1
|
Rey-Barroso J, Munaretto A, Rouquié N, Mougel A, Chassan M, Gadat S, Dewingle O, Poincloux R, Cadot S, Ysebaert L, Quillet-Mary A, Dupré L. Lymphocyte migration and retention properties affected by ibrutinib in chronic lymphocytic leukemia. Haematologica 2024; 109:809-823. [PMID: 37381758 PMCID: PMC10905104 DOI: 10.3324/haematol.2022.282466] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The Bruton tyrosine kinase (BTK) inhibitor ibrutinib is widely used for treatment of patients with relapsed/refractory or treatment-naïve chronic lymphocytic leukemia (CLL). A prominent effect of ibrutinib is to disrupt the retention of CLL cells from supportive lymphoid tissues, by altering BTK-dependent adhesion and migration. To further explore the mechanism of action of ibrutinib and its potential impact on non-leukemic cells, we quantified multiple motility and adhesion parameters of human primary CLL cells and non-leukemic lymphoid cells. In vitro, ibrutinib affected CCL19-, CXCL12- and CXCL13-evoked migration behavior of CLL cells and non-neoplastic lymphocytes, by reducing both motility speed and directionality. De-phosphorylation of BTK induced by ibrutinib in CLL cells was associated with defective polarization over fibronectin and inability to assemble the immunological synapse upon B-cell receptor engagement. In patients' samples collected during a 6-month monitoring of therapy, chemokine-evoked migration was repressed in CLL cells and marginally reduced in T cells. This was accompanied by profound modulation of the expression of chemokine receptors and adhesion molecules. Remarkably, the relative expression of the receptors governing lymph node entry (CCR7) versus exit (S1PR1) stood out as a reliable predictive marker of the clinically relevant treatment-induced lymphocytosis. Together, our data reveal a multifaceted modulation of motility and adhesive properties of ibrutinib on both CLL leukemic cell and T-cell populations and point to intrinsic differences in CLL recirculation properties as an underlying cause for variability in treatment response.
Collapse
Affiliation(s)
- Javier Rey-Barroso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Alice Munaretto
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Aurélie Mougel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Malika Chassan
- Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université Toulouse 3 Paul Sabatier
| | - Sébastien Gadat
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole; Institut Universitaire de France
| | - Océane Dewingle
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse
| | - Sarah Cadot
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Loïc Ysebaert
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France; Clinical Hematology, IUCT Oncopole, Toulouse University Hospital, Toulouse
| | - Anne Quillet-Mary
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France; Department of Dermatology, Medical University of Vienna, Vienna.
| |
Collapse
|
2
|
Mazzarello AN, Fitch M, Cardillo M, Ng A, Bhuiya S, Sharma E, Bagnara D, Kolitz JE, Barrientos JC, Allen SL, Rai KR, Rhodes J, Hellerstein MK, Chiorazzi N. Characterization of the Intraclonal Complexity of Chronic Lymphocytic Leukemia B Cells: Potential Influences of B-Cell Receptor Crosstalk with Other Stimuli. Cancers (Basel) 2023; 15:4706. [PMID: 37835400 PMCID: PMC10571896 DOI: 10.3390/cancers15194706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) clones contain subpopulations differing in time since the last cell division ("age"): recently born, proliferative (PF; CXCR4DimCD5Bright), intermediate (IF; CXCR4IntCD5Int), and resting (RF; CXCR4BrightCD5Dim) fractions. Herein, we used deuterium (2H) incorporation into newly synthesized DNA in patients to refine the kinetics of CLL subpopulations by characterizing two additional CXCR4/CD5 fractions, i.e., double dim (DDF; CXCR4DimCD5Dim) and double bright (DBF; CXCR4BrightCD5Bright); and intraclonal fractions differing in surface membrane (sm) IgM and IgD densities. Although DDF was enriched in recently divided cells and DBF in older cells, PF and RF remained the most enriched in youngest and oldest cells, respectively. Similarly, smIgMHigh and smIgDHigh cells were the youngest, and smIgMLow and smIgDLow were the oldest, when using smIG levels as discriminator. Surprisingly, the cells closest to the last stimulatory event bore high levels of smIG, and stimulating via TLR9 and smIG yielded a phenotype more consistent with the in vivo setting. Finally, older cells were less sensitive to in vivo inhibition by ibrutinib. Collectively, these data define additional intraclonal subpopulations with divergent ages and phenotypes and suggest that BCR engagement alone is not responsible for the smIG levels found in vivo, and the differential sensitivity of distinct fractions to ibrutinib might account, in part, for therapeutic relapse.
Collapse
Affiliation(s)
- Andrea N. Mazzarello
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Mark Fitch
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Martina Cardillo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Anita Ng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Sabreen Bhuiya
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Esha Sharma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Davide Bagnara
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jacqueline C. Barrientos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kanti R. Rai
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Joanna Rhodes
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Marc K. Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Koehrer S, Burger JA. Chronic Lymphocytic Leukemia: Disease Biology. Acta Haematol 2023; 147:8-21. [PMID: 37717577 DOI: 10.1159/000533610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND B-cell receptor (BCR) signaling is crucial for normal B-cell development and adaptive immunity. In chronic lymphocytic leukemia (CLL), the malignant B cells display many features of normal mature B lymphocytes, including the expression of functional B-cell receptors (BCRs). Cross talk between CLL cells and the microenvironment in secondary lymphatic organs results in BCR signaling and BCR-driven proliferation of the CLL cells. This critical pathomechanism can be targeted by blocking BCR-related kinases (BTK, PI3K, spleen tyrosine kinase) using small-molecule inhibitors. Among these targets, Bruton tyrosine kinase (BTK) inhibitors have the highest therapeutic efficacy; they effectively block leukemia cell proliferation and generally induce durable remissions in CLL patients, even in patients with high-risk disease. By disrupting tissue homing receptor (i.e., chemokine receptor and adhesion molecule) signaling, these kinase inhibitors also mobilize CLL cells from the lymphatic tissues into the peripheral blood (PB), causing a transient redistribution lymphocytosis, thereby depriving CLL cells from nurturing factors within the tissue niches. SUMMARY The clinical success of the BTK inhibitors in CLL underscores the central importance of the BCR in CLL pathogenesis. Here, we review CLL pathogenesis with a focus on the role of the BCR and other microenvironment cues. KEY MESSAGES (i) CLL cells rely on signals from their microenvironment for proliferation and survival. (ii) These signals are mediated by the BCR as well as chemokine and integrin receptors and their respective ligands. (iii) Targeting the CLL/microenvironment interaction with small-molecule inhibitors provides a highly effective treatment strategy, even in high-risk patients.
Collapse
Affiliation(s)
- Stefan Koehrer
- Department of Laboratory Medicine, Klinik Donaustadt, Vienna, Austria
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jan A Burger
- Department of Leukemia, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Alsadhan A, Chen J, Gaglione EM, Underbayev C, Tuma PL, Tian X, Freeman LA, Baskar S, Nierman P, Soto S, Itsara A, Ahn IE, Sun C, Bibikova E, Hartmann TN, Mhibik M, Wiestner A. CD49d Expression Identifies a Biologically Distinct Subtype of Chronic Lymphocytic Leukemia with Inferior Progression-Free Survival on BTK Inhibitor Therapy. Clin Cancer Res 2023; 29:3612-3621. [PMID: 37227160 PMCID: PMC10524232 DOI: 10.1158/1078-0432.ccr-22-3217] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To determine the role of CD49d for response to Bruton's tyrosine kinase inhibitors (BTKi) in patients with chronic lymphocytic leukemia (CLL). PATIENTS AND METHODS In patients treated with acalabrutinib (n = 48), CD49d expression, VLA-4 integrin activation, and tumor transcriptomes of CLL cells were assessed. Clinical responses to BTKis were investigated in acalabrutinib- (n = 48; NCT02337829) and ibrutinib-treated (n = 73; NCT01500733) patients. RESULTS In patients treated with acalabrutinib, treatment-induced lymphocytosis was comparable for both subgroups but resolved more rapidly for CD49d+ cases. Acalabrutinib inhibited constitutive VLA-4 activation but was insufficient to block BCR and CXCR4-mediated inside-out activation. Transcriptomes of CD49d+ and CD49d- cases were compared using RNA sequencing at baseline and at 1 and 6 months on treatment. Gene set enrichment analysis revealed increased constitutive NF-κB and JAK-STAT signaling, enhanced survival, adhesion, and migratory capacity in CD49d+ over CD49d- CLL that was maintained during therapy. In the combined cohorts of 121 BTKi-treated patients, 48 (39.7%) progressed on treatment with BTK and/or PLCG2 mutations detected in 87% of CLL progressions. Consistent with a recent report, homogeneous and bimodal CD49d-positive cases (the latter having concurrent CD49d+ and CD49d- CLL subpopulations, irrespective of the traditional 30% cutoff value) had a shorter time to progression of 6.6 years, whereas 90% of cases homogenously CD49d- were estimated progression-free at 8 years (P = 0.0004). CONCLUSIONS CD49d/VLA-4 emerges as a microenvironmental factor that contributes to BTKi resistance in CLL. The prognostic value of CD49d is improved by considering bimodal CD49d expression. See related commentary by Tissino et al., p. 3560.
Collapse
Affiliation(s)
- Anfal Alsadhan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Catholic University of America, DC, 20064, USA
- College of applied medical sciences, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Jonathan Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Erika M. Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lita A. Freeman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sivasubramanian Baskar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pia Nierman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Soto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andy Itsara
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Inhye E. Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center-University, Faculty of Medicine of Freiburg, Freiburg, Germany
| | - Maissa Mhibik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Brender JR, Assmann JC, Farthing DE, Saito K, Kishimoto S, Warrick KA, Maglakelidze N, Larus TL, Merkle H, Gress RE, Krishna MC, Buxbaum NP. In vivo deuterium magnetic resonance imaging of xenografted tumors following systemic administration of deuterated water. Sci Rep 2023; 13:14699. [PMID: 37679461 PMCID: PMC10485001 DOI: 10.1038/s41598-023-41163-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
In vivo deuterated water (2H2O) labeling leads to deuterium (2H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with 2H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic 2H2O administration. We initiated systemic 2H2O administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and 2H2O level of ~ 8% in total body water (TBW). Three schemas of 2H2O administration were tested: (1) starting at tumor seeding and continuing for 7 days of in vivo growth with imaging on day 7, (2) starting at tumor seeding and continuing for 14 days of in vivo growth with imaging on day 14, and (3) initiation of labeling following a week of in vivo tumor growth and continuing until imaging was performed on day 14. Deuterium chemical shift imaging of the tumor bearing limb and contralateral control was performed on either day 7 of 14 after tumor seeding, as described. After 14 days of in vivo tumor growth and 7 days of systemic labeling with 2H2O, a clear deuterium contrast was demonstrated between the xenografts and normal tissue. Labeling in the second week after tumor implantation afforded the highest contrast between neoplastic and healthy tissue in both models. Systemic labeling with 2H2O can be used to create imaging contrast between tumor and healthy issue, providing a non-radioactive method for in vivo cancer imaging.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julian C Assmann
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Don E Farthing
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathrynne A Warrick
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Natella Maglakelidze
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terri L Larus
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hellmut Merkle
- Laboratory for Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nataliya P Buxbaum
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
6
|
Ibrahim EIK, Karlsson MO, Friberg LE. Assessment of ibrutinib scheduling on leukocyte, lymph node size and blood pressure dynamics in chronic lymphocytic leukemia through pharmacokinetic-pharmacodynamic models. CPT Pharmacometrics Syst Pharmacol 2023; 12:1305-1318. [PMID: 37452622 PMCID: PMC10508536 DOI: 10.1002/psp4.13010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Ibrutinib is a Bruton tyrosine kinase (Btk) inhibitor for treating chronic lymphocytic leukemia (CLL). It has also been associated with hypertension. The optimal dosing schedule for mitigating this adverse effect is currently under discussion. A quantification of relationships between systemic ibrutinib exposure and efficacy (i.e., leukocyte count and sum of the product of perpendicular diameters [SPD] of lymph nodes) and hypertension toxicity (i.e., blood pressure), and their association with overall survival is needed. Here, we present a semi-mechanistic pharmacokinetic-pharmacodynamic modeling framework to characterize such relationships and facilitate dose optimization. Data from a phase Ib/II study were used, including ibrutinib plasma concentrations to derive daily 0-24-h area under the concentration-time curve, leukocyte count, SPD, survival, and blood pressure measurements. A nonlinear mixed effects modeling approach was applied, considering ibrutinib's pharmacological action and CLL cell dynamics. The final framework included (i) an integrated model for SPD and leukocytes consisting of four CLL cell subpopulations with ibrutinib inhibiting phosphorylated Btk production, (ii) a turnover model in which ibrutinib stimulates an increase in blood pressure, and (iii) a competing risk model for dropout and death. Simulations predicted that the approved dosing schedule had a slightly higher efficacy (24-month, progression-free survival [PFS] 98%) than de-escalation schedules (24-month, average PFS ≈ 97%); the latter had, on average, ≈20% lower proportions of patients with hypertension. The developed modeling framework offers an improved understanding of the relationships among ibrutinib exposure, efficacy and toxicity biomarkers. This framework can serve as a platform to assess dosing schedules in a biologically plausible manner.
Collapse
|
7
|
Alves-Hanna FS, Crespo-Neto JA, Nogueira GM, Pereira DS, Lima AB, Ribeiro TLP, Santos VGR, Fonseca JRF, Magalhães-Gama F, Sadahiro A, Costa AG. Insights Regarding the Role of Inflammasomes in Leukemia: What Do We Know? J Immunol Res 2023; 2023:5584492. [PMID: 37577033 PMCID: PMC10421713 DOI: 10.1155/2023/5584492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Inflammation is a physiological mechanism of the immune response and has an important role in maintaining the hematopoietic cell niche in the bone marrow. During this process, the participation of molecules produced by innate immunity cells in response to a variety of pathogen-associated molecular patterns and damage-associated molecular patterns is observed. However, chronic inflammation is intrinsically associated with leukemogenesis, as it induces DNA damage in hematopoietic stem cells and contributes to the creation of the preleukemic clone. Several factors influence the malignant transformation within the hematopoietic microenvironment, with inflammasomes having a crucial role in this process, in addition to acting in the regulation of hematopoiesis and its homeostasis. Inflammasomes are intracellular multimeric complexes responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β and interleukin-18 and the cell death process via pyroptosis. Therefore, dysregulation of the activation of these complexes may be a factor in triggering several diseases, including leukemias, and this has been the subject of several studies in the area. In this review, we summarized the current knowledge on the relationship between inflammation and leukemogenesis, in particular, the role of inflammasomes in different types of leukemias, and we describe the potential therapeutic targets directed at inflammasomes in the leukemic context.
Collapse
Affiliation(s)
- Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Glenda Menezes Nogueira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Amanda Barros Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | | | - Joey Ramone Ferreira Fonseca
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
8
|
Chen SS, Chiorazzi N. Functional consequences of inhibition of Bruton's tyrosine kinase by ibrutinib in chronic lymphocytic leukemia. Hematol Oncol 2023; 41 Suppl 1:119-128. [PMID: 37294973 DOI: 10.1002/hon.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The leukemic B cells from patients with chronic lymphocytic leukemia (CLL) require interactions with non-malignant cells and matrix in the tissue microenvironment to survive and grow. These interactions are mediated through the B-cell antigen receptor (BCR), C-X-C chemokine receptor type 4 (CXCR4), and a variety of integrins, including VLA-4. Exciting each receptor type leads to activation of Bruton's tyrosine kinase (BTK), which in turn helps initiate trophic signals that prevent cell death and promote cell activation and growth as well as allowing cells to return to anatomic sites for rescue signals. These represent the two major functional actions targeted by inhibitors of Btk. Here we relate some of the therapeutic actions of ibrutinib, a Btk inhibitor that is extremely helpful for patients with CLL, certain Diffuse Large B-cell Lymphomas (ABC type), and other non-Hodgkin's lymphomas, emphasizing that ibrutinib's value results from blocking beneficial signals, not by inducing lethal ones.
Collapse
Affiliation(s)
- Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Molecular Medicine and of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
9
|
Kielbassa K, Haselager MV, Bax DJC, van Driel BF, Dubois J, Levin MD, Kersting S, Svanberg R, Niemann CU, Kater AP, Eldering E. Ibrutinib sensitizes CLL cells to venetoclax by interrupting TLR9-induced CD40 upregulation and protein translation. Leukemia 2023; 37:1268-1276. [PMID: 37100883 PMCID: PMC10244160 DOI: 10.1038/s41375-023-01898-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells upregulate Bcl-2 proteins within the lymph node (LN) microenvironment. Signaling via B-cell receptor, Toll-like receptors and CD40 collectively reduce sensitivity to the BCL-2 inhibitor venetoclax. Time-limited treatment with venetoclax plus the BTK-inhibitor ibrutinib results in deep remissions, but how this combination affects LN-related signaling is not yet completely clear. Therefore, samples obtained from the HOVON141/VISION phase 2 clinical trial were used to analyze this. Two cycles of lead-in ibrutinib monotherapy resulted in decreased protein expression of Bcl-2 proteins in circulating CLL cells. Strikingly, at this timepoint CD40-induced venetoclax resistance was strongly attenuated, as was expression of CD40. Since CD40 signaling occurs within the CLL LN, we tested various LN-related signals that could affect CD40 signaling. While BCR stimulation had only a minor effect, TLR9 stimulation via CpG led to significantly increased CD40 expression and importantly, reverted the effects of ibrutinib treatment on venetoclax sensitivity by inducing overall protein translation. Together, these findings identify a novel effect of ibrutinib: interruption of TLR9-induced CD40 upregulation and translation of pro-survival proteins. This mechanism may potentially further inhibit priming of CLL cells in the LN microenvironment for venetoclax resistance.
Collapse
Affiliation(s)
- Karoline Kielbassa
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Marco V Haselager
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Danique J C Bax
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bianca F van Driel
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Julie Dubois
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | | | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arnon P Kater
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Deng G, He J, Huang Q, Li T, Huang Z, Gao S, Xu J, Wang T, Di J. Ibrutinib Inhibits BTK Signaling in Tumor-Infiltrated B Cells and Amplifies Antitumor Immunity by PD-1 Checkpoint Blockade for Metastatic Prostate Cancer. Cancers (Basel) 2023; 15:cancers15082356. [PMID: 37190284 DOI: 10.3390/cancers15082356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic prostate cancer (PCa) remains incurable and causes considerably diminished overall survival. Despite significant progress in pharmacotherapy, the disease prognosis remains unchanged. Immune checkpoint inhibitors (ICIs) have demonstrated effectiveness in treating various advanced malignancies, but their efficacy in metastatic PCa is relatively limited. Previous studies have confirmed the immunosuppressive role of tumor-infiltrating B cells (TIL-Bs) in the PCa microenvironment, which accounts for their poor immunogenic potency. In this study, we demonstrated that an oral kinase agent, ibrutinib, strongly potentiated anti-PD-1 checkpoint blockade efficacy and successfully controlled tumor growth in a murine orthotopic PCa model constructed using a metastatic and hormone-independent cell line (RM-1). We identified close relationships between TIL-Bs, Bruton's tyrosine kinase (BTK), and immunosuppressive molecules by bioinformatics and histological analysis. An in vitro study showed that a low dose of ibrutinib significantly inhibited B cell proliferation and activation as well as IL-10 production through the BTK pathway. Moreover, ibrutinib-treated B cells promoted CD8+ T cell proliferation and inhibitory receptor (IR) expression. However, the same dose of ibrutinib was insufficient to induce apoptosis in cancer cells. An in vivo study showed that ibrutinib monotherapy failed to achieve tumor regression in murine models but decreased B cell infiltration and inhibited activation and IL-10 production. More importantly, CD8+ T cell infiltration increased with high IR expression. Ibrutinib synergized with anti-PD-1 checkpoint blockade enormously improved antitumor immunity, thereby reducing tumor volume in the same scenario. These data set the scene for the clinical development of ibrutinib as an immunogenic trigger to potentiate anti-PD-1 checkpoint blockade for metastatic PCa immunotherapy.
Collapse
Affiliation(s)
- Gengguo Deng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiannan He
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qunxiong Huang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tengcheng Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhansen Huang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shuntian Gao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jinbin Xu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiantian Wang
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jinming Di
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
11
|
Cocking D, Damion RA, Franks H, Jaconelli M, Wilkinson D, Brook M, Auer DP, Bowtell R. Deuterium brain imaging at 7T during D 2 O dosing. Magn Reson Med 2023; 89:1514-1521. [PMID: 36426762 PMCID: PMC10099797 DOI: 10.1002/mrm.29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To characterize the (2 H) deuterium MR signal measured from human brain at 7T in participants loading with D2 O to ˜1.5% enrichment over a six-week period. METHODS 2 H spectroscopy and imaging measurements were used to track the time-course of 2 H enrichment within the brain during the initial eight-hour loading period in two participants. Multi-echo gradient echo (MEGE) images were acquired at a range of TR values from four participants during the steady-state loading period and used for mapping 2 H T1 and T2 * relaxation times. Co-registration to higher resolution 1 H images allowed T1 and T2 * relaxation times of deuterium in HDO in cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) to be estimated. RESULTS 2 H concentrations measured during the eight-hour loading were consistent with values estimated from cumulative D2 O dose and body mass. Signal changes measured from three different regions of the brain during loading showed similar time-courses. After summing over echoes, gradient echo brain images acquired in 7.5 minutes with a voxel volume of 0.36 ml showed an SNR of ˜16 in subjects loaded to 1.5%. T1 -values for deuterium in HDO were significantly shorter than corresponding values for 1 H in H2 O, while T2 * values were similar. 2 H relaxation times in CSF were significantly longer than in GM or WM. CONCLUSION Deuterium MR Measurements at 7T were used to track the increase in concentration of 2 H in brain during heavy water loading. 2 H T1 and T2 * relaxation times from water in GM, WM, and CSF are reported.
Collapse
Affiliation(s)
- Daniel Cocking
- School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Robin A. Damion
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
- Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research Centre/Nottingham Clinical Research FacilitiesQueen's Medical CentreNottinghamUK
| | - Hester Franks
- Centre for Cancer Sciences Biodiscovery Institute, School of MedicineUniversity of NottinghamNottinghamUK
- Department of OncologyNottingham University Hospitals NHS TrustNottinghamUK
| | - Matthew Jaconelli
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of NottinghamNottinghamUK
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Daniel Wilkinson
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of NottinghamNottinghamUK
- Division of Medical Sciences and Graduate Entry MedicineSchool of Medicine, University of NottinghamNottinghamUK
| | - Matthew Brook
- NIHR Nottingham Biomedical Research Centre/Nottingham Clinical Research FacilitiesQueen's Medical CentreNottinghamUK
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of NottinghamNottinghamUK
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Dorothee P. Auer
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
- Mental Health and Clinical Neuroscience, School of MedicineUniversity of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research Centre/Nottingham Clinical Research FacilitiesQueen's Medical CentreNottinghamUK
| | - Richard Bowtell
- School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research Centre/Nottingham Clinical Research FacilitiesQueen's Medical CentreNottinghamUK
| |
Collapse
|
12
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
Anwar Z, Ali MS, Galvano A, Perez A, La Mantia M, Bukhari I, Swiatczak B. PROTACs: The Future of Leukemia Therapeutics. Front Cell Dev Biol 2022; 10:851087. [PMID: 36120561 PMCID: PMC9479449 DOI: 10.3389/fcell.2022.851087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
The fight to find effective, long-lasting treatments for cancer has led many researchers to consider protein degrading entities. Recent developments in PROteolysis TArgeting Chimeras (PROTACs) have signified their potential as possible cancer therapies. PROTACs are small molecule, protein degraders that function by hijacking the built-in Ubiquitin-Proteasome pathway. This review mainly focuses on the general design and functioning of PROTACs as well as current advancements in the development of PROTACs as anticancer therapies. Particular emphasis is given to PROTACs designed against various types of Leukemia/Blood malignancies.
Collapse
Affiliation(s)
- Zubair Anwar
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
- *Correspondence: Zubair Anwar, ; Bartlomiej Swiatczak,
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
| | - Maria La Mantia
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
| | - Ihtisham Bukhari
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zubair Anwar, ; Bartlomiej Swiatczak,
| |
Collapse
|
14
|
Liu Y, Song Y, Yin Q. Effects of ibrutinib on T-cell immunity in patients with chronic lymphocytic leukemia. Front Immunol 2022; 13:962552. [PMID: 36059445 PMCID: PMC9437578 DOI: 10.3389/fimmu.2022.962552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), a highly heterogeneous B-cell malignancy, is characterized by tumor microenvironment disorder and T-cell immune dysfunction, which play a major role in the proliferation and survival of CLL cells. Ibrutinib is the first irreversible inhibitor of Bruton’s tyrosine kinase (BTK). In addition to targeting B-cell receptor (BCR) signaling to kill tumor cells, increasing evidence has suggested that ibrutinib regulates the tumor microenvironment and T-cell immunity in a direct and indirect manner. For example, ibrutinib not only reverses the tumor microenvironment by blocking cytokine networks and toll-like receptor signaling but also regulates T cells in number, subset distribution, T-cell receptor (TCR) repertoire and immune function by inhibiting interleukin-2 inducible T-cell kinase (ITK) and reducing the expression of inhibitory receptors, and so on. In this review, we summarize the current evidence for the effects of ibrutinib on the tumor microenvironment and cellular immunity of patients with CLL, particularly for the behavior and function of T cells, explore its potential mechanisms, and provide a basis for the clinical benefits of long-term ibrutinib treatment and combined therapy based on T-cell-based immunotherapies.
Collapse
|
15
|
Identification of proliferative and non-proliferative subpopulations of leukemic cells in CLL. Leukemia 2022; 36:2233-2241. [PMID: 35902732 PMCID: PMC9417999 DOI: 10.1038/s41375-022-01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022]
Abstract
Pathogenesis in chronic lymphocytic leukemia (CLL) is strongly linked to the potential for leukemic cells to migrate to and proliferate within lymph-nodes. Previous in vivo studies suggest that all leukemic cells participate in cycles of migration and proliferation. In vitro studies, however, have shown heterogeneous migration patterns.To investigate tumor subpopulation kinetics, we performed in vivo isotope-labeling studies in ten patients with IgVH-mutated CLL (M-CLL). Using deuterium-labeled glucose, we investigated proliferation in sub-populations defined by CXCR4/CD5 and surface (sIgM) expression. Mathematical modeling was performed to test the likelihood that leukemic cells exist as distinct sub-populations or as a single population with the same proliferative capacity. Further labeling studies in two patients with M-CLL commencing idelalisib investigated the effect of B-cell receptor (BCR) antagonists on sub-population kinetics.Modeling revealed that data were more consistent with a model comprising distinct sub-populations (p = 0.008) with contrasting, characteristic kinetics. Following idelalisib therapy, similar labeling suppression across all sub-populations suggested that the most proliferative subset is the most sensitive to treatment. As the quiescent sub-population precedes treatment, selection likely explains the persistence of such residual non-proliferating populations during BCR-antagonist therapy. These findings have clinical implications for discontinuation of long-term BCR-antagonist treatment in selected patients.
Collapse
|
16
|
Nurse-like cells sequester B cells in chronic lymphocytic leukemia disorganized lymph nodes via an alternative production of CCL21. Blood Adv 2022; 6:4691-4704. [PMID: 35679464 PMCID: PMC9631672 DOI: 10.1182/bloodadvances.2021006169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Stromal cell architecture is deeply altered in CLL lymph nodes. CCL21, produced by leukemia-induced macrophages, improves retention and niching of malignant CCR7+ B cells in CLL lymph nodes.
Tumor microenvironment exerts a critical role in sustaining homing, retention, and survival of chronic lymphocytic leukemia (CLL) cells in secondary lymphoid organs. Such conditions foster immune surveillance escape and resistance to therapies. The physiological microenvironment is rendered tumor permissive by an interplay of chemokines, chemokine receptors, and adhesion molecules as well as by direct interactions between malignant lymphocytes and stromal cells, T cells, and specialized macrophages referred to as nurselike cells (NLCs). To characterize this complex interplay, we investigated the altered architecture on CLL lymph nodes biopsies and observed a dramatic loss of tissue subcompartments and stromal cell networks as compared with nonmalignant lymph nodes. A supplemental high density of CD68+ cells expressing the homeostatic chemokine CCL21 was randomly distributed. Using an imaging flow cytometry approach, CCL21 mRNA and the corresponding protein were observed in single CD68+ NLCs differentiated in vitro from CLL peripheral blood mononuclear cells. The chemokine was sequestered at the NLC membrane, helping capture of CCR7-high-expressing CLL B cells. Inhibiting the CCL21/CCR7 interaction by blocking antibodies or using therapeutic ibrutinib altered the adhesion of leukemic cells. Our results indicate NLCs as providers of an alternative source of CCL21, taking over the physiological task of follicular reticular cells, whose network is deeply altered in CLL lymph nodes. By retaining malignant B cells, CCL21 provides a protective environment for their niching and survival, thus allowing tumor evasion and resistance to treatment. These findings argue for a specific targeting or reeducation of NLCs as a new immunotherapy strategy for this disease.
Collapse
|
17
|
Mazzarello AN, Gentner-Göbel E, Dühren-von Minden M, Tarasenko TN, Nicolò A, Ferrer G, Vergani S, Liu Y, Bagnara D, Rai KR, Burger JA, McGuire PJ, Maity PC, Jumaa H, Chiorazzi N. B-cell receptor isotypes differentially associate with cell signaling, kinetics, and outcome in chronic lymphocytic leukemia. J Clin Invest 2021; 132:149308. [PMID: 34813501 PMCID: PMC8759784 DOI: 10.1172/jci149308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), the B cell receptor (BCR) plays a critical role in disease development and progression, as indicated by the therapeutic efficacy of drugs blocking BCR signaling. However, the mechanism(s) underlying BCR responsiveness are not completely defined. Selective engagement of membrane IgM or IgD on CLL cells, each coexpressed by more than 90% of cases, leads to distinct signaling events. Since both IgM and IgD carry the same antigen-binding domains, the divergent actions of the receptors are attributed to differences in immunoglobulin (Ig) structure or the outcome of signal transduction. We showed that IgM, not IgD, level and organization associated with CLL-cell birth rate and the type and consequences of BCR signaling in humans and mice. The latter IgM-driven effects were abrogated when BCR signaling was inhibited. Collectively, these studies demonstrated a critical, selective role for IgM in BCR signaling and B cell fate decisions, possibly opening new avenues for CLL therapy.
Collapse
Affiliation(s)
- Andrea N Mazzarello
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | | | | | - Tatyana N Tarasenko
- Metabolism, Infection and Immunity Section, National Institutes of Health, Bethesda, United States of America
| | | | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Yun Liu
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Davide Bagnara
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Jan A Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Peter J McGuire
- National Institutes of Health, Bethesda, United States of America
| | - Palash C Maity
- Institute for Immunology, University Hospital Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institute for Immunology, University Hospital Ulm, Ulm, Germany
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
18
|
Ozturk E, Erdogan Ozunal I. A Rare Side Effect of Ibrutinib: Tumor Lysis Syndrome. Medeni Med J 2021; 36:176-179. [PMID: 34239769 PMCID: PMC8226401 DOI: 10.5222/mmj.2021.56424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/12/2021] [Indexed: 11/05/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a progressive disease with an indolent course, and tumor lysis syndrome (TLS) is rarely seen in CLL. Ibrutinib is a novel bruton kinase (BTK) inhibitor increasingly used in CLL treatment. Ibrutinib has significant side effects such as atrial fibrillation, bleeding, diarrhea, and infections. However, TLS is reported rarely with ibrutinib treatment. This report focuses on a 69-year-old female patient diagnosed with relapsed CLL who developed grade 4 TLS after ibrutinib monotherapy. The patient developed TLS on the third day of ibrutinib treatment necessitating discontinuation of the treatment and initiation of hemodialysis and supportive care. Ibrutinib treatment was re-initiated at a daily dose of 140 mg therapy after an interval of seven days, and then any additional side effect was not seen. Tumor lysis syndrome secondary to ibrutinib has been reported in an increasing number of cases. There is currently no information on managing adverse effects of TLS attributed to ibrutinib. Consequently, ibrutinib treatment of this patient was not terminated, and restarted after a short interval. It must not be forgotten that TLS secondary to ibrutinib treatment may be rarely seen, and can be life-threatening. Treatment with ibrutinib should be initiated in consideration of this side effect, and the development of complication of TLS may not necessitate discontinuation of ibrutinib treatment.
Collapse
Affiliation(s)
- Erman Ozturk
- Istanbul Medeniyet University Faculty of Medicine, Department of Hematology, Istanbul, Turkey
| | - Isıl Erdogan Ozunal
- Goztepe Prof Dr Suleyman Yalcın City Hospital, Department of Hematology, Istanbul, Turkey
| |
Collapse
|
19
|
Shorer Arbel Y, Katz BZ, Gabizon R, Shraga A, Bronstein Y, Kamdjou T, Globerson Levin A, Perry C, Avivi I, London N, Herishanu Y. Proteolysis Targeting Chimeras for BTK Efficiently Inhibit B-Cell Receptor Signaling and Can Overcome Ibrutinib Resistance in CLL Cells. Front Oncol 2021; 11:646971. [PMID: 34055615 PMCID: PMC8159153 DOI: 10.3389/fonc.2021.646971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are small molecules that form ternary complexes between their target and E3 ligase, resulting in ubiquitination and proteasomal degradation of the target protein. Using our own designed Bruton's tyrosine kinase (BTK) PROTAC compounds, we show herein efficient BTK degradation in chronic lymphocytic leukemia (CLL) cells. The reversible non-covalent compound (NC-1) was the most potent and therefore we focused on this PROTAC to investigate its subsequent effects on the BCR pathway. NC-1 decreased baseline BTK phosphorylation as well as activation of BTK and other signaling molecules downstream of the BCR pathway, following IgM engagement. These effects were also obtained in samples from CLL patients with clinical resistance to ibrutinib and mutations at C481. NC-1 treatment further decreased baseline CD69 surface levels, completely abrogated its upregulation following IgM activation, decreased CLL cells migration toward SDF-1 and overcame stromal anti-apoptotic protection. In conclusion, our results indicate that targeting BTK using the PROTAC strategy could be a potential novel therapeutic approach for CLL.
Collapse
Affiliation(s)
| | - Ben-Zion Katz
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronen Gabizon
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Amit Shraga
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Bronstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Talia Kamdjou
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Globerson Levin
- Immunology Research Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Chava Perry
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Irit Avivi
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Yair Herishanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
20
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
21
|
Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL. Leukemia 2021; 35:3163-3175. [PMID: 33935280 PMCID: PMC8550941 DOI: 10.1038/s41375-021-01249-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022]
Abstract
Cancer pathogenesis involves the interplay of tumor- and microenvironment-derived stimuli. Here we focused on the influence of an immunomodulatory cell type, myeloid-derived suppressor cells (MDSCs), and their lineage-related subtypes on autologous T lymphocytes. Although MDSCs as a group correlated with an immunosuppressive Th repertoire and worse clinical course, MDSC subtypes (polymorphonuclear, PMN-MDSC, and monocytic, M-MDSCs) were often functionally discordant. In vivo, PMN-MDSCs existed in higher numbers, correlated with different Th-subsets, and more strongly associated with poor clinical course than M-MDSCs. In vitro, PMN-MDSCs were more efficient at blocking T-cell growth and promoted Th17 differentiation. Conversely, in vitro M-MDSCs varied in their ability to suppress T-cell proliferation, due to the action of TNFα, and promoted a more immunostimulatory Th compartment. Ibrutinib therapy impacted MDSCs differentially as well, since after initiating therapy, PMN-MDSC numbers progressively declined, whereas M-MDSC numbers were unaffected, leading to a set of less immunosuppressive Th cells. Consistent with this, clinical improvement based on decreasing CLL-cell numbers correlated with the decrease in PMN-MDSCs. Collectively, the data support a balance between PMN-MDSC and M-MDSC numbers and function influencing CLL disease course.
Collapse
|
22
|
B Cell Receptor signaling and genetic lesions in TP53 and CDKN2A/CDKN2B cooperate in Richter Transformation. Blood 2021; 138:1053-1066. [PMID: 33900379 DOI: 10.1182/blood.2020008276] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/06/2021] [Indexed: 11/20/2022] Open
Abstract
B cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A and CDKN2B, which block cell cycle progression. We further show that introduction of genetic lesions that downregulate these cell cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR-dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B and TP53 frequently co-occur in Richter syndrome, and BCR stimulation of human Richter syndrome cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR inhibitor treatment and are synergistically sensitive to the combination of a BCR and CDK4/6 inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.
Collapse
|
23
|
Wu X, Fajardo-Despaigne JE, Zhang C, Neppalli V, Banerji V, Johnston JB, Gibson SB, Marshall AJ. Altered T Follicular Helper Cell Subsets and Function in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:674492. [PMID: 33996605 PMCID: PMC8113764 DOI: 10.3389/fonc.2021.674492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Follicular helper T cells (TFH) have specialized properties in promoting normal B cell activation but their role in chronic lymphocytic leukemia (CLL) is unknown. We find that TFH cells are elevated in CLL patients and are phenotypically abnormal, expressing higher levels of PD-1, TIGIT, CD40L, IFNγ and IL-21, and exhibiting abnormal composition of TFH1, TFH2 and TFH17 subsets. Frequencies of CD4-positive T cells expressing TFH1 markers and IL-21 were positively correlated with patient lymphocyte counts and RAI stage, suggesting that accumulation of abnormal TFH cells is concomitant with expansion of the leukemic B cell clone. Treatment with ibrutinib led to normalization of TFH frequencies and phenotype. TFH cells identified in CLL bone marrow display elevated expression of several functional markers compared to blood TFH cells. CLL T cell-B cell co-culture experiments revealed a correlation of patient TFH frequencies with functional ability of their CD4-positive T cells to promote CLL proliferation. Conversely, CLL cells can preferentially activate the TFH cell subset in co-culture. Together our results indicate that CLL development is associated with expansion of abnormal TFH populations that produce elevated levels of cytokines and costimulatory molecules which may help support CLL proliferation.
Collapse
Affiliation(s)
- Xun Wu
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J Ernesto Fajardo-Despaigne
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Christine Zhang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Vishala Neppalli
- Hematopathology Laboratory, Shared Health Manitoba, Winnipeg, MB, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James B Johnston
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Spencer B Gibson
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aaron J Marshall
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Manshouri T, Veletic I, Ferrajoli A, Bose P, Thompson P, Jain N, Verstovsek S, Wierda W, Keating MJ, Estrov Z. STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells. Oncotarget 2021; 12:401-411. [PMID: 33747356 PMCID: PMC7939524 DOI: 10.18632/oncotarget.27884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
The glioma associated oncogene-1 (GLI1), a downstream effector of the embryonic Hedgehog pathway, was detected in chronic lymphocytic leukemia (CLL), but not normal adult cells. GLI1 activating mutations were identified in 10% of patients with CLL. However, what induces GLI1 expression in GLI1-unmutated CLL cells is unknown. Because signal transducer and activator of transcription 3 (STAT3) is constitutively activated in CLL cells and sequence analysis detected putative STAT3-binding sites in the GLI1 gene promoter, we hypothesized that STAT3 induces the expression of GLI1. Western immunoblotting detected GLI1 in CLL cells from 7 of 7 patients, flow cytometry analysis confirmed that CD19+/CD5+ CLL cells co-express GLI1 and confocal microscopy showed co-localization of GLI1 and phosphorylated STAT3. Chromatin immunoprecipitation showed that STAT3 protein co-immunoprecipitated GLI1 as well as other STAT3-regulated genes. Transfection of CLL cells with STAT3-shRNA induced a mark decrease in GLI1 levels, suggesting that STAT3 binds to and induces the expression of GLI1 in CLL cells. An electromobility shift assay confirmed that STAT3 binds, and a luciferase assay showed that STAT3 activates the GLI1 gene. Transfection with GLI1-siRNA significantly increased the spontaneous apoptosis rate of CLL cells, suggesting that GLI1 inhibitors might provide therapeutic benefit to patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tiqva, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Phillip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Lee H, Jeon SG, Kim J, Kang RJ, Kim S, Han K, Park H, Kim K, Sung YM, Nam HY, Koh YH, Song M, Suk K, Hoe H. Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer's disease. Aging Cell 2021; 20:e13332. [PMID: 33709472 PMCID: PMC7963331 DOI: 10.1111/acel.13332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that ibrutinib modulates LPS‐induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aβ plaque levels by promoting the non‐amyloidogenic pathway of APP cleavage, decreased Aβ‐induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin‐dependent kinase‐5 (p‐CDK5). Importantly, tau‐mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long‐term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short‐ and long‐term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3‐kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD‐associated pathology and cognitive function and may be a potential therapy for AD.
Collapse
Affiliation(s)
- Hyun‐ju Lee
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Seong Gak Jeon
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Jieun Kim
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Ri Jin Kang
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Seong‐Min Kim
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
- Medical Device Development Center Daegu‐Gyeongbuk Medical Innovation Foundation (DGMIF) Daegu Korea
| | - Kyung‐Min Han
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - HyunHee Park
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Ki‐taek Kim
- Department of Life Sciences Yeungnam University Gyeongsan Korea
| | - You Me Sung
- Korea Mouse Phenotyping Center (KMPC) Seoul National University Seoul Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Young Ho Koh
- Center for Biomedical Sciences Center for Infectious Diseases Division of Brain Disease Korea National Institute of Health Heungdeok‐gu Korea
| | - Minseok Song
- Department of Life Sciences Yeungnam University Gyeongsan Korea
| | - Kyoungho Suk
- Department of Pharmacology Brain Science & Engineering Institute School of Medicine Kyungpook National University Daegu Korea
| | - Hyang‐Sook Hoe
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science & Technology Daegu Korea
| |
Collapse
|
26
|
Ibrutinib and venetoclax target distinct subpopulations of CLL cells: implication for residual disease eradication. Blood Cancer J 2021; 11:39. [PMID: 33602908 PMCID: PMC7893066 DOI: 10.1038/s41408-021-00429-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ibrutinib inhibits Bruton tyrosine kinase while venetoclax is a specific inhibitor of the anti-apoptotic protein BCL2. Both drugs are highly effective as monotherapy against chronic lymphocytic leukemia (CLL), and clinical trials using the combination therapy have produced remarkable results in terms of rate of complete remission and frequency of undetectable minimal residual disease. However, the laboratory rationale behind the success of the drug combination is still lacking. A better understanding of how these two drugs synergize would eventually help develop other rational combination strategies. Using an ex vivo model that promotes CLL proliferation, we show that modeled ibrutinib proliferative responses, but not viability responses, correlate well with patients’ actual clinical responses. Importantly, we demonstrate for the first time that ibrutinib and venetoclax act on distinct CLL subpopulations that have different proliferative capacities. While the dividing subpopulation of CLL responds to ibrutinib, the resting subpopulation preferentially responds to venetoclax. The combination of these targeted therapies effectively reduced both the resting and dividing subpopulations in most cases. Our laboratory findings help explain several clinical observations and contribute to the understanding of tumor dynamics. Additionally, our proliferation model may be used to identify novel drug combinations with the potential of eradicating residual disease.
Collapse
|
27
|
Stefaniuk P, Onyszczuk J, Szymczyk A, Podhorecka M. Therapeutic Options for Patients with TP53 Deficient Chronic Lymphocytic Leukemia: Narrative Review. Cancer Manag Res 2021; 13:1459-1476. [PMID: 33603488 PMCID: PMC7886107 DOI: 10.2147/cmar.s283903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL), which is the most common type of leukemia in western countries in adults, is characterized by heterogeneity in clinical course, prognosis and response to the treatment. Although, in recent years a number of factors with probable prognostic value in CLL have been identified (eg NOTCH1, SF3B1 and BIRC-3 mutations, or evaluation of microRNA expression), TP53 aberrations are still the most important single factors of poor prognosis. It was found that approximately 30% of all TP53 defects are mutations lacking 17p13 deletion, whereas sole 17p13 deletion with the absence of TP53 mutation consists of 10% of all TP53 defects. The detection of del(17)(p13) and/or TP53 mutation is not a criterion itself for starting antileukemic therapy, but it is associated with an aggressive course of the disease and poor response to the standard chemoimmunotherapy. Treatment of patients with CLL harbouring TP53-deficiency requires drugs that promote cell death independently of TP53. Novel and smarter therapies revolutionize the treatment of del(17p) and/or aberrant TP53 CLL, but development of alternative therapeutic approaches still remains an issue of critical importance.
Collapse
Affiliation(s)
- Paulina Stefaniuk
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Julia Onyszczuk
- Students Scientific Association, Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Clinical Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Gallais F, Ysebaert L, Despas F, De Barros S, Obéric L, Allal B, Chatelut E, White-Koning M. Population PK-PD Modeling of Circulating Lymphocyte Dynamics in Chronic Lymphocytic Leukemia Patients Under Ibrutinib Treatment. Clin Pharmacol Ther 2021; 110:220-228. [PMID: 33539551 DOI: 10.1002/cpt.2189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/27/2021] [Indexed: 11/05/2022]
Abstract
Ibrutinib is indicated for the treatment of chronic lymphocytic leukemia (CLL). Absolute lymphocyte count (ALC) is a clinical criterion used for the monitoring of CLL. Ibrutinib has several effects on lymphocytes, and has highly variable pharmacokinetics (PK). The objective of this work was to build a PK-pharmacodynamic (PD) model describing ALC dynamics under ibrutinib treatment in patients with CLL. ALC observations before and after ibrutinib treatment initiation in patients with CLL were included in the analysis. A population PK-PD model was developed based on physio-pharmacological knowledge. Individual PK concentrations at each hospital visit were included in the model. The association between PD parameters and lymphocytosis, and between PD parameters and response to treatment were assessed. A total of 94 patients, 658 ALC and 1,501 PK observations were included in model development. The final PK-PD model accurately described ALC dynamics for different patient profiles. It consisted in two compartments (tissues and blood circulation) with ibrutinib plasmatic concentration inducing two drug effects: stimulation of lymphocyte redistribution and death. Patients with hyperlymphocytosis had significantly higher tissues to circulation baseline lymphocyte count ratio, and lower death effect. Patients who progressed under ibrutinib had significantly lower baseline lymphocyte counts in tissues (2-fold lower) and blood (3-fold lower). The first PK-PD model for ALC in patients with CLL under ibrutinib treatment was developed. This model suggests that estimated lymphocyte counts in tissues and blood could be used as an early predictor of response in patients with CLL.
Collapse
Affiliation(s)
- Fanny Gallais
- Cancer Research Center of Toulouse, INSERM UMR-1037, CNRS ERL5294, Paul Sabatier University, Toulouse, France
| | - Loïc Ysebaert
- Cancer Research Center of Toulouse, INSERM UMR-1037, CNRS ERL5294, Paul Sabatier University, Toulouse, France.,Department of Hematology, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Fabien Despas
- Department of Medical and Clinical Pharmacology, Centre of PharmacoVigilance, Pharmacoepidemiology and Drug Information, INSERM UMR-1027, Pharmacoepidemiology, Assessment of Drug Utilization and Drug Safety, CIC 1426, Toulouse University Hospital, Toulouse, France
| | - Sandra De Barros
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Toulouse, France
| | - Lucie Obéric
- Department of Hematology, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Ben Allal
- Cancer Research Center of Toulouse, INSERM UMR-1037, CNRS ERL5294, Paul Sabatier University, Toulouse, France.,Laboratory of Pharmacology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Etienne Chatelut
- Cancer Research Center of Toulouse, INSERM UMR-1037, CNRS ERL5294, Paul Sabatier University, Toulouse, France.,Laboratory of Pharmacology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Mélanie White-Koning
- Cancer Research Center of Toulouse, INSERM UMR-1037, CNRS ERL5294, Paul Sabatier University, Toulouse, France
| |
Collapse
|
29
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
30
|
Mathematical and Systems Medicine Approaches to Resistance Evolution and Prevention in Cancer. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Cadot S, Valle C, Tosolini M, Pont F, Largeaud L, Laurent C, Fournie JJ, Ysebaert L, Quillet-Mary A. Longitudinal CITE-Seq profiling of chronic lymphocytic leukemia during ibrutinib treatment: evolution of leukemic and immune cells at relapse. Biomark Res 2020; 8:72. [PMID: 33298182 PMCID: PMC7724843 DOI: 10.1186/s40364-020-00253-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ibrutinib, an irreversible Bruton Tyrosine Kinase (BTK) inhibitor, has revolutionized Chronic Lymphocytic Leukemia (CLL) treatment, but resistances to ibrutinib have emerged, whether related or not to BTK mutations. Patterns of CLL evolution under ibrutinib therapy are well characterized for the leukemic cells but not for their microenvironment. METHODS Here, we addressed this question at the single cell level of both transcriptome and immune-phenotype. The PBMCs from a CLL patient were monitored during ibrutinib treatment using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-Seq) technology. RESULTS This unveiled that the short clinical relapse of this patient driven by BTK mutation is associated with intraclonal heterogeneity in B leukemic cells and up-regulation of common signaling pathways induced by ibrutinib in both B leukemic cells and immune cells. This approach also pinpointed a subset of leukemic cells present before treatment and highly enriched during progression under ibrutinib. These latter exhibit an original gene signature including up-regulated BCR, MYC-activated, and other targetable pathways. Meanwhile, although ibrutinib differentially affected the exhaustion of T lymphocytes, this treatment enhanced the T cell cytotoxicity even during disease progression. CONCLUSIONS These results could open new alternative of therapeutic strategies for ibrutinib-refractory CLL patients, based on immunotherapy or targeting B leukemic cells themselves.
Collapse
Affiliation(s)
- Sarah Cadot
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Carine Valle
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Frederic Pont
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Laetitia Largeaud
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Jean Jacques Fournie
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Loic Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Anne Quillet-Mary
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
- ERL 5294 CNRS, Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France.
| |
Collapse
|
32
|
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol 2020; 10:591577. [PMID: 33154951 PMCID: PMC7116322 DOI: 10.3389/fonc.2020.591577] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
33
|
CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia. Leukemia 2020; 35:1610-1620. [PMID: 33087831 DOI: 10.1038/s41375-020-01063-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The chemoattractant CXCL13 organizes the cellular architecture of B-cell follicles and germinal centers. During adaptive immune responses, CXCL13 plasma concentrations transiently increase and function as a biomarker for normal germinal center activity. Chronic lymphocytic leukemia (CLL) cells express high levels of CXCR5, the receptor for CXCL13, and proliferate in pseudofollicles within secondary lymphoid organs (SLO). Given the morphologic and functional similarities between normal and CLL B-cell expansion in SLO, we hypothesized that CXCL13 plasma concentrations would correlate with CLL disease activity and progression. We analyzed CXCL13 plasma concentrations in 400 CLL patients and correlated the findings with other prognostic markers, time to treatment (TTT), CCL3 and CCL4 plasma concentrations, and in vivo CLL cell proliferation. We found that CXCL13 plasma concentrations were higher in CLL patients with active and advanced stage disease, resulting in a significantly shorter TTT. Accordingly, high CXCL13 levels correlated with other markers of disease activity and CCL3 levels. Higher CLL cell birth rates in vivo also associated with higher CXCL13 plasma concentrations. Interestingly, elevated CXCL13 plasma levels normalized during ibrutinib therapy, and increased in ibrutinib resistance patients. Collectively, these studies emphasize the importance of CXCL13 in crosstalk between CLL cells and the SLO microenvironment.
Collapse
|
34
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
35
|
Clonal dynamics in chronic lymphocytic leukemia. Blood Adv 2020; 3:3759-3769. [PMID: 31770443 DOI: 10.1182/bloodadvances.2019000367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast inter- and intrapatient molecular heterogeneity described in several large-scale DNA-sequencing studies conducted over the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lymphocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib, venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics. Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug response will be an important step toward the selection and timing of therapy.
Collapse
|
36
|
MESH Headings
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/history
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Drug Resistance, Neoplasm
- Female
- History, 20th Century
- History, 21st Century
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mutation
- Prognosis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Survival Rate
Collapse
Affiliation(s)
- Jan A Burger
- From the Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston
| |
Collapse
|
37
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
38
|
Min EJ, Long Q. Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data. BMC Bioinformatics 2020; 21:141. [PMID: 32293260 PMCID: PMC7157996 DOI: 10.1186/s12859-020-3455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/13/2020] [Indexed: 01/28/2023] Open
Abstract
Background Multiple co-inertia analysis (mCIA) is a multivariate analysis method that can assess relationships and trends in multiple datasets. Recently it has been used for integrative analysis of multiple high-dimensional -omics datasets. However, its estimated loading vectors are non-sparse, which presents challenges for identifying important features and interpreting analysis results. We propose two new mCIA methods: 1) a sparse mCIA method that produces sparse loading estimates and 2) a structured sparse mCIA method that further enables incorporation of structural information among variables such as those from functional genomics. Results Our extensive simulation studies demonstrate the superior performance of the sparse mCIA and structured sparse mCIA methods compared to the existing mCIA in terms of feature selection and estimation accuracy. Application to the integrative analysis of transcriptomics data and proteomics data from a cancer study identified biomarkers that are suggested in the literature related with cancer disease. Conclusion Proposed sparse mCIA achieves simultaneous model estimation and feature selection and yields analysis results that are more interpretable than the existing mCIA. Furthermore, proposed structured sparse mCIA can effectively incorporate prior network information among genes, resulting in improved feature selection and enhanced interpretability.
Collapse
Affiliation(s)
- Eun Jeong Min
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Dr, Philadelphia, 19104, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Dr, Philadelphia, 19104, USA.
| |
Collapse
|
39
|
Bartholdy BA, Wang X, Yan XJ, Pascual M, Fan M, Barrientos J, Allen SL, Martinez-Climent JA, Rai KR, Chiorazzi N, Scharff MD, Roa S. CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Adv 2020; 4:893-905. [PMID: 32150608 PMCID: PMC7065474 DOI: 10.1182/bloodadvances.2019000817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Intraclonal subpopulations of circulating chronic lymphocytic leukemia (CLL) cells with different proliferative histories and reciprocal surface expression of CXCR4 and CD5 have been observed in the peripheral blood of CLL patients and named proliferative (PF), intermediate (IF), and resting (RF) cellular fractions. Here, we found that these intraclonal circulating fractions share persistent DNA methylation signatures largely associated with the mutation status of the immunoglobulin heavy chain locus (IGHV) and their origins from distinct stages of differentiation of antigen-experienced B cells. Increased leukemic birth rate, however, showed a very limited impact on DNA methylation of circulating CLL fractions independent of IGHV mutation status. Additionally, DNA methylation heterogeneity increased as leukemic cells advanced from PF to RF in the peripheral blood. This frequently co-occurred with heterochromatin hypomethylation and hypermethylation of Polycomb-repressed regions in the PF, suggesting accumulation of longevity-associated epigenetic features in recently born cells. On the other hand, transcriptional differences between paired intraclonal fractions confirmed their proliferative experience and further supported a linear advancement from PF to RF in the peripheral blood. Several of these differentially expressed genes showed unique associations with clinical outcome not evident in the bulk clone, supporting the pathological and therapeutic relevance of studying intraclonal CLL fractions. We conclude that independent methylation and transcriptional landscapes reflect both preexisting cell-of-origin fingerprints and more recently acquired hallmarks associated with the life cycle of circulating CLL cells.
Collapse
Affiliation(s)
- Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Xiahoua Wang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Marién Pascual
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Manxia Fan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline Barrientos
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Jose Angel Martinez-Climent
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Kanti R Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Sergio Roa
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Celebrating 20 Years of IGHV Mutation Analysis in CLL. Hemasphere 2020; 4:e334. [PMID: 32382709 PMCID: PMC7000474 DOI: 10.1097/hs9.0000000000000334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/28/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
The division of CLL into 2 broad subsets with highly significant differences in clinical behavior was reported in 2 landmark papers in Blood in 1999.1,2 The simple analysis of the mutational status of the IGV regions provided both a prognostic indicator and an insight into the cellular origins. Derivation from B cells with very low or no IGV mutations generally leads to a more aggressive disease course than derivation from B cells with higher levels. This finding focused attention on surface Ig (sIg), the major B-cell receptor, and revealed dynamic antigen engagement in vivo as a tumor driver. It has also led to new drugs aimed at components of the intracellular activation cascades. After 20 years, the 2 senior authors of those papers have looked at the history of the observations and at the increasing understanding of the role of sIg in CLL that have emanated from them. As in the past, studies of CLL have provided a link between biology and the clinic, enabling more precise targeting which attacks critical pathways but minimizes side effects.
Collapse
|
41
|
Abstract
Inhibitors of Bruton's tyrosine kinase (BTK), a major kinase in the B-cell receptor (BCR) signaling pathway, mediating B-cell proliferation and apoptosis, have substantially altered the management, clinical course, and outcome of patients with B-cell malignancies. This is especially true for patients with previously limited treatment options due to disease characteristics or coexisting diseases. Ibrutinib was the first orally available, nonselective and irreversible inhibitor of BTK approved for the treatment of patients with various B-cell malignancies. Newer and more selective BTK inhibitors are currently in clinical development, including acalabrutinib, which is currently US FDA approved for previously treated mantle cell lymphoma. Significant efforts are underway to investigate the optimal combinations, timing, and sequencing of BTK inhibitors with other regimens and targeted agents, and to capitalize on the immunomodulatory modes of action of BTK inhibitors to correct tumor-induced immune defects and to achieve long-lasting tumor control. This review describes the major milestones in the clinical development of BTK inhibitors in chronic lymphocytic leukemia and other B-cell malignancies, highlights the most recent long-term follow-up results, and evaluates the role of BTK inhibitors and their combination with other agents in B-cell malignancies and other indications.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Antineoplastic Agents/therapeutic use
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/enzymology
- Leukemia, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/pathology
- Prognosis
Collapse
Affiliation(s)
- Fabienne Lucas
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, Comprehensive Cancer Center, 455D Wiseman Hall, 410 W 12th Ave, Columbus, OH, 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Medicine, The Ohio State University College of Medicine, Comprehensive Cancer Center, 455D Wiseman Hall, 410 W 12th Ave, Columbus, OH, 43210, USA.
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
The BET inhibitor GS-5829 targets chronic lymphocytic leukemia cells and their supportive microenvironment. Leukemia 2019; 34:1588-1598. [PMID: 31862959 PMCID: PMC7272263 DOI: 10.1038/s41375-019-0682-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Despite major improvements in treatment outcome with novel targeted therapies, such as the Bruton tyrosine kinase (BTK) inhibitor ibrutinib, chronic lymphocytic leukemia (CLL) remains incurable in the majority of patients. Activation of PI3K, NF-κB, and/or MYC has been linked to residual disease and/or resistance in ibrutinib-treated patients. These pathways can be targeted by inhibitors of bromodomain and extra-terminal (BET) proteins. Here we report about the preclinical activity of GS-5829, a novel BET inhibitor, in CLL. GS-5829 inhibited CLL cell proliferation and induced leukemia cell apoptosis through deregulation of key signaling pathways, such as BLK, AKT, ERK1/2, and MYC. IκBα modulation indicates that GS-5829 also inhibited NF-κB signaling. GS-5829-induced apoptosis resulted from an imbalance between positive (BIM) and negative regulators (BCL-XL) of the intrinsic apoptosis pathway. The antileukemia activity of GS-5829 increased synergistically in combinations with B-cell receptor signaling inhibitors, the BTK inhibitor ibrutinib, the PI3Kδ inhibitor idelalisib, and the SYK inhibitor entospletinib. In cocultures that mimic the lymph node microenvironment, GS-5829 inhibited signaling pathways within nurselike cells and their growth, indicating that BET inhibitors also can target the supportive CLL microenvironment. Collectively, these data provide a rationale for the clinical evaluation of BET inhibitors in CLL.
Collapse
|
43
|
Gutierrez C, Wu CJ. Clonal dynamics in chronic lymphocytic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:466-475. [PMID: 31808879 PMCID: PMC6913465 DOI: 10.1182/hematology.2019000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast inter- and intrapatient molecular heterogeneity described in several large-scale DNA-sequencing studies conducted over the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lymphocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib, venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics. Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug response will be an important step toward the selection and timing of therapy.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Genome-Wide Association Study
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Middle Aged
- Mutation
- Piperidines
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- Sulfonamides/therapeutic use
- Transcriptome
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Catherine Gutierrez
- Harvard Medical School, Boston, MA; and Dana-Farber Cancer Institute, Boston, MA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA; and Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
44
|
Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression. PLoS Comput Biol 2019; 15:e1007493. [PMID: 31738747 PMCID: PMC6886869 DOI: 10.1371/journal.pcbi.1007493] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/02/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
A tumour grows when the total division (birth) rate of its cells exceeds their total mortality (death) rate. The capability for uncontrolled growth within the host tissue is acquired via the accumulation of driver mutations which enable the tumour to progress through various hallmarks of cancer. We present a mathematical model of the penultimate stage in such a progression. We assume the tumour has reached the limit of its present growth potential due to cell competition that either results in total birth rate reduction or death rate increase. The tumour can then progress to the final stage by either seeding a metastasis or acquiring a driver mutation. We influence the ensuing evolutionary dynamics by cytotoxic (increasing death rate) or cytostatic (decreasing birth rate) therapy while keeping the effect of the therapy on net growth reduction constant. Comparing the treatments head to head we derive conditions for choosing optimal therapy. We quantify how the choice and the related gain of optimal therapy depends on driver mutation, metastasis, intrinsic cell birth and death rates, and the details of cell competition. We show that detailed understanding of the cell population dynamics could be exploited in choosing the right mode of treatment with substantial therapy gains. Cells and organisms evolve to better survive in their environments and to adapt to new challenges. Such dynamics manifest in a particularly problematic way with the evolution of drug resistance, which is increasingly recognized as a key challenge for global health. Thus, developing therapy paradigms that factor in evolutionary dynamics is an important goal. Using a minimal mathematical model of a cancer cell population we contrast cytotoxic (increasing death rate) and cytostatic (decreasing birth rate) treatments while keeping the effect of the therapy on the net growth reduction constant. We then quantify how the choice and the related gain of optimal therapy depends on driver mutation, metastasis, intrinsic cell birth and death rates and the details of cell competition. Most importantly, we identify specific cell population dynamics under which a certain treatment could be significantly better than the alternative.
Collapse
|
45
|
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
46
|
Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J, Biros G, Yankeelov TE, Curtius K, Al Bakir I, Wodarz D, Komarova N, Aparicio L, Bordyuh M, Rabadan R, Finley SD, Enderling H, Caudell J, Moros EG, Anderson ARA, Gatenby RA, Kaznatcheev A, Jeavons P, Krishnan N, Pelesko J, Wadhwa RR, Yoon N, Nichol D, Marusyk A, Hinczewski M, Scott JG. The 2019 mathematical oncology roadmap. Phys Biol 2019; 16:041005. [PMID: 30991381 PMCID: PMC6655440 DOI: 10.1088/1478-3975/ab1a09] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no denying that mathematics continues to play an increasingly prominent role in cancer research. Mathematical Oncology-defined here simply as the use of mathematics in cancer research-complements and overlaps with a number of other fields that rely on mathematics as a core methodology. As a result, Mathematical Oncology has a broad scope, ranging from theoretical studies to clinical trials designed with mathematical models. This Roadmap differentiates Mathematical Oncology from related fields and demonstrates specific areas of focus within this unique field of research. The dominant theme of this Roadmap is the personalization of medicine through mathematics, modelling, and simulation. This is achieved through the use of patient-specific clinical data to: develop individualized screening strategies to detect cancer earlier; make predictions of response to therapy; design adaptive, patient-specific treatment plans to overcome therapy resistance; and establish domain-specific standards to share model predictions and to make models and simulations reproducible. The cover art for this Roadmap was chosen as an apt metaphor for the beautiful, strange, and evolving relationship between mathematics and cancer.
Collapse
Affiliation(s)
- Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Loh JW, Khiabanian H. Leukemia’s Clonal Evolution in Development, Progression, and Relapse. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00157-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Evolution of CLL treatment - from chemoimmunotherapy to targeted and individualized therapy. Nat Rev Clin Oncol 2019; 15:510-527. [PMID: 29777163 DOI: 10.1038/s41571-018-0037-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the past 5 years, a number of highly active novel agents, including kinase inhibitors targeting BTK or PI3Kδ, an antagonist of the antiapoptotic protein BCL-2, and new anti-CD20 monoclonal antibodies, have been added to the therapeutic armamentarium for patients with chronic lymphocytic leukaemia (CLL). In these exciting times, care is needed to optimally integrate these novel agents into the traditional treatment algorithm without overlooking or compromising the benefits of established treatments, especially chemoimmunotherapy. A more personalized approach to CLL therapy that takes into account individual risk factors, patient characteristics, and their treatment preferences is now possible. Herein, we discuss the biological basis for the novel therapeutic agents and outline not only the major advantages of these agents over traditional therapies but also their adverse effects and the rationale for continued use of older versus newer types of therapy for selected patients with CLL. We conclude by providing recommendations for an individualized therapy approach for different populations of patients with CLL.
Collapse
|
49
|
Morande PE, Sivina M, Uriepero A, Seija N, Berca C, Fresia P, Landoni AI, Di Noia JM, Burger JA, Oppezzo P. Ibrutinib therapy downregulates AID enzyme and proliferative fractions in chronic lymphocytic leukemia. Blood 2019; 133:2056-2068. [PMID: 30814061 PMCID: PMC7022232 DOI: 10.1182/blood-2018-09-876292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination of the immunoglobulin genes. As a trade-off for its physiological function, AID also contributes to tumor development through its mutagenic activity. In chronic lymphocytic leukemia (CLL), AID is overexpressed in the proliferative fractions (PFs) of the malignant B lymphocytes, and its anomalous expression has been associated with a clinical poor outcome. Recent preclinical data suggested that ibrutinib and idelalisib, 2 clinically approved kinase inhibitors, increase AID expression and genomic instability in normal and neoplastic B cells. These results raise concerns about a potential mutagenic risk in patients receiving long-term therapy. To corroborate these findings in the clinical setting, we analyzed AID expression and PFs in a CLL cohort before and during ibrutinib treatment. We found that ibrutinib decreases the CLL PFs and, interestingly, also reduces AID expression, which correlates with dampened AKT and Janus Kinase 1 signaling. Moreover, although ibrutinib increases AID expression in a CLL cell line, it is unable to do so in primary CLL samples. Our results uncover a differential response to ibrutinib between cell lines and the CLL clone and imply that ibrutinib could differ from idelalisib in their potential to induce AID in treated patients. Possible reasons for the discrepancy between preclinical and clinical findings, and their effect on treatment safety, are discussed.
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Angimar Uriepero
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Catalina Berca
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Inés Landoni
- Hospital Maciel, Administración de los Servicios de Salud del Estado, Ministerio de Salud, Montevideo, Uruguay
| | - Javier M Di Noia
- Division of Immunity and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; and
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
50
|
Ibrutinib is safer than we think. Blood 2019; 133:2006-2007. [PMID: 31072962 DOI: 10.1182/blood-2019-03-901009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|