1
|
Paluszkiewicz P, Martuszewski A, Radziejewska J, Zawadzki J, Smereka J, Gajek J. His Bundle Pacing and Left Bundle Branch Pacing in Patients with Heart Failure. Biomedicines 2024; 12:2356. [PMID: 39457668 PMCID: PMC11504024 DOI: 10.3390/biomedicines12102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND His bundle pacing (HBP) and left bundle branch pacing (LBBP) are emerging therapies for patients with heart failure and conduction disorders, offering potential advantages over traditional pacing methods. These approaches aim to restore physiological conduction and improve cardiac function more effectively. OBJECTIVE This study aims to evaluate the efficacy and safety of HBP and LBBP in patients with heart failure and conduction disturbances, comparing these techniques to conventional pacing. METHODS A comprehensive review of recent studies and clinical trials was conducted, focusing on the performance of HBP and LBBP in improving cardiac function, reducing QRS duration, and enhancing overall patient outcomes. The analysis includes data on clinical efficacy, procedural safety, and long-term benefits associated with these pacing modalities. RESULTS Both HBP and LBBP have demonstrated significant improvements in cardiac function and clinical outcomes compared to conventional pacing. HBP effectively restores physiological conduction with improved synchronization and a reduction in QRS duration. LBBP has shown enhanced left ventricular activation, leading to better overall cardiac performance. Both techniques have been associated with a lower incidence of complications and a higher success rate in achieving optimal pacing thresholds. CONCLUSIONS HBP and LBBP offer promising alternatives to traditional pacing for patients with heart failure and conduction disorders. These advanced pacing strategies provide superior clinical outcomes and improved cardiac function with reduced risk of complications. Further research and clinical trials are needed to fully establish the long-term benefits and safety profiles of these techniques in diverse patient populations.
Collapse
Affiliation(s)
- Patrycja Paluszkiewicz
- Department of Emergency Medical Service, Wroclaw Medical University, ul. Parkowa 34, 51-616 Wrocław, Poland
| | - Adrian Martuszewski
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wrocław, Poland
| | | | - Jacek Zawadzki
- Department of Anesthesia, Critical Care and Rescue Medicine, Collegium Medicum, University in Zielona Góra, 95-020 Zielona Góre, Poland;
| | - Jacek Smereka
- Department of Emergency Medical Service, Wroclaw Medical University, ul. Parkowa 34, 51-616 Wrocław, Poland
| | - Jacek Gajek
- Medical Faculty, Wrocław University of Science and Technology, 50-368 Wrocław, Poland;
| |
Collapse
|
2
|
Joza J, Burri H, Andrade JG, Linz D, Ellenbogen KA, Vernooy K. Atrioventricular node ablation for atrial fibrillation in the era of conduction system pacing. Eur Heart J 2024:ehae656. [PMID: 39397777 DOI: 10.1093/eurheartj/ehae656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Despite key advances in catheter-based treatments, the management of persistent atrial fibrillation (AF) remains a therapeutic challenge in a significant subset of patients. While success rates have improved with repeat AF ablation procedures and the concurrent use of antiarrhythmic drugs, the likelihood of maintaining sinus rhythm during long-term follow-up is still limited. Atrioventricular node ablation (AVNA) has returned as a valuable treatment option given the recent developments in cardiac pacing. With the advent of conduction system pacing, AVNA has seen a revival where pacing-induced cardiomyopathy after AVNA is felt to be overcome. This review will discuss the role of permanent pacemaker implantation and AVNA for AF management in this new era of conduction system pacing. Specifically, this review will discuss the haemodynamic consequences of AF and the mechanisms through which 'pace-and-ablate therapy' enhances outcomes, analyse historical and more recent literature across various pacing methods, and work to identify patient groups that may benefit from earlier implementation of this approach.
Collapse
Affiliation(s)
- Jacqueline Joza
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Haran Burri
- Cardiology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
3
|
Beyer SE, Imnadze G, Sommer P. [New pacing strategies for heart failure]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:778-786. [PMID: 38967707 DOI: 10.1007/s00108-024-01747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
In patients with a reduced left ventricular (LV) systolic function (ejection fraction < 35%) and a left bundle branch block with a QRS duration > 130 ms, cardiac resynchronization therapy (CRT) can contribute to an improvement in the quality of life and a reduction in mortality. The resynchronization is mostly achieved by pacing via an epicardial LV lead in the coronary sinus; however, this approach is often limited by the patient's venous anatomy and an increase in the stimulation threshold over time. In addition, up to 30% of patients do not respond to the intervention. New treatment approaches involve direct stimulation of the conduction system by pacing of the bundle of His or left bundle branch. This enables a more physiological propagation of the stimulus. Pacing of the left bundle branch is achieved by advancing the lead into the right ventricle and screwing it deep into the interventricular septum. Due to the relatively large target area of the left bundle branch the success rate is very high (currently > 90%). Observational studies have shown a greater reduction in the QRS duration, a more pronounced improvement in systolic function and a lower hospitalization rate for heart failure associated with conduction system pacing compared to CRT using a coronary sinus lead. These findings have been confirmed in small randomized trials. Therefore, the use of left bundle branch pacing should be considered not only as a bail out in the case of failed resynchronization using coronary sinus lead placement but increasingly also as an initial pacing strategy. The results of the first large randomized trials are expected to be released in late 2024.
Collapse
Affiliation(s)
- Sebastian E Beyer
- Klinik für Elektrophysiologie, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland
| | - Guram Imnadze
- Klinik für Elektrophysiologie, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland
| | - Philipp Sommer
- Klinik für Elektrophysiologie, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland.
- Herz- und Diabeteszentrum NRW, Georgstr. 11, 32545, Bad Oeynhausen, Deutschland.
| |
Collapse
|
4
|
Tam MTK, Au ACK, Chan JYS, Chan CP, Cheung LL, Cheng YW, Yuen FSM, Yan BP. Personalized cardiac resynchronization therapy guided by real-time electrocardiographic imaging for patients with non-left bundle branch block. Heart Rhythm 2024; 21:1047-1056. [PMID: 38369037 DOI: 10.1016/j.hrthm.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Patients with heart failure and a non-left bundle branch block (non-LBBB) QRS pattern have a limited response to biventricular pacing (BVP). OBJECTIVE A personalized cardiac resynchronization therapy (CRT) implantation approach guided by real-time electrocardiographic imaging (ECGi) was studied. METHODS Twenty patients with left ventricular ejection fraction (LVEF) ≤ 35%, QRS duration ≥ 120 ms, and non-LBBB [13 (65%) with right bundle branch block and 7 (35%) with intraventricular conduction delay] were recruited. During CRT implantation, right atrial, right ventricular, coronary sinus, His-bundle, and/or left bundle leads were inserted. The total activation time (TAT) with different pacing combinations were measured in real time during implantation by ECGi. The configuration producing the shortest TAT was chosen. Clinical response was defined as ≥1 New York Heart Association class improvement. Echocardiographic response was defined as left ventricular end-systolic volume reduction ≥ 15% and/or LVEF improvement ≥ 10% at 6 months. RESULTS After ECGi-guided CRT implantation, LVEF improved from 26% ± 6% to 34% ± 11% (P < .01) and New York Heart Association class improved from 3.0 ± 0.5 to 2.0 ± 0.6 (P < .01). Both clinical and echocardiographic response rates were 70%. The ECGi approach resulted in better acute electrical resynchronization over BVP as measured by TAT reduction (40% vs 14%; P < .01). The percentage of TAT reduction was found to be a strong predictor for echocardiographic response (area under the curve for the receiver operating characteristic curve 0.91; 95% confidence interval 0.78-1.00). A strong positive correlation between percentage TAT reduction and percentage LVEF improvement (Pearson R = 0.70; P = .001) was found. CONCLUSION ECGi-guided CRT implantation in patients with non-LBBB generates superior acute electrical resynchronization compared with BVP and is associated with favorable clinical and echocardiographic outcomes.
Collapse
Affiliation(s)
- Mark T K Tam
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alex C K Au
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Y S Chan
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chin-Pang Chan
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li-Li Cheung
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuet-Wong Cheng
- Division of Cardiology, Department of Medicine, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Fiona S M Yuen
- Division of Cardiology, Department of Medicine, North District Hospital, Hong Kong SAR, China
| | - Bryan P Yan
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Heart & Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
6
|
Falco L, Valente F, De Falco A, Barbato R, Marotta L, Soviero D, Cantiello LM, Contaldi C, Brescia B, Coscioni E, Pacileo G, Masarone D. Beyond Medical Therapy-An Update on Heart Failure Devices. J Cardiovasc Dev Dis 2024; 11:187. [PMID: 39057611 PMCID: PMC11277415 DOI: 10.3390/jcdd11070187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Heart failure (HF) is a complex and progressive disease marked by substantial morbidity and mortality rates, frequent episodes of decompensation, and a reduced quality of life (QoL), with severe financial burden on healthcare systems. In recent years, several large-scale randomized clinical trials (RCTs) have widely expanded the therapeutic armamentarium, underlining additional benefits and the feasibility of rapid titration regimens. This notwithstanding, mortality is not declining, and hospitalizations are constantly increasing. It is widely acknowledged that even with guideline-directed medical therapy (GDMT) on board, HF patients have a prohibitive residual risk, which highlights the need for innovative treatment options. In this scenario, groundbreaking devices targeting valvular, structural, and autonomic abnormalities have become crucial tools in HF management. This has led to a full-fledged translational boost with several novel devices in development. Thus, the aim of this review is to provide an update on both approved and investigated devices.
Collapse
Affiliation(s)
- Luigi Falco
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Fabio Valente
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Aldo De Falco
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Raffaele Barbato
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Luigi Marotta
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Davide Soviero
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Luigi Mauro Cantiello
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Carla Contaldi
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Benedetta Brescia
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Enrico Coscioni
- Cardiac Surgery Division, AOU San Leonardo, 84100 Salerno, Italy;
| | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (F.V.); (A.D.F.); (R.B.); (L.M.); (D.S.); (L.M.C.); (C.C.); (G.P.)
| |
Collapse
|
7
|
Gerra L, Bonini N, Mei DA, Imberti JF, Vitolo M, Bucci T, Boriani G, Lip GYH. Cardiac resynchronization therapy (CRT) nonresponders in the contemporary era: A state-of-the-art review. Heart Rhythm 2024:S1547-5271(24)02670-5. [PMID: 38848860 DOI: 10.1016/j.hrthm.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In the 2000s, cardiac resynchronization therapy (CRT) became a revolutionary treatment for heart failure with reduced left ventricular ejection fraction (HFrEF) and wide QRS. However, about one-third of CRT recipients do not show a favorable response. This review of the current literature aims to better define the concept of CRT response/nonresponse. The diagnosis of CRT nonresponder should be viewed as a continuum, and it cannot rely solely on a single parameter. Moreover, baseline features of some patients might predict an unfavorable response. A strong collaboration between heart failure specialists and electrophysiologists is key to overcoming this challenge with multiple strategies. In the contemporary era, new pacing modalities, such as His-bundle pacing and left bundle branch area pacing, represent a promising alternative to CRT. Observational studies have demonstrated their potential; however, several limitations should be addressed. Large randomized controlled trials are needed to prove their efficacy in HFrEF with electromechanical dyssynchrony.
Collapse
Affiliation(s)
- Luigi Gerra
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Cardiology Division Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Bonini
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Cardiology Division Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Antonio Mei
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Cardiology Division Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jacopo Francesco Imberti
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Cardiology Division Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vitolo
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Cardiology Division Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Bucci
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Department of General and Specialized Surgery, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Boriani
- Cardiology Division Department of Biomedical Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
8
|
Strocchi M, Wijesuriya N, Mehta V, de Vere F, Rinaldi CA, Niederer SA. Computational Modelling Enabling In Silico Trials for Cardiac Physiologic Pacing. J Cardiovasc Transl Res 2024; 17:685-694. [PMID: 37870689 PMCID: PMC11219462 DOI: 10.1007/s12265-023-10453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Conduction system pacing (CSP) has the potential to achieve physiological-paced activation by pacing the ventricular conduction system. Before CSP is adopted in standard clinical practice, large, randomised, and multi-centre trials are required to investigate CSP safety and efficacy compared to standard biventricular pacing (BVP). Furthermore, there are unanswered questions about pacing thresholds required to achieve optimal pacing delivery while preventing device battery draining, and about which patient groups are more likely to benefit from CSP rather than BVP. In silico studies have been increasingly used to investigate mechanisms underlying changes in cardiac function in response to pathologies and treatment. In the context of CSP, they have been used to improve our understanding of conduction system capture to optimise CSP delivery and battery life, and noninvasively compare different pacing methods on different patient groups. In this review, we discuss the in silico studies published to date investigating different aspects of CSP delivery.
Collapse
Affiliation(s)
- Marina Strocchi
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, W12 0HS, London, UK.
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Felicity de Vere
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Steven A Niederer
- National Heart and Lung Institute, Imperial College London, 72 Du Cane Road, W12 0HS, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
9
|
Farhangee A, Davies MJ, Mesina M, Morgan DR, Sieniewicz BJ, Meyrick R, Gaughan K, Mîndrilă I. Comparative Analysis of Response to Cardiac Resynchronisation Therapy Upgrades in Patients with Implantable Cardioverter-Defibrillators and Pacemakers. J Clin Med 2024; 13:2755. [PMID: 38792297 PMCID: PMC11122322 DOI: 10.3390/jcm13102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Introduction: The efficacy of de novo cardiac resynchronisation therapy (CRT) in patients with heart failure (HF), left ventricular systolic dysfunction (LVSD), and a broad QRS morphology is well established. However, the optimal stage for upgrading patients with existing pacemakers (PPMs) or implantable cardioverter-defibrillators (ICDs) and HF with high-burden right ventricular (RV) pacing remains uncertain. Thus, this multicentre retrospective analysis compared patients with pre-existing PPMs or ICDs who underwent CRT upgrades to investigate the appropriate stage for CRT implantation in these patients and to assess the validity of treating both PPM and ICD recipients under the same recommendation level in the current guidelines. Materials and Methods: A total of 151 participants underwent analysis in this study, comprising 93 upgrades to cardiac resynchronisation therapy with pacemaker (CRT-P) and 58 upgrades to cardiac resynchronisation therapy with defibrillator (CRT-D) across three centres in the UK. The aim of the study was to investigate the safety and efficacy of upgrading to CRT from an existing conventional pacemaker or an ICD in the context of high-burden RV pacing. The analysis was conducted separately for each group, assessing changes in echocardiographic parameters, functional New York Heart Association (NYHA) class, and procedure-related complications. Results: The PPM group had a higher percentage RVP burden compared to the ICD group. Post-upgrade, NYHA functional class and EF and LV volumes improved in both groups; however, the response to an upgrade from a pacemaker was greater compared to an upgrade from an ICD. Post-procedural complication risks were similar across the two subgroups but significantly higher compared to de novo implantation. Conclusions: Within the CRT-P subgroup, participants exhibited better responses than their CRT-D counterparts, evident both in echocardiographic improvements and clinical outcomes. Furthermore, patients with non-ischemic cardiomyopathy (NICM) were better responders than those with ischaemic cardiomyopathy. These findings suggest that international guidelines should consider approaching each subgroup separately in the future.
Collapse
Affiliation(s)
- Arsalan Farhangee
- Department of Cardiology, Milton Keynes University Hospital, Milton Keynes MK6 5LD, UK;
- Department of Cardiology, Plymouth NHS Trust Foundation, Derriford Hospital, Plymouth PL6 8DH, UK; (B.J.S.); (R.M.)
- Department of Cardiology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincolnshire LN2 5QY, UK; (D.R.M.); (K.G.)
- Department of Cardiology, Oxford University Hospital, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.M.); (I.M.)
| | - Mark J. Davies
- Department of Cardiology, Milton Keynes University Hospital, Milton Keynes MK6 5LD, UK;
- Department of Cardiology, Oxford University Hospital, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Mihai Mesina
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.M.); (I.M.)
| | - David Roger Morgan
- Department of Cardiology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincolnshire LN2 5QY, UK; (D.R.M.); (K.G.)
| | - Benjamin J. Sieniewicz
- Department of Cardiology, Plymouth NHS Trust Foundation, Derriford Hospital, Plymouth PL6 8DH, UK; (B.J.S.); (R.M.)
| | - Robyn Meyrick
- Department of Cardiology, Plymouth NHS Trust Foundation, Derriford Hospital, Plymouth PL6 8DH, UK; (B.J.S.); (R.M.)
| | - Katie Gaughan
- Department of Cardiology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincolnshire LN2 5QY, UK; (D.R.M.); (K.G.)
| | - Ion Mîndrilă
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.M.); (I.M.)
| |
Collapse
|
10
|
Batta A, Hatwal J. Left bundle branch pacing set to outshine biventricular pacing for cardiac resynchronization therapy? World J Cardiol 2024; 16:186-190. [PMID: 38690215 PMCID: PMC11056871 DOI: 10.4330/wjc.v16.i4.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
The deleterious effects of long-term right ventricular pacing necessitated the search for alternative pacing sites which could prevent or alleviate pacing-induced cardiomyopathy. Until recently, biventricular pacing (BiVP) was the only modality which could mitigate or prevent pacing induced dysfunction. Further, BiVP could resynchronize the baseline electromechanical dssynchrony in heart failure and improve outcomes. However, the high non-response rate of around 20%-30% remains a major limitation. This non-response has been largely attributable to the direct non-physiological stimulation of the left ventricular myocardium bypassing the conduction system. To overcome this limitation, the concept of conduction system pacing (CSP) came up. Despite initial success of the first CSP via His bundle pacing (HBP), certain drawbacks including lead instability and dislodgements, steep learning curve and rapid battery depletion on many occasions prevented its widespread use for cardiac resynchronization therapy (CRT). Subsequently, CSP via left bundle branch-area pacing (LBBP) was developed in 2018, which over the last few years has shown efficacy comparable to BiVP-CRT in small observational studies. Further, its safety has also been well established and is largely free of the pitfalls of the HBP-CRT. In the recent metanalysis by Yasmin et al, comprising of 6 studies with 389 participants, LBBP-CRT was superior to BiVP-CRT in terms of QRS duration, left ventricular ejection fraction, cardiac chamber dimensions, lead thresholds, and functional status amongst heart failure patients with left bundle branch block. However, there are important limitations of the study including the small overall numbers, inclusion of only a single small randomized controlled trial (RCT) and a small follow-up duration. Further, the entire study population analyzed was from China which makes generalizability a concern. Despite the concerns, the meta-analysis adds to the growing body of evidence demonstrating the efficacy of LBBP-CRT. At this stage, one must acknowledge that the fact that still our opinions on this technique are largely based on observational data and there is a dire need for larger RCTs to ascertain the position of LBBP-CRT in management of heart failure patients with left bundle branch block.
Collapse
Affiliation(s)
- Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, India.
| | - Juniali Hatwal
- Department of Internal Medicine, Advanced Cardiac Centre, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
11
|
Vajapey R, Chung MK. Emerging Technologies in Cardiac Pacing. Annu Rev Med 2024; 75:475-492. [PMID: 37989145 PMCID: PMC11062889 DOI: 10.1146/annurev-med-051022-042616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cardiac pacing to treat bradyarrhythmias has evolved in recent decades. Recognition that a substantial proportion of pacemaker-dependent patients can develop heart failure due to electrical and mechanical dyssynchrony from traditional right ventricular apical pacing has led to development of more physiologic pacing methods that better mimic normal cardiac conduction and provide synchronized ventricular contraction. Conventional biventricular pacing has been shown to benefit patients with heart failure and conduction system disease but can be limited by scarring and fibrosis. His bundle pacing and left bundle branch area pacing are novel techniques that can provide more physiologic ventricular activation as an alternative to conventional or biventricular pacing. Leadless pacing has emerged as another alternative pacing technique to overcome limitations in conventional transvenous pacemaker systems. Our objective is to review the evolution of cardiac pacing and explore these new advances in pacing strategies.
Collapse
Affiliation(s)
- Ramya Vajapey
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA;
| |
Collapse
|
12
|
Sdogkos E, Iliodromitis K, Xanthopoulos A, Triposkiadis F, Skoularigis J, Bogossian H, Vogiatzis I. Conduction system pacing: how far are we from the "electrical" bypass? Heart Fail Rev 2024; 29:45-63. [PMID: 37776404 DOI: 10.1007/s10741-023-10349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Conduction system pacing is an alternative practice to conventional right ventricular apical pacing. It is a method that maintains physiologic ventricular activation, based on a correct pathophysiological basis, in which the pacing lead bypasses the lesion of the electrical fibers and the electrical impulse transmits through the intact adjacent conduction system. For this reason, it might be reasonably characterized by the term "electrical bypass" compared to the coronary artery bypass in revascularization therapy. In this review, reference is made to the sequence of events in which conventional right ventricular pacing may cause adverse outcomes. Furthermore, there is a reference to alternative strategies and pacing sites. Interest focuses on the modalities for which there are data from the literature, namely for the right ventricular (RV) septal pacing, the His bundle pacing (HBP), and the left bundle branch pacing (LBBP). A more extensive reference is about the HBP, for which there are the most updated data. We analyze the considerations that limit HBP-wide application in three axes, and we also present the data for the implantation and follow-up of these patients. The indications with their most important studies to date are then described in detail, not only in their undoubtedly positive findings but also in their weak aspects, because of which this pacing mode has not yet received a strong recommendation for implementation. Finally, there is a report on LBBP, focusing mainly on its points of differentiation from HBP.
Collapse
Affiliation(s)
- Evangelos Sdogkos
- Department of Cardiology, General Hospital of Veroia, Veroia, Greece.
| | - Konstantinos Iliodromitis
- Klinik Für Kardiologie und Rhythmologie, Evangelisches Krankenhaus Hagen-Haspe, Brusebrinkstraße 20, 58135, Hagen, Germany
- School of Medicine, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58455, Witten, Germany
| | | | | | - John Skoularigis
- Department of Cardiology, University Ηospital of Larissa, Larissa, Greece
| | - Harilaos Bogossian
- Klinik Für Kardiologie und Rhythmologie, Evangelisches Krankenhaus Hagen-Haspe, Brusebrinkstraße 20, 58135, Hagen, Germany
- School of Medicine, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58455, Witten, Germany
| | - Ioannis Vogiatzis
- Department of Cardiology, General Hospital of Veroia, Veroia, Greece
| |
Collapse
|
13
|
Al Hennawi H, Khan MK, Khalid M, Khalid H, Fatima L, Ashraf MT, Bhimani S, Pavri BB. Beyond biventricular pacing: Exploring the advantages of his-bundle pacing and left bundle branch pacing in heart failure-A systematic review and meta-analysis. Pacing Clin Electrophysiol 2024; 47:156-166. [PMID: 38071452 DOI: 10.1111/pace.14892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND This meta-analysis compares His-Purkinje system pacing (HPSP), a novel cardiac resynchronization therapy (CRT) technique that targets the intrinsic conduction system of the heart, with conventional biventricular pacing (BiVP) in heart failure (HF) patients with left ventricular (LV) dysfunction and dyssynchrony. METHODS We searched multiple databases up to May 2023 and identified 18 studies (five randomized controlled trials and 13 observational studies) involving 1291 patients. The outcome measures were QRS duration, left ventricular ejection fraction (LVEF) improvement, left ventricular end-diastolic diameter (LVEDD) change, HF hospitalization, and New York Heart Association (NYHA) functional class improvement. We used a random-effects model to calculate odds ratios (OR), and mean differences (MD) with 95% confidence intervals (CI). We also assessed the methodological quality of the studies. RESULTS The mean LVEF was 30.7% and the mean follow-up duration was 8.1 months. Among LBBP, HBP, and BiVP, HBP provided the shortest QRS duration [MD: -18.84 ms, 95% CI: -28.74 to -8.94; p = 0.0002], while LBBP showed the greatest improvement in LVEF [MD: 5.74, 95% CI: 2.74 to 7.46; p < 0.0001], LVEDD [MD: -5.55 mm, 95% CI: -7.51 to -3.59; p < 0.00001], and NYHA functional class [MD: -0.58, 95% CI: -0.80 to --0.35; p < 0.00001]. However, there was no significant difference in HF hospitalization between HPSP and BiVP. CONCLUSION LBBP as modality of HPSP demonstrated superior outcomes in achieving electrical ventricular synchrony and systolic function, as well as alleviating HF symptoms, compared to other pacing techniques.
Collapse
Affiliation(s)
- Hussam Al Hennawi
- Department of Internal Medicine, Jefferson Abington Hospital, Abington, Philadelphia, USA
| | | | - Momina Khalid
- Department of Internal Medicine, Jinnah Sindh Medical University Karachi, Karachi, Pakistan
| | - Hiba Khalid
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Laveeza Fatima
- Department of Internal Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Muhammad Talal Ashraf
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Sameer Bhimani
- Department of Internal Medicine, Jinnah Sindh Medical University Karachi, Karachi, Pakistan
| | - Behzad B Pavri
- Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, USA
| |
Collapse
|
14
|
Vijayaraman P, Pokharel P, Subzposh FA, Oren JW, Storm RH, Batul SA, Beer DA, Hughes G, Leri G, Manganiello M, Jastremsky JL, Mroczka K, Johns AM, Mascarenhas V. His-Purkinje Conduction System Pacing Optimized Trial of Cardiac Resynchronization Therapy vs Biventricular Pacing: HOT-CRT Clinical Trial. JACC Clin Electrophysiol 2023; 9:2628-2638. [PMID: 37715742 DOI: 10.1016/j.jacep.2023.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND His-Purkinje conduction system pacing (HPCSP) using His bundle pacing (HBP) or left bundle branch pacing (LBBP) has emerged as an alternative to biventricular pacing (BVP) in patients requiring cardiac resynchronization therapy (CRT). OBJECTIVES The aim of the study was to compare the feasibility and clinical efficacy of HOT-CRT (His-Purkinje conduction system pacing Optimized Trial of Cardiac Resynchronization Therapy) with BVP in patients with heart failure, reduced ejection fraction, and indication for CRT. METHODS This was a prospective, randomized, controlled trial of HOT-CRT and BVP in patients with LVEF <50% and indications for CRT. If HPCSP resulted in incomplete electrical resynchronization, a coronary sinus (CS) lead was added. The primary outcome was the change in left ventricular ejection fraction (LVEF) at 6 months. The primary safety endpoint was freedom from major complications. RESULTS A total of 100 patients (female 31%, aged 70 ± 12 years, LVEF 31.5% ± 9.0%) were randomized. HOT-CRT was successful in 48 of 50 (96%) and BVP-CRT in 41 of 50 (82%) patients (P = 0.03). QRS duration significantly decreased from 164 ± 26 ms to 137 ± 20 ms with HOT-CRT and 166 ± 28 ms to 141 ± 19 ms with BVP. Fluoroscopy results (18.8 ± 12.4 min vs 23.8 ± 12.4 min, P = 0.05) and procedure duration (119 ± 42 min vs 114 ± 36 min, P = 0.5) were similar. The primary outcome of change in LVEF at 6 months was greater in HOT-CRT than in BVP (12.4% ± 7.3% vs 8.0% ± 10.1%, P = 0.02). The primary safety endpoint was similar (98% vs 94%, P = 0.62). Echocardiographic response of improvement in LVEF >5% occurred in 80% vs 61% (P = 0.06). Complications occurred in 3 (6%) in HOT-CRT vs 10 (20%) in BVP (P = 0.03). CONCLUSIONS HPCSP-guided CRT resulted in greater change in LVEF compared with BVP. Randomized clinical trials with long-term follow-up are necessary. (His-Purkinje Conduction System Pacing Optimized Trial of Cardiac Resynchronization Therapy [HOT-CRT]; NCT04561778).
Collapse
Affiliation(s)
| | | | - Faiz A Subzposh
- Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, USA
| | - Jess W Oren
- Geisinger Medical Center, Danville, Pennsylvania, USA
| | | | - Syeda A Batul
- Geisinger Community Medical Center, Scranton, Pennsylvania, USA
| | | | - Grace Hughes
- Clinical Trials Unit, Geisinger Health System, Wilkes Barre, Pennsylvania, USA
| | - Gabriella Leri
- Clinical Trials Unit, Geisinger Health System, Wilkes Barre, Pennsylvania, USA
| | - Marilee Manganiello
- Clinical Trials Unit, Geisinger Health System, Wilkes Barre, Pennsylvania, USA
| | | | - Kaitlyn Mroczka
- Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, USA
| | - Alicia M Johns
- Department of Population Health Sciences, Geisinger Health System, Danville, Pennsylvania, USA
| | - Vernon Mascarenhas
- Geisinger Wyoming Valley Medical Center, Wilkes-Barre, Pennsylvania, USA
| |
Collapse
|
15
|
Moreira GR, Villacorta H. A Personalized Approach to the Management of Congestion in Acute Heart Failure. Heart Int 2023; 17:35-42. [PMID: 38455673 PMCID: PMC10919353 DOI: 10.17925/hi.2023.17.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 03/09/2024] Open
Abstract
Heart failure (HF) is the common final pathway of several conditions and is characterized by hyperactivation of numerous neurohumoral pathways. Cardiorenal interaction plays an essential role in the progression of the disease, and the use of diuretics is a cornerstone in the treatment of hypervolemic patients, especially in acute decompensated HF (ADHF). The management of congestion is complex and, to avoid misinterpretations and errors, one must understand the interface between the heart and the kidneys in ADHF. Congestion itself may impair renal function and must be treated aggressively. Transitory elevations in serum creatinine during decongestion is not associated with worse outcomes and diuretics should be maintained in patients with clear hypervolemia. Monitoring urinary sodium after diuretic administration seems to improve the response to diuretics as it allows for adjustments in doses and a personalized approach. Adequate assessment of volemia and the introduction and titration of guideline-directed medical therapy are mandatory before discharge. An early visit after discharge is highly recommended, to assess for residual congestion and thus avoid readmissions.
Collapse
Affiliation(s)
- Gustavo R Moreira
- Cardiology Division, Fluminense Federal University, Niterói, Rio de Janeiro State, Brazil
| | - Humberto Villacorta
- Cardiology Division, Fluminense Federal University, Niterói, Rio de Janeiro State, Brazil
| |
Collapse
|
16
|
Chen Z, Ma X, Gao Y, Wu S, Xu N, Chen F, Song Y, Li C, Lu M, Dai Y, Gold MR, Zhao S, Chen K. Cardiac magnetic resonance-derived myocardial scar is associated with echocardiographic response and clinical prognosis of left bundle branch area pacing for cardiac resynchronization therapy. Europace 2023; 25:euad326. [PMID: 37926926 PMCID: PMC10639094 DOI: 10.1093/europace/euad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023] Open
Abstract
AIMS Left bundle branch area pacing (LBBAP) is a novel approach for cardiac resynchronization therapy (CRT), but the impact of myocardial substrate on its effect is poorly understood. This study aims to assess the association of cardiac magnetic resonance (CMR)-derived scar burden and the response of CRT via LBBAP. METHODS AND RESULTS Consecutive patients with CRT indications who underwent CMR examination and successful LBBAP-CRT were retrospectively analysed. Cardiac magnetic resonance late gadolinium enhancement was used for scar assessment. Echocardiographic reverse remodelling and composite outcomes (defined as all-cause death or heart failure hospitalization) were evaluated. The echocardiographic response was defined as a ≥15% reduction of left ventricular end-systolic volume. Among the 54 patients included, LBBAP-CRT resulted in a 74.1% response rate. The non-responders had higher global, septal, and lateral scar burden (all P < 0.001). Global, septal, and lateral scar percentage all predicted echocardiographic response [area under the curve (AUC): 0.857, 0.864, and 0.822; positive likelihood ratio (+LR): 9.859, 5.594, and 3.059; and negative likelihood ratio (-LR): 0.323, 0.233, and 0.175 respectively], which was superior to QRS morphology criteria (Strauss left bundle branch abnormality: AUC: 0.696, +LR 2.101, and -LR 0.389). After a median follow-up time of 20.3 (11.5-38.7) months, higher global, lateral and septal scar burdens were all predictive of the composite outcome (hazard ratios: 4.996, 7.019, and 4.741, respectively; P's < 0.05). CONCLUSION Lower scar burden was associated with higher response rate of LBBAP-CRT. The pre-procedure CMR scar evaluation provides further useful information to identify potential responders and clinical outcomes.
Collapse
Affiliation(s)
- Zhongli Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Xuan Ma
- Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Yuan Gao
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Sijin Wu
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Nan Xu
- Department of Echocardiography, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 10037, China
| | - Feng Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Yanyan Song
- Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Chongqiang Li
- Catheterization Laboratory, National Center for Cardiovascular Diseases, Fuwai Hospotal, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 10037, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Michael R Gold
- Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Rd, Xicheng District, Beijing 100037, China
| |
Collapse
|
17
|
Tavolinejad H, Kazemian S, Bozorgi A, Michalski R, Hoyer D, Sedding D, Arya A. Effectiveness of conduction system pacing for cardiac resynchronization therapy: A systematic review and network meta-analysis. J Cardiovasc Electrophysiol 2023; 34:2342-2359. [PMID: 37767743 DOI: 10.1111/jce.16086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cardiac resynchronization therapy (CRT) with biventricular pacing (BiV-CRT) is ineffective in approximately one-third of patients. CRT with Conduction system pacing (CSP-CRT) may achieve greater synchronization. We aimed to assess the effectiveness of CRT with His pacing (His-CRT) or left bundle branch pacing (LBB-CRT) in lieu of biventricular CRT. METHODS AND RESULTS The PubMed, Embase, Web of Science, Scopus, and the Cochrane Library were systematically searched until August 19, 2023, for original studies including patients with reduced left ventricular ejection fraction (LVEF) who received His- or LBB-CRT, that reported either CSP-CRT success, LVEF, QRS duration (QRSd), or New York Heart Association (NYHA) classification. Effect measures were compared with frequentist network meta-analysis. Thirty-seven publications, including 20 comparative studies, were included. Success rates were 73.5% (95% CI: 61.2-83.0) for His-CRT and 91.5% (95% CI: 88.0-94.1) for LBB-CRT. Compared to BiV-CRT, greater improvements were observed for LVEF (mean difference [MD] for His-CRT +3.4%; 95% CI [1.0; 5.7], and LBB-CRT: +4.4%; [2.5; 6.2]), LV end-systolic volume (His-CRT:17.2mL [29.7; 4.8]; LBB-CRT:15.3mL [28.3; 2.2]), QRSd (His-CRT: -17.1ms [-25.0; -9.2]; LBB-CRT: -17.4ms [-23.2; -11.6]), and NYHA (Standardized MD [SMD]: His-CRT:0.4 [0.8; 0.1]; LBB-CRT:0.4 [-0.7; -0.2]). Pacing thresholds at baseline and follow-up were significantly lower with LBB-CRT versus both His-CRT and BiV-CRT. CSP-CRT was associated with reduced mortality (R = 0.75 [0.61-0.91]) and hospitalizations risk (RR = 0.63 [0.42-0.96]). CONCLUSION This study found that CSP-CRT is associated with greater improvements in QRSd, echocardiographic, and clinical response. LBB-CRT was associated with lower pacing thresholds. Future randomized trials are needed to determine CSP-CRT efficacy.
Collapse
Affiliation(s)
- Hamed Tavolinejad
- Department of Cardiac Electrophysiology, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Kazemian
- Department of Cardiac Electrophysiology, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Bozorgi
- Department of Cardiac Electrophysiology, Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roman Michalski
- Clinic and Polyclinic for Cardiology, Angiology and Intensive Care, University Hospital Halle, Martin-Luther University, Halle (Saale), Germany
| | - Daniel Hoyer
- Clinic and Polyclinic for Cardiology, Angiology and Intensive Care, University Hospital Halle, Martin-Luther University, Halle (Saale), Germany
| | - Daniel Sedding
- Clinic and Polyclinic for Cardiology, Angiology and Intensive Care, University Hospital Halle, Martin-Luther University, Halle (Saale), Germany
| | - Arash Arya
- Clinic and Polyclinic for Cardiology, Angiology and Intensive Care, University Hospital Halle, Martin-Luther University, Halle (Saale), Germany
| |
Collapse
|
18
|
Jastrzebski M, Dandamudi G, Burri H, Ellenbogen KA. Conduction system pacing: overview, definitions, and nomenclature. Eur Heart J Suppl 2023; 25:G4-G14. [PMID: 37970514 PMCID: PMC10637837 DOI: 10.1093/eurheartjsupp/suad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Pacing from the right ventricle is associated with an increased risk of development of congestive heart failure, increases in total and cardiac mortality, and a worsened quality of life. Conduction system pacing has become increasingly realized as an alternative to right ventricular apical pacing. Conduction system pacing from the His bundle and left bundle branch area has been shown to provide physiologic activation of the ventricle and may be an alternative to coronary sinus pacing. Conduction system pacing has been studied as an alternative for both bradycardia pacing and for heart failure pacing. In this review, we summarize the clinical results of conduction system pacing under a variety of different clinical settings. The anatomic targets of conduction system pacing are illustrated, and electrocardiographic correlates of pacing from different sites in the conduction system are defined. Ultimately, clinical trials comparing conduction system pacing with standard right ventricular apical pacing and cardiac resynchronization therapy pacing will help define its benefit and risks compared with existing techniques.
Collapse
Affiliation(s)
- Marek Jastrzebski
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Medical College, Jakubowskiego 2, 30-688 Krakow, Poland
| | - Gopi Dandamudi
- Center for Cardiovascular Health, Virginia Mason Franciscan Heath, Seattle, WA, USA
| | - Haran Burri
- Cardiac Pacing Unit, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
19
|
Vijayaraman P, Chelu MG, Curila K, Dandamudi G, Herweg B, Mori S, Jastrzebski M, Sharma PS, Shivkumar K, Tung R, Upadhyay G, Vernooy K, Welter-Frost A, Whinnett Z, Zanon F, Ellenbogen KA. Cardiac Conduction System Pacing: A Comprehensive Update. JACC Clin Electrophysiol 2023; 9:2358-2387. [PMID: 37589646 DOI: 10.1016/j.jacep.2023.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 08/18/2023]
Abstract
The field of cardiac pacing has changed rapidly in the last several years. Since the initial description of His bundle pacing targeting the conduction system, recent advances in pacing the left bundle branch and its fascicles have evolved. The field and investigators' knowledge of conduction system pacing including relevant anatomy and physiology has advanced significantly. The aim of this review is to provide a comprehensive update on recent advances in conduction system pacing.
Collapse
Affiliation(s)
- Pugazhendhi Vijayaraman
- Geisinger Heart Institute, Geisinger Commonwealth School of Medicine, Wilkes-Barre, Pennsylvania, USA.
| | - Mihal G Chelu
- Division of Cardiology, Baylor College of Medicine and Baylor St. Luke's Medical Center and Texas Heart Institute, Houston, Texas, USA
| | - Karol Curila
- Cardiocenter, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Gopi Dandamudi
- Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - Bengt Herweg
- University of South Florida Morsani College of Medicine, Department of Cardiovascular Sciences, Tampa, Florida, USA
| | - Shumpei Mori
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Marek Jastrzebski
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Medical College, Krakow, Poland
| | - Parikshit S Sharma
- Department of Cardiology, Rush University School of Medicine, Chicago, Illinois, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Roderick Tung
- Division of Cardiology, University of Arizona College of Medicine-Phoenix, Banner-University Medical Center, Phoenix, Arizona, USA
| | - Gaurav Upadhyay
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kevin Vernooy
- Center for Arrhythmia Care, Heart and Vascular Center, University of Chicago, Chicago, Illinois, USA
| | - Allan Welter-Frost
- Cleveland Clinic Indian River Hospital, Heart Vascular and Thoracic Institute, Vero Beach, Florida, USA
| | - Zachary Whinnett
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Kenneth A Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
20
|
Cano Ó, Navarrete-Navarro J, Jover P, Osca J, Izquierdo M, Navarro J, Ayala HD, Martínez-Dolz L. Conduction System Pacing for Cardiac Resynchronization Therapy. J Cardiovasc Dev Dis 2023; 10:448. [PMID: 37998506 PMCID: PMC10672305 DOI: 10.3390/jcdd10110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiac resynchronization therapy (CRT) via biventricular pacing (BiVP-CRT) is considered a mainstay treatment for symptomatic heart failure patients with reduced ejection fraction and wide QRS. However, up to one-third of patients receiving BiVP-CRT are considered non-responders to the therapy. Multiple strategies have been proposed to maximize the percentage of CRT responders including two new physiological pacing modalities that have emerged in recent years: His bundle pacing (HBP) and left bundle branch area pacing (LBBAP). Both pacing techniques aim at restoring the normal electrical activation of the ventricles through the native conduction system in opposition to the cell-to-cell activation of conventional right ventricular myocardial pacing. Conduction system pacing (CSP), including both HBP and LBBAP, appears to be a promising pacing modality for delivering CRT and has proven to be safe and feasible in this particular setting. This article will review the current state of the art of CSP-based CRT, its limitations, and future directions.
Collapse
Affiliation(s)
- Óscar Cano
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Javier Navarrete-Navarro
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Pablo Jover
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Joaquín Osca
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Maite Izquierdo
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Josep Navarro
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
| | - Hebert D. Ayala
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Luis Martínez-Dolz
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
21
|
Tang N, Chen X, Li H, Zhang D. Beneficial effects of upgrading to His-Purkinje system pacing in patients with pacing-induced cardiomyopathy: a systematic review and meta-analysis. PeerJ 2023; 11:e16268. [PMID: 37842060 PMCID: PMC10576494 DOI: 10.7717/peerj.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background The purpose of this study was to evaluate the effectiveness of His-Purkinje system pacing (HPSP) in the management of patients with pace-induced cardiomyopathy (PICM). Methods PubMed, Embase, Web of Science, and the Cochrane Library were searched comprehensively to collect related studies published from the inception of databases to June 1, 2022. R 4.04 software, including the Metafor package, matrix package, and the Meta package, was utilized to conduct the singe-arm meta-analysis. The methodology index for non-randomized studies (MINORS) was used to assess the methodological quality of the included studies. Results A total of seven studies were included, involving 164 PICM patients. The meta-analysis showed that HPSP ameliorated the left ventricular ejection fraction (LVEF) by 13.41% (95% CI [11.21-15.61]), improved the New York Heart Association (NYHA) classification by 1.02 (95% CI [-1.41 to -0.63]), and shortened the QRS duration (QRSd) by 60.85 ms (95% CI [-63.94 to -57.75]), resulting in improved cardiac functions in PICM patients. Besides, HPSP reversed the ventricular remodeling, with a 32.46 ml (95% CI [-53.18 to -11.75]) decrease in left ventricular end systolic volume (LVESV) and a 5.93 mm (95% CI [-7.68 to -4.19]) decrease in left ventricular end-diastolic dimension (LVEDD). HPSP also showed stable electrical parameters of pacemakers, with a 0.07 V (95% CI [0.01-0.13]) increase in pacing threshold, a 0.02 mV (95% CI [-0.85 to 0.90]) increase in sensed R-wave amplitude, and a 31.12 Ω reduction in impedance (95% CI [-69.62 to 7.39]). Compared with LBBP, HBP improved LVEF by 13.28% (95% CI [-11.64 to 14.92]) vs 14.43% (95% CI [-13.01 to 15.85]), ameliorated NHYA classification by 1.18 (95% CI [-1.97 to -0.39]) vs 0.95 (95% CI [-1.33 to -0.58]), shortened QRSd by 63.16 ms (95% CI [-67.00 to -59.32]) vs 57.98 ms (95% CI [-62.52 to -53.25]), and decreased LVEDD by 4.12 mm (95% CI [-5.79 to -2.45]) vs 6.26 mm (95% CI [-62.52 to -53.25]). The electrical parameters of the pacemaker were stable in both groups. Conclusions This meta-analysis showed that HPSP could significantly improve cardiac function, promote reverse remodeling, and provide stable electrical parameters of pacemakers for PICM patients.
Collapse
Affiliation(s)
- Nian Tang
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Cardiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xiaoxiao Chen
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Cardiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hongfei Li
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Cardiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Denghong Zhang
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Cardiology, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| |
Collapse
|
22
|
Chung MK, Patton KK, Lau CP, Dal Forno ARJ, Al-Khatib SM, Arora V, Birgersdotter-Green UM, Cha YM, Chung EH, Cronin EM, Curtis AB, Cygankiewicz I, Dandamudi G, Dubin AM, Ensch DP, Glotzer TV, Gold MR, Goldberger ZD, Gopinathannair R, Gorodeski EZ, Gutierrez A, Guzman JC, Huang W, Imrey PB, Indik JH, Karim S, Karpawich PP, Khaykin Y, Kiehl EL, Kron J, Kutyifa V, Link MS, Marine JE, Mullens W, Park SJ, Parkash R, Patete MF, Pathak RK, Perona CA, Rickard J, Schoenfeld MH, Seow SC, Shen WK, Shoda M, Singh JP, Slotwiner DJ, Sridhar ARM, Srivatsa UN, Stecker EC, Tanawuttiwat T, Tang WHW, Tapias CA, Tracy CM, Upadhyay GA, Varma N, Vernooy K, Vijayaraman P, Worsnick SA, Zareba W, Zeitler EP, Lopez-Cabanillas N, Ellenbogen KA, Hua W, Ikeda T, Mackall JA, Mason PK, McLeod CJ, Mela T, Moore JP, Racenet LK. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. J Arrhythm 2023; 39:681-756. [PMID: 37799799 PMCID: PMC10549836 DOI: 10.1002/joa3.12872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Cardiac physiologic pacing (CPP), encompassing cardiac resynchronization therapy (CRT) and conduction system pacing (CSP), has emerged as a pacing therapy strategy that may mitigate or prevent the development of heart failure (HF) in patients with ventricular dyssynchrony or pacing-induced cardiomyopathy. This clinical practice guideline is intended to provide guidance on indications for CRT for HF therapy and CPP in patients with pacemaker indications or HF, patient selection, pre-procedure evaluation and preparation, implant procedure management, follow-up evaluation and optimization of CPP response, and use in pediatric populations. Gaps in knowledge, pointing to new directions for future research, are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eugene H Chung
- University of Michigan Medical School Ann Arbor Michigan USA
| | | | | | | | | | - Anne M Dubin
- Stanford University, Pediatric Cardiology Palo Alto California USA
| | - Douglas P Ensch
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Taya V Glotzer
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
| | - Michael R Gold
- Medical University of South Carolina Charleston South Carolina USA
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | | | - Eiran Z Gorodeski
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
| | | | | | - Weijian Huang
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Peter B Imrey
- Cleveland Clinic Cleveland Ohio USA
- Case Western Reserve University Cleveland Ohio USA
| | - Julia H Indik
- University of Arizona, Sarver Heart Center Tucson Arizona USA
| | - Saima Karim
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
| | - Peter P Karpawich
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
| | - Yaariv Khaykin
- Southlake Regional Health Center Newmarket Ontario Canada
| | | | - Jordana Kron
- Virginia Commonwealth University Richmond Virginia USA
| | | | - Mark S Link
- University of Texas Southwestern Medical Center Dallas Texas USA
| | - Joseph E Marine
- Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Wilfried Mullens
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
| | - Seung-Jung Park
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
| | | | | | - Rajeev Kumar Pathak
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
| | | | | | | | | | | | - Morio Shoda
- Tokyo Women's Medical University Tokyo Japan
| | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
| | - David J Slotwiner
- Weill Cornell Medicine Population Health Sciences New York New York USA
| | | | - Uma N Srivatsa
- University of California Davis Sacramento California USA
| | | | | | | | | | - Cynthia M Tracy
- George Washington University Washington District of Columbia USA
| | | | | | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
| | | | | | - Wojciech Zareba
- University of Rochester Medical Center Rochester New York USA
| | | | - Nestor Lopez-Cabanillas
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Kenneth A Ellenbogen
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Wei Hua
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Takanori Ikeda
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Judith A Mackall
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Pamela K Mason
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Christopher J McLeod
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Theofanie Mela
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Jeremy P Moore
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Laurel Kay Racenet
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| |
Collapse
|
23
|
Domenichini G, Le Bloa M, Teres Castillo C, Graf D, Carroz P, Ascione C, Porretta AP, Pascale P, Pruvot E. Conduction System Pacing versus Conventional Biventricular Pacing for Cardiac Resynchronization Therapy: Where Are We Heading? J Clin Med 2023; 12:6288. [PMID: 37834932 PMCID: PMC10573781 DOI: 10.3390/jcm12196288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the last few years, pacing of the conduction system (CSP) has emerged as the new standard pacing modality for bradycardia indications, allowing a more physiological ventricular activation compared to conventional right ventricular pacing. CSP has also emerged as an alternative modality to conventional biventricular pacing for the delivery of cardiac resynchronization therapy (CRT) in heart failure patients. However, if the initial clinical data seem to support this new physiological-based approach to CRT, the lack of large randomized studies confirming these preliminary results prevents CSP from being used routinely in clinical practice. Furthermore, concerns are still present regarding the long-term performance of pacing leads when employed for CSP, as well as their extractability. In this review article, we provide the state-of-the-art of CSP as an alternative to biventricular pacing for CRT delivery in heart failure patients. In particular, we describe the physiological concepts supporting this approach and we discuss the future perspectives of CSP in this context according to the implant techniques (His bundle pacing and left bundle branch area pacing) and the clinical data published so far.
Collapse
Affiliation(s)
- Giulia Domenichini
- Cardiology Service, University Hospital of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chung MK, Patton KK, Lau CP, Dal Forno ARJ, Al-Khatib SM, Arora V, Birgersdotter-Green UM, Cha YM, Chung EH, Cronin EM, Curtis AB, Cygankiewicz I, Dandamudi G, Dubin AM, Ensch DP, Glotzer TV, Gold MR, Goldberger ZD, Gopinathannair R, Gorodeski EZ, Gutierrez A, Guzman JC, Huang W, Imrey PB, Indik JH, Karim S, Karpawich PP, Khaykin Y, Kiehl EL, Kron J, Kutyifa V, Link MS, Marine JE, Mullens W, Park SJ, Parkash R, Patete MF, Pathak RK, Perona CA, Rickard J, Schoenfeld MH, Seow SC, Shen WK, Shoda M, Singh JP, Slotwiner DJ, Sridhar ARM, Srivatsa UN, Stecker EC, Tanawuttiwat T, Tang WHW, Tapias CA, Tracy CM, Upadhyay GA, Varma N, Vernooy K, Vijayaraman P, Worsnick SA, Zareba W, Zeitler EP. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm 2023; 20:e17-e91. [PMID: 37283271 PMCID: PMC11062890 DOI: 10.1016/j.hrthm.2023.03.1538] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 06/08/2023]
Abstract
Cardiac physiologic pacing (CPP), encompassing cardiac resynchronization therapy (CRT) and conduction system pacing (CSP), has emerged as a pacing therapy strategy that may mitigate or prevent the development of heart failure (HF) in patients with ventricular dyssynchrony or pacing-induced cardiomyopathy. This clinical practice guideline is intended to provide guidance on indications for CRT for HF therapy and CPP in patients with pacemaker indications or HF, patient selection, pre-procedure evaluation and preparation, implant procedure management, follow-up evaluation and optimization of CPP response, and use in pediatric populations. Gaps in knowledge, pointing to new directions for future research, are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eugene H Chung
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | - Anne M Dubin
- Stanford University, Pediatric Cardiology, Palo Alto, California
| | | | - Taya V Glotzer
- Hackensack Meridian School of Medicine, Hackensack, New Jersey
| | - Michael R Gold
- Medical University of South Carolina, Charleston, South Carolina
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Eiran Z Gorodeski
- University Hospitals and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | - Weijian Huang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peter B Imrey
- Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University, Cleveland, Ohio
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Saima Karim
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Peter P Karpawich
- The Children's Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Yaariv Khaykin
- Southlake Regional Health Center, Newmarket, Ontario, Canada
| | | | - Jordana Kron
- Virginia Commonwealth University, Richmond, Virginia
| | | | - Mark S Link
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph E Marine
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wilfried Mullens
- Ziekenhuis Oost-Limburg Genk, Belgium and Hasselt University, Hasselt, Belgium
| | - Seung-Jung Park
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Ratika Parkash
- QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | | | - Rajeev Kumar Pathak
- Australian National University, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | | | | | | | | | | | - Morio Shoda
- Tokyo Women's Medical University, Tokyo, Japan
| | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J Slotwiner
- Weill Cornell Medicine Population Health Sciences, New York, New York
| | | | | | | | | | | | | | - Cynthia M Tracy
- George Washington University, Washington, District of Columbia
| | | | | | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Feijen M, Egorova AD, Kuijken T, Bootsma M, Schalij MJ, van Erven L. One-Year Mortality in Patients Undergoing an Implantable Cardioverter Defibrillator or Cardiac Resynchronization Therapy Pulse Generator Replacement: Identifying Patients at Risk. J Clin Med 2023; 12:5654. [PMID: 37685719 PMCID: PMC10489035 DOI: 10.3390/jcm12175654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Implantable cardioverter defibrillators (ICDs) significantly contribute to the prevention of sudden cardiac death in selected patients. However, it is essential to identify those who are likely to not have benefit from an ICD and to defer a pulse generator exchange. Easily implementable guidelines for individual risk stratification and decision making are lacking. This study investigates the 1-year mortality of patients who underwent an ICD or cardiac resynchronization therapy with defibrillator function (CRT-D) pulse generator replacement in a contemporary real-world tertiary hospital setting. The cause of death and patient- and procedure-related factors are stratified, and predictive values for 1-year mortality are evaluated. Patients with a follow-up of ≥365 days (or prior mortality) after an ICD or CRT-D exchange at the Leiden University Medical Center from 1 January 2018 until 31 December 2021 were eligible. In total, 588 patients were included (77% male, 69 [60-76] years old, 59% primary prevention, 46% ischemic cardiomyopathy and 37% mildly reduced left ventricular ejection fraction (LVEF)). Patients undergoing a CRT-D replacement or upgrade had a significantly higher 1-year all-cause mortality (10.7% and 11.9%, respectively) compared to patients undergoing ICD (2.8%) exchange (p = 0.002). LVEF ≤ 30%, New York Heart Association class ≥ 3, estimated glomerular filtration rate ≤ 30 mL/min/m2 and haemoglobin ≤ 7 mmol/L were independently associated with mortality within 1 year after pulse generator replacement. There is a growing need for prospectively validated risk scores to weight individualized risk of mortality with the expected ICD therapy benefit and to support a well-informed, shared decision-making process.
Collapse
Affiliation(s)
| | - Anastasia D. Egorova
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.F.); (L.v.E.)
| | | | | | | | | |
Collapse
|
26
|
Ellenbogen KA, Auricchio A, Burri H, Gold MR, Leclercq C, Leyva F, Linde C, Jastrzebski M, Prinzen F, Vernooy K. The evolving state of cardiac resynchronization therapy and conduction system pacing: 25 years of research at EP Europace journal. Europace 2023; 25:euad168. [PMID: 37622580 PMCID: PMC10450796 DOI: 10.1093/europace/euad168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiac resynchronization therapy (CRT) was proposed in the 1990s as a new therapy for patients with heart failure and wide QRS with depressed left ventricular ejection fraction despite optimal medical treatment. This review is aimed first to describe the rationale and the physiologic effects of CRT. The journey of the landmark randomized trials leading to the adoption of CRT in the guidelines since 2005 is also reported showing the high level of evidence for CRT. Different alternative pacing modalities of CRT to conventional left ventricular pacing through the coronary sinus have been proposed to increase the response rate to CRT such as multisite pacing and endocardial pacing. A new emerging alternative technique to conventional biventricular pacing, conduction system pacing (CSP), is a promising therapy. The different modalities of CSP are described (Hirs pacing and left bundle branch area pacing). This new technique has to be evaluated in clinical randomized trials before implementation in the guidelines with a high level of evidence.
Collapse
Affiliation(s)
- Kenneth A Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Angelo Auricchio
- Division of Cardiology, Università della Svizzera Italiana and Istituto Cardiocentro Ticino, Lugano, Switzerland
| | - Haran Burri
- Cardiac Pacing Unit, Cardiology Department, University Hospital of Geneva, Geneva, Switzerland
| | - Michael R Gold
- Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Francisco Leyva
- Aston University, Birmingham NHS Trust at Queen Elizabeth Hospital, Birmingham, UK
| | - Cecilia Linde
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Marek Jastrzebski
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Medical College, Krakow, Poland
| | - Frits Prinzen
- Physiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| |
Collapse
|
27
|
Moustafa AT, Tang ASL, Khan HR. Conduction system pacing on track to replace CRT? Review of current evidence and prospects of conduction system pacing. Front Cardiovasc Med 2023; 10:1220709. [PMID: 37649666 PMCID: PMC10463741 DOI: 10.3389/fcvm.2023.1220709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Conduction system pacing (CSP) has been emerging over the last decade as a pacing option instead of conventional right ventricular (RV) pacing and biventricular (BiV) pacing. Numerous case reports, some observational studies and a few randomized control trials have looked at optimum pacing strategies for heart failure (HF) with left bundle branch block (LBBB) or cases where left ventricular (LV) dysfunction is anticipated due to chronic RV pacing (RVP). Evolution of pacing strategies from standard RVP to septal RVP, BiV pacing and now CSP have shown improving hemodynamic responses and possible ease of implantation of CSP systems. In this review article, we review the literature on the evolution of CSP and common scenarios where it might be beneficial.
Collapse
Affiliation(s)
| | | | - Habib Rehman Khan
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
28
|
Ezzeddine FM, Leon IG, Cha YM. Cardiac Resynchronisation with Conduction System Pacing. Arrhythm Electrophysiol Rev 2023; 12:e22. [PMID: 37654672 PMCID: PMC10466271 DOI: 10.15420/aer.2023.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/12/2023] [Indexed: 09/02/2023] Open
Abstract
To date, biventricular pacing (BiVP) has been the standard pacing modality for cardiac resynchronisation therapy. However, it is non-physiological, with the activation spreading between the left ventricular epicardium and right ventricular endocardium. Up to one-third of patients with heart failure who are eligible for cardiac resynchronisation therapy do not derive benefit from BiVP. Conduction system pacing (CSP), which includes His bundle pacing and left bundle branch area pacing, has emerged as an alternative to BiVP for cardiac resynchronisation. There is mounting evidence supporting the benefits of CSP in achieving synchronous ventricular activation and repolarisation. The aim of this review is to summarise the current options and outcomes of CSP when used for cardiac resynchronisation in patients with heart failure.
Collapse
Affiliation(s)
| | - Isaac G Leon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, US
| | - Yong-Mei Cha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, US
| |
Collapse
|
29
|
Padala SK, Ellenbogen KA. Pacing of Specialized Conduction System. Cardiol Clin 2023; 41:463-489. [PMID: 37321695 DOI: 10.1016/j.ccl.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Right ventricular pacing for bradycardia remains the mainstay of pacing therapy. Chronic right ventricular pacing may lead to pacing-induced cardiomyopathy. We focus on the anatomy of the conduction system and the clinical feasibility of pacing the His bundle and/or left bundle conduction system. We review the hemodynamics of conduction system pacing, the techniques to capture the conduction system and the electrocardiogram and pacing definitions of conduction system capture. Clinical studies of conduction system pacing in the setting of atrioventricular block and after AV junction ablation are reviewed and the evolving role of conduction system pacing is compared with biventricular pacing.
Collapse
Affiliation(s)
- Santosh K Padala
- Department of Cardiac Electrophysiology, Virginia Commonwealth University, Gateway Building, 3 Road Floor, 3-216, 1200 East Marshall Street, Richmond, VA, USA
| | - Kenneth A Ellenbogen
- Department of Cardiac Electrophysiology, Virginia Commonwealth University, Gateway Building, 3 Road Floor, 3-216, 1200 East Marshall Street, Richmond, VA, USA.
| |
Collapse
|
30
|
Cao Z, Chen X, Su L, Hou X. Cardiac resynchronization therapy for patients with heart failure and nonspecific intraventricular conduction delay. Pacing Clin Electrophysiol 2023; 46:913-923. [PMID: 37477568 DOI: 10.1111/pace.14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
The efficacy of cardiac resynchronization therapy (CRT) in heart failure patients with left bundle branch block (LBBB) is well established with Class I or IIa recommendation according to 2021 ESC Guidelines on cardiac pacing and CRT, whereas non-LBBB morphology is less recommended. There is insufficient evidence that proves patients with NICD could benefit from CRT. As patients with NICD are characterized by heterogeneity, the effect of CRT on these patients is still controversial. Although the proportion of NICD in the population is lower than that of LBBB patients, it is still worth investigating the effects of CRT on patients with NICD in an era of His-Purkinje conduction system pacing (HPCSP).
Collapse
Affiliation(s)
- Zezhong Cao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lan Su
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaofeng Hou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
31
|
Malaty MM, Sivagangabalan G, Qian PC. Beyond Conventional Cardiac Resynchronisation Therapy: A Review of Electrophysiological Options in the Management of Chronic Heart Failure. Heart Lung Circ 2023; 32:905-913. [PMID: 37286460 DOI: 10.1016/j.hlc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
The incidence of heart failure (HF) continues to grow and burden our health care system. Electrophysiological aberrations are common amongst patients with heart failure and can contribute to worsening symptoms and prognosis. Targeting these abnormalities with cardiac and extra-cardiac device therapies and catheter ablation procedures augments cardiac function. Newer technologies aimed to improvement procedural outcomes, address known procedural limitations and target newer anatomical sites have been trialled recently. We review the role and evidence base for conventional cardiac resynchronisation therapy (CRT) and its optimisation, catheter ablation therapies for atrial arrhythmias, cardiac contractility and autonomic modulation therapies.
Collapse
Affiliation(s)
- Michael M Malaty
- Department of Cardiology, Blacktown Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Gopal Sivagangabalan
- Department of Cardiology, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia; School of Medicine, Sydney Campus, University of Notre Dame, Sydney, NSW, Australia
| | - Pierre C Qian
- Department of Cardiology, Blacktown Hospital, Western Sydney Local Health District, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia; Westmead Applied Research Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
32
|
Nohno Y, Fujiu K, Kozu R, Maruyama S, Hasegawa T, Tsuchiya H, Yanagisawa T, Tachibana T, Kimura H, Yazaki Y. Conduction System Pacing Upgrade in Chronic Heart Failure with Severe Left Ventricular Dysfunction and Chronic Atrial Fibrillation. Int Heart J 2023; 64:768-774. [PMID: 37460323 DOI: 10.1536/ihj.22-614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cardiac resynchronization therapy (CRT) is a standard treatment for patients with severe congestive heart failure. However, one-third of patients receiving CRT are non-responders. Conduction system pacing (CSP), including His-bundle pacing (HBP) and left bundle branch area pacing (LBBAP), has become an alternative to CRT therapy. Furthermore, CRT therapy with CSP has shown to be more effective than CRT alone. When an implantable cardiac defibrillator or CRT-defibrillator is implanted with CSP, the problem of which port the HBP lead and LBBAP lead should be connected to arises. We report 2 cases of upgrading to CRT with CSP by utilizing the atrial ports for HBP and LBBAP leads. The procedure is a simple, reasonable, and effective therapy for end-stage heart failure.
Collapse
Affiliation(s)
- Yasumasa Nohno
- Department of Cardiology, Saku Central Hospital Advanced Care Center
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, The University of Tokyo
| | - Ryosuke Kozu
- Department of Cardiology, Saku Central Hospital Advanced Care Center
| | - Shusaku Maruyama
- Department of Cardiology, Saku Central Hospital Advanced Care Center
| | - Tomoya Hasegawa
- Department of Cardiology, Saku Central Hospital Advanced Care Center
| | - Hiromi Tsuchiya
- Department of Cardiology, Saku Central Hospital Advanced Care Center
| | | | | | - Hikaru Kimura
- Department of Cardiology, Saku Central Hospital Advanced Care Center
| | - Yoshikazu Yazaki
- Department of Cardiology, Saku Central Hospital Advanced Care Center
| |
Collapse
|
33
|
Wang Y, Liu F, Liu M, Wang Z, Lu X, Huang J, Gu D. His-Purkinje system pacing versus biventricular pacing in clinical efficacy: a systematic review and meta-analysis. BMC Cardiovasc Disord 2023; 23:285. [PMID: 37270513 DOI: 10.1186/s12872-023-03307-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND His-Purkinje system pacing (HPSP), including his-bundle pacing (HBP) and left bundle branch area pacing (LBBaP), imitates the natural conduction of the heart as an alternative to biventricular pacing (BVP) in cardiac resynchronization therapy (CRT). However, the feasibility and efficacy of HPSP were currently only evidenced by studies with a limited sample size, so this study aimed to provide a comprehensive assessment through a systematic review and meta-analysis. METHODS In order to compare the clinical outcomes associated with HPSP and BVP in patients for CRT, PubMed, EMBASE, Cochrane Library and Web of Science database were searched from inception to April 10, 2023. Clinical outcomes of interest including QRS duration (QRSd), left ventricular (LV) function and New York Heart Association (NYHA) functional classification, pacing threshold, echocardiographic and clinical response, hospitalization rate of HF and all-cause mortality were also extracted and summarized for meta-analysis. RESULTS A total of 13 studies (ten observational studies and three randomized studies) involving 1,121 patients were finally included. The patients were followed up for 6-27 months. Compared with BVP, CRT patients treated by HPSP presented shorter QRSd [mean difference (MD): -26.23 ms, 95% confidence interval (CI): -34.54 to -17.92, P < 0.001, I2 = 91%], greater LV functional improvement with increased left ventricular ejection fraction (LVEF) (MD: 6.01, 95% CI: 4.81 to 7.22, P < 0.001, I2 = 0%), decreased left ventricular end-diastolic dimension (LVEDD) (MD: -2.91, 95% CI: -4.86 to -0.95, P = 0.004, I2 = 35%), and more improved NYHA functional classification (MD: -0.45, 95% CI: -0.67 to -0.23, P < 0.001, I2 = 70%). In addition, HPSP was more likely to have higher echocardiographic [odds ratio (OR): 2.76, 95% CI: 1.74 to 4.39, P < 0.001, I2 = 0%], clinical (OR: 2.10, 95% CI: 1.16 to 3.80, P = 0.01, I2 = 0%) and super clinical (OR: 3.17, 95% CI: 2.09 to 4.79, P < 0.001, I2 = 0%) responses than BVP, and a lower hospitalization rate of HF (OR: 0.34, 95% CI: 0.22 to 0.51, P < 0.001, I2 = 0%), while presented no difference (OR: 0.68, 95% CI: 0.44 to 1.06, P = 0.09, I2 = 0%) in all-cause mortality compared with BVP. With threshold change taking into account, BVP was less stable than LBBaP (MD: -0.12 V, 95% CI: -0.22 to -0.03, P = 0.01, I2 = 57%), but had no difference with HBP (MD: 0.11 V, 95% CI: -0.09 to 0.31, P = 0.28, I2 = 0%). CONCLUSION The present findings suggested that HPSP was associated with greater improvement of cardiac function in patients with indication for CRT and was a potential alternative to BVP to achieve physiological pacing through native his-purkinje system.
Collapse
Affiliation(s)
- Ya Wang
- Department of Epidemiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, 100037, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, 100037, China
| | - Mengyao Liu
- Department of Epidemiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, 100037, China
| | - Zefeng Wang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, 100037, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, 100037, China
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing, 100037, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Ezzeddine FM, Pistiolis SM, Pujol-Lopez M, Lavelle M, Wan EY, Patton KK, Robinson M, Lador A, Tamirisa K, Karim S, Linde C, Parkash R, Birgersdotter-Green U, Russo AM, Chung M, Cha YM. Outcomes of conduction system pacing for cardiac resynchronization therapy in patients with heart failure: A multicenter experience. Heart Rhythm 2023; 20:863-871. [PMID: 36842610 PMCID: PMC10225322 DOI: 10.1016/j.hrthm.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/17/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Whether conduction system pacing (CSP) is an alternative option for cardiac resynchronization therapy (CRT) in patients with heart failure remains an area of active investigation. OBJECTIVE The purpose of this study was to assess the echocardiographic and clinical outcomes of CSP compared to biventricular pacing (BiVP). METHODS This multicenter retrospective study included patients who fulfilled CRT indications and received CSP. Patients with CSP were matched using propensity score matching and compared in a 1:1 ratio to patients who received BiVP. Echocardiographic and clinical outcomes were assessed. Response to CRT was defined as an absolute increase of ≥5% in left ventricular ejection fraction (LVEF) at 6 months post-CRT. RESULTS A total of 238 patients were included. Mean age was 69.8 ± 12.5 years, and 66 (27.7%) were female. Sixty-nine patients (29%) had His-bundle pacing, 50 (21%) had left bundle branch area pacing, and 119 (50%) had BiVP. Mean follow-up duration in the CSP and BiVP groups was 269 ± 202 days and 304 ± 262 days, respectively (P = .293). The proportion of CRT responders was greater in the CSP group than in the BiVP group (74% vs 60%, respectively; P = .042). On Kaplan-Meier analysis, there was no statistically significant difference in the time to first heart failure hospitalization (log-rank P = .78) and overall survival (log-rank P = .68) between the CSP and BiVP groups. CONCLUSION In patients with heart failure and reduced ejection fraction, CSP resulted in greater improvement in LVEF compared to BiVP. Large-scale randomized trials are needed to validate these outcomes and further investigate the different options available for CSP.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Margarida Pujol-Lopez
- Arrhythmia Section, Cardiology Department, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Universitat de Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Michael Lavelle
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center-New York Presbyterian, New York, New York
| | - Elaine Y Wan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center-New York Presbyterian, New York, New York
| | - Kristen K Patton
- Division of Cardiology, University of Washington Medical Center, Seattle, Washington
| | - Melissa Robinson
- Division of Cardiology, University of Washington Medical Center, Seattle, Washington
| | - Adi Lador
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | | | - Saima Karim
- Heart and Vascular Center, Metrohealth Campus of Case Western Reserve University, Cleveland, Ohio
| | - Cecilia Linde
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ratika Parkash
- Division of Cardiology QEII Health Sciences Center/Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Mina Chung
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yong-Mei Cha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
35
|
Wijesuriya N, Mehta V, De Vere F, Strocchi M, Behar JM, Niederer SA, Rinaldi CA. The role of conduction system pacing in patients with atrial fibrillation. Front Cardiovasc Med 2023; 10:1187754. [PMID: 37304966 PMCID: PMC10248047 DOI: 10.3389/fcvm.2023.1187754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Conduction system pacing (CSP) has emerged as a promising novel delivery method for Cardiac Resynchronisation Therapy (CRT), providing an alternative to conventional biventricular epicardial (BiV) pacing in indicated patients. Despite increasing popularity and widespread uptake, CSP has rarely been specifically examined in patients with atrial fibrillation (AF), a cohort which forms a significant proportion of the heart failure (HF) population. In this review, we first examine the mechanistic evidence for the importance of sinus rhythm (SR) in CSP by allowing adjustment of atrioventricular delays (AVD) to achieve the optimal electrical response, and thus, whether the efficacy of CSP may be significantly attenuated compared to conventional BiV pacing in the presence of AF. We next evaluate the largest clinical body of evidence in this field, related to patients receiving CSP following atrioventricular nodal ablation (AVNA) for AF. Finally, we discuss how future research may be designed to address the vital question of how effective CSP in AF patients is, and the potential hurdles we may face in delivering such studies.
Collapse
Affiliation(s)
- Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Felicity De Vere
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan M. Behar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Research and Innovation Cluster, Alan Turing Institute, London, United Kingdom
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
36
|
Ma C, Wang Z, Ma Z, Ma P, Dai S, Wang N, Yang Y, Li G, Gao L, Xia Y, Xiao X, Dong Y. The feasibility and safety of his-purkinje conduction system pacing in patients with heart failure with severely reduced ejection fraction. Front Cardiovasc Med 2023; 10:1187169. [PMID: 37283576 PMCID: PMC10239933 DOI: 10.3389/fcvm.2023.1187169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Objective The purpose of this study was to evaluate the feasibility and outcomes of conduction system pacing (CSP) in patients with heart failure (HF) who had a severely reduced left ventricular ejection fraction (LVEF) of less than 30% (HFsrEF). Methods Between January 2018 and December 2020, all consecutive HF patients with LVEF < 30% who underwent CSP at our center were evaluated. Clinical outcomes and echocardiographic data [LVEF and left ventricular end-systolic volume (LVESV)], and complications were all recorded. In addition, clinical and echocardiographic (≥5% improvement in LVEF or ≥15% decrease in LVESV) responses were assessed. The patients were classified into a complete left bundle branch block (CLBBB) morphology group and a non-CLBBB morphology group according to the baseline QRS configuration. Results Seventy patients (66 ± 8.84 years; 55.7% male) with a mean LVEF of 23.2 ± 3.23%, LVEDd of 67.33 ± 7.47 mm and LVESV of 212.08 ± 39.74 ml were included. QRS configuration at baseline was CLBBB in 67.1% (47/70) of patients and non-CLBBB in 32.9%. At implantation, the CSP threshold was 0.6 ± 0.3 V @ 0.4 ms and remained stable during a mean follow-up of 23.43 ± 11.44 months. CSP resulted in significant LVEF improvement from 23.2 ± 3.23% to 34.93 ± 10.34% (P < 0.001) and significant QRS narrowing from 154.99 ± 34.42 to 130.81 ± 25.18 ms (P < 0.001). Clinical and echocardiographic responses were observed in 91.4% (64/70) and 77.1% (54/70) of patients. Super-response to CSP (≥15% improvement in LVEF or ≥30% decrease in LVESV) was observed in 52.9% (37/70) of patients. One patient died due to acute HF and following severe metabolic disorders. Baseline BNP (odds ratio: 0.969; 95% confidence interval: 0.939-0.989; P = 0.045) was associated with echocardiographic response. The proportions of clinical and echocardiographic responses in the CLBBB group were higher than those in the non-CLBBB group but without significant statistical differences. Conclusions CSP is feasible and safe in patients with HFsrEF. CSP is associated with a significant improvement in clinical and echocardiographic outcomes, even for patients with non-CLBBB widened QRS.
Collapse
Affiliation(s)
- Chengming Ma
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhulin Ma
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Peipei Ma
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyu Dai
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiheng Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guocao Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lianjun Gao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianjie Xiao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingxue Dong
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
Zhang DD, Zhao FL, Yang YH, Ma CM, Ma PP, Zhao YN, Xia YL, Gao LJ, Dong YX. Conduction system pacing improves the outcomes on patients with high percentage of ventricular pacing and heart failure with mildly reduced ejection fraction. Front Cardiovasc Med 2023; 10:1132520. [PMID: 37260948 PMCID: PMC10228713 DOI: 10.3389/fcvm.2023.1132520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Aims This study aimed to investigate the efficacy and safety of CSP in patients with a high percentage of ventricular pacing and heart failure with HFmrEF. Methods Patients who underwent CSP for HFmrEF and ventricular pacing >40% were consecutively enrolled from January 2018 to May 2021. All participants were followed up at least 12 months. Clinical data including cardiac performance and lead outcomes were compared before and after the procedure. Left ventricular ejection fraction (LVEF) was measured using the biplane Simpson's method. HFmrEF was defined as heart failure with the LVEF ranging from 41%-49%. Results CSP was successfully performed in 64 cases (96.97%), which included 16 cases of left bundle branch pacing (LBBP) and 48 cases of His bundle pacing (HBP). After a mean of 23.12 ± 8.17 months follow-up, NYHA classification (P < 0.001), LVEF (42.45 ± 1.84% vs. 49.97 ± 3.57%, P < 0.001) and left ventricular end diastolic diameter (LVEDD) (55.59 ± 6.17 mm vs. 51.66 ± 3.48 mm, P < 0.001) improved significantly. During follow-up, more than half (39/64,60.9%) of patients returned to normal LVEF and LVEDD with complete reverse remodeling. The pacing threshold in LBBP was lower (0.90 ± 0.27 V@0.4 ms vs. 1.61 ± 0.71 V@0.4 ms, P < 0.001) than that in HBP. No perforation, electrode dislodging, thrombosis or infection was observed during follow-up. Conclusions CSP could improve the clinical outcomes in patients with HFmrEF and a high percentage of ventricular pacing. LBBP might be a better choice because of its feasibility and safety, especially in patients with infranodal atrioventricular block.
Collapse
|
38
|
Zhang J, Li F, Zhang ZY, Yang F, Kong Q, Chen JY, Zhang L, Liu HH, Chen XF, Ye YH, Wang RX. Conduction system pacing is superior to biventricular pacing in patients with heart failure: Insights from the pooled clinical studies. Front Physiol 2023; 14:1125340. [PMID: 37215180 PMCID: PMC10196184 DOI: 10.3389/fphys.2023.1125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Background: The effects of conduction system pacing (CSP) compared with conventional biventricular pacing (BVP) on heart function in patients with heart failure remain elusive. Methods: PubMed, Embase, Cochrane's Library and Web of science databases were searched up to 1 October 2022 for pertinent controlled studies. Random or fixed-effect model were used to synthesize the clinical outcomes. Subgroup analysis was performed to screen the potential confounding factors. Results: Fifteen studies including 1,347 patients were enrolled. Compared with BVP, CSP was significantly associated with shortened QRS duration [WMD -22.51 ms; p = 0.000], improved left ventricular ejection fraction [WMD 5.53%; p = 0.000], improved NYHA grade [WMD -0.42; p = 0.000], higher response rate and lower heart failure rehospitalization rate. CSP resulted in better clinical outcomes in higher male proportion group than lower one compared with BVP. No significant differences of clinical outcomes were observed between left bundle branch area pacing (LBBaP) and his bundle pacing (HBP) except the pacing threshold. The pacing threshold of LBBaP was significantly lower than those in BVP and HBP. Conclusion: This study suggests that CSP might be superior to conventional BVP for HF patients. In a higher male proportion group, CSP may be associated with more benefits than BVP. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355991; Identifier: CRD42022355991.
Collapse
|
39
|
Ballantyne BA, Chew DS, Vandenberk B. Paradigm Shifts in Cardiac Pacing: Where Have We Been and What Lies Ahead? J Clin Med 2023; 12:jcm12082938. [PMID: 37109274 PMCID: PMC10146747 DOI: 10.3390/jcm12082938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The history of cardiac pacing dates back to the 1930s with externalized pacing and has evolved to incorporate transvenous, multi-lead, or even leadless devices. Annual implantation rates of cardiac implantable electronic devices have increased since the introduction of the implantable system, likely related to expanding indications, and increasing global life expectancy and aging demographics. Here, we summarize the relevant literature on cardiac pacing to demonstrate the enormous impact it has had within the field of cardiology. Further, we look forward to the future of cardiac pacing, including conduction system pacing and leadless pacing strategies.
Collapse
Affiliation(s)
- Brennan A Ballantyne
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Derek S Chew
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bert Vandenberk
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Cardiology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
40
|
Pescariu SA, Șoșdean R, Mircea MN, Ionac A, Pescariu S. The Challenges of Cardiac Resynchronization Therapy in Patients with Dilated Cardiomyopathy and Persistent Left Superior Vena Cava: A Case Report and Concise Literature Review. Biomedicines 2023; 11:biomedicines11041205. [PMID: 37189821 DOI: 10.3390/biomedicines11041205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a chronic and debilitating disease, which requires extensive diagnostic and treatment resources in order to achieve an acceptable quality of life for the patient. While optimal medical treatment remains at the core of the disease's management, interventional cardiology also plays a very important role. However, in very rare situations, interventionists might find cases especially challenging due to the presence of venous anomalies, such as persistent left superior vena cava (PLSVC), anomalies that may go undiscovered during the patient's lifetime until venous cannulation is necessary. While these types of malformations also pose challenges in regards to standard pacemaker implantation, cardiac resynchronization (CRT) devices pose several additional challenges due to the complexity of the device and the necessity of finding an optimal position for the coronary sinus (CS) lead. We present the case of a 55-year-old male patient with advanced heart failure due to dilated cardiomyopathy (DCM) and LBBB who was a candidate for CRT-D therapy, describing the investigations that led to the discovery of the PLSVC as well as the technique and results of the intervention, while comparing our case to similar cases found in recent literature.
Collapse
Affiliation(s)
- Silvius Alexandru Pescariu
- Department VI-Cardiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- Research Center of the Institute for Cardiovascular Diseases, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, G. Adam St. No. 13A, 300310 Timișoara, Romania
| | - Raluca Șoșdean
- Department VI-Cardiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- Research Center of the Institute for Cardiovascular Diseases, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, G. Adam St. No. 13A, 300310 Timișoara, Romania
| | - Monica Nicoleta Mircea
- Research Center of the Institute for Cardiovascular Diseases, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, G. Adam St. No. 13A, 300310 Timișoara, Romania
| | - Adina Ionac
- Department VI-Cardiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- Research Center of the Institute for Cardiovascular Diseases, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, G. Adam St. No. 13A, 300310 Timișoara, Romania
| | - Sorin Pescariu
- Department VI-Cardiology, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- Research Center of the Institute for Cardiovascular Diseases, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, G. Adam St. No. 13A, 300310 Timișoara, Romania
| |
Collapse
|
41
|
Mariani MV, Piro A, Forleo GB, Della Rocca DG, Natale A, Miraldi F, Vizza CD, Lavalle C. Clinical, procedural and lead outcomes associated with different pacing techniques: a network meta-analysis. Int J Cardiol 2023; 377:52-59. [PMID: 36736670 DOI: 10.1016/j.ijcard.2023.01.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND His- Purkinje system pacing (HPSP) techniques have been proposed as alternative to biventricular pacing (BVP) and right ventricular pacing (RVP). OBJECTIVE To compare data regarding clinical, procedural and lead outcomes associated with different pacing techniques. METHODS An accurate search of online scientific libraries (from inception to May, 12,022) was performed. Thirty-three studies were included in the meta-analysis involving 4386 patients, of whom 1324 receiving RVP, 1032 patients receiving BVP, 1069 patients receiving his-bundle pacing (HBP) and 968 patients receiving left bundle branch pacing (LBBP). RESULTS LBBP provided a statistically significant increase in LVEF relative to HBP (0.4473 [0.0584; 0.8361] p = 0.0242) and BVP (0.6733 [0.4734; 0.8732] p < 0.0001) in patients with cardiac resynchronization therapy indication. LBBP and HBP significantly decreased QRS duration as compared to BVP, with largest QRS narrowing obtained by LBBP (-0.4951 [-0.9077; -0.0824] p = 0.0187). As compared to LBBP, HBP was associated with a significant increase of pacing threshold (p = 0.0369) and significant reduction of R-wave amplitude over time (p = 0.027). LBBP was associated with significant reduction in RR of hospitalization for HF (HFH) as compared to both BVP (p = 0.0343) and HBP (p = 0.0476), whereas, as compared to RVP, the risk of lead issues was significantly higher with BVP (p = 0.0424) and HBP (p = 0.0298), but not for LBBP (p = 0.425). CONCLUSIONS As compared to other pacing techniques, LBBP significantly improved LVEF, narrowed QRS duration and reduced HFHs, with steadily lower capture thresholds and higher R-wave amplitude, and without increasing lead issues.
Collapse
Affiliation(s)
- Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Battista Forleo
- Department of Cardiology, ASST-Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX 78705, USA
| | - Fabio Miraldi
- Cardio Thoracic-Vascular and Organ Transplantation Surgery Department, Policlinico Umberto I Hospital, Rome, Italy
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
42
|
da Silva Menezes Junior A, Melo MGZ, Barreto LP. Meta-analysis of clinical outcomes in cardiac resynchronisation therapy: His Bundle Pacing vs biventricular pacing. Expert Rev Med Devices 2023; 20:505-515. [PMID: 37045603 DOI: 10.1080/17434440.2023.2202816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION AND OBJECTIVE Cardiac resynchronization may treat severe heart failure (HF) with pharmacological optimization, left branch block, and an ejection fraction < 35%. However, 30-40% of patients fail therapy. HBP could replace biventricular pacing (BiV). We compared the effectiveness of HBP versus BiV in HF patients. METHODS We searched PubMed, Embase, and Cochrane for studies on QRS, left ventricular ejection fraction (LVEF), New York Heart Association (NYHA) functional class, left ventricular end-systolic volume (LVESV), and 6-minute walk test. RESULTS Six publications included 774 patients (mean [± standard deviation] age: 66.9 [14.0] years; 484 (62.5%) were males; 408 [52.71%] underwent HBP; the mean follow-up was 6-12 months. The HBP group had a higher QRS reduction in the meta-analysis (median: -17.54 [-20.46, -14.62]; I2 = 89%). LVEF showed a median of 8.48 (7.55, 9.41) and I2 of 98%, with a higher mean in HBP. The LVESV median was -18.89 (-30.03, -7.75) and I2 was 0%, and the HBP group had a lower mean. HBP had a lower NYHA functional class (median= -0.20 [-0.28, -0.12]). CONCLUSION After implantation, HBP demonstrated bigger QRS shortening, increased LVEF, lower LVES volume, and lower NYHA class than BiV pacing.
Collapse
Affiliation(s)
- Antonio da Silva Menezes Junior
- Pontifical Catholic University of Goiás, Goiânia, GO, Brazil
- Faculty of Medicine, Federal University of Goiás, Goiânia, GO, Brasil
| | | | | |
Collapse
|
43
|
Strocchi M, Gillette K, Neic A, Elliott MK, Wijesuriya N, Mehta V, Vigmond EJ, Plank G, Rinaldi CA, Niederer SA. Effect of scar and His-Purkinje and myocardium conduction on response to conduction system pacing. J Cardiovasc Electrophysiol 2023; 34:984-993. [PMID: 36738149 PMCID: PMC10089967 DOI: 10.1111/jce.15847] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Conduction system pacing (CSP), in the form of His bundle pacing (HBP) or left bundle branch pacing (LBBP), is emerging as a valuable cardiac resynchronization therapy (CRT) delivery method. However, patient selection and therapy personalization for CSP delivery remain poorly characterized. We aim to compare pacing-induced electrical synchrony during CRT, HBP, LBBP, HBP with left ventricular (LV) epicardial lead (His-optimized CRT [HOT-CRT]), and LBBP with LV epicardial lead (LBBP-optimized CRT [LOT-CRT]) in patients with different conduction disease presentations using computational modeling. METHODS We simulated ventricular activation on 24 four-chamber heart geometries, including His-Purkinje systems with proximal left bundle branch block (LBBB). We simulated septal scar, LV lateral wall scar, and mild and severe myocardium and LV His-Purkinje system conduction disease by decreasing the conduction velocity (CV) down to 70% and 35% of the healthy CV. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (90% of biventricular activation time [BIVAT-90]). RESULTS Severe LV His-Purkinje conduction disease favored CRT (BIVAT-90: HBP 101.5 ± 7.8 ms vs. CRT 93.0 ± 8.9 ms, p < .05), with additional electrical synchrony induced by HOT-CRT (87.6 ± 6.7 ms, p < .05) and LOT-CRT (73.9 ± 7.6 ms, p < .05). Patients with slow myocardium CV benefit more from CSP compared to CRT (BIVAT-90: CRT 134.5 ± 24.1 ms; HBP 97.1 ± 9.9 ms, p < .01; LBBP: 101.5 ± 10.7 ms, p < .01). Septal but not lateral wall scar made CSP ineffective, while CRT was able to resynchronize the ventricles in the presence of septal scar (BIVAT-90: baseline 119.1 ± 10.8 ms vs. CRT 85.1 ± 14.9 ms, p < .01). CONCLUSION Severe LV His-Purkinje conduction disease attenuates the benefits of CSP, with additional improvements achieved with HOT-CRT and LOT-CRT. Septal but not lateral wall scars make CSP ineffective.
Collapse
Affiliation(s)
| | - Karli Gillette
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Mark K. Elliott
- King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation trust, London, UK
| | - Nadeev Wijesuriya
- King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation trust, London, UK
| | - Vishal Mehta
- King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation trust, London, UK
| | - Edward J. Vigmond
- University of Bordeaux, CNRS, Bordeaux, Talence, France
- IHU Liryc, Bordeaux, Talence, France
| | - Gernot Plank
- BioTechMed-Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
44
|
Li J, He J, Yu H, Xu G, Gao Y, Xu B, Wang Z, Han Y, Liang Y. Bilateral septal pacing in combination with coronary venous pacing for cardiac resynchronization therapy. Pacing Clin Electrophysiol 2023; 46:226-234. [PMID: 36417772 DOI: 10.1111/pace.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Conventional right ventricular pacing combined with coronary venous pacing (CVP) is a mainstay for cardiac resynchronization therapy (CRT). However, QRS duration of conventional CRT may be frequently more than 130 ms. This study aimed to evaluate the effectiveness of QRS narrowing by bilateral septal pacing (BSP) in combination with CVP for CRT (BSP-CRT). METHODS Fourteen patients with QRS > 130 ms of conventional CRT after failure of physiological conduction system pacing were enrolled. Electrophysiologic characteristics were compared among different modes of CRT during procedure. BSP which was defined as capture of both sides of interventricular septum manifested as shortened R wave peak time without a right bundle branch block QRS pattern. RESULTS BSP-CRT were successfully achieved in 85.7% (12/14) patients. QRS duration at baseline was 185 ± 13 ms and significantly narrowed to 156 ± 9 ms during conventional CRT (n = 14, P < .001), to 143 ± 7 ms during left ventricular septal pacing (LVSP) in combination with CVP for CRT (LVSP-CRT) (n = 9, P < .001), and further to 122 ± 10 ms during BSP-CRT (n = 12, P < .001). Notably, among 7 patients in whom both LVSP and BSP were achieved, BSP-CRT outperformed LVSP-CRT at QRS narrowing by 16% (P < .001). At 3-month follow-up, left ventricular ejection fraction improved from 29 ± 6% to 41 ± 8% (P < .001). CONCLUSIONS BSP-CRT resulted in superior acute electrical synchronization to conventional CRT and might be considered as an alternative to conventional CRT with QRS more than 130 ms.
Collapse
Affiliation(s)
- Jialin Li
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jiaqi He
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haibo Yu
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Guoqing Xu
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Gao
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Baige Xu
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zulu Wang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanchun Liang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
45
|
A conversion CRT strategy combined with AVJA may be a perspective alternative for heart failure patients with persistent atrial fibrillation. Heart Fail Rev 2023; 28:367-377. [PMID: 36662339 DOI: 10.1007/s10741-023-10294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Heart failure (HF) combined with persistent atrial fibrillation (AF) often coexist and may promote the pathological conditions of cardiac dysfunction, leading to poor prognosis. Cardiac resynchronization therapy (CRT) combined with atrioventricular junction ablation (AVJA) is a highly effective treatment for HF patients with underlying AF who either have failed or are not suitable for catheter ablation. The CRT-AVJA combination therapy can improve clinical outcomes in HF patients. Currently, clinical CRT methods are categorized into biventricular pacing (BVP) - based and conduction system pacing (CSP) - based methods. These procedures have inherent advantages and disadvantages, in addition to their considerable differences in clinical applications. This article aims to review the clinical progress of AVJA combined with different CRT strategies for treating HF patients with persistent AF and propose that conversion CRT strategy (BVP/CSP-CRT) combined with AVJA may be a perspective alternative. Meanwhile, we generalize that 7 categories of HF patients with persistent AF may need to consider the CRT-AVJA combination therapy.
Collapse
|
46
|
Togashi I, Sato T. Conduction system pacing: Current status and prospects. J Cardiol 2023; 81:413-419. [PMID: 36758672 DOI: 10.1016/j.jjcc.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Conduction system pacing (CSP), including His bundle pacing (HBP) and left bundle branch area pacing (LBBAP), is the most physiological of all pacing modalities for ventricular capture and a potential alternative to right ventricular pacing. It induces electrical and mechanical dyssynchrony, resulting in left ventricular dysfunction, heart failure hospitalization, and atrial arrhythmia. CSP activates the normal conduction system and restores ventricular synchrony. In 2000, HBP was first performed as permanent ventricular pacing, which improved left ventricular systolic dysfunction. The feasibility of permanent HBP has already been demonstrated in patients with bradycardia, although a high capture threshold and limited efficacy for infra-Hisian conduction diseases remain critical issues. The LBBAP is an alternative pacing form that overcomes the limitations of the HBP. A lower capture threshold was obtained at implantation and preserved during the follow-up period in patients with LBBAP. Cardiac resynchronization therapy with HBP or LBBAP may provide better synchronization than the traditional biventricular pacing. Hybrid therapy utilizing HBP or LBBAP in combination with left ventricular pacing has been introduced to treat patients with heart failure. In this review, we have focused on the clinical implications, limitations, and a literature review on CSP.
Collapse
Affiliation(s)
- Ikuko Togashi
- Division of Advanced Arrhythmia Management, Kyorin University School of Medicine, Mitaka, Japan
| | - Toshiaki Sato
- Division of Advanced Arrhythmia Management, Kyorin University School of Medicine, Mitaka, Japan.
| |
Collapse
|
47
|
Wijesuriya N, Elliott MK, Mehta V, De Vere F, Strocchi M, Behar JM, Niederer SA, Rinaldi CA. Pacing interventions in non-responders to cardiac resynchronization therapy. Front Physiol 2023; 14:1054095. [PMID: 36776979 PMCID: PMC9909021 DOI: 10.3389/fphys.2023.1054095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Non-responders to Cardiac Resynchronization Therapy (CRT) represent a high-risk, and difficult to treat population of heart failure patients. Studies have shown that these patients have a lower quality of life and reduced life expectancy compared to those who respond to CRT. Whilst the first-line treatment for dyssynchronous heart failure is "conventional" biventricular epicardial CRT, a range of novel pacing interventions have emerged as potential alternatives. This has raised the question whether these new treatments may be useful as a second-line pacing intervention for treating non-responders, or indeed, whether some patients may benefit from these as a first-line option. In this review, we will examine the current evidence for four pacing interventions in the context of treatment of conventional CRT non-responders: CRT optimization; multisite left ventricular pacing; left ventricular endocardial pacing and conduction system pacing.
Collapse
Affiliation(s)
- Nadeev Wijesuriya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom,*Correspondence: Nadeev Wijesuriya,
| | - Mark K. Elliott
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vishal Mehta
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Felicity De Vere
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jonathan M. Behar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Christopher A. Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,Department of Cardiology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
48
|
Bressi E, Grieco D, Luermans J, Burri H, Vernooy K. Conduction system pacing for cardiac resynchronization therapy: State of the art, current controversies, and future perspectives. Front Physiol 2023; 14:1124195. [PMID: 36711020 PMCID: PMC9880410 DOI: 10.3389/fphys.2023.1124195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Biventricular pacing (BVP) is the established treatment to perform cardiac resynchronization therapy (CRT) in patients with heart failure (HF) and left bundle branch block (LBBB). However, BVP is an unnatural pacing modality still conditioned by the high percentage of non-responders and coronary sinus anatomy. Conduction system pacing (CSP)-His bundle pacing (HBP) and Left bundle branch area pacing (LBBAP)- upcomes as the physiological alternative to BVP in the quest for the optimal CRT. CSP showed promising results in terms of better electro-mechanical ventricular synchronization compared to BVP. However, only a few randomized control trials are currently available, and technical challenges, along with the lack of information on long-term clinical outcomes, limit the establishment of a primary role for CSP over conventional BVP in CRT candidates. This review provides a comprehensive literature revision of potential applications of CSP for CRT in diverse clinical scenarios, underlining the current controversies and prospects of this technique.
Collapse
Affiliation(s)
- Edoardo Bressi
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands,Department of Cardiovascular Sciences, Policlinico Casilino of Rome, Rome, Italy,*Correspondence: Edoardo Bressi,
| | - Domenico Grieco
- Department of Cardiovascular Sciences, Policlinico Casilino of Rome, Rome, Italy
| | - Justin Luermans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| | - Haran Burri
- Department of Cardiology, University Hospital of Geneva, Geneva, Switzerland
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
49
|
Perepeka EO, Kravchuk BB. Results of Using Various Conduction System Pacing Options in Patients with Bradyarrhythmia. UKRAINIAN JOURNAL OF CARDIOVASCULAR SURGERY 2022. [DOI: 10.30702/ujcvs/22.30(04)/pk064-94103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic right ventricular myocardial pacing causes an asynchronous pattern of left ventricular activation, reduces left ventricular ejection fraction (LVEF), and may be associated with worsening of clinical outcomes in the long term. Although with the emergence of algorithms that minimize ventricular pacing it became possible to reduce the percentage of paced complexes in patients with sinus node dysfunction, permanent ventricular pacing is still inevitable in patients with high-degree atrioventricular (AV) block. The use of permanent conduction system pacing is a promising method for preserving the physiological activation of the ventricular myocardium and preventing the development of heart failure due to ventricular dyssynchrony.
The aim. To analyze the immediate and long-term results of the use of conduction system pacing in patients with indications for permanent ventricular pacing.
Materials and methods. This study included 18 patients with indications for permanentventricular pacing who were operated at the National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine in the period from 01/01/2013 to 12/31/2022, in whom permanent conduction system pacing was used. There were 17 patients with bradyarrhythmias, of these 16 (88%) suffered from high-degree AV block (including 1 patient with Frederick’s syndrome and 1 (5%) patient with atrial ϐibrillation with slow ventricular response) and 1 (5%) patient with ischemic cardiomyopathy with left bundle branch block and ϐirstdegree AV block with indications for cardiac resynchronization therapy. The mean age of the patients was 55 ± 16 years (8 men, 10 women), LVEF at the time of the intervention was 56.42 ± 9.13 %, end diastolic volume 130.2 ± 23.8 ml, end systolic volume 55.1 ± 17.7 ml, diameter of the left atrium 4.01 ± 0.6 cm. The average QRS width before implantation was 116.5 ± 27.7 ms. In 6 (33%) patients, a special delivery system (С304-L69, Medtronic in 1 patient [5%], C315HIS in 5 [27%] patients) and 4.1F active ϐixation lead Medtronic 3830 Select Secure (69 or 74 cm) were used; in other cases (66%) standard 6F leads with active ϐixation and a lumen for a stylet without a delivery system were used.
Results. The average follow-up period after implantation of pacemaker was 36.35 ± 29.65 months. During the observation period, LVEF was 57.07 ± 5.38 %, end diastolic volume111.5 ± 18.09 ml, end systolic volume 49.5 ± 13.4 ml, diameter of the left ventricle 3.9 ± 0.5 cm. The mean duration of paced QRS was 119.1 ± 10.09 ms. In 6 patients (33%), it was possible to demonstrate a change in the QRS width when the amplitude of ventricular stimulation was reduced, with 2 variants of transitions: 1) 4 (22%) patients with a transition from non-selective His bundle pacing (NSHBP) to selective His bundle pacing (SHBP), in 2 (11%) of these patients with a transition from SHBP with correction of right bundle branch block (RBBB) to SHBP without correction of RBBB, and then loss of capture of the myocardium of the ventricles; 2) 2 patients (11%) with a transition from NSHBP to myocardial septal ventricular pacing and further with a decrease in amplitude to the loss of capture of the myocardium of the ventricles. One (5%) patient with complete heart block had permanent non-selective left bundle branch area pacing. The other 11 (61%) patients met the criteria for parahisian pacing without visible transitions with a change in the amplitude of ventricular pacing. The average global longitudinal strain was -17.6 ± 2.7 %. The average interval from the stimulus to the peak of the R-wave in lead V6, which indicated the time of left ventricular activation, was 73.2 ± 8.7 ms. Pacing parameters were standardly set according to the primary indications, but with correction of the amplitude of ventricular stimulation relative to the thresholds of pacing of the conduction system. AV delay was corrected for the latency from the stimulus to the onset of the QRS in SHBP or for the duration of the “pseudodelta” wave in NSHBP which in both cases was the duration of the H-V interval. There were no complications in the acute or long-term postoperative period.
Conclusions. Conduction system pacing is a challenge in the practice of cardiologist for treating life-threatening bradyarrhythmias and heart failure, but at the same time it is a safe method that provides physiological electrical and mechanical activation of the myocardium of the ventricles, that allows to effectively avoid the consequences of dyssynchrony due to permanent myocardial ventricular pacing.
Collapse
|
50
|
Chen Z, Zhou X, Ma X, Chen K. Recruitment of the cardiac conduction system for optimal resynchronization therapy in failing heart. Front Physiol 2022; 13:1045740. [PMID: 36589433 PMCID: PMC9798297 DOI: 10.3389/fphys.2022.1045740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a leading health burden around the world. Although pharmacological development has dramatically advanced medication therapy in the field, hemodynamic disorders or mechanical desynchrony deteriorated by intra or interventricular conduction abnormalities remains a critical target beyond the scope of pharmacotherapy. In the past 2 decades, nonpharmacologic treatment for heart failure, such as cardiac resynchronization therapy (CRT) via biventricular pacing (BVP), has been playing an important role in improving the prognosis of heart failure. However, the response rate of BVP-CRT is variable, leaving one-third of patients not benefiting from the therapy as expected. Considering the non-physiological activation pattern of BVP-CRT, more efforts have been made to optimize resynchronization. The most extensively investigated approach is by stimulating the native conduction system, e.g., His-Purkinje conduction system pacing (CSP), including His bundle pacing (HBP) and left bundle branch area pacing (LBBAP). These emerging CRT approaches provide an alternative to traditional BVP-CRT, with multiple proof-of-concept studies indicating the safety and efficacy of its utilization in dyssynchronous heart failure. In this review, we summarize the mechanisms of dyssynchronous HF mediated by conduction disturbance, the rationale and acute effect of CSP for CRT, the recent advancement in clinical research, and possible future directions of CSP.
Collapse
Affiliation(s)
- Zhongli Chen
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Xuan Ma
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|