPM1 and MLL rearranged AML despite inconsistent suppression of the HOX locus. Insights into context-specific regulation of HOX in AML may provide a solid foundation for targeting this common vulnerability across several major AML subtypes.
Collapse
Affiliation(s)
- Irum Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Medicine at the Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Mohammed A Amin
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Department of Medicine at the Feinberg School of Medicine, Northwestern University, Chicago, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Andrei L Gartel
- Department of Medicine, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
12
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
13
|
Li L, Chen J, Wang A, Yi K. ALKBH5 regulates ovarian cancer growth via demethylating long noncoding RNA PVT1 in ovarian cancer. J Cell Mol Med 2024; 28:e18066. [PMID: 38098223 PMCID: PMC10826426 DOI: 10.1111/jcmm.18066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
The long noncoding RNA PVT1 is reported to act as an oncogene in several kinds of cancers, especially ovarian cancer (OV). Abnormal levels of N6 -methyladenosine, a dynamic and reversible modification, are associated with tumorigenesis and malignancies. Our previous study reported that PVT1 plays critical roles in regulating OV. However, it is still largely unknown how m6 A modification affects OV via PVT1. In this study, we aimed to investigate the regulation of ALKBH5 by affecting PVT1 in OV. We first found that the PVT1 RNA level was higher in OV cells than in IOSE80 cells, and conversely, the m6 A modification level of PVT1 was lower in OV cells. By searching the HPA, ALKBH5, which is responsible for PVT1 demethylation, was found to be upregulated in OV tissues versus normal ovarian tissues. ALKBH5 binds to PVT1 RNA, and knockdown of ALKBH5 decreased PVT1 RNA levels. ALKBH5 also increased FOXM1 levels by upregulating PVT1, at least partially. Knockdown of ALKBH5 suppressed OV growth, colony formation, tumour formation and invasion, which were partially reversed by overexpression of PVT1. Moreover, ALKBH5 knockdown decreased FOXM1 levels by regulating PVT1 RNA expression, subsequently increasing the sensitivity to carboplatin, 5-FU and docetaxel chemotherapy. Taken together, these results indicate that ALKBH5 directly regulates the m6 A modification and stability of PVT1. Then, modified PVT1 further regulates FOXM1 and thus affects malignant behaviours and chemosensitivity in OV cells. All these results indicate that ALKBH5 regulates the malignant behaviour of OV by regulating PVT1/FOXM1.
Collapse
Affiliation(s)
- Lin Li
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| | - Jie Chen
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| | - Ao Wang
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| | - Ke Yi
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| |
Collapse
|
14
|
Peng M, Hu Q, Wu Z, Wang B, Wang C, Yu F. Mutation of TP53 Confers Ferroptosis Resistance in Lung Cancer Through the FOXM1/MEF2C Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1587-1602. [PMID: 37236507 DOI: 10.1016/j.ajpath.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Ferroptosis is a highly regulated tumor suppressor process. Loss or mutation of TP53 can cause changes in sensitivity to ferroptosis. Mutations in TP53 may be associated with the malignant or indolent progression of ground glass nodules in early lung cancer, but whether ferroptosis may also be involved in determining this biological process has not yet been determined. Using in vivo and in vitro gain- and loss-of-function approaches, this study used clinical tissue for mutation analysis and pathological research to show that wild-type TP53 inhibited the expression of forkhead box M1 (FOXM1) by binding to peroxisome proliferator-activated receptor-γ coactivator 1α, maintaining the mitochondrial function and thus affecting the sensitivity to ferroptosis. This function was absent in mutant cells, resulting in overexpression of FOXM1 and ferroptosis resistance. Mechanistically, FOXM1 activated the transcription level of myocyte-specific enhancer factor 2C in the mitogen-activated protein kinase signaling pathway, leading to stress protection when exposed to ferroptosis inducers. This study provides new insights into the mechanism of association between TP53 mutation and ferroptosis tolerance, which can aid a deeper understanding of the role of TP53 in the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zeyu Wu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
15
|
Kong J, Xu S, Deng Z, Wang Y, Zhang P. Transcription factor FOXM1 promotes hepatocellular carcinoma malignant progression through activation of the WNT pathway by binding to SETDB1. Tissue Cell 2023; 84:102186. [PMID: 37556918 DOI: 10.1016/j.tice.2023.102186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND FOXM1 is a transcription factor confirmed by studies to promote the development of hepatocellular carcinoma (HCC) and various other cancers, yet the molecular mechanism remains rather enigmatic. This study attempted to unveil the function and regulatory mechanism of FOXM1 in the progression of HCC. METHODS Bioinformatics methods first analyzed the expression of FOXM1 in HCC tissues and then screened target genes downstream of FOXM1. Possible pathways of the target gene were specified through Gene Set Enrichment Analysis (GSEA). After using qRT-PCR to measure the expression of FOXM1 and its downstream regulatory gene SETDB1 in HCC tissues, ChIP and dual-luciferase assays were employed and verified the binding relationship between FOXM1 and the promoter of SETDB1. Then the effects of the FOXM1/SETDB1/Wnt pathway on the proliferation, migration, and invasion of HCC cells were profiled by CCK-8, colony formation, wound healing, and transwell assays. WNT and EMT-related protein expression levels were detected by western blot and immunofluorescence assay, respectively. RESULTS The bioinformatics prediction showed that SETDB1 was the target downstream of FOXM1, and their binding relationship was verified by ChIP and dual-luciferase assays. Cell experiments showed that FOXM1 could enhance the proliferative, migratory, and invasive abilities of HCC cells through binding to SETDB1. Rescue assay suggested that the activation of key genes of the WNT pathway and EMT-related genes were part of the regulatory mechanism that FOXM1 bound to SETDB1. CONCLUSION This study found that FOXM1 could bind with SETDB1 and hence activate the WNT signaling pathway to promote the malignant progression of HCC. It indicated that FOXM1 could be the possible target for treating HCC.
Collapse
Affiliation(s)
- Jianqiao Kong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Song Xu
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Zhongming Deng
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Yi Wang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China.
| | - Peng Zhang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China.
| |
Collapse
|
16
|
Chen X, Liu X, Li QH, Lu BF, Xie BM, Ji YM, Zhao Y. A patient-derived organoid-based study identified an ASO targeting SNORD14E for endometrial cancer through reducing aberrant FOXM1 Expression and β-catenin nuclear accumulation. J Exp Clin Cancer Res 2023; 42:230. [PMID: 37667311 PMCID: PMC10478245 DOI: 10.1186/s13046-023-02801-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Most of the endometrial cancer (EC) patients are diagnosis in early stage with a good prognosis while the patients with locally advanced recurrent or metastatic result in a poor prognosis. Adjuvant therapy could benefit the prognosis of patients with high-risk factors. Unfortunately, the molecular classification of great prognostic value has not yet reached an agreement and need to be further refined. The present study aims to identify new targets that have prognostic value in EC based on the method of EC patient-derived organ-like organs (PDOs), and further investigate their efficacy and mechanism. METHODS The Cancer Genome Atlas (TCGA) database was used to determine SNORD14E expression. The effects of SNORD14E were investigated using CCK8, Transwell, wound-healing assays, and a xenograft model experiment; apoptosis was measured by flow cytometry. Antisense oligonucleotide (ASO) targeting SNORD14E was designed and patient-derived organoids (PDO) models in EC patients was established. A xenograft mouse and PDO model were employed to evaluate the effects of ASO targeting SNORD14E. RNA-seq, Nm-seq, and RNA immunoprecipitation (RIP) experiments were employed to confirm the alternative splicing (AS) and modification induced by SNORD14E. A minigene reporter gene assay was conducted to confirm AS and splicing factors on a variable exon. Actinomycin-d (Act-D) and Reverse Transcription at Low deoxy-ribonucleoside triphosphate concentrations followed by PCR (RTL-P) were utilized to confirm the effects of 2'-O methylation modification on FOXM1. RESULTS We found that SNORD14E was overexpressed in EC tissues and patients with high expressed SNORD14E were distributed in the TCGA biomolecular classification subgroups without difference. Further, SNORD14E could reduce disease-free survival (DFS) and recurrence free survival (RFS) of EC patients. SNORD14E promoted proliferation, migration, and invasion and inhibited the apoptosis of EC cells in vitro. ASOs targeting SNORD14E inhibited cell proliferation, migration, invasion while promoted cell apoptosis. ASOs targeting SNORD14E inhibited tumor growth in the xenograft mouse model. TCGA-UCEC database showed that the proportion of patients with high expression of SNORD14E in middle-high risk and high-risk patients recommended by EMSO-ESGO-ESTRO guidelines for adjuvant therapy is more than 50%. Next, we enrolled 8 cases of high-risk and high-risk EC patients according to EMSO-ESGO-ESTRO guidelines and successfully constructed EC-PDOs. ASOs targeting SNORD14E inhibited the EC-PDO growth. Mechanistically, SNORD14E could recognize the mRNA of FOXM1 and recruit SRSF1 to promote the shearing of the variable exon VIIa of FOXM1, resulting in the overexpression of the FOXM1 malignant subtypes FOXM1b and FOXM1c. In addition, SNORD14E modified FOXM1 mRNA with 2`-O-methylation, which prolonged the half-life of FOXM1 mRNA. The nucleus accumulation of β-catenin caused by aberrant FOXM1 expression led to EC progression. CONCLUSIONS ASO targeting SNORD14E can be an effective treatment for EC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Bing-Feng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Bu-Min Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Yu-Meng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, PR China.
| |
Collapse
|
17
|
Bi X, Zheng D, Cai J, Xu D, Chen L, Xu Z, Cao M, Li P, Shen Y, Wang H, Zheng W, Wu D, Zheng S, Li K. Pan-cancer analyses reveal multi-omic signatures and clinical implementations of the forkhead-box gene family. Cancer Med 2023; 12:17428-17444. [PMID: 37401400 PMCID: PMC10501247 DOI: 10.1002/cam4.6312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Forkhead box (FOX) proteins belong to one of the largest transcription factor families and play crucial roles in the initiation and progression of cancer. Prior research has linked several FOX genes, such as FOXA1 and FOXM1, to the crucial process of carcinogenesis. However, the overall picture of FOX gene family across human cancers is far from clear. METHODS To investigate the broad molecular signatures of the FOX gene family, we conducted study on multi-omics data (including genomics, epigenomics and transcriptomics) from over 11,000 patients with 33 different types of human cancers. RESULTS Pan-cancer analysis reveals that FOX gene mutations were found in 17.4% of tumor patients with a substantial cancer type-dependent pattern. Additionally, high expression heterogeneity of FOX genes across cancer types was discovered, which can be partially attributed to the genomic or epigenomic alteration. Co-expression network analysis reveals that FOX genes may exert functions by regulating the expression of both their own and target genes. For a clinical standpoint, we provided 103 FOX gene-drug target-drug predictions and found FOX gene expression have potential survival predictive value. All of the results have been included in the FOX2Cancer database, which is freely accessible at http://hainmu-biobigdata.com/FOX2Cancer. CONCLUSION Our findings may provide a better understanding of roles FOX genes played in the development of tumors, and help to offer new avenues for uncovering tumorigenesis and unprecedented therapeutic targets.
Collapse
Affiliation(s)
- Xiaoman Bi
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dehua Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Jiale Cai
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dahua Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Liyang Chen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Zhizhou Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Meng Cao
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Peihu Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Yutong Shen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Hong Wang
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Wuping Zheng
- Department of Breast Thoracic TumorThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Deng Wu
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong KongHong KongChina
| | - Shaojiang Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical CenterHainan Medical UniversityHaikouChina
| | - Kongning Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| |
Collapse
|
18
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
Tufail M, Wu C. WNT5A: a double-edged sword in colorectal cancer progression. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108465. [PMID: 37495091 DOI: 10.1016/j.mrrev.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The Wnt signaling pathway is known to play a crucial role in cancer, and WNT5A is a member of this pathway that binds to the Frizzled (FZD) and Receptor Tyrosine Kinase-Like Orphan Receptor (ROR) family members to activate non-canonical Wnt signaling pathways. The WNT5A pathway is involved in various cellular processes, such as proliferation, differentiation, migration, adhesion, and polarization. In the case of colorectal cancer (CRC), abnormal activation or inhibition of WNT5A signaling can lead to both oncogenic and antitumor effects. Moreover, WNT5A is associated with inflammation, metastasis, and altered metabolism in cancer cells. This article aims to discuss the molecular mechanisms and dual roles of WNT5A in CRC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Katzenellenbogen BS, Guillen VS, Katzenellenbogen JA. Targeting the oncogenic transcription factor FOXM1 to improve outcomes in all subtypes of breast cancer. Breast Cancer Res 2023; 25:76. [PMID: 37370117 DOI: 10.1186/s13058-023-01675-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
FOXM1 (Forkhead box M1) is an oncogenic transcription factor that is greatly upregulated in breast cancer and many other cancers where it promotes tumorigenesis, and cancer growth and progression. It is expressed in all subtypes of breast cancer and is the factor most associated with risk of poor patient survival, especially so in triple negative breast cancer (TNBC). Thus, new approaches to inhibiting FOXM1 and its activities, and combination therapies utilizing FOXM1 inhibitors in conjunction with known cancer drugs that work together synergistically, could improve cancer treatment outcomes. Targeting FOXM1 might prove especially beneficial in TNBC where few targeted therapies currently exist, and also in suppressing recurrent advanced estrogen receptor (ER)-positive and HER2-positive breast cancers for which treatments with ER or HER2 targeted therapies that were effective initially are no longer beneficial. We present these perspectives and future directions in the context of what is known about FOXM1, its regulation, and its key roles in promoting cancer aggressiveness and metastasis, while being absent or very low in most normal non-regenerating adult tissues. We discuss new inhibitors of FOXM1 and highlight FOXM1 as an attractive target for controlling drug-resistant and difficult-to-suppress breast cancers, and how blocking FOXM1 might improve outcomes for patients with all subtypes of breast cancer.
Collapse
Affiliation(s)
- Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Valeria Sanabria Guillen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
21
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
22
|
Xu Z, Pei C, Cheng H, Song K, Yang J, Li Y, He Y, Liang W, Liu B, Tan W, Li X, Pan X, Meng L. Comprehensive analysis of FOXM1 immune infiltrates, m6a, glycolysis and ceRNA network in human hepatocellular carcinoma. Front Immunol 2023; 14:1138524. [PMID: 37234166 PMCID: PMC10208224 DOI: 10.3389/fimmu.2023.1138524] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Background Forkhead box M1 (FOXM1) is a member of the Forkhead box (Fox) transcription factor family. It regulates cell mitosis, cell proliferation, and genome stability. However, the relationship between the expression of FOXM1 and the levels of m6a modification, immune infiltration, glycolysis, and ketone body metabolism in HCC has yet to be fully elucidated. Methods Transcriptome and somatic mutation profiles of HCC were downloaded from the TCGA database. Somatic mutations were analyzed by maftools R package and visualized in oncoplots. GO, KEGG and GSEA function enrichment was performed on FOXM1 co-expression using R. We used Cox regression and machine learning algorithms (CIBERSORT, LASSO, random forest, and SVM-RFE) to study the prognostic value of FOXM1 and immune infiltrating characteristic immune cells in HCC. The relationship between FOXM1 and m6A modification, glycolysis, and ketone body metabolism were analyzed by RNA-seq and CHIP-seq. The competing endogenous RNA (ceRNA) network construction relies on the multiMiR R package, ENCORI, and miRNET platforms. Results FOXM1 is highly expressed in HCC and is associated with a poorer prognosis. At the same time, the expression level of FOXM1 is significantly related to the T, N, and stage. Subsequently, based on the machine learning strategies, we found that the infiltration level of T follicular helper cells (Tfh) was a risk factor affecting the prognosis of HCC patients. The high infiltration of Tfh was significantly related to the poor overall survival rate of HCC. Besides, the CHIP-seq demonstrated that FOXM1 regulates m6a modification by binding to the promoter of IGF2BP3 and affects the glycolytic process by initiating the transcription of HK2 and PKM in HCC. A ceRNA network was successfully obtained, including FOXM1 - has-miR-125-5p - DANCR/MIR4435-2HG ceRNA network related to the prognosis of HCC. Conclusion Our study implicates that the aberrant infiltration of Tfh associated with FOXM1 is a crucial prognostic factor for HCC patients. FOXM1 regulates genes related to m6a modification and glycolysis at the transcriptional level. Furthermore, the specific ceRNA network can be used as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ziwu Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan University, Changsha, China
| | - Chaozhu Pei
- College of Biology, Hunan University, Changsha, China
| | - Haojie Cheng
- College of Biology, Hunan University, Changsha, China
| | - Kaixin Song
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Junting Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yue He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wenxuan Liang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Biyuan Liu
- School of Medical, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Tan
- Department of Pathology, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, China
| | - Xia Li
- Department of General Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Xue Pan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lei Meng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Alimardan Z, Abbasi M, Hasanzadeh F, Aghaei M, Khodarahmi G, Kashfi K. Heat shock proteins and cancer: The FoxM1 connection. Biochem Pharmacol 2023; 211:115505. [PMID: 36931349 PMCID: PMC10134075 DOI: 10.1016/j.bcp.2023.115505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Heat shock proteins (Hsp) and FoxM1 have significant roles in carcinogenesis. According to their relative molecular weight, Hsps are divided into Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps. Hsp70 can play essential functions in cancer initiation and is overexpressed in several human cancers. Hsp70, in combination with cochaperones HIP and HOP, refolds partially denatured proteins and acts as a cochaperone for Hsp90. Also, Hsp70, in combination with BAG3, regulates the FoxM1 signaling pathway. FoxM1 protein is a transcription factor of the Forkhead family that is overexpressed in most human cancers and is involved in many cancers' development features, including proliferation, migration, invasion, angiogenesis, metastasis, and resistance to apoptosis. This review discusses the Hsp70, Hsp90, and FoxM1 structure and function, the known Hsp70 cochaperones, and Hsp70, Hsp90, and FoxM1 inhibitors.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmacology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmud Aghaei
- Department of Biochemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
24
|
Kang T, Liu L, Tan F, Zhang D, Yu L, Jiang H, Qian W, Hua J, Zheng Z. Inhibition of YTHDF1 prevents hypoxia-induced pulmonary artery smooth muscle cell proliferation by regulating Foxm1 translation in an m6A-dependent manner. Exp Cell Res 2023; 424:113505. [PMID: 36736607 DOI: 10.1016/j.yexcr.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by pulmonary vascular remodeling. It refers to the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs), and hypoxia is an important risk factor for this progression. The present study aims to investigate the role of YTHDF1 in the regulation of hypoxic PASMC proliferation and the underlying mechanism. Human PASMCs were transfected with si-YTHDF1/2/3 followed by treatment of hypoxia, and the PASMC proliferation and Foxm1 expression were detected. Through RNA pull-down, RNA immunoprecipitation, and protein synthesis assay, the mechanism of YTHDF1 regulating Foxm1 was explored. Next, Foxm1 was inhibited by thiostrepton, and cell proliferation was detected. In vivo, mice received a tail vein injection of adenovirus containing si-YTHDF1 and were exposed to hypoxia treatment. Pulmonary vascular changes, right ventricular systolic pressure (RVSP), and genes involving proliferation were analyzed. YTHDF1 silencing reduced more hypoxic PASMC proliferation and Foxm1 protein level than YTHDF2/3 silencing. Mechanical results showed that YTHDF1 interacted with Foxm1 mRNA and up-regulated Foxm1 protein level by enhancing the translation efficiency in an m6A-dependent manner. Furthermore, YTHDF1 facilitated hypoxic PASMC proliferation and proliferation marker expressions through up-regulation of Foxm1 in an m6A-dependent manner. In vivo, the YTHDF1 silencing alleviated pulmonary vascular changes and fibrosis, reduced RVSP, inhibited the interaction of YTHDF1 and Foxm1, and reduced proliferation marker levels, as compared to the PAH group. In conclusion, YTHDF1 silencing inhibits hypoxic PASMC proliferation by regulating Foxm1 translation in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ting Kang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lijuan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Feng Tan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dinghong Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lvhong Yu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Haiyan Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jinghai Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
25
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
26
|
FOXO3a Mediates Homologous Recombination Repair (HRR) via Transcriptional Activation of MRE11, BRCA1, BRIP1, and RAD50. Molecules 2022; 27:molecules27238623. [PMID: 36500714 PMCID: PMC9741359 DOI: 10.3390/molecules27238623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To test whether homologous recombination repair (HRR) depends on FOXO3a, a cellular aging model of human dermal fibroblast (HDF) and tet-on flag-h-FOXO3a transgenic mice were studied. HDF cells transfected with over-expression of wt-h-FOXO3a increased the protein levels of MRE11, BRCA1, BRIP1, and RAD50, while knock-down with siFOXO3a decreased them. The protein levels of MRE11, BRCA1, BRIP1, RAD50, and RAD51 decreased during cellular aging. Chromatin immunoprecipitation (ChIP) assay was performed on FOXO3a binding accessibility to FOXO consensus sites in human MRE11, BRCA1, BRIP1, and RAD50 promoters; the results showed FOXO3a binding decreased during cellular aging. When the tet-on flag-h-FOXO3a mice were administered doxycycline orally, the protein and mRNA levels of flag-h-FOXO3a, MRE11, BRCA1, BRIP1, and RAD50 increased in a doxycycline-dose-dependent manner. In vitro HRR assays were performed by transfection with an HR vector and I-SceI vector. The mRNA levels of the recombined GFP increased after doxycycline treatment in MEF but not in wt-MEF, and increased in young HDF comparing to old HDF, indicating that FOXO3a activates HRR. Overall, these results demonstrate that MRE11, BRCA1, BRIP1, and RAD50 are transcriptional target genes for FOXO3a, and HRR activity is increased via transcriptional activation of MRE11, BRCA1, BRIP1, and RAD50 by FOXO3a.
Collapse
|
27
|
Gao Y, Geng J, Xie Z, Zhou Z, Yang H, Yi H, Han X, Xue S, Li Z. Synthesis and antineoplastic activity of ethylene glycol phenyl aminoethyl ether derivatives as FOXM1 inhibitors. Eur J Med Chem 2022; 244:114877. [DOI: 10.1016/j.ejmech.2022.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
|
28
|
Du Y, Xu X, Lv S, Liu H, Sun H, Wu J. SOCS7/HuR/FOXM1 signaling axis inhibited high-grade serous ovarian carcinoma progression. J Exp Clin Cancer Res 2022; 41:185. [PMID: 35624501 PMCID: PMC9137060 DOI: 10.1186/s13046-022-02395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Background High-grade serous ovarian carcinoma (HGSOC) is clinically dominant and accounts for ~ 80% deaths in all types of ovarian cancer. The delayed diagnosis, rapid development, and wide dissemination of HGSOC collectively contribute to its high mortality rate and poor prognosis in the patients. Suppressors of cytokine signaling 7 (SOCS7) can regulate cytokine signaling and participate in cell cycle arrest and regulation of cell proliferation, which might also be involved in carcinogenesis. Here, we designated to investigate the functions and mechanisms of SOCS7 in HGSOC. Methods The clinical correlation between SOCS7 and HGSOC was examined by both bioinformatics and analysis of tissue samples in patients. Gain/Loss-of-function examinations were carried out to assess the effectiveness of SOCS7 in cell viability, cell cycle, and tumor growth of HGSOC. Furthermore, the underlying mechanisms were explored by identifying the downstream proteins and their interactions via proteomics analysis and immunoprecipitation. Results The expression of SOCS7, which was decreased in HGSOC tissues, was correlated with the clinical pathologic characteristics and overall survival of HGSOC patients. SOCS7 acted as a HGSOC suppressor by inhibiting cancer cell viability and tumor growth in vivo. The anti-HGSOC mechanism involves SOCS7’s regulatory effect on HuR by mediating its ubiquitination, the regulation of FOXM1 mRNA by HuR, as well as the interplays among these three clinically relevant factors. Conclusions The SOCS7 correlates with HGSOC and suppresses its tumorigenesis through regulating HuR and FOXM1, which also suggests that SOCS7 is a prospective biomarker for the clinical management of ovarian cancer, especially HGSOC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02395-1.
Collapse
|
29
|
Zhou ZY, Han XY, Sun LQ, Li SY, Xue ST, Li ZR. Structure-based virtual screening identified novel FOXM1 inhibitors as the lead compounds for ovarian cancer. Front Chem 2022; 10:1058256. [PMID: 36505747 PMCID: PMC9729839 DOI: 10.3389/fchem.2022.1058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is a gynecological tumor with possibly the worst prognosis, its 5-year survival rate being only 47.4%. The first line of therapy prescribed is chemotherapy consisting of platinum and paclitaxel. The primary reason for treatment failure is drug resistance. FOXM1 protein has been found to be closely associated with drug resistance, and inhibition of FOXM1 expression sensitizes cisplatin-resistant ovarian cancer cells. Combining existing first-line chemotherapy drugs with FOXM1 prolongs the overall survival of patients, therefore, FOXM1 is considered a potential therapeutic target in ovarian cancer. Previous research conducted by our team revealed a highly credible conformation of FOXM1 which enables binding by small molecules. Based on this conformation, the current study conducted virtual screening to determine a new structural skeleton for FOXM1 inhibitors which would enhance their medicinal properties. DZY-4 showed the highest affinity towards FOXM1, and its inhibitory effect on proliferation and migration of ovarian cancer at the cellular level was better than or equal to that of cisplatin, while its efficacy was equivalent to that of cisplatin in a nude mouse model. In this study, the anti-tumor effect of DZY-4 is reported for the first time. DZY-4 shows potential as a drug that can be used for ovarian cancer treatment, as well as a drug lead for future research.
Collapse
Affiliation(s)
| | | | | | | | - Si-Tu Xue
- *Correspondence: Si-Tu Xue, ; Zhuo-Rong Li,
| | | |
Collapse
|
30
|
Alimardan Z, Abbasi M, Khodarahmi G, Kashfi K, Hasanzadeh F, Mahmud A. Identification of new small molecules as dual FoxM1 and Hsp70 inhibitors using computational methods. Res Pharm Sci 2022; 17:635-656. [PMID: 36704430 PMCID: PMC9872178 DOI: 10.4103/1735-5362.359431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Background and purpose FoxM1 and Hsp70 proteins are highly expressed in many cancers. Thus, their inhibition serves as Bonafede targets in cancer treatment. Experimental approach FDI-6, an inhibitor of FoxM1, was selected as a template, and based on its structure, a new library from the ZINC database was obtained. Virtual screening was then performed using the created pharmacophore model. The second virtual screening phase was conducted with molecular docking to get the best inhibitor for both FoxM1 and Hsp70 active sites. In silico, ADMET properties were also calculated. Finally, molecular dynamics simulation was performed on the best ligand, ZINC1152745, for both Hsp70 and FoxM1 proteins during 100 ns. Findings / Results The results of this study indicated that ZINC1152745 was stable in the active site of both proteins, Hsp70 and FoxM1. The final scaffold identified by the presented computational approach could offer a hit compound for designing promising anticancer agents targeting both FoxM1 and Hsp70. Conclusion and implications Molecular dynamics simulations were performed on ZINC1152745 targeting FoxM1 and Hsp70 active sites. The results of several hydrogen bonds, the radius of gyration, RMSF, RMSD, and free energy during the simulations showed good stability of ZINC1152745 with FoxM1 and Hsp70.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, I.R. Iran,Corresponding authors: M. Abbasi, Tel: +987633710406, Fax: +98- Gh.A. Khodarahmi, Tel: +98-3137927095, Fax: +98-3136680011
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Corresponding authors: M. Abbasi, Tel: +987633710406, Fax: +98- Gh.A. Khodarahmi, Tel: +98-3137927095, Fax: +98-3136680011
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA,Graduate Program in Biology, City University of New York Graduate Center, New York, USA,Department of Chemistry and Physics, State University of New York at Old Westbury, New York, USA
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Aghaei Mahmud
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran,Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
31
|
Zhai C, Zhang N, Wang J, Cao M, Luan J, Liu H, zhang Q, Zhu Y, Xue Y, Li S. Activation of Autophagy Induces Monocrotaline-Induced Pulmonary Arterial Hypertension by FOXM1-Mediated FAK Phosphorylation. Lung 2022; 200:619-631. [DOI: 10.1007/s00408-022-00569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
|
32
|
Li Y, Song J, Zhou P, Zhou J, Xie S. Targeting Undruggable Transcription Factors with PROTACs: Advances and Perspectives. J Med Chem 2022; 65:10183-10194. [PMID: 35881047 DOI: 10.1021/acs.jmedchem.2c00691] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of transcription factors has been implicated in a variety of human diseases. However, these proteins have traditionally been regarded as undruggable and only a handful of them have been successfully targeted by conventional small molecules. Moreover, the development of intrinsic and acquired resistance has hampered the clinical use of these agents. Over the past years, proteolysis-targeting chimeras (PROTACs) have shown great promise because of their potential for overcoming drug resistance and their ability to target previously undruggable proteins. Indeed, several small molecule-based PROTACs have demonstrated superior efficacy in therapy-resistant metastatic cancers. Nevertheless, it remains challenging to identify ligands for the majority of transcription factors. Given that transcription factors recognize short DNA motifs in a sequence-specific manner, multiple novel approaches exploit DNA motifs as warheads in PROTAC design for the degradation of aberrant transcription factors. These PROTACs pave the way for targeting undruggable transcription factors with potential therapeutic benefits.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jian Song
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ping Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
33
|
Griffioen MS, de Leeuw DC, Janssen JJWM, Smit L. Targeting Acute Myeloid Leukemia with Venetoclax; Biomarkers for Sensitivity and Rationale for Venetoclax-Based Combination Therapies. Cancers (Basel) 2022; 14:cancers14143456. [PMID: 35884517 PMCID: PMC9318140 DOI: 10.3390/cancers14143456] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Venetoclax has proven to be a promising therapy for newly diagnosed, relapsed and refractory AML patients ineligible for induction chemotherapy. Current ongoing clinical trials are evaluating its effectivity as frontline therapy for all acute myeloid leukemia (AML) patients. However, response rates vary wildly, depending on patient characteristics and mutational profiles. This review elaborates on the efficacy and safety of venetoclax compared to conventional chemotherapy for treatment of AML patients, comparing the response rates, overall survival and adverse events. Moreover, it gives an overview of genetic and epigenetic AML cell characteristics that give enhanced or decreased response to venetoclax and offers insights into the pathogenesis of venetoclax sensitivity and resistance. Additionally, it suggests possible treatment combinations predicted to be successful based on identified mechanisms influencing venetoclax sensitivity of AML cells. Abstract Venetoclax is a BCL-2 inhibitor that effectively improves clinical outcomes in newly diagnosed, relapsed and refractory acute myeloid leukemia (AML) patients, with complete response rates (with and without complete blood count recovery) ranging between 34–90% and 21–33%, respectively. Here, we aim to give an overview of the efficacy of venetoclax-based therapy for AML patients, as compared to standard chemotherapy, and on factors and mechanisms involved in venetoclax sensitivity and resistance in AML (stem) cells, with the aim to obtain a perspective of response biomarkers and combination therapies that could enhance the sensitivity of AML cells to venetoclax. The presence of molecular aberrancies can predict responses to venetoclax, with a higher response in NPM1-, IDH1/2-, TET2- and relapsed or refractory RUNX1-mutated AML. Decreased sensitivity to venetoclax was observed in patients harboring FLT3-ITD, TP53, K/NRAS or PTPN11 mutations. Moreover, resistance to venetoclax was observed in AML with a monocytic phenotype and patients pre-treated with hypomethylating agents. Resistance to venetoclax can arise due to mutations in BCL-2 or pro-apoptotic proteins, an increased dependency on MCL-1, and usage of additional/alternative sources for energy metabolism, such as glycolysis and fatty acid metabolism. Clinical studies are testing combination therapies that may circumvent resistance, including venetoclax combined with FLT3- and MCL-1 inhibitors, to enhance venetoclax-induced cell death. Other treatments that can potentially synergize with venetoclax, including MEK1/2 and mitochondrial complex inhibitors, need to be evaluated in a clinical setting.
Collapse
Affiliation(s)
- Mila S Griffioen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C de Leeuw
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Linda Smit
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Okuni N, Honma Y, Urano T, Tamura K. Romidepsin and tamoxifen cooperatively induce senescence of pancreatic cancer cells through downregulation of FOXM1 expression and induction of reactive oxygen species/lipid peroxidation. Mol Biol Rep 2022; 49:3519-3529. [PMID: 35099714 DOI: 10.1007/s11033-022-07192-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although improvement has been made in therapeutic strategies against pancreatic carcinoma, overall survival has not significantly enhanced over the past decade. Thus, the establishment of better therapeutic regimens remains a high priority. METHODS Pancreatic cancer cell lines were incubated with romidepsin, an inhibitor of histone deacetylase, and tamoxifen, and their effects on cell growth, signaling and gene expression were analyzed. Xenografts of human pancreatic cancer CFPAC1 cells were medicated with romidepsin and tamoxifen to evaluate their effects on tumor growth. RESULTS The inhibition of the growth of pancreatic cancer cells induced by romidepsin and tamoxifen was effectively reduced by N-acetyl cysteine and α-tocopherol, respectively. The combined treatment greatly induced reactive oxygen species production and mitochondrial lipid peroxidation, and these effects were prevented by N-acetyl cysteine and α-tocopherol. Tamoxifen enhanced romidepsin-induced cell senescence. FOXM1 expression was markedly downregulated in pancreatic cancer cells treated with romidepsin, and tamoxifen further reduced FOXM1 expression in cells treated with romidepsin. Siomycin A, an inhibitor of FOXM1, induced senescence in pancreatic cancer cells. Similar results were obtained in knockdown of FOXM1 expression by siRNA. CONCLUSION Since FOXM1 is used as a prognostic marker and therapeutic target for pancreatic cancer, a combination of the clinically available drugs romidepsin and tamoxifen might be considered for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Noriko Okuni
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Yoshio Honma
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan.
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan.
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Kenji Tamura
- Innovative Cancer Center, Shimane University, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
35
|
Qiao B, Li S, Wang D, Wu D. Editorial: Genetics and Molecular Mechanisms of Oral and Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:874353. [PMID: 35463329 PMCID: PMC9019613 DOI: 10.3389/fonc.2022.874353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaize Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Die Wang
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Di Wu
- Department of Periodontology, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
36
|
Wang YW, Chen SC, Gu DL, Yeh YC, Tsai JJ, Yang KT, Jou YS, Chou TY, Tang TK. A novel HIF1α-STIL-FOXM1 axis regulates tumor metastasis. J Biomed Sci 2022; 29:24. [PMID: 35365182 PMCID: PMC8973879 DOI: 10.1186/s12929-022-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis is the major cause of morbidity and mortality in cancer that involves in multiple steps including epithelial-mesenchymal transition (EMT) process. Centrosome is an organelle that functions as the major microtubule organizing center (MTOC), and centrosome abnormalities are commonly correlated with tumor aggressiveness. However, the conclusive mechanisms indicating specific centrosomal proteins participated in tumor progression and metastasis remain largely unknown. METHODS The expression levels of centriolar/centrosomal genes in various types of cancers were first examined by in silico analysis of the data derived from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and European Bioinformatics Institute (EBI) datasets. The expression of STIL (SCL/TAL1-interrupting locus) protein in clinical specimens was further assessed by Immunohistochemistry (IHC) analysis and the oncogenic roles of STIL in tumorigenesis were analyzed using in vitro and in vivo assays, including cell migration, invasion, xenograft tumor formation, and metastasis assays. The transcriptome differences between low- and high-STIL expression cells were analyzed by RNA-seq to uncover candidate genes involved in oncogenic pathways. The quantitative polymerase chain reaction (qPCR) and reporter assays were performed to confirm the results. The chromatin immunoprecipitation (ChIP)-qPCR assay was applied to demonstrate the binding of transcriptional factors to the promoter. RESULTS The expression of STIL shows the most significant increase in lung and various other types of cancers, and is highly associated with patients' survival rate. Depletion of STIL inhibits tumor growth and metastasis. Interestingly, excess STIL activates the EMT pathway, and subsequently enhances cancer cell migration and invasion. Importantly, we reveal an unexpected role of STIL in tumor metastasis. A subset of STIL translocate into nucleus and associate with FOXM1 (Forkhead box protein M1) to promote tumor metastasis and stemness via FOXM1-mediated downstream target genes. Furthermore, we demonstrate that hypoxia-inducible factor 1α (HIF1α) directly binds to the STIL promoter and upregulates STIL expression under hypoxic condition. CONCLUSIONS Our findings indicate that STIL promotes tumor metastasis through the HIF1α-STIL-FOXM1 axis, and highlight the importance of STIL as a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Shu-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jhih-Jie Tsai
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Kuo-Tai Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
- Dept. of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan.
| |
Collapse
|
37
|
Ni L, Sun P, Fan X, Li Z, Ren H, Li J. Berberine Inhibits FOXM1 Dependent Transcriptional Regulation of POLE2 and Interferes With the Survival of Lung Adenocarcinoma. Front Pharmacol 2022; 12:775514. [PMID: 35173608 PMCID: PMC8842794 DOI: 10.3389/fphar.2021.775514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Berberine is one of the most interesting and promising natural anticancer drugs. POLE2 is involved in many cellular functions such as DNA replication and is highly expressed in a variety of cancers. However, the specific molecular mechanism of berberine interfering with POLE2 expression in lung adenocarcinoma (LUAD) is still unknown to a great extent. Method: The KEGG database (Release 91.0) and Gene Ontology (GO) category database were used for functional annotation of differentially expressed genes after berberine treatment. Reproducibility assessment using TCGA dataset. The biological functions of berberine in LUAD were investigated by a series of in vitro and in vivo experiments: MTT, colony formation, mouse xenograft and plasmid transfection. The molecular mechanisms of berberine were demonstrated by plasmid transfection, quantitative RT-PCR and Western blotting. Result: The elevated expression of FOXM1 and the high enrichment of DNA replication pathway were confirmed in LUAD by microarray and TCGA analysis, and were positively correlated with poor prognosis. Functionally, berberine inhibited the proliferation and survival of LUAD cell lines in vitro and in vivo. Mechanistically, berberine treatment down regulated the expression of FOXM1which closely related to survival, survival related genes in Cell cycle and DNA replication pathway, and significantly down regulated the expression of survival related POLE2. Interestingly, we found that the transcription factor FOXM1 could act as a bridge between berberine and POLE2. Conclusion: Berberine significantly inhibited LUAD progression via the FOXM1/POLE2, and FOXM1/POLE2 may act as a clinical prognostic factor and a therapeutic target for LUAD. Berberine may be used as a promising therapeutic candidate for LUAD patients.
Collapse
Affiliation(s)
- Lulu Ni
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Ping Sun
- Department of Pathology, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaochun Fan
- Department of Emergency, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhongjie Li
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Hongli Ren
- Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangan Li
- Department of Emergency, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
38
|
Luo G, Lin X, Vega-Medina A, Xiao M, Li G, Wei H, Velázquez-Martínez CA, Xiang H. Targeting of the FOXM1 Oncoprotein by E3 Ligase-Assisted Degradation. J Med Chem 2021; 64:17098-17114. [PMID: 34812040 DOI: 10.1021/acs.jmedchem.1c01069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor FOXM1 that regulates multiple proliferation-related genes through selective protein-DNA and protein-protein interactions is now considered an attractive oncotarget. There are several small-molecule inhibitors that indirectly suppress the expression of FOXM1 or block its DNA binding domain (FOXM1-DBD). However, insufficient specificity or/and efficacy are two potential drawbacks. Here, we employed in silico modeling of FOXM1-DBD with inhibitors to enable the design of an effective CRBN-recruiting molecule that induced significant FOXM1 protein degradation and exerted promising in vivo antitumor activity against TNBC xenograft models. This study is the first of its kind showcasing the use of an approach described in the literature as protein-targeting chimeras to degrade the elusive FOXM1, providing an alternative strategy to counter the pathological effects resulting from the increased transcriptional activity of FOXM1 observed in cancer cells.
Collapse
Affiliation(s)
- Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xin Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Antonio Vega-Medina
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6W1W7, Canada
| | - Maoxu Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guolong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hanlin Wei
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | | | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
39
|
Williams MS, Basma NJ, Amaral FMR, Wiseman DH, Somervaille TCP. Blast cells surviving acute myeloid leukemia induction therapy are in cycle with a signature of FOXM1 activity. BMC Cancer 2021; 21:1153. [PMID: 34711181 PMCID: PMC8554867 DOI: 10.1186/s12885-021-08839-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Disease relapse remains common following treatment of acute myeloid leukemia (AML) and is due to chemoresistance of leukemia cells with disease repopulating potential. To date, attempts to define the characteristics of in vivo resistant blasts have focused on comparisons between leukemic cells at presentation and relapse. However, further treatment responses are often seen following relapse, suggesting that most blasts remain chemosensitive. We sought to characterise in vivo chemoresistant blasts by studying the transcriptional and genetic features of blasts from before and shortly after induction chemotherapy using paired samples from six patients with primary refractory AML. METHODS Leukemic blasts were isolated by fluorescence-activated cell sorting. Fluorescence in situ hybridization (FISH), targeted genetic sequencing and detailed immunophenotypic analysis were used to confirm that sorted cells were leukemic. Sorted blasts were subjected to RNA sequencing. Lentiviral vectors expressing short hairpin RNAs were used to assess the effect of FOXM1 knockdown on colony forming capacity, proliferative capacity and apoptosis in cell lines, primary AML cells and CD34+ cells from healthy donors. RESULTS Molecular genetic analysis revealed early clonal selection occurring after induction chemotherapy. Immunophenotypic characterisation found leukemia-associated immunophenotypes in all cases that persisted following treatment. Despite the genetic heterogeneity of the leukemias studied, transcriptional analysis found concerted changes in gene expression in resistant blasts. Remarkably, the gene expression signature suggested that post-chemotherapy blasts were more proliferative than those at presentation. Resistant blasts also appeared less differentiated and expressed leukemia stem cell (LSC) maintenance genes. However, the proportion of immunophenotypically defined LSCs appeared to decrease following treatment, with implications for the targeting of these cells on the basis of cell surface antigen expression. The refractory gene signature was highly enriched with targets of the transcription factor FOXM1. shRNA knockdown experiments demonstrated that the viability of primary AML cells, but not normal CD34+ cells, depended on FOXM1 expression. CONCLUSIONS We found that chemorefractory blasts from leukemias with varied genetic backgrounds expressed a common transcriptional program. In contrast to the notion that LSC quiescence confers resistance to chemotherapy we find that refractory blasts are both actively proliferating and enriched with LSC maintenance genes. Using primary patient material from a relevant clinical context we also provide further support for the role of FOXM1 in chemotherapy resistance, proliferation and stem cell function in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Apoptosis/genetics
- Blast Crisis/drug therapy
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Cell Differentiation
- Cell Proliferation/genetics
- Cell Survival
- Drug Resistance, Neoplasm/genetics
- Female
- Flow Cytometry
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Gene Silencing
- Humans
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Induction Chemotherapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Neoplastic Stem Cells/pathology
- RNA, Small Interfering/metabolism
- Recurrence
- Tumor Stem Cell Assay
- Young Adult
Collapse
Affiliation(s)
- Mark S Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| | - Naseer J Basma
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, Manchester, M20 4GJ, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, The University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
40
|
Forkhead box M1 over-expression and dachshund homolog 1 down-regulation as novel biomarkers for progression of endometrial carcinoma in Egyptian patients. Contemp Oncol (Pozn) 2021; 25:107-117. [PMID: 34667437 PMCID: PMC8506436 DOI: 10.5114/wo.2021.106697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Forkhead box M1 (FOXM1) is considered as a novel anti-cancer target, because it has many essential functions such as mitosis regulation, cell cycle transition, and other carcinogenesis signaling pathways. Dachshund homolog 1 (DACH1) is a member of the Sno/Ski co-repressor family. Material and methods Expression of DACH1 has been detected in many cancers. Patients and pathologic specimens: 50 patients with endometrial cancer (EC) were included in the study: ten specimens of normal endometrium and twenty specimens of endometrial hyperplasia. All samples underwent processing to investigate FOXM1 and DACH1 expression using immunohistochemistry. Results FOXM1 expression was detected in EC tissues more than normal endometrium and endometrial hyperplasia tissues (p = 0.001) and 0.01. Increased FOXM1 expression was positively associated with larger tumor size (p = 0.002), high grade (p = 0.004), myometrial invasion, presence of lymph node metastases, higher Federation of Gynecology and Obstetrics (FIGO) stage (p < 0.001), and worse progression-free survival (PFS) and overall survival (OS) rates. The expression of DACH1 was lower in EC cells than normal endometrium and endometrial hyperplasia tissues (p = 0.071) and 0.252. Low DACH1 expression was associated with high grade (p = 0.001), presence of lymph node metastases (p = 0.49), higher FIGO stage (p = 0.022), and unfavorable PFS and OS rates (p = 0.037). We found an inverse association between expression of FOXM1 and DACH1 in EC tissues and in non-neoplastic endometrial tissues (p = 0.007). Conclusions FOXM1 over-expression and DACH1 down-regulation in EC were related to poor clinical and pathological parameters and unfavorable prognosis.
Collapse
|
41
|
Yang B, Diao H, Wang P, Guan F, Liu H. microRNA-877-5p exerts tumor-suppressive functions in prostate cancer through repressing transcription of forkhead box M1. Bioengineered 2021; 12:9094-9102. [PMID: 34654353 PMCID: PMC8806950 DOI: 10.1080/21655979.2021.1989969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The study aimed to investigate the significant potential role of miR-877-5p in Prostate cancer. The expression levels of miR-877-5p and forkhead box M1 (FOXM1) mRNA were detected by qRT-PCR. The prognostic significance of miR-877-5p in prostate cancer was investigated using Kaplan Meier analysis. Then, Cell Counting Kit-8 (CCK-8) and transwell assay were used to evaluate the effects of miR-877-5p on cell biological functions. The mechanism of miR-877-5p action on prostate cancer cells was investigated by luciferase activity assay with wide-type or mutation. miR-877-5p was lowly expressed both in prostate cancer tissues and cell lines compared with corresponding normal counterparts. Further, miR-877-5p was significantly correlated with Gleason score and TNM stage. Moreover, miR-877-5p may serve as an independent prognostic predictor. In addition, FOXM1 was checked as a direct target gene of miR-877-5p, and miR-877-5p can inhibit the expression of FOXM1 to restrain the growth, migration, and invasion abilities of prostate cancer cells. Taken together, miR-877-5p may act as a suppressor in prostate cancer and reduces cancer cell proliferation, migration and invasion by targeting FOXM1. miR-877-5p may serve as the effective biomarkers and therapeutic target for treating prostate cancer patients.
Collapse
Affiliation(s)
- Bin Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huifeng Diao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pu Wang
- Department of Urology, Heze Municipal Hospital, Heze, China
| | - Fengju Guan
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hechen Liu
- Department of Urology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| |
Collapse
|
42
|
Zhao J, Wang F, Tian Q, Dong J, Chen L, Hu R. Involvement of miR-214-3p/FOXM1 Axis During the Progression of Psoriasis. Inflammation 2021; 45:267-278. [PMID: 34427853 DOI: 10.1007/s10753-021-01544-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Psoriasis is a common, chronic, and relapsing skin disease characterized by hyperproliferation of keratinocytes and apoptosis delay. However, the molecular mechanisms underlying the progression of psoriasis remain elusive. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play a crucial role in the development of psoriasis by promoting targeted mRNA degradation or translational inhibition. Here, we report that miR-214-3p, one of the downregulated miRNAs identified in the skin of psoriatic patients and imiquimod (IMQ)-induced mouse models, can negatively regulate the expression of forkhead box M1 (FOXM1). miR-214-3p inhibition leads to hyperproliferation and increased apoptosis of keratinocytes in vitro. Moreover, we show that miR-214-3p inhibition causes an arrest of the cell cycle at the S stage by elevating the expression of NEK2, KIF20A, CENP-A, CENP-F, and Cyclin B1 and by reducing the expression of Cyclin D1 in HaCaT cells. In vivo, the administration of miR-214-3p attenuates the psoriasis-like phenotype in IMQ-induced mice. Collectively, our results suggest that miR-214-3p/FOXM1 axis in keratinocytes could be a novel target in the treatment of psoriasis.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China
| | - Fei Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingjun Tian
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China
| | - Jing Dong
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China
| | - Liuqing Chen
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China. .,Department of Deramatology, Wuhan No 1 Hospital, Wuhan, China.
| | - Rongyi Hu
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China. .,Department of Deramatology, Wuhan No 1 Hospital, Wuhan, China.
| |
Collapse
|
43
|
Forkhead domain inhibitory-6 attenuates subconjunctival fibrosis in rabbit model with trabeculectomy. Exp Eye Res 2021; 210:108725. [PMID: 34375589 DOI: 10.1016/j.exer.2021.108725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Antiproliferative therapies are crucially important for improving the success rate of the glaucoma filtration surgeries. In this study, we investigated the potential efficacy of Forkhead Domain Inhibitory-6 (FDI-6) in inhibiting post-trabeculectomy subconjunctival fibrosis. In vitro, the effect of FDI-6 (10 μM) on fibrotic response and its underlying mechanism were investigated in rabbit tenon's fibroblasts (RTFs) treated with or without transforming growth factor-β1 (TGF-β1, 20 ng/mL). In vivo, FDI-6 (40 μM) was injected subconjunctivally to a rabbit trabeculectomy model. Intraocular pressure (IOP) changes were monitored within the 14-day period post-surgery. Bleb morphology and subepithelial fibrosis at the operating area were evaluated with slit lamp and confocal microscopic examinations and with histologic examinations. The results showed that, in cell culture studies, FDI-6 suppressed the proliferation, migration, collagen gel contraction and the expression levels of fibronectin (FN) and α-smooth muscle actin (α-SMA) in RTFs with TGF-β treatment by down-regulating the TGF-β1/Smad2/3 signaling pathway. In animal studies, the IOPs of the FDI-6-treated group were significantly lower than those of the saline-treated group after trabeculectomy. The FDI-6-treated eyes showed a better bleb appearance with fewer blood vessels compared to the saline-treated eyes. The analysis of confocal microscopy in vivo and histopathology revealed that subconjunctival fibrosis after trabeculectomy was significantly attenuated in the FDI-6-treated group compared to the controls. In conclusion, our studies indicate that FDI-6 exerts an inhibitory effect on subconjunctival fibrosis caused by trabeculectomy, holding potentials as a new antiproliferative agent used in anti-glaucoma filtration surgeries in the future.
Collapse
|
44
|
Chesnokov MS, Borhani S, Halasi M, Arbieva Z, Khan I, Gartel AL. FOXM1-AKT Positive Regulation Loop Provides Venetoclax Resistance in AML. Front Oncol 2021; 11:696532. [PMID: 34381718 PMCID: PMC8350342 DOI: 10.3389/fonc.2021.696532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Forkhead box protein M1 (FOXM1) is a crucial regulator of cancer development and chemoresistance. It is often overexpressed in acute myeloid leukemia (AML) and is associated with poor survival and reduced efficacy of cytarabine therapy. Molecular mechanisms underlying high FOXM1 expression levels in malignant cells are still unclear. Here we demonstrate that AKT and FOXM1 constitute a positive autoregulatory loop in AML cells that sustains high activity of both pro-oncogenic regulators. Inactivation of either AKT or FOXM1 signaling results in disruption of whole loop, coordinated suppression of FOXM1 or AKT, respectively, and similar transcriptomic changes. AML cells with inhibited AKT activity or stable FOXM1 knockdown display increase in HOXA genes expression and BCL2L1 suppression that are associated with prominent sensitization to treatment with Bcl-2 inhibitor venetoclax. Taken together, our data indicate that AKT and FOXM1 in AML cells should not be evaluated as single independent regulators but as two parts of a common FOXM1-AKT positive feedback circuit. We also report for the first time that FOXM1 inactivation can overcome AML venetoclax resistance. Thus, targeting FOXM1-AKT loop may open new possibilities in overcoming AML drug resistance and improving outcomes for AML patients.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Soheila Borhani
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Marianna Halasi
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Zarema Arbieva
- Genome Research Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Irum Khan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei L. Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
45
|
Chesnokov MS, Halasi M, Borhani S, Arbieva Z, Shah BN, Oerlemans R, Khan I, Camacho CJ, Gartel AL. Novel FOXM1 inhibitor identified via gene network analysis induces autophagic FOXM1 degradation to overcome chemoresistance of human cancer cells. Cell Death Dis 2021; 12:704. [PMID: 34262016 PMCID: PMC8280155 DOI: 10.1038/s41419-021-03978-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
FOXM1 transcription factor is an oncogene and a master regulator of chemoresistance in multiple cancers. Pharmacological inhibition of FOXM1 is a promising approach but has proven to be challenging. We performed a network-centric transcriptomic analysis to identify a novel compound STL427944 that selectively suppresses FOXM1 by inducing the relocalization of nuclear FOXM1 protein to the cytoplasm and promoting its subsequent degradation by autophagosomes. Human cancer cells treated with STL427944 exhibit increased sensitivity to cytotoxic effects of conventional chemotherapeutic treatments (platinum-based agents, 5-fluorouracil, and taxanes). RNA-seq analysis of STL427944-induced gene expression changes revealed prominent suppression of gene signatures characteristic for FOXM1 and its downstream targets but no significant changes in other important regulatory pathways, thereby suggesting high selectivity of STL427944 toward the FOXM1 pathway. Collectively, the novel autophagy-dependent mode of FOXM1 suppression by STL427944 validates a unique pathway to overcome tumor chemoresistance and improve the efficacy of treatment with conventional cancer drugs.
Collapse
Affiliation(s)
| | - Marianna Halasi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA
| | - Soheila Borhani
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Zarema Arbieva
- University of Illinois at Chicago, Genome Research Core, Chicago, IL, USA
| | - Binal N Shah
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Rick Oerlemans
- University of Pittsburgh, College of Medicine, Pittsburgh, PA, USA
| | - Irum Khan
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Carlos J Camacho
- University of Pittsburgh, College of Medicine, Pittsburgh, PA, USA.
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
46
|
Koch S. Regulation of Wnt Signaling by FOX Transcription Factors in Cancer. Cancers (Basel) 2021; 13:cancers13143446. [PMID: 34298659 PMCID: PMC8307807 DOI: 10.3390/cancers13143446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Cancer is caused by a breakdown of cell-to-cell communication, which results in the unrestricted expansion of cells within a tissue. In many cases, tumor growth is maintained by the continuous activation of cell signaling programs that normally drive embryonic development and wound repair. In this review article, I discuss how one of the largest human protein families, namely FOX proteins, controls the activity of the Wnt pathway, a major regulatory signaling cascade in developing organisms and adult stem cells. Evidence suggests that there is considerable crosstalk between FOX proteins and the Wnt pathway, which contributes to cancer initiation and progression. A better understanding of FOX biology may therefore lead to the development of new targeted treatments for many types of cancer. Abstract Aberrant activation of the oncogenic Wnt signaling pathway is a hallmark of numerous types of cancer. However, in many cases, it is unclear how a chronically high Wnt signaling tone is maintained in the absence of activating pathway mutations. Forkhead box (FOX) family transcription factors are key regulators of embryonic development and tissue homeostasis, and there is mounting evidence that they act in part by fine-tuning the Wnt signaling output in a tissue-specific and context-dependent manner. Here, I review the diverse ways in which FOX transcription factors interact with the Wnt pathway, and how the ectopic reactivation of FOX proteins may affect Wnt signaling activity in various types of cancer. Many FOX transcription factors are partially functionally redundant and exhibit a highly restricted expression pattern, especially in adults. Thus, precision targeting of individual FOX proteins may lead to safe treatment options for Wnt-dependent cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, 58185 Linköping, Sweden; ; Tel.: +46-132-829-69
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
47
|
Jingyang Z, Jinhui C, Lu X, Weizhong Y, Yunjiu L, Haihong W, Wuyuan Z. Mir-320b Inhibits Pancreatic Cancer Cell Proliferation by Targeting FOXM1. Curr Pharm Biotechnol 2021; 22:1106-1113. [PMID: 32942974 DOI: 10.2174/1389201021999200917144704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored. METHODS MicroRNAs (miRNAs) play a very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent non-tumor tissues. RESULTS Consistently, the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation. DISCUSSION We next predicted miR-320b targeted FOXM1 (Forkhead box protein M1) and identified the negative relationship between miR-320b and FOXM1. We also demonstrated that elevated miR- 320b expression inhibited tumor growth in vivo. CONCLUSION All of these results showed that miR-320b suppressed pancreatic cancer cell proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Zhou Jingyang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330027, China
| | - Che Jinhui
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Xu Lu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Yang Weizhong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Li Yunjiu
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wang Haihong
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Zhou Wuyuan
- The Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu 221005, China
| |
Collapse
|
48
|
Guan K, Li H, Chen H, Qi X, Wang R, Ma Y. TMT-based quantitative proteomics analysis reveals the effect of bovine derived MFG-E8 against oxidative stress on rat L6 cells. Food Funct 2021; 12:7310-7320. [PMID: 34169949 DOI: 10.1039/d1fo01135a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sarcopenia is an aging-associated oxidative stress-induced mitochondrial dysfunction characterized by a decline in skeletal muscle mass, strength and function. Milk fat globule-EGF factor 8 (MFG-E8) is a secreted matrix glycoprotein that plays a crucial role in regulating tissue homeostasis and protecting against skeletal muscle injury. To explore the molecular mechanism of MFG-E8 in ameliorating the rotenone (Rot)-induced L6 skeletal muscle cell oxidative stress injury, differential proteomics of inner L6 cells was conducted. Tandem mass tag (TMT) labeling combined with mass spectrometry (MS) was performed to find associations among control, Rot and Rot + MFG-E8 groups. Over 3248 proteins were identified in the L6 cells. A total of 639 significantly differential proteins were identified, including 294 up-regulated proteins (>1.2 fold) and 345 down-regulated proteins (<0.83 fold) after the exogenous intervention of MFG-E8. Based on the analysis of Gene Ontology (GO), STRING and KEGG databases, MFG-E8 relieves oxidative stress induced-L6 cell damage by regulating the expression of these differential proteins mainly via carbon metabolism, glutathione metabolism and mitochondria-mediated metabolic pathways, e.g. carbohydrate, lipid and amino acid metabolism. Furthermore, to verify the protective effect of MFG-E8 on oxidative stress injured L6 cells, the levels of intracellular reactive oxygen species (ROS), nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NAD+/NADH) contents and the protein expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were detected.
Collapse
Affiliation(s)
- Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.
| | | | | | | | | | | |
Collapse
|
49
|
Liu C, Barger CJ, Karpf AR. FOXM1: A Multifunctional Oncoprotein and Emerging Therapeutic Target in Ovarian Cancer. Cancers (Basel) 2021; 13:3065. [PMID: 34205406 PMCID: PMC8235333 DOI: 10.3390/cancers13123065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Forkhead box M1 (FOXM1) is a member of the conserved forkhead box (FOX) transcription factor family. Over the last two decades, FOXM1 has emerged as a multifunctional oncoprotein and a robust biomarker of poor prognosis in many human malignancies. In this review article, we address the current knowledge regarding the mechanisms of regulation and oncogenic functions of FOXM1, particularly in the context of ovarian cancer. FOXM1 and its associated oncogenic transcriptional signature are enriched in >85% of ovarian cancer cases and FOXM1 expression and activity can be enhanced by a plethora of genomic, transcriptional, post-transcriptional, and post-translational mechanisms. As a master transcriptional regulator, FOXM1 promotes critical oncogenic phenotypes in ovarian cancer, including: (1) cell proliferation, (2) invasion and metastasis, (3) chemotherapy resistance, (4) cancer stem cell (CSC) properties, (5) genomic instability, and (6) altered cellular metabolism. We additionally discuss the evidence for FOXM1 as a cancer biomarker, describe the rationale for FOXM1 as a cancer therapeutic target, and provide an overview of therapeutic strategies used to target FOXM1 for cancer treatment.
Collapse
Affiliation(s)
| | | | - Adam R. Karpf
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68918-6805, USA; (C.L.); (C.J.B.)
| |
Collapse
|
50
|
Kuai XY, Lei ZY, Liu XS, Shao XY. The Interaction of GLUT1 and FOXM1 Leads to a Poor Prognosis in Colorectal Cancer. Anticancer Agents Med Chem 2021; 20:941-950. [PMID: 32188390 DOI: 10.2174/1871520620666200318094618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Colorectal Cancer (CRC) is one of the most common fatal diseases with high morbidity. Alteration of glucose metabolism is one of the hallmarks in the development of CRC. Glucose Transporter 1 (GLUT1) is a key rate-limiting protein in hyperactive glucose metabolism and up-regulated in CRC, however, the underlying mechanism of the altered metabolism in CRC is still unknown. METHODS In this study, immunohistochemical staining was used to evaluate the expression of GLUT1 and FOXM1 in 135 paired CRC and adjacent normal tissues. The association between the expression of GLUT1/FOXM1 and clinicopathological factors was determined and the correlation between GLUT1 and FOXM1 in CRC was investigated. RESULTS Our results revealed that regardless of tumor location, GLUT1 and FOXM1 were overexpressed in CRC tissues, especially in patients with positive lymph node metastasis and TNM stage III-IV. Furthermore, GLUT1 showed a significantly strong link with FOXM1 in CRC tissue. CONCLUSION Overexpression of GLUT1 and FOXM1 may play critical roles in CRC leading to a poor prognosis.
Collapse
Affiliation(s)
- Xiao-Yi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhi-Yi Lei
- Department of Radiology, The Qinghai Provincial People's Hospital, XiNing, QingHai, China
| | - Xiao-Shuang Liu
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Xin-Yu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|