1
|
Cetani F, Dinoi E, Pierotti L, Pardi E. Familial states of primary hyperparathyroidism: an update. J Endocrinol Invest 2024; 47:2157-2176. [PMID: 38635114 DOI: 10.1007/s40618-024-02366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Familial primary hyperparathyroidism (PHPT) includes syndromic and non-syndromic disorders. The former are characterized by the occurrence of PHPT in association with extra-parathyroid manifestations and includes multiple endocrine neoplasia (MEN) types 1, 2, and 4 syndromes, and hyperparathyroidism-jaw tumor (HPT-JT). The latter consists of familial hypocalciuric hypercalcemia (FHH) types 1, 2 and 3, neonatal severe primary hyperparathyroidism (NSHPT), and familial isolated primary hyperparathyroidism (FIHP). The familial forms of PHPT show different levels of PHPT penetrance, developing earlier and with multiglandular involvement compared to sporadic counterpart. All these diseases exhibit Mendelian inheritance patterns, and for most of them, the genes responsible have been identified. DNA testing for predisposing mutations is helpful in index cases or in individuals with a high suspicion of the disease. Early recognition of hereditary disorders of PHPT is of great importance for the best clinical and surgical approach. Genetic testing is useful in routine clinical practice because it will also involve appropriate screening for extra-parathyroidal manifestations related to the syndrome as well as the identification of asymptomatic carriers of the mutation. PURPOSE The aim of the review is to discuss the current knowledge on the clinical and genetic profile of these disorders along with the importance of genetic testing in clinical practice.
Collapse
Affiliation(s)
- F Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - E Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Russell P, Antony MA. Coexistence of a Calcium-Sensing Receptor Mutation and Primary Hyperparathyroidism. Cureus 2023; 15:e46980. [PMID: 38021951 PMCID: PMC10640877 DOI: 10.7759/cureus.46980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Primary hyperparathyroidism (PHPT) and familial hypocalciuric hypercalcemia (FHH) are the main differential diagnoses in a patient presenting with parathyroid hormone (PTH)-mediated hypercalcemia. PHPT is most often caused by a single-gland parathyroid adenoma and FHH is the result of an inactivating mutation of the calcium-sensing receptor (CaSR) gene. In this paper, we present a unique case of the co-existence of an inactivating CaSR gene mutation and PHPT due to a single-gland parathyroid adenoma. The patient is a 67-year-old female with a history of recurrent nephrolithiasis who presented with hypercalcemia, elevated PTH level, and hypocalciuria. As a result of the patient's hypocalciuria, familial hypocalciuric hypercalcemia was suspected, and genetic testing was pursued. CaSR gene analysis revealed a heterogeneous inactivating mutation of the CaSR gene. Additionally, nuclear imaging with technetium sestamibi revealed a large focus of activity on the right side of the neck suspicious of a parathyroid adenoma. This was resected and confirmed to be a hypercellular parathyroid adenoma. Two years after her surgery, the patient continues to have normal calcium levels with no further episodes of nephrolithiasis. She is currently undergoing treatment for osteoporosis and is being periodically monitored for recurrence of hypercalcemia due to the presence of the inactivating CaSR gene mutation. This case highlights an exceedingly rare case of a patient with both an inactivating CaSR gene mutation and PHPT due to a single parathyroid adenoma, and it underscores the importance of further research to determine any potential relationship between the two.
Collapse
Affiliation(s)
- Peyton Russell
- Endocrinology and Metabolism, Medical University of South Carolina, Charleston, USA
| | | |
Collapse
|
4
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
5
|
Melo US, Jatzlau J, Prada-Medina CA, Flex E, Hartmann S, Ali S, Schöpflin R, Bernardini L, Ciolfi A, Moeinzadeh MH, Klever MK, Altay A, Vallecillo-García P, Carpentieri G, Delledonne M, Ort MJ, Schwestka M, Ferrero GB, Tartaglia M, Brusco A, Gossen M, Strunk D, Geißler S, Mundlos S, Stricker S, Knaus P, Giorgio E, Spielmann M. Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation. Nat Commun 2023; 14:2034. [PMID: 37041138 PMCID: PMC10090176 DOI: 10.1038/s41467-023-37585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFβ and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFβ, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.
Collapse
Affiliation(s)
- Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany.
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Elisabetta Flex
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, 00161, Rome, Italy
| | - Sunhild Hartmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - M-Hossein Moeinzadeh
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | - Marius-Konstantin Klever
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Aybuge Altay
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | | | - Giovanna Carpentieri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Melanie-Jasmin Ort
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, 10126, Italy
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020, Salzburg, Austria
| | - Sven Geißler
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Sigmar Stricker
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, 23562, Germany.
- DZHK (German Centre for Cardiovascular Research) Germany, partner site Hamburg, Lübeck, Kiel, Lübeck, 23562, Germany.
| |
Collapse
|
6
|
Mannstadt M, Cianferotti L, Gafni RI, Giusti F, Kemp EH, Koch CA, Roszko KL, Yao L, Guyatt GH, Thakker RV, Xia W, Brandi ML. Hypoparathyroidism: Genetics and Diagnosis. J Bone Miner Res 2022; 37:2615-2629. [PMID: 36375809 DOI: 10.1002/jbmr.4667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 01/05/2023]
Abstract
This narrative report summarizes diagnostic criteria for hypoparathyroidism and describes the clinical presentation and underlying genetic causes of the nonsurgical forms. We conducted a comprehensive literature search from January 2000 to January 2021 and included landmark articles before 2000, presenting a comprehensive update of these topics and suggesting a research agenda to improve diagnosis and, eventually, the prognosis of the disease. Hypoparathyroidism, which is characterized by insufficient secretion of parathyroid hormone (PTH) leading to hypocalcemia, is diagnosed on biochemical grounds. Low albumin-adjusted calcium or ionized calcium with concurrent inappropriately low serum PTH concentration are the hallmarks of the disease. In this review, we discuss the characteristics and pitfalls in measuring calcium and PTH. We also undertook a systematic review addressing the utility of measuring calcium and PTH within 24 hours after total thyroidectomy to predict long-term hypoparathyroidism. A summary of the findings is presented here; results of the detailed systematic review are published separately in this issue of JBMR. Several genetic disorders can present with hypoparathyroidism, either as an isolated disease or as part of a syndrome. A positive family history and, in the case of complex diseases, characteristic comorbidities raise the clinical suspicion of a genetic disorder. In addition to these disorders' phenotypic characteristics, which include autoimmune diseases, we discuss approaches for the genetic diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luisella Cianferotti
- Bone Metabolic Diseases Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Rachel I Gafni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Christian A Koch
- Department of Medicine/Endocrinology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Medicine/Endocrinology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kelly L Roszko
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Liam Yao
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical Collage Hospital, Beijing, China
| | - Maria-Luisa Brandi
- Fondazione Italiana sulla Ricerca sulle Malattie dell'Osso (F.I.R.M.O. Foundation), Florence, Italy
| |
Collapse
|
7
|
Roszko KL, Stapleton Smith LM, Sridhar AV, Roberts MS, Hartley IR, Gafni RI, Collins MT, Fox JC, Nemeth EF. Autosomal Dominant Hypocalcemia Type 1: A Systematic Review. J Bone Miner Res 2022; 37:1926-1935. [PMID: 35879818 PMCID: PMC9805030 DOI: 10.1002/jbmr.4659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023]
Abstract
Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism due to activating variants of the calcium-sensing receptor gene (CASR). Inherited or de novo activating variants of the CASR alter the set point for extracellular calcium, resulting in inadequate parathyroid hormone (PTH) secretion and inappropriate renal calcium excretion leading to hypocalcemia and hypercalciuria. Conventional therapy includes calcium and activated vitamin D, which can worsen hypercalciuria, resulting in renal complications. A systematic literature review, using published reports from 1994 to 2021, was conducted to catalog CASR variants, to define the ADH1 clinical spectrum, and to determine the effect of treatment on patients with ADH1. There were 113 unique CASR variants reported, with a general lack of genotype/phenotype correlation. Clinical data were available in 191 patients; 27% lacked symptoms, 32% had mild/moderate symptoms, and 41% had severe symptoms. Seizures, the most frequent clinical presentation, occurred in 39% of patients. In patients with blood and urine chemistries available at the time of diagnosis (n = 91), hypocalcemia (99%), hyperphosphatemia (59%), low PTH levels (57%), and hypercalciuria (34%) were observed. Blood calcium levels were significantly lower in patients with severe symptoms compared with asymptomatic patients (6.8 ± 0.7 versus 7.6 ± 0.7 mg/dL [mean ± SD]; p < 0.0001), and the age of presentation was significantly lower in severely symptomatic patients (9.1 ± 15.0 versus 19.3 ± 19.4 years; p < 0.01). Assessments for complications including nephrocalcinosis, nephrolithiasis, renal impairment, and brain calcifications in 57 patients on conventional therapy showed that 75% had at least one complication. Hypercalciuria was associated with nephrocalcinosis, nephrolithiasis, renal impairment, or brain calcifications (odds ratio [OR] = 9.3; 95% confidence interval [CI] 2.4-37.2; p < 0.01). In 27 patients with urine calcium measures before and after starting conventional therapy, the incidence of hypercalciuria increased by 91% (p < 0.05) after therapy initiation. ADH1 is a condition often associated with severe symptomatology at presentation with an increase in the risk of renal complications after initiation of conventional therapy. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kelly L Roszko
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | | | | - Iris R Hartley
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | - Rachel I Gafni
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | - Michael T Collins
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
8
|
Goolam MA, Brown AP, Edwards KT, Gregory KJ, Leach K, Conigrave AD. Cell Surface Calcium-Sensing Receptor Heterodimers: Mutant Gene Dosage Affects Ca 2+ Sensing but Not G Protein Interaction. J Bone Miner Res 2022; 37:1787-1807. [PMID: 35848051 PMCID: PMC9545990 DOI: 10.1002/jbmr.4651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mahvash A Goolam
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Alice P Brown
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Kimberly T Edwards
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Karen J Gregory
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Katie Leach
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| |
Collapse
|
9
|
Sviridonova MA. [Syndrome of hypocalсiuric hypercalcemia. Is it rare? Two clinical cases in an outpatient clinic]. PROBLEMY ENDOKRINOLOGII 2022; 68:24-31. [PMID: 36337015 DOI: 10.14341/probl13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Hypocalciuric hypercalcemia syndrome (familial hypocalciuric hypercalcemia, FHH) is an inherited condition based on dysfunction of the calcium receptor or its associated partner proteins. Recent evidence suggests that the prevalence of this condition may be comparable to that of primary hyperparathyroidism. Clinical manifestations of FHH are usually absent; however the classic symptoms of hypercalcemia may be present in some cases. Timely differential diagnosis of FHH avoids unnecessary and expensive instrumental examination, as well as ineffective treatment. The clinical cases presented in this publication demonstrate the unjustified difficulties in this issue and the necessity to raise the awareness of physicians about the familial hypocalciuric hypercalcemia.
Collapse
|
10
|
De Sousa SMC, Carroll RW, Henderson A, Burgess J, Clifton-Bligh RJ. A contemporary clinical approach to genetic testing for heritable hyperparathyroidism syndromes. Endocrine 2022; 75:23-32. [PMID: 34773560 DOI: 10.1007/s12020-021-02927-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The improved access and affordability of next generation sequencing has facilitated the clinical use of gene panel testing to test concurrently patients for multiple heritable hyperparathyroidism syndromes. However, there is little guidance as to which patients should be selected for gene panel testing and which genes should be included in such panels. In this review, we provide a practical approach to considering, interpreting and managing genetic testing for familial primary hyperparathyroidism (PHPT) syndromes and familial hypocalciuric hypercalcaemia (FHH) in patients with PTH-dependent hypercalcaemia. We discuss known genes implicated in PHPT and FHH, testing criteria and yields, pre-test counselling, laboratory considerations, and post-test management. METHODS In addition to reviewing the literature, we conducted audits of local genetic testing data to examine the real-world yield of genetic testing in patients with PTH-dependent hypercalcaemia. RESULTS Our local audits revealed a positive genetic testing rate of 15-26% in patients with suspected hyperparathyroidism syndromes. CONCLUSION Based on the particular testing criteria met, affected patients should be tested for variants in the genes currently implicated in PHPT (MEN1, CDC73, RET, CDKN1B, GCM2, CASR) and/or FHH (CASR, GNA11, AP2S1). Patients should be provided with pre- and post-test counselling, including consideration of potential implications for family members.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine & Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.
- South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Richard W Carroll
- Endocrine, Diabetes, and Research Centre, Wellington Regional Hospital, Wellington, New Zealand
| | - Alex Henderson
- Wellington Hospital, Genetic Health Service New Zealand, Wellington, New Zealand
| | - John Burgess
- Department of Diabetes and Endocrinology, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Roderick J Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Hassan SS, Kempers M, Lugtenberg D, Abdallah AT, Musa SA, Ibrahim AA, Abdullah MA. Challenges in diagnosis and management of neonatal hyperparathyroidism in a resource-limited country: a case series from a Sudanese family. Pan Afr Med J 2021; 40:105. [PMID: 34887979 PMCID: PMC8627147 DOI: 10.11604/pamj.2021.40.105.29527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022] Open
Abstract
Neonatal hyperparathyroidism is a rare disease caused by a homozygous inactivating mutation in the calcium sensing receptor gene. It presents early in life with life threatening manifestations of hypercalcemia, if left untreated the condition may be lethal. This is the first case series reported from Sudan. Three Sudanese siblings presented with severe symptoms of hypercalcemia in the form of polyuria, failure to thrive and multiple bone fractures. Serum calcium and parathyroid hormone levels were very high with low phosphate and normal alkaline phosphatase levels. Ultrasonography and sestamibi scan were normal and did not assist in diagnosing their condition. Medical management was a great challenge due to unavailability of medications such as parentral bisphosphonates and calcimimetics. Parathyroidectomy was inevitable. Tissue biopsies revealed parathyroid hyperplasia and no adenoma. Gene sequencing revealed a homozygous missense mutation: c 2038 C T p (Arg680Cys) in two siblings, both parents were heterozygous for the same missense mutation. Our report reflects the challenges in diagnosis and management of neonatal hyperparathyroidism in resource limited countries. We also highlight the importance of genetic testing in the diagnosis and management of such cases in countries with high rates of consanguineous marriage.
Collapse
Affiliation(s)
- Samar Sabir Hassan
- Department of Pediatric Endocrinology, Gaafar Ibn Auf Pediatric Tertiary Hospital, Khartoum, Sudan
| | | | | | | | - Salwa Abdelbagi Musa
- Department of Pediatric Endocrinology, Gaafar Ibn Auf Pediatric Tertiary Hospital, Khartoum, Sudan
| | - Areej Ahmed Ibrahim
- Department of Pediatric Endocrinology, Gaafar Ibn Auf Pediatric Tertiary Hospital, Khartoum, Sudan
| | | |
Collapse
|
12
|
Abstract
Hypercalcemic disorders are rare in pregnant women and are usually due to primary hyperparathyroidism. Clinical manifestations of hypercalcemia are nonspecific and can be masked by the physiologic changes of pregnancy. Furthermore, routine antenatal screening does not include serum calcium measurement and a hypercalcemia diagnosis may therefore be delayed until term or even after delivery. Timely recognition and appropriate interventions are essential to decrease maternal and fetal complications. Conservative measures are appropriate in the presence of mild hypercalcemia. Parathyroidectomy remains the mainstay of treatment for primary hyperparathyroidism with significant hypercalcemia not responding to conservative measures.
Collapse
Affiliation(s)
- Karel Dandurand
- Division of Endocrinology and Metabolism, McMaster University, Bone Research and Education Centre, 3075 Hospital Gate, Unit 223, Oakville, ON L6M 1M1, Canada
| | - Dalal S Ali
- Division of Endocrinology and Metabolism, McMaster University, Bone Research and Education Centre, 3075 Hospital Gate, Unit 223, Oakville, ON L6M 1M1, Canada
| | - Aliya A Khan
- Division of Endocrinology and Metabolism, McMaster University, Bone Research and Education Centre, 3075 Hospital Gate, Unit 223, Oakville, ON L6M 1M1, Canada.
| |
Collapse
|
13
|
Papadopoulou A, Bountouvi E, Karachaliou FE. The Molecular Basis of Calcium and Phosphorus Inherited Metabolic Disorders. Genes (Basel) 2021; 12:genes12050734. [PMID: 34068220 PMCID: PMC8153134 DOI: 10.3390/genes12050734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca) and Phosphorus (P) hold a leading part in many skeletal and extra-skeletal biological processes. Their tight normal range in serum mirrors their critical role in human well-being. The signalling “voyage” starts at Calcium Sensing Receptor (CaSR) localized on the surface of the parathyroid glands, which captures the “oscillations” of extracellular ionized Ca and transfers the signal downstream. Parathyroid hormone (PTH), Vitamin D, Fibroblast Growth Factor (FGF23) and other receptors or ion-transporters, work synergistically and establish a highly regulated signalling circuit between the bone, kidneys, and intestine to ensure the maintenance of Ca and P homeostasis. Any deviation from this well-orchestrated scheme may result in mild or severe pathologies expressed by biochemical and/or clinical features. Inherited disorders of Ca and P metabolism are rare. However, delayed diagnosis or misdiagnosis may cost patient’s quality of life or even life expectancy. Unravelling the thread of the molecular pathways involving Ca and P signaling, we can better understand the link between genetic alterations and biochemical and/or clinical phenotypes and help in diagnosis and early therapeutic intervention.
Collapse
|
14
|
Boisen IM, Rehfeld A, Mos I, Poulsen NN, Nielsen JE, Schwarz P, Rejnmark L, Dissing S, Bach-Mortensen P, Juul A, Bräuner-Osborne H, Lanske B, Blomberg Jensen M. The Calcium-Sensing Receptor Is Essential for Calcium and Bicarbonate Sensitivity in Human Spermatozoa. J Clin Endocrinol Metab 2021; 106:e1775-e1792. [PMID: 33340048 DOI: 10.1210/clinem/dgaa937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT The calcium-sensing receptor (CaSR) is essential to maintain a stable calcium concentration in serum. Spermatozoa are exposed to immense changes in concentrations of CaSR ligands such as calcium, magnesium, and spermine during epididymal maturation, in the ejaculate, and in the female reproductive environment. However, the role of CaSR in human spermatozoa is unknown. OBJECTIVE This work aimed to investigate the role of CaSR in human spermatozoa. METHODS We identified CaSR in human spermatozoa and characterized the response to CaSR agonists on intracellular calcium, acrosome reaction, and 3',5'-cyclic adenosine 5'-monophosphate (cAMP) in spermatozoa from men with either loss-of-function or gain-of-function mutations in CASR and healthy donors. RESULTS CaSR is expressed in human spermatozoa and is essential for sensing extracellular free ionized calcium (Ca2+) and Mg2+. Activators of CaSR augmented the effect of sperm-activating signals such as the response to HCO3- and the acrosome reaction, whereas spermatozoa from men with a loss-of-function mutation in CASR had a diminished response to HCO3-, lower progesterone-mediated calcium influx, and were less likely to undergo the acrosome reaction in response to progesterone or Ca2+. CaSR activation increased cAMP through soluble adenylyl cyclase (sAC) activity and increased calcium influx through CatSper. Moreover, external Ca2+ or Mg2+ was indispensable for HCO3- activation of sAC. Two male patients with a CASR loss-of-function mutation in exon 3 presented with normal sperm counts and motility, whereas a patient with a loss-of-function mutation in exon 7 had low sperm count, motility, and morphology. CONCLUSION CaSR is important for the sensing of Ca2+, Mg2+, and HCO3- in spermatozoa, and loss-of-function may impair male sperm function.
Collapse
Affiliation(s)
- Ida Marie Boisen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, MA, USA
| | - Anders Rehfeld
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iris Mos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadia Nicholine Poulsen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Erik Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schwarz
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rejnmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Dissing
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, MA, USA
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
15
|
Appelman-Dijkstra NM, Ertl DA, Zillikens MC, Rjenmark L, Winter EM. Hypercalcemia during pregnancy: management and outcomes for mother and child. Endocrine 2021; 71:604-610. [PMID: 33544354 PMCID: PMC8016748 DOI: 10.1007/s12020-021-02615-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Diagnosing and treating hypercalcemia during pregnancy can be challenging due to both the physiological changes in calcium homeostasis and the underlying cause for the hypercalcemia. During pregnancy and lactation there is increased mobilization of calcium in the mother to meet the fetus' calcium requirements. Here we discuss the diagnostic challenges, management, and patient perspective of hypercalcemia during pregnancy in two particular cases and in other rare conditions causing hypercalcemia.
Collapse
Affiliation(s)
- Natasha M Appelman-Dijkstra
- Department of Internal Medicine, Division of Endocrinology, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands.
| | - Diana- Alexandra Ertl
- Department for Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Center of Expertise for Rare Disorders of Bone, Growth and Mineralization, Vienna Bone and Growth Center, Vienna, Austria
| | - M C Zillikens
- Department of Internal Medicine, Erasmus MC Bone Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lars Rjenmark
- Department of Clinical Medicine; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Elizabeth M Winter
- Department of Internal Medicine, Division of Endocrinology, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
16
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
17
|
Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney. Cells 2020; 9:cells9071644. [PMID: 32659887 PMCID: PMC7407487 DOI: 10.3390/cells9071644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium transport. Apart from Ca2+ transport systems, CaSR signaling affects relevant distal Na+-(K+)-2Cl- cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1. Gain-of-function mutations within the WNK-SPAK/OSR1-NKCC2/NCC pathway lead to renal salt retention and hypertension, whereas loss-of-function mutations have been associated with salt-losing tubulopathies such as Bartter or Gitelman syndromes. A Bartter-like syndrome has been also described in patients carrying gain-of-function mutations in the CaSR gene. Recent work suggested that CaSR signals via the WNK-SPAK/OSR1 cascade to modulate salt reabsorption along the distal nephron. The review presented here summarizes the latest progress in understanding of functional interactions between CaSR and WNKs and their potential impact on the renal salt handling and blood pressure.
Collapse
|
18
|
Abstract
Parathyroid glands are critical for calcium and phosphate homeostasis. Parathyroid disease is relatively rare in the pediatric population, but there are some important pediatric-specific considerations and conditions. This article reviews parathyroid physiology, disorders of hyper- and hypo- function, operative management, and uniquely pediatric diagnoses such as neonatal severe hyperparathyroidism. Advances in preoperative imaging, intra-operative gland identification, and management of post-thyroidectomy hypocalcemia are also presented in detail. This article combines a review of fundamentals with recent advances in care, emphasizing pediatric-specific publications.
Collapse
|
19
|
Jones AR, Hare MJ, Brown J, Yang J, Meyer C, Milat F, Allan CA. Familial Hypocalciuric Hypercalcemia in Pregnancy: Diagnostic Pitfalls. JBMR Plus 2020; 4:e10362. [PMID: 32537548 PMCID: PMC7285754 DOI: 10.1002/jbm4.10362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 11/10/2022] Open
Abstract
Familial hypocalciuric hypercalcemia (FHH) is a group of autosomal dominant disorders caused by dysfunction of the calcium sensing receptor (CaSR) and its downstream signaling proteins, leading to generally asymptomatic hypercalcemia. During pregnancy, distinguishing FHH from primary hyperparathyroidism (PHPT) is important, as the latter is associated with adverse outcomes and can be treated surgically during pregnancy, whereas the former is benign. This case report highlights the difficulties in diagnosing FHH during pregnancy. A 32‐year‐old woman was found to have asymptomatic hypercalcemia at 14‐weeks’ gestation. Investigations showed a corrected calcium (cCa) of 2.61 mmol/L (2.10 to 2.60), ionized Ca (iCa) of 1.40 mmol/L (1.15 to 1.28), 25OHD of 33 nmol/L (75 to 250), and PTH of 9.5 pmol/L (1.5 to 7.0). The patient was treated with 2000 IU cholecalciferol daily with normalization of 25OHD. The urine calcium / creatinine clearance ratio (CCCR) was 0.0071, and neck US did not visualize a parathyroid adenoma. Upon a retrospective review of the patient's biochemistry from 2 years prior, hypercalcemia was found that was not investigated. The patient was monitored with serial iCa levels and obstetric US. She delivered a healthy boy at 38‐weeks’ gestation. Postnatal iCa was 1.48 mmol/L and remained elevated. Her son had elevated iCa at birth of 1.46 mmol/L (1.15 to 1.33), which rose to 1.81 mmol/L by 2 weeks. He was otherwise well. Given the familial hypercalcemia, a likely diagnosis of FHH was made. Genetic testing of the son revealed a missense mutation, NM_000388.3(CASR):c.2446A > G, in exon 7 of the CaSR, consistent with FHH type 1. To our knowledge, there are only three existing reports of FHH in pregnancy. When differentiating between FHH and PHPT in pregnancy, interpretation of biochemistry requires an understanding of changes in Ca physiology, and urine CCCR may be unreliable. If the decision is made to observe, clinical symptoms, calcium levels, and fetal US should be monitored, with biochemistry and urine CCCR performed postpartum, once lactation is completed © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alicia R Jones
- Monash Centre for Health Research and Implementation Monash University Melbourne Australia.,Department of Endocrinology Monash Health Melbourne Australia
| | - Matthew Jl Hare
- Department of Endocrinology Monash Health Melbourne Australia.,Wellbeing and Chronic Preventable Diseases Division Menzies School of Health Research Darwin Australia
| | - Justin Brown
- Department of Paediatrics Monash University Melbourne Australia.,Department of Paediatric Endocrinology and Diabetes Monash Health Melbourne Australia
| | - Jun Yang
- Department of Endocrinology Monash Health Melbourne Australia.,Hudson Institute of Medical Research, Clayton Melbourne Australia.,Department of Medicine Monash University Melbourne Australia
| | - Caroline Meyer
- Department of Endocrinology St Vincent's Hospital Melbourne Australia
| | - Frances Milat
- Department of Endocrinology Monash Health Melbourne Australia.,Hudson Institute of Medical Research, Clayton Melbourne Australia.,Department of Medicine Monash University Melbourne Australia
| | - Carolyn A Allan
- Department of Endocrinology Monash Health Melbourne Australia.,Hudson Institute of Medical Research, Clayton Melbourne Australia.,Department of Obstetrics and Gynaecology Monash University Melbourne Australia
| |
Collapse
|
20
|
Marx SJ, Sinaii N. Neonatal Severe Hyperparathyroidism: Novel Insights From Calcium, PTH, and the CASR Gene. J Clin Endocrinol Metab 2020; 105:5645387. [PMID: 31778168 PMCID: PMC7111126 DOI: 10.1210/clinem/dgz233] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT Neonatal severe hyperparathyroidism (NSHPT) is rare and potentially lethal. It is usually from homozygous or heterozygous germline-inactivating CASR variant(s). NSHPT shows a puzzling range of serum calcium and parathyroid hormone (PTH) levels. Optimal therapy is unclear. EVIDENCE ACQUISITION We categorized genotype/phenotype pairings related to CASRs. For the 2 pairings in NSHPT, each of 57 cases of neonatal severe hyperparathyroidism required calcium, PTH, upper normal PTH, and dosage of a germline pathogenic CASR variant. EVIDENCE SYNTHESIS Homozygous and heterozygous NSHPT are 2 among a spectrum of 9 genotype/phenotype pairings relating to CASRs and NSHPT. For the 2 NSHPT pairings, expressions differ in CASR allelic dosage, CASR variant severity, and sufficiency of maternofetal calcium fluxes. Homozygous dosage of CASR variants was generally more aggressive than heterozygous. Among heterozygotes, high-grade CASR variants in vitro were more pathogenic in vivo than low-grade variants. Fetal calcium insufficiency as from maternal hypoparathyroidism caused fetal secondary hyperparathyroidism, which persisted and was reversible in neonates. Among NSHPT pairings, calcium and PTH were higher in CASR homozygotes than in heterozygotes. Extreme hypercalcemia (above 4.5 mM; normal 2.2-2.6 mM) is a robust biomarker, occurring only in homozygotes (83% of that pairing). It could occur during the first week. CONCLUSIONS In NSHPT pairings, the homozygotes for pathogenic CASR variants show higher calcium and PTH levels than heterozygotes. Calcium levels above 4.5 mM among NSHPT are frequent and unique only to most homozygotes. This cutoff supports early and robust diagnosis of CASR dosage. Thereby, it promotes definitive total parathyroidectomy in most homozygotes.
Collapse
MESH Headings
- Biomarkers/analysis
- Calcium/blood
- Female
- Genotype
- Heterozygote
- Homozygote
- Humans
- Hyperparathyroidism, Primary/blood
- Hyperparathyroidism, Primary/diagnosis
- Hyperparathyroidism, Primary/genetics
- Infant, Newborn
- Infant, Newborn, Diseases/blood
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/genetics
- Male
- Mutation
- Parathyroid Hormone/blood
- Prognosis
- Receptors, Calcium-Sensing/genetics
Collapse
Affiliation(s)
- Stephen J Marx
- Office of the Scientific Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD
- Correspondence: Stephen Marx MD, N.I.H., Bld 6A, Room 2A-04A, MSC 0614, 6 Center Drive, Bethesda, MD 20892, USA. E-mail:
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD
| |
Collapse
|
21
|
Boisen IM, Mos I, Lerche-Black EM, Juul A, Bräuner-Osborne H, Blomberg Jensen M. Heterozygous Mutation (Q459R) in the Calcium-Sensing Receptor Gene Causes Familial Hypocalciuric Hypercalcemia 1 (FHH1). J Clin Endocrinol Metab 2020; 105:5628138. [PMID: 32160303 DOI: 10.1210/clinem/dgz205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
CONTEXT Several heterozygous loss-of-function mutations in the calcium-sensing receptor gene (CASR) leading to elevated ionized serum calcium and familial hypocalciuric hypercalcemia 1 (FHH1) have been characterized. Few mutations are not pathogenic, and previous studies suggested that the Q459R mutation does not result in an FHH1 phenotype. OBJECTIVE We identified a family with a heterozygous CASR Q459R mutation and characterized their calcium homeostasis and the pathophysiological mechanisms of a homozygous and heterozygous Q459R mutation in vitro. DESIGN The index patient and her family had clinical, biochemical, and genetic analyses performed. In vitro functional characterization of homozygous and heterozygous (Q459R) mutations was conducted by determining CaSR cell-surface expression and inositol monophosphate (IP1) signaling in transiently transfected human embryonic kidney 293A (HEK293A) cells. RESULTS All 3 heterozygous carriers had mild asymptomatic hypercalcemia, hypocalciuria, and 2 had elevated serum parathyroid hormone (PTH). In vitro characterization in HEK293A cells revealed that CASR Q459R is a loss-of-function mutation with no impact on cell-surface expression. Cells with the homozygous Q459R genotype had significantly reduced calcium potency of IP1 signaling compared to wild type, whereas the heterozygous Q459R also had lower calcium potency albeit not significantly different from wild type. CONCLUSION A loss-of-function Q459R mutation in CASR in a family caused FHH1 characterized by elevated ionized calcium and PTH and low calcium excretion. The marked presence of CaSR at the membrane and inhibition of IP1 signaling in vitro suggest that calcimimetics may be functional in patients with this mutation, which seems to be a mild loss-of-function mutation associated with autosomal dominant transmission of FHH1.
Collapse
Affiliation(s)
- Ida Marie Boisen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iris Mos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Bone and Mineral Research, Harvard School of Dental Medicine/Harvard Medical School, Harvard University, Boston, MA, US
| |
Collapse
|
22
|
Sadacharan D, Mahadevan S, Rao SS, Kumar AP, Swathi S, Kumar S, Kannan S. Neonatal Severe Primary Hyperparathyroidism: A Series of Four Cases and their Long-term Management in India. Indian J Endocrinol Metab 2020; 24:196-201. [PMID: 32699790 PMCID: PMC7333741 DOI: 10.4103/ijem.ijem_53_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 11/04/2022] Open
Abstract
CONTEXT Neonatal severe primary hyperparathyroidism (NSPHPT) is an extremely rare autosomal recessive disorder, requiring a high index of suspicion. Infants affected with this disorder present with severe life-threatening hypercalcemia early in life, requiring adequate preoperative medical management followed by surgery. AIMS We report four newborns with NSPHPT who were managed over 10 years. SUBJECTS AND METHODS Demography, clinical presentation, treatment, and follow-up data were retrospectively studied with descriptive analysis to highlight the utility of long-term medical management, surgery, and genetic testing reported in the literature. STATISTICAL ANALYSIS USED Descriptive Analysis. RESULTS We had three males and one female infant with a mean age of diagnosis at 28.7 days, calcium 29.2+/-2.8 mg/dL, and parathormone (PTH) 1963+/-270.4 pg/mL. All four infants presented with failure to thrive, hypotonia, and respiratory distress. All infants were treated medically followed by total parathyroidectomy plus transcervical thymectomy, with an additional hemithyroidectomy in one of them. Imaging was negative in all four cases. Three babies became hypocalcemic while the fourth infant had a drop in PTH and is on the tab. cinacalcet 30 mg/day. CaSR mutation was positive in three infants. CONCLUSIONS Diagnosing NSPHPT needs expert clinical acumen. It requires emergency medical management to control calcium levels. The crisis may present later, necessitating parathyroidectomy in these cases once the child is fit for surgery. Surgery offers a cure for this unusual lethal hypercalcemia while the role of cinacalcet needs a special mention. Sound knowledge in endocrinology with parathyroid embryology and morphology is of paramount importance. Our case series might add a few insights into managing this unusual genetic disorder.
Collapse
Affiliation(s)
- Dhalapathy Sadacharan
- Department of Endocrine Surgery, Rajiv Gandhi Govt. General Hospital, Madras Medical College, Porur, Chennai, India
| | - Shriraam Mahadevan
- Department of Endocrinology, Diabetes and Metabolism, Sri Ramachandra Medical Centre, Porur, Chennai, India
| | - Smitha S. Rao
- Department of Endocrine Surgery, Rajiv Gandhi Govt. General Hospital, Madras Medical College, Porur, Chennai, India
| | - A Prem Kumar
- Diaplus Clinic, Salem, Anna Nagar, Chennai, India
| | - S Swathi
- Sundaram Medical Foundation, Anna Nagar, Chennai, India
| | - Senthil Kumar
- Ramalingam Hospital, Itteri Road, Salem, Tamil Nadu, India
| | - Subramanian Kannan
- Department of Endocrinology, Diabetes and Metabolism, Narayana Hrudayala Hospitals, Hosur Road, Bengaluru, Karnataka, India
| |
Collapse
|
23
|
Marx SJ, Goltzman D. Evolution of Our Understanding of the Hyperparathyroid Syndromes: A Historical Perspective. J Bone Miner Res 2019; 34:22-37. [PMID: 30536424 PMCID: PMC6396287 DOI: 10.1002/jbmr.3650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
We review advancing and overlapping stages for our understanding of the expressions of six hyperparathyroid (HPT) syndromes: multiple endocrine neoplasia type 1 (MEN1) or type 4, multiple endocrine neoplasia type 2A (MEN2A), hyperparathyroidism-jaw tumor syndrome, familial hypocalciuric hypercalcemia, neonatal severe primary hyperparathyroidism, and familial isolated hyperparathyroidism. During stage 1 (1903 to 1967), the introduction of robust measurement of serum calcium was a milestone that uncovered hypercalcemia as the first sign of dysfunction in many HPT subjects, and inheritability was reported in each syndrome. The earliest reports of HPT syndromes were biased toward severe or striking manifestations. During stage 2 (1959 to 1985), the early formulations of a syndrome were improved. Radioimmunoassays (parathyroid hormone [PTH], gastrin, insulin, prolactin, calcitonin) were breakthroughs. They could identify a syndrome carrier, indicate an emerging tumor, characterize a tumor, or monitor a tumor. During stage 3 (1981 to 2006), the assembly of many cases enabled recognition of further details. For example, hormone non-secreting skin lesions were discovered in MEN1 and MEN2A. During stage 4 (1985 to the present), new genomic tools were a revolution for gene identification. Four principal genes ("principal" implies mutated or deleted in 50% or more probands for its syndrome) (MEN1, RET, CASR, CDC73) were identified for five syndromes. During stage 5 (1993 to the present), seven syndromal genes other than a principal gene were identified (CDKN1B, CDKN2B, CDKN2C, CDKN1A, GNA11, AP2S1, GCM2). Identification of AP2S1 and GCM2 became possible because of whole-exome sequencing. During stages 4 and 5, the newly identified genes enabled many studies, including robust assignment of the carriers and non-carriers of a mutation. Furthermore, molecular pathways of RET and the calcium-sensing receptor were elaborated, thereby facilitating developments in pharmacotherapy. Current findings hold the promise that more genes for HPT syndromes will be identified and studied in the near future. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stephen J Marx
- Office of the Scientific Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David Goltzman
- Calcium Research Laboratory, Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
24
|
Abstract
Familial hypocalciuric hypercalcemia (FHH) causes hypercalcemia by three genetic mechanisms: inactivating mutations in the calcium-sensing receptor, the G-protein subunit α11, or adaptor-related protein complex 2, sigma 1 subunit. While hypercalcemia in other conditions causes significant morbidity and mortality, FHH generally follows a benign course. Failure to diagnose FHH can result in unwarranted treatment or surgery for the mistaken diagnosis of primary hyperparathyroidism (PHPT), given the significant overlap of biochemical features. Determinations of urinary calcium excretion greatly aid in distinguishing PHPT from FHH, but overlap still exists in certain cases. It is important that 24-h urine calcium and creatinine be included in the initial workup of hypercalcemia. FHH should be considered if low or even low normal urinary calcium levels are found in what is typically an asymptomatic hypercalcemic patient. The calcimimetic cinacalcet has been used to treat hypercalcemia in certain symptomatic causes of FHH.
Collapse
Affiliation(s)
- Janet Y Lee
- Divisions of Endocrinology and Metabolism and Pediatric Endocrinology, Departments of Medicine and Pediatrics, University of California, San Francisco, United States.
| | - Dolores M Shoback
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, Department of Medicine, University of California, San Francisco, United States.
| |
Collapse
|
25
|
Tunç E, Demirhan O, Sağliker Y, Yildiz İ, Paylar N, Güzel Aİ. Chromosomal findings and sequence analysis of target exons of calcium-sensingreceptor (CaSR) gene in patients with Sagliker syndrome. Turk J Med Sci 2017; 47:13-21. [PMID: 28263480 DOI: 10.3906/sag-1507-102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/28/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIM Sagliker syndrome (SS) develops as a continuation of chronic kidney disease and secondary hyperparathyroidism conditions. It was thought that there are some genetic predisposition factors leading to SS. The calcium-sensing receptor (CaSR) is essential for calcium homeostasis in the body. We aimed to examine SS patients for chromosome aberrations (CAs) and CaSR gene abnormalities in exons 2 and 3. MATERIALS AND METHODS Twenty-three patients and 23 control subjects were admitted to Balcalı Hospital of the Medical Faculty of Çukurova University in Turkey between 2009 and 2011. Chromosomal analysis was performed according to standard cytogenetic methods. Full sequencing of exons 2 and 3 of the CaSR gene was done. RESULTS We found base alterations and deletions in exons 2 and 3 of the CaSR gene. We also found a statistically significant increase in the rate of CAs in patients compared to controls. In total we evaluated 639 metaphase plaques in 23 patients and found 241 CAs, of which 88% were structural and 12% were numerical abnormalities. CONCLUSION There is no relation between the etiology of SS and nucleotide alterations that we could find in exons 2 and 3 of the CaSR gene. Our data suggest that there may be a correlation between CAs and the progression of SS.
Collapse
Affiliation(s)
- Erdal Tunç
- Department of Medical Biology and Genetics, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Osman Demirhan
- Department of Medical Biology and Genetics, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Yahya Sağliker
- Department of Internal Medicine, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Nuray Paylar
- Department of Internal Medicine, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Ali İrfan Güzel
- Department of Medical Biology and Genetics, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
26
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
27
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
28
|
Abstract
Five syndromes share predominantly hyperplastic glands with a primary excess of hormones: neonatal severe primary hyperparathyroidism, from homozygous mutated CASR, begins severely in utero; congenital non-autoimmune thyrotoxicosis, from mutated TSHR, varies from severe with fetal onset to mild with adult onset; familial male-limited precocious puberty, from mutated LHR, expresses testosterone oversecretion in young boys; hereditary ovarian hyperstimulation syndrome, from mutated FSHR, expresses symptomatic systemic vascular permeabilities during pregnancy; and familial hyperaldosteronism type IIIA, from mutated KCNJ5, presents in young children with hypertension and hypokalemia. The grouping of these five syndromes highlights predominant hyperplasia as a stable tissue endpoint and as their tissue stage for all of the hormone excess. Comparisons were made among this and two other groups of syndromes, forming a continuum of gland staging: predominant oversecretions express little or no hyperplasia; predominant hyperplasias express little or no neoplasia; and predominant neoplasias express nodules, adenomas, or cancers. Hyperplasias may progress (5 of 5) to neoplastic stages while predominant oversecretions rarely do (1 of 6; frequencies differ P<0.02). Hyperplasias do not show tumor multiplicity (0 of 5) unlike neoplasias that do (13 of 19; P<0.02). Hyperplasias express mutation of a plasma membrane-bound sensor (5 of 5), while neoplasias rarely do (3 of 14; P<0.002). In conclusion, the multiple distinguishing themes within the hyperplasias establish a robust pathophysiology. It has the shared and novel feature of mutant sensors in the plasma membrane, suggesting that these are major contributors to hyperplasia.
Collapse
Affiliation(s)
- Stephen J Marx
- Genetics and Endocrinology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9C-103, Bethesda, Maryland 20892, USA
| |
Collapse
|
29
|
Iacobone M, Carnaille B, Palazzo FF, Vriens M. Hereditary hyperparathyroidism--a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg 2015; 400:867-86. [PMID: 26450137 DOI: 10.1007/s00423-015-1342-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hereditary hyperparathyroidism has been reported to occur in 5-10 % of cases of primary hyperparathyroidism in the context of multiple endocrine neoplasia (MEN) types 1, 2A and 4; hyperparathyroidism-jaw tumour (HPT-JT); familial isolated hyperparathyroidism (FIHPT); familial hypocalciuric hypercalcaemia (FHH); neonatal severe hyperparathyroidism (NSHPT) and autosomal dominant moderate hyperparathyroidism (ADMH). This paper aims to review the controversies in the main genetic, clinical and pathological features and surgical management of hereditary hyperparathyroidism. METHODS A peer review literature analysis on hereditary hyperparathyroidism was carried out and analyzed in an evidence-based perspective. Results were discussed at the 2015 Workshop of the European Society of Endocrine Surgeons devoted to hyperparathyroidism due to multiple gland disease. RESULTS Literature reports scarcity of prospective randomized studies; thus, a low level of evidence may be achieved. CONCLUSIONS Hereditary hyperparathyroidism typically presents at an earlier age than the sporadic variants. Gene penetrance and expressivity varies. Parathyroid multiple gland involvement is common, but in some variants, it may occur metachronously often with long disease-free intervals, simulating a single-gland involvement. Bilateral neck exploration with subtotal parathyroidectomy or total parathyroidectomy + autotransplantation should be performed, especially in MEN 1, in order to decrease the persistent and recurrent hyperparathyroidism rates; in some variants (MEN 2A, HPT-JT), limited parathyroidectomy can achieve long-term normocalcemia. In FHH, surgery is contraindicated; in NSHPT, urgent total parathyroidectomy is required. In FIHPT, MEN 4 and ADMH, a tailored case-specific approach is recommended.
Collapse
Affiliation(s)
- Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padova, Italy.
| | - Bruno Carnaille
- Department of Endocrine Surgery, Université de Lille, Lille, France
| | - F Fausto Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital and Imperial College, London, UK
| | - Menno Vriens
- Department of Surgical Oncology and Endocrine Surgery, Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Association of common variants in the calcium-sensing receptor gene with serum calcium levels in East Asians. J Hum Genet 2015; 60:407-12. [DOI: 10.1038/jhg.2015.46] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 11/08/2022]
|
31
|
Thakker RV. The calcium-sensing receptor: And its involvement in parathyroid pathology. ANNALES D'ENDOCRINOLOGIE 2015; 76:81-3. [PMID: 25910996 DOI: 10.1016/j.ando.2015.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, University of Oxford, Radcliffe Department of Clinical Medicine, OCDEM, Churchill Hospital, Headington, OX3 7LJ Oxford, United Kingdom.
| |
Collapse
|
32
|
Abstract
Endocrine tumors may present as sporadic events or as part of familial endocrine syndromes. Familial endocrine syndromes (or inherited tumor/neoplasm syndromes) are characterized by multiple tumors in multiple organs. Some morphologic findings in endocrine tumor histopathology may prompt the possibility of familial endocrine syndromes, and these recognized histologic features may lead to further molecular genetic evaluation of the patient and family members. Subsequent evaluation for these syndromes in asymptomatic patients and family members may then be performed by genetic screening.
Collapse
Affiliation(s)
- Peter M Sadow
- Pathology Service, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | - Vania Nosé
- Pathology Service, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Abstract
The majority of clinical complaints derive from disorders of calcium metabolism and are associated with a wide variety of clinical symptoms caused by numerous diseases with entirely different types of pathophysiology. The prognosis varies from favorable to fatal depending on the pathophysiology of the underlying disorder of calcium metabolism; therefore, the diagnostic work-up aims to quickly identify the underlying disease causing the disturbance in calcium homeostasis. Every clinical situation with a diminished state of calcium absorption is treated with calcium and vitamin D in varying doses whereas every disorder with an increased calcium absorptive or resorptive state is treated with improved diuresis in addition to antiresorptive drugs, such as bisphosphonates. In many situations the management of a disturbed calcium balance requires an interdisciplinary approach in order to treat the underlying disease in parallel with correction of the calcium homeostasis.
Collapse
|
34
|
Alfadda TI, Saleh AMA, Houillier P, Geibel JP. Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 2014; 307:C221-31. [PMID: 24871857 PMCID: PMC4121584 DOI: 10.1152/ajpcell.00139.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
Abstract
The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology.
Collapse
Affiliation(s)
- Tariq I Alfadda
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Ahmad M A Saleh
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Pascal Houillier
- INSERM UMR_S1138, Paris, France; Paris Descartes University, Paris, France; Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Paris, France
| | - John P Geibel
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
35
|
Atay Z, Bereket A, Haliloglu B, Abali S, Ozdogan T, Altuncu E, Canaff L, Vilaça T, Wong BYL, Cole DEC, Hendy GN, Turan S. Novel homozygous inactivating mutation of the calcium-sensing receptor gene (CASR) in neonatal severe hyperparathyroidism-lack of effect of cinacalcet. Bone 2014; 64:102-7. [PMID: 24735972 DOI: 10.1016/j.bone.2014.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND NSHPT is a life-threatening disorder caused by homozygous inactivating calcium-sensing receptor (CASR) mutations. In some cases, the CaSR allosteric activator, cinacalcet, may reduce serum PTH and calcium levels, but surgery is the treatment of choice. OBJECTIVE To describe a case of NSHPT unresponsive to cinacalcet. PATIENT AND RESULTS A 23-day-old girl was admitted with hypercalcemia, hypotonia, bell-shaped chest and respiratory distress. The parents were first-degree cousins once removed. Serum Ca was 4.75 mmol/l (N: 2.10-2.62), P: 0.83 mmol/l (1.55-2.64), PTH: 1096 pg/ml (9-52) and urinary Ca/Cr ratio: 0.5mg/mg. First, calcitonin was given (10 IU/kg × 4/day), and then 2 days later, pamidronate (0.5mg/kg) for 2 days. Doses of cinacalcet were given daily from day 28 of life starting at 30 mg/m2 and increasing to 90 mg/m2 on day 43. On day 33, 6 days after pamidronate, serum Ca levels had fallen to 2.5 mmol/l but, thereafter, rose to 5 mmol/l despite the cinacalcet. Total parathyroidectomy was performed at day 45. Hungry bone disease after surgery required daily Ca replacement and calcitriol for 18 days. At 3 months, the girl was mildly hypercalcemic, with no supplementation, and at 6 months, she developed hypocalcemia and has since been maintained on Ca and calcitriol. By CASR mutation analysis, the infant was homozygous and both parents heterozygous for a deletion-frameshift mutation. CONCLUSION The predicted nonfunctional CaSR is consistent with lack of response to cinacalcet, but total parathyroidectomy was successful. An empiric trial of the drug and/or prompt mutation testing should help minimize the period of unnecessary pharmacotherapy.
Collapse
Affiliation(s)
- Zeynep Atay
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey.
| | - Abdullah Bereket
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Belma Haliloglu
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Saygin Abali
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Tutku Ozdogan
- Department of Neonatology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Emel Altuncu
- Department of Neonatology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Lucie Canaff
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Tatiane Vilaça
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Betty Y L Wong
- Departments of Laboratory Medicine and Pathobiology, Medicine, and Genetics, University of Toronto, Toronto, Ontario M5G IL5, Canada
| | - David E C Cole
- Departments of Laboratory Medicine and Pathobiology, Medicine, and Genetics, University of Toronto, Toronto, Ontario M5G IL5, Canada
| | - Geoffrey N Hendy
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| |
Collapse
|
36
|
The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1. Pediatr Nephrol 2014; 29:257-67. [PMID: 24292865 PMCID: PMC3921621 DOI: 10.1007/s00467-013-2625-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Copy number variants (CNVs) are increasingly recognized as an important cause of congenital malformations and likely explain over 16% of cases of congenital anomalies of the kidney and urinary tract (CAKUT). Here, we illustrate how a molecular diagnosis of CNV can be beneficial to the clinical management of a pediatric patient presenting with CAKUT and other organ defects. METHODS We describe a 14-year-old girl with a large de novo deletion of chromosome 3q13.31-22.1 that disrupts 101 known genes. The patient presented with CAKUT, neurodevelopmental delay, agenesis of corpus callosum (ACC), cardiac malformations, electrolyte and endocrine disorders, skeletal abnormalities and dysmorphic features. We performed extensive annotation of the deleted region to prioritize genes for specific phenotypes and to predict future disease risk. RESULTS Our case defined new minimal chromosomal candidate regions for both CAKUT and ACC. The presence of the CASR gene in the deleted interval predicted a diagnosis of hypocalciuric hypercalcemia, which was confirmed by the serum and urine chemistries. Our gene annotation explained clinical hypothyroidism and predicted that the index case is at increased risk of thoracic aortic aneurysm, renal cell carcinoma and myeloproliferative disorder. CONCLUSIONS Extended annotation of CNV regions refines the diagnosis and uncovers previously unrecognized phenotypic features. This approach enables personalized treatment and prevention strategies in patients harboring genomic deletions.
Collapse
|
37
|
Conigrave AD, Ward DT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 2013; 27:315-31. [PMID: 23856262 DOI: 10.1016/j.beem.2013.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism.
Collapse
Affiliation(s)
- Arthur D Conigrave
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
38
|
Lia-Baldini AS, Magdelaine C, Nizou A, Airault C, Salles JP, Moulin P, Delemer B, Aitouares M, Funalot B, Sturtz F, Lienhardt-Roussie A. Two novel mutations of the calcium-sensing receptor gene affecting the same amino acid position lead to opposite phenotypes and reveal the importance of p.N802 on receptor activity. Eur J Endocrinol 2013; 168:K27-34. [PMID: 23169696 DOI: 10.1530/eje-12-0714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gain-of-function mutations of the calcium-sensing receptor (CASR) gene have been identified in patients with sporadic or familial autosomal dominant hypocalcemia (ADH). Inactivating mutations of the CASR gene cause familial hypocalciuric hypercalcemia (FHH). Here, we report two novel CASR mutations affecting the same amino acid (p.N802); one causes ADH and the other atypical FHH. PATIENTS AND METHODS The first patient, an 11-year-old girl suffering from hypocalcemia, developed nephrocalcinosis when she was only 5 years old. The second patient is a 30-year-old woman who presented with mild hypercalcemia. PCR amplification of CASR coding exons and direct sequencing of PCR products were used to identify mutations. Site-directed mutagenesis was used to generate mutated CASR cDNAs in an expression plasmid. Using the MAPK assay system and transient transfection of Cos-7 cells with wild-type (WT) and mutated CASR, we studied the responses of these mutated receptors to extracellular Ca(2+) and to the negative allosteric CASR modulator, NPS2143. RESULTS Two heterozygous missense mutations (p.N802I and p.N802S) affecting a residue in the sixth transmembrane domain of CASR were identified. In functional tests, the response of the p.N802S mutant to calcium was typical of an inactivating mutation. However, the p.N802I mutant had 70% of the maximally stimulated WT receptor activity even in the absence of extracellular calcium. This constitutive activity was only partially inhibited by the inhibitor, NPS2143. CONCLUSIONS The asparagine at amino acid position 802 appears to be essential for the activity of the CASR protein and is implicated in the mechanism of CASR signaling.
Collapse
Affiliation(s)
- Anne-Sophie Lia-Baldini
- EA 6309 - Maintenance Myélinique et Neuropathies Périphériques, Faculté de Médecine - Biochimie, Université de Limoges, 6ème étage, 2 rue du Dr Marcland, 87025 Limoges, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Giusti F, Cavalli L, Cavalli T, Brandi ML. Hereditary hyperparathyroidism syndromes. J Clin Densitom 2013; 16:69-74. [PMID: 23374744 DOI: 10.1016/j.jocd.2012.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 11/28/2012] [Accepted: 11/18/2012] [Indexed: 12/12/2022]
Abstract
Primary hyperparathyroidism is a common endocrine disorder, resulting from a persistent hypercalcemia along with an inadequate secretion of parathyroid hormone. In approx 95% of cases, it occurs sporadically; rarely, it is part of familial syndromes. These inherited syndromes typically present at an earlier age than the nonheritable form and occur with equal frequencies in both sexes. The differential diagnosis is often difficult, but it is of fundamental importance for the management of patients and their family. The availability of specific genetic tests has improved the diagnostic accuracy allowing early diagnosis in asymptomatic family members. Before the advent of genetic testing, a definitive diagnosis could be made only in symptomatic cases based on clinical data and family history.
Collapse
Affiliation(s)
- Francesca Giusti
- Bone and Mineral Metabolism Unit, Department of Internal Medicine, University Hospital of Careggi, Florence, Italy
| | | | | | | |
Collapse
|
40
|
Abstract
The calcium-sensing receptor (CaSR) is a 1,078 amino acid G protein-coupled receptor (GPCR), which is predominantly expressed in the parathyroids and kidney. The CaSR allows regulation of parathyroid hormone (PTH) secretion and renal tubular calcium re-absorption in response to alterations in extracellular calcium concentrations. Loss-of-function CaSR mutations have been reported in the hypercalcemic disorders of familial benign (hypocalciuric) hypercalcemia (FBH or FHH), neonatal severe primary hyperparathyroidism (NSHPT), and adult primary hyperparathyroidism. However, some individuals with loss-of-function CaSR mutations remain normocalcemic. Gain-of-function CaSR mutations have been shown to result in autosomal-dominant hypocalcemia with hypercalciuria (ADHH) and Bartter's syndrome type V. CaSR auto-antibodies have been found in FHH patients who did not have loss-of-function CaSR mutations and in patients with an acquired form (i.e. autoimmune) of hypoparathyroidism. Thus, abnormalities of the CaSR are associated with 4 hypercalcemic and 3 hypocalcemic disorders.
Collapse
Affiliation(s)
- R. V. Thakker
- Nuffield Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
41
|
Roizen J, Levine MA. Primary hyperparathyroidism in children and adolescents. J Chin Med Assoc 2012; 75:425-34. [PMID: 22989537 PMCID: PMC3710287 DOI: 10.1016/j.jcma.2012.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 11/20/2022] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine disorder in adults in whom the typical presentation is incidentally discovered as asymptomatic hypercalcemia. PHPT is much less common in children and adolescents, but has greater morbidity in this age group, as most young patients with PHPT will have symptomatic hypercalcemia or complications such as kidney stones, abdominal pain, and skeletal fragility. An important feature of PHPT in younger patients is the relatively high prevalence of germline inactivating mutations of the CASR gene, which encodes the calcium-sensing receptor. Biallelic CASR mutations cause neonatal severe hyperparathyroidism, a life-threatening condition that presents within days of life with marked hypercalcemia, respiratory distress, failure to thrive, and skeletal demineralization. By contrast, more common heterozygous CASR mutations are generally associated with a benign variant of PHPT termed familial hypocalciuric hypercalcemia. Appropriate management of PHPT in children and adolescents requires distinction between familial hypocalciuric hypercalcemia, which generally requires no specific treatment, and other forms of PHPT that are best treated by parathyroidectomy.
Collapse
Affiliation(s)
- Jeffrey Roizen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael A. Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Corresponding author. Dr. Michael A. Levine, Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, 34 and Civic Center Boulevard, Philadelphia, PA 19104, USA. (M.A. Levine)
| |
Collapse
|
42
|
New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis. Mamm Genome 2012; 23:416-30. [PMID: 22527485 PMCID: PMC3401305 DOI: 10.1007/s00335-012-9397-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/27/2012] [Indexed: 02/06/2023]
Abstract
Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.
Collapse
|
43
|
Christensen SE, Nissen PH, Vestergaard P, Mosekilde L. Familial hypocalciuric hypercalcaemia: a review. Curr Opin Endocrinol Diabetes Obes 2011; 18:359-70. [PMID: 21986511 DOI: 10.1097/med.0b013e32834c3c7c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Hypercalcaemia is a potentially life-threatening condition. Familial hypocalciuric hypercalcaemia (FHH) is a rare, lifelong, benign condition. It is important to separate this condition from other hypercalcaemic states such as hypercalcaemia of malignancy and primary hyperparathyroidism (PHPT). RECENT FINDINGS FHH is caused by inactivating mutations in the calcium sensing receptor (CASR) gene leading to a general calcium-hyposensitivity, compensatory hypercalcaemia and hypocalciuria. The inheritance of FHH is autosomal dominant. Similar to PHPT, FHH is characterized by hypercalcaemia, unsuppressed or elevated plasma parathyroid hormone, and typically normal renal function. The phenotype is normal, and hypercalcaemic symptoms are generally absent. The hallmark is a relatively low urine calcium excretion in contrast to PHPT, in which urine calcium excretion is increased. The vitamin D status as measured by plasma 25-hydroxyvitamin D has been reported to be normal with normal seasonal variations, whereas plasma 1,25-dihydroxyvitamin D has been found slightly increased compared to normal. Bone mineral density Z-scores are normal in spite of a slightly increased bone turnover. Differential diagnoses include mainly PHPT, but in some cases also hypercalcaemia of malignancy and use of thiazide diuretics. SUMMARY In general, FHH does not require treatment. We recommend a two-step diagnostic procedure. First, the calcium/creatinine clearance ratio is measured from a 24-h urine. Second, all patients with calcium/creatinine clearance ratio of 0.020 or less are tested for mutations in the CASR gene. The diagnostic sensitivity of this setup is 98%.
Collapse
Affiliation(s)
- Signe E Christensen
- Department of Medicine and Endocrinology, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
44
|
Liu J, Lv F, Sun W, Tao C, Ding G, Karaplis A, Brown E, Goltzman D, Miao D. The abnormal phenotypes of cartilage and bone in calcium-sensing receptor deficient mice are dependent on the actions of calcium, phosphorus, and PTH. PLoS Genet 2011; 7:e1002294. [PMID: 21966280 PMCID: PMC3178615 DOI: 10.1371/journal.pgen.1002294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/30/2011] [Indexed: 11/18/2022] Open
Abstract
Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)(2)D(3) or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR-deficient (CaR(-/-)) mice to those of double homozygous CaR- and 1α(OH)ase-deficient [CaR(-/-)1α(OH)ase(-/-)] mice or those of double homozygous CaR- and PTH-deficient [CaR(-/-)PTH(-/-)] mice at 2 weeks of age. Compared to wild-type littermates, CaR(-/-) mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR(-/-) mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR(-/-) mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR(-/-) mice and that defects in endochondral bone formation in CaR(-/-) mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH.
Collapse
Affiliation(s)
- Jingning Liu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Institute of Dental Research, Stomatological College, Nanjing Medical University, Nanjing, China
| | - Chunxiang Tao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Edward Brown
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Goltzman
- Department of Medicine, McGill University, Montreal, Canada
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
45
|
Abstract
OBJECTIVE To review hyperparathyroid syndromes and genes. METHODS Pertinent original studies from the literature are discussed. RESULTS Six main hyperparathyroid syndromes are recognized; 5 are from germline mutations in 4 genes-CASR, MEN1, RET, and HRPT2. Each hyperparathyroid syndrome was first described around 1965; the main gene for each syndrome was identified about 30 years later. Gene identification addressed clinical issues. (1) Testing for mutation carriers among affected probands or among unaffected relatives is more robust than prior methods, which were based on syndromal traits such as serum calcium. (2) Interpreting a gene test (RET) could guide an important intervention; other gene tests could yield useful information for patients and physicians. (3) Proving the roles of each gene (in particular, MEN1 somatic mutations) provided insights about contributions to many common tumors. (4) Clarifying molecular pathways and drugs led, for example, to the CASR-aided development of calcimimetic and calcilytic drugs. (5) Explaining novel features, such as the CASR gene encoding a membrane calcium-sensing receptor and its mutations resulting in nonsuppressed parathyroid hormone secretion uncoupled from proliferation, characterized familial hypocalciuric hypercalcemia. (6) Disclosing probands without an identifiable mutation promoted searches for other syndromal genes. Subsequently, rare multiple endocrine neoplasia type 1-like families were shown to have inactivating germline mutations, first of p27 and subsequently of p15, p18, or p21. CONCLUSION The next frontier in mutation detection is arriving, with possible sequencing of the whole exome or even the whole genome for 1 case or 1 tumor at an affordable cost.
Collapse
Affiliation(s)
- Stephen J Marx
- Metabolic Diseases Branch and Genetics and Endocrinology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Fernández López I, Fernández Peña I, Cózar León MV, Viloria Peñas MM, Martínez De Pinillos Gordillo G, Fernández-Ladreda MT, Duran García S. [Usefulness of genetic tests in familial hypocalciuric hypercalcemia with atypical clinical presentation]. ACTA ACUST UNITED AC 2011; 58:325-30. [PMID: 21697018 DOI: 10.1016/j.endonu.2011.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/07/2011] [Accepted: 04/17/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Biochemical tests related to calcium and phosphorus metabolism have traditionally been considered as a reliable tool to differentiate familial hypocalciuric hypercalcemia (FHH) from primary hyperparathyroidism (PHPT). However, diagnosis may sometimes be difficult even for experienced clinicians. Our objective was to assess the accuracy of diagnostic tests in FHH and the circumstances in which genetic studies are required. PATIENTS AND METHODS A descriptive study was conducted of two families with hypercalcemia and suspected atypical FHH. Urinary calcium excretion was measured in 24-hour urine using different tests (calcium excretion (CE), urinary calcium/creatinine clearance ratio (UCCR)), and serum PTH and 25-hydroxyvitamin D levels were tested. Index cases underwent genetic study. RESULTS One patient from the first family showed overt, persistent hypercalciuria with values more consistent with PHPT than with FHH if we consider, as proposed by guidelines, a UCCR lower than 0.01 as diagnostic of FHH and a value higher than 0.02 as diagnostic of PHPT. The index case of the second family underwent surgery for a parathyroid adenoma. Both cases had a mutation c. 164C>T (Pro55Leu) in exon 2 in heterozygosis. CONCLUSIONS According to current clinical guidelines, definitive diagnosis of FHH requires genetic confirmation, which allowed in our case for detection of two families with FHH and atypical clinical presentations. We think that rational use of genetic tests may avoid unnecessary surgery and excess monitoring costs.
Collapse
Affiliation(s)
- Ignacio Fernández López
- Unidad de Gestión Clínica, Endocrinología y Nutrición, Hospital Universitario Virgen de Valme, Sevilla, España.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
OBJECTIVE To review the pathophysiology, clinical features, diagnosis, and management options for benign familial hypocalciuric hypercalcemia. METHODS We present a systematic summary of benign familial hypocalciuric hypercalcemia after review of the current available literature. RESULTS Benign familial hypocalciuric hypercalcemia is an autosomal dominant condition characterized by lifelong hypercalcemia, relative hypocalciuria, and inappropriately elevated parathyroid hormone. It is caused by a loss-of-function mutation in the calcium-sensing receptor gene (CASR). Benign familial hypocalciuric hypercalcemia is important clinically because it can be difficult to distinguish from primary hyperparathyroidism. It is a benign condition, and affected patients should be advised against parathyroidectomy. The incidence of complications associated with primary hyperparathyroidism, like osteopenia and nephrolithiasis, is not increased in persons with benign familial hypocalciuric hypercalcemia, and the rates are similar to those in the general population. Rarely, a severe form of this disease, namely neonatal severe primary hyperparathyroidism is seen in infants with homozygous CASR mutations. CONCLUSIONS Benign familial hypocalciuric hypercalcemia is a small but important cause of hypercalcemia, especially in the younger population. Hypercalcemia persists after subtotal parathyroidectomy. It is important to diagnose this condition, not only in the index case but also in family members, because these patients should be advised against surgical intervention.
Collapse
Affiliation(s)
- Jeena Varghese
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
48
|
A novel CASR mutation in a Tunisian FHH/NSHPT family associated with a mental retardation. Mol Biol Rep 2011; 39:2395-400. [PMID: 21667241 DOI: 10.1007/s11033-011-0990-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
The calcium-sensing receptor (CASR), a plasma membrane G-protein coupled receptor, is expressed in parathyroid gland and kidney, and controls systemic calcium homeostasis. Inactivating CASR mutations have previously been identified in patients with familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT). The aim of the present study is to determine the underlying molecular defect of FHH/NSHPT disease in a consanguineous Tunisian family. Mutation screening was carried out using RFLP-PCR and direct sequencing. We found that the proband is homozygous for a novel 15 bp deletion in the exon 7 (c.1952_1966del) confirming the diagnosis of NSHPT. All the FHH members were found to be heterozygous for the novel detected mutation. The mutation, p.S651_L655del, leads to the deletion of 5 codons in the second trans-membrane domain of the CASR which is thought to be involved in the processes of ligand-induced signaling. This alteration was associated with the evidence of mental retardation in the FHH carriers and appears to be a novel inactivating mutation in the CASR gene. Our findings provide additional support for the implication of CASR gene in the FHH/NSHPT pathogenesis.
Collapse
|
49
|
Neonatal severe hyperparathyroidism: further clinical and molecular delineation. Eur J Pediatr 2011; 170:625-31. [PMID: 20972686 DOI: 10.1007/s00431-010-1335-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/11/2010] [Indexed: 01/03/2023]
Abstract
UNLABELLED We report a newborn female from a consanguineous Sri Lankan family with clinical and biochemical features of neonatal severe hyperparathyroidism (NSHPT). Mutation screening of the calcium-sensing receptor (CASR) gene in genomic DNA revealed a homozygous truncating mutation (c.679C>T, predicting p.R227X), confirming the clinical diagnosis. Other mutations at the R227 position are reported to cause varying degrees of hypercalcemia and hyperparathyroidism, but this nonsense variant is novel and expected to induce unremitting hyperparathyroidism from birth onward. In our patient with NSHPT, early bisphosphonate therapy was crucial in counteracting the marked hypercalcemia and allowed for safe surgical intervention ("total" parathyroidectomy, "thymectomy and hemithyroidectomy") at 3 months of age. CONCLUSION This report highlights the continuing challenges in diagnosis and management of this life-threatening condition.
Collapse
|
50
|
Affiliation(s)
- John Hinnie
- Clinic L, The New Victoria Hospital, Grange Road, Glasgow G42 9LF, UK.
| |
Collapse
|