1
|
Alhaj D, Hagedorn N, Cuntz F, Reschke M, Schuldes J, Ruthenberg J, Bakchoul T, Greinacher A, Holzhauer S. ISTH bleeding assessment tool and platelet function analyzer in children with mild inherited platelet function disorders. Eur J Haematol 2024; 113:54-65. [PMID: 38549165 DOI: 10.1111/ejh.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVES To evaluate the diagnostic performance of platelet function analyzer (PFA) and The International Society on Thrombosis and Hemostasis bleeding-assessment-tool (ISTH-BAT) in detecting mild inherited platelet function disorders (IPFDs) in children with suspected bleeding disorders. METHODS Prospective single-center diagnostic study including consecutive patients <18 years with suspected bleeding disorder and performing a standardized workup for platelet function defects including ISTH-BAT, PFA, platelet aggregation testing, blood smear-based immunofluorescence, and next-generation sequencing-based genetic screening for IPFDs. RESULTS We studied 97 patients, of which 34 von Willebrand disease (VWD, 22 type-1, 11 type-2), 29 IPFDs (including delta-/alpha-storage pool disease, Glanzmann thrombasthenia, Hermansky-Pudlak syndrome) and 34 with no diagnosis. In a model combining PFA-adenosine diphosphate (ADP), PFA-epinephrine (EPI), and ISTH-BAT overall performance to diagnose IPFDs was low with area under the curves of 0.56 (95% CI 0.44, 0.69) compared with 0.84 (95% CI 0.76, 0.92) for VWD. Correlation of PFA-EPI/-ADP and ISTH-BAT was low with 0.25/0.39 Spearman's correlation coefficients. PFA were significantly prolonged in patients with VWD and Glanzmann thrombasthenia. ISTH-BAT-scores were only positive in severe bleeding disorders, but not in children with mild IPFDs or VWD. CONCLUSION Neither ISTH-BAT nor PFA or the combination of both help diagnosing mild IPFDs in children. PFA is suited to exclude severe IPFDs or VWD and is in this regard superior to ISTH-BAT in children.
Collapse
Affiliation(s)
- Dana Alhaj
- Department of Pediatric Hematology and Oncology, Charité University Medicine, Berlin, Germany
| | - Nikola Hagedorn
- Department of Pediatric Hematology and Oncology, Charité University Medicine, Berlin, Germany
| | - Franziska Cuntz
- Department of Pediatric Hematology and Oncology, Charité University Medicine, Berlin, Germany
| | - Madlen Reschke
- Department of Pediatric Hematology and Oncology, Charité University Medicine, Berlin, Germany
| | - Joerg Schuldes
- Department of Human Genetics, Labor Berlin, Berlin, Germany
| | - Juliane Ruthenberg
- Department of Pediatric Hematology and Oncology, Charité University Medicine, Berlin, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany
| | - Andreas Greinacher
- Institute for Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Holzhauer
- Department of Pediatric Hematology and Oncology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
2
|
Biswas R, Boyd EK, Eaton N, Steenackers A, Schulte ML, Reusswig F, Yu H, Drew C, Kahr WHA, Shi Q, Plomann M, Hoffmeister KM, Falet H. PACSIN2 regulates platelet integrin β1 hemostatic function. J Thromb Haemost 2023; 21:3619-3632. [PMID: 37678551 PMCID: PMC10841284 DOI: 10.1016/j.jtha.2023.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Upon vessel injury, platelets adhere to exposed matrix constituents via specific membrane receptors, including the von Willebrand factor receptor glycoprotein (GP)Ib-IX-V complex and integrins β1 and β3. In platelets, the Fes/CIP4-homology Bin-Amphiphysin-Rvs protein PACSIN2 associates with the cytoskeletal and scaffolding protein filamin A (FlnA), linking GPIbα and integrins to the cytoskeleton. OBJECTIVES Here we investigated the role of PACSIN2 in platelet function. METHODS Platelet parameters were evaluated in mice lacking PACSIN2 and platelet integrin β1. RESULTS Pacsin2-/- mice displayed mild thrombocytopenia, prolonged bleeding time, and delayed thrombus formation in a ferric chloride-mediated carotid artery injury model, which was normalized by injection of control platelets. Pacsin2-/- platelets formed unstable thrombi that embolized abruptly in a laser-induced cremaster muscle injury model. Pacsin2-/- platelets had hyperactive integrin β1, as evidenced by increased spreading onto surfaces coated with the collagen receptor α2β1-specific peptide GFOGER and increased binding of the antibody 9EG7 directed against active integrin β1. By contrast, Pacsin2-/- platelets had normal integrin αIIbβ3 function and expressed P-selectin normally following stimulation through the collagen receptor GPVI or with thrombin. Deletion of platelet integrin β1 in Pacsin2-/- mice normalized platelet count, hemostasis, and thrombus formation. A PACSIN2 peptide mimicking the FlnA-binding site mediated the pull-down of a FlnA rod 2 construct by integrin β7, a model for integrin β-subunits. CONCLUSIONS Pacsin2-/- mice displayed severe thrombus formation defects due to hyperactive platelet integrin β1. The data suggest that PACSIN2 binding to FlnA negatively regulates platelet integrin β1 hemostatic function.
Collapse
Affiliation(s)
- Ratnashree Biswas
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | - Emily K Boyd
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathan Eaton
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Agata Steenackers
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | | | - Friedrich Reusswig
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | - Hongyin Yu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Caleb Drew
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA
| | - Walter H A Kahr
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Qizhen Shi
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Markus Plomann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Karin M Hoffmeister
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Departments of Biochemistry and Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Translational Glycomics Center, Milwaukee, Wisconsin, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
3
|
Verdier H, Thomas P, Batista J, Kempster C, McKinney H, Gleadall N, Danesh J, Mumford A, Heemskerk JWM, Ouwehand WH, Downes K, Astle WJ, Turro E. A signature of platelet reactivity in CBC scattergrams reveals genetic predictors of thrombotic disease risk. Blood 2023; 142:1895-1908. [PMID: 37647652 PMCID: PMC10733829 DOI: 10.1182/blood.2023021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic studies of platelet reactivity (PR) phenotypes may identify novel antiplatelet drug targets. However, such studies have been limited by small sample sizes (n < 5000) because of the complexity of measuring PR. We trained a model to predict PR from complete blood count (CBC) scattergrams. A genome-wide association study of this phenotype in 29 806 blood donors identified 21 distinct associations implicating 20 genes, of which 6 have been identified previously. The effect size estimates were significantly correlated with estimates from a study of flow cytometry-measured PR and a study of a phenotype of in vitro thrombus formation. A genetic score of PR built from the 21 variants was associated with the incidence rates of myocardial infarction and pulmonary embolism. Mendelian randomization analyses showed that PR was causally associated with the risks of coronary artery disease, stroke, and venous thromboembolism. Our approach provides a blueprint for using phenotype imputation to study the determinants of hard-to-measure but biologically important hematological traits.
Collapse
Affiliation(s)
- Hippolyte Verdier
- Institut Pasteur, CNRS UMR 3751, Decision and Bayesian Computation, Université Paris Cité, Paris, France
| | - Patrick Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- South West National Health Service Genomic Medicine Service Alliance, Bristol, United Kingdom
| | | | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Gebetsberger J, Mott K, Bernar A, Klopocki E, Streif W, Schulze H. State-of-the-Art Targeted High-Throughput Sequencing for Detecting Inherited Platelet Disorders. Hamostaseologie 2023; 43:244-251. [PMID: 37611606 DOI: 10.1055/a-2099-3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of rare entities caused by molecular divergence in genes relevant for platelet formation and function. A rational diagnostic approach is necessary to counsel and treat patients with IPDs. With the introduction of high-throughput sequencing at the beginning of this millennium, a more accurate diagnosis of IPDs has become available. We discuss advantages and limitations of genetic testing, technical issues, and ethical aspects. Additionally, we provide information on the clinical significance of different classes of variants and how they are correctly reported.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Aline Bernar
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Werner Streif
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Center for Rare Blood Cell Disorders, Center for Rare Diseases, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Kreft IC, Huisman EJ, Cnossen MH, van Alphen FPJ, van der Zwaan C, van Leeuwen K, van Spaendonk R, Porcelijn L, Veen CSB, van den Biggelaar M, de Haas M, Meijer AB, Hoogendijk AJ. Proteomic landscapes of inherited platelet disorders with different etiologies. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:359-372.e3. [PMID: 36700500 DOI: 10.1016/j.jtha.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inherited platelet disorders (IPDs) are a heterogeneous group of rare diseases that are caused by the defects in early megakaryopoiesis, proplatelet formation, and/or mature platelet function. Although genomic sequencing is increasingly used to identify genetic variants underlying IPD, this technique does not disclose resulting molecular changes that impact platelet function. Proteins are the functional units that shape platelet function; however, insights into how variants that cause IPDs impact platelet proteomes are limited. OBJECTIVES The objective of this study was to profile the platelet proteomics signatures of IPDs. METHODS We performed unbiased label-free quantitative mass spectrometry (MS)-based proteome profiling on platelets of 34 patients with IPDs with variants in 13 ISTH TIER1 genes that affect different stages of platelet development. RESULTS In line with the phenotypical heterogeneity between IPDs, proteomes were diverse between IPDs. We observed extensive proteomic alterations in patients with a GFI1B variant and for genetic variants in genes encoding proteins that impact cytoskeletal processes (MYH9, TUBB1, and WAS). Using the diversity between IPDs, we clustered protein dynamics, revealing disrupted protein-protein complexes. This analysis furthermore grouped proteins with similar cellular function and location, classifying mitochondrial protein constituents and identifying both known and putative novel alpha granule associated proteins. CONCLUSIONS With this study, we demonstrate a MS-based proteomics perspective to IPDs. By integrating the effects of IPDs that impact different aspects of platelet function, we dissected the biological contexts of protein alterations to gain further insights into the biology of platelet (dys)function.
Collapse
Affiliation(s)
- Iris C Kreft
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Elise J Huisman
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands; Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands
| | | | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Rosalina van Spaendonk
- Department of Immunohematology Diagnostic, Sanquin Diagnostic Services, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline S B Veen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Maartje van den Biggelaar
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Masja de Haas
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands; Center for Clinical Transfusion Research, Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
One Health: Animal Models of Heritable Human Bleeding Diseases. Animals (Basel) 2022; 13:ani13010087. [PMID: 36611696 PMCID: PMC9818017 DOI: 10.3390/ani13010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
Animal models of human and animal diseases have long been used as the lynchpin of experimental and clinical research. With the discovery and implementation of novel molecular and nano-technologies, cellular research now has advanced to assessing signal transduction pathways, gene editing, and gene therapies. The contribution of heritable animal models to human and animal health as related to hemostasis is reviewed and updated with the advent of gene editing, recombinant and gene therapies.
Collapse
|
7
|
Freson K. Diagnostic value of multigene sequencing for inherited thrombocytopenia. Br J Haematol 2022; 199:645-646. [PMID: 36245319 DOI: 10.1111/bjh.18501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| |
Collapse
|
8
|
Visweshwar N, Ayala I, Jaglal M, Killeen R, Sokol L, Laber DA, Manoharan A. Primary immune thrombocytopenia: a 'diagnosis of exclusion'? Blood Coagul Fibrinolysis 2022; 33:289-294. [PMID: 35867940 PMCID: PMC9415225 DOI: 10.1097/mbc.0000000000001144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/19/2023]
Abstract
Current diagnosis of primary immune thrombocytopenia (ITP) is presumptive, centered on excluding other causes of thrombocytopenia. The diagnosis of ITP is challenging because of the wide range of potential inherited and acquired causes of thrombocytopenia. The treatment of ITP is empiric with steroids, high-dose immunoglobulin, immunosuppressants and thrombopoietin agonists with potential side effects. We searched Medline and Cochrane databases, reviewed the study data and analyzed the individual diagnostic tests for their evidence-based role in the diagnosis of ITP. We then analyzed the strength of the scientific evidence for each diagnostic test in the diagnosis of ITP and identified gaps in the diagnostic accuracy. The diagnostic challenges in ITP include: insufficient evidence for the individual test for diagnosis of ITP, no standardized protocol/guideline for diagnosis, hurdles in accessing the available resources and failure to correlate the clinical data while reviewing the blood smear. We did not identify a diagnostic test that clinicians can use to confirm the diagnosis of ITP. In the absence of a diagnostic test of proven value in ITP, the clinician is best served by a comprehensive history and physical examination, complete blood count and review of the peripheral blood smear in evaluating thrombocytopenia.
Collapse
Affiliation(s)
| | - Irmel Ayala
- Division of Hematology, Johns Hopkins All Children's Hospital, St. Petersburg
| | | | | | - Lubomir Sokol
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Arumugam Manoharan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
De Wispelaere K, Freson K. The Analysis of the Human Megakaryocyte and Platelet Coding Transcriptome in Healthy and Diseased Subjects. Int J Mol Sci 2022; 23:ijms23147647. [PMID: 35886993 PMCID: PMC9317744 DOI: 10.3390/ijms23147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.
Collapse
|
10
|
Szanto T, Zetterberg E, Ramström S, Leinøe EB, Holme PA, Antovic JP, Holmström M, Onundarson PT, Pikta M, Vaide I, Olsson A, Magnusson M, Kärkkäinen S, Bitar M, Poulsen LH, Lassila R. Platelet function testing: Current practice among clinical centres in Northern Europe. Haemophilia 2022; 28:642-648. [PMID: 35510959 PMCID: PMC9540416 DOI: 10.1111/hae.14578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Introduction Platelet function tests are used to screen and diagnose patients with possible inherited platelet function defects (IPFD). Some acquired platelet dysfunction may be caused by certain drugs or comorbidities, which need to be excluded before testing. Aims To identify current practice among centres performing platelet function tests in Northern Europe. Methods A total of 14 clinical centres from Sweden (six), Finland (two), Denmark (two), Norway (one), Estonia (two) and Iceland (one) completed the survey questionnaire, the population capture area of about 29.5 million. Results Six of the 14 (42.8%) centres providing platelet function assessment represent comprehensive treatment centres (EUHANET status). A Bleeding score (BS) or ISTH bleeding assessment tool (ISTH BAT score) is evaluated in 11/14 (78.6%) centres and family history in all. Five/14 centres (35.7%) use structured preanalytical patient instructions, and 10/14 (71.4%) recorded questionnaire on the preassessment of avoidance of any drugs or natural products affecting platelet functions. Preliminary investigations of screening tests of coagulation are performed in 10/14 (71.4%), while in 4/14 (28.6%), the diagnostic work‐up of IPFD and von Willebrand disease (VWD) is performed simultaneously. The work‐up of IPFD includes peripheral blood smear in 10/14 (71.4%), platelet aggregometry in all, flow cytometry in 10/14 (71.4%) and Platelet Function Analysis (PFA) in 3/11 (28.6%). Molecular genetic diagnosis is available in 7/14 (50%) centres. Conclusions The considerable variability in the current practice illustrates the need for harmonization between the Northern European centres according to the international registers (i.e. EUHASS) and IPFD guidelines (ISTH, EHA).
Collapse
Affiliation(s)
- Timea Szanto
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Helsinki University, Helsinki, Finland
| | - Eva Zetterberg
- Department of Translational Medicine & Centre for Thrombosis and Haemostasis, Lund University, Malmö, Sweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Eva B Leinøe
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pål A Holme
- Department of Haematology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jovan P Antovic
- Coagulation Research, Institute for Molecular Medicine and Surgery, Karolinska Institute & Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Margareta Holmström
- Department of Health and Department of Acute Internal Medicine and Geriatrics, Medicine and Caring Sciences Linköping University, Linköping, Sweden
| | | | - Marika Pikta
- Laboratory, North Estonia Medical Centre, Tallinn, Estonia
| | - Ines Vaide
- Department of Hemato-Oncology, University of Tartu, Institute of Clinical Medicine, Tartu, Estonia
| | - Anna Olsson
- Region Västra Götaland, Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Magnusson
- Department of Haematology and Coagulation Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Satu Kärkkäinen
- Hemostasis and Platelet Laboratory, Fimlab Laboratoriot, Tampere, Finland
| | - Manar Bitar
- Department of Laboratory Medicine, Clinical Chemistry, Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
| | | | - Riitta Lassila
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Helsinki University, Helsinki, Finland
| | -
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Kim B. Diagnostic workup of inherited platelet disorders. Blood Res 2022; 57:11-19. [PMID: 35483920 PMCID: PMC9057669 DOI: 10.5045/br.2022.2021223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Inherited platelet disorders (IPDs) can cause mucocutaneous bleeding due to impaired primary hemostatic function of platelets, thrombocytopenia, or both. Recent advances in molecular technology can help identify many genes related to platelet biology, control the overall steps of megakaryopoiesis, and cause IPD. In this article, currently available laboratory tools for diagnosing IPDs with the characteristic laboratory features of each IPD are reviewed, and a general diagnostic approach for the evaluation of IPD patients is presented.
Collapse
Affiliation(s)
- Bohyun Kim
- Department of Laboratory Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
12
|
Lee SH, Park NR, Kim JE. Bioinformatics of Differentially Expressed Genes in Phorbol 12-Myristate 13-Acetate-Induced Megakaryocytic Differentiation of K562 Cells by Microarray Analysis. Int J Mol Sci 2022; 23:ijms23084221. [PMID: 35457039 PMCID: PMC9031040 DOI: 10.3390/ijms23084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes are large hematopoietic cells present in the bone marrow cavity, comprising less than 0.1% of all bone marrow cells. Despite their small number, megakaryocytes play important roles in blood coagulation, inflammatory responses, and platelet production. However, little is known about changes in gene expression during megakaryocyte maturation. Here we identified the genes whose expression was changed during K562 leukemia cell differentiation into megakaryocytes using an Affymetrix GeneChip microarray to determine the multifunctionality of megakaryocytes. K562 cells were differentiated into mature megakaryocytes by treatment for 7 days with phorbol 12-myristate 13-acetate, and a microarray was performed using RNA obtained from both types of cells. The expression of 44,629 genes was compared between K562 cells and mature megakaryocytes, and 954 differentially expressed genes (DEGs) were selected based on a p-value < 0.05 and a fold change >2. The DEGs was further functionally classified using five major megakaryocyte function-associated clusters—inflammatory response, angiogenesis, cell migration, extracellular matrix, and secretion. Furthermore, interaction analysis based on the STRING database was used to generate interactions between the proteins translated from the DEGs. This study provides information on the bioinformatics of the DEGs in mature megakaryocytes after K562 cell differentiation.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Na Rae Park
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4949
| |
Collapse
|
13
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
14
|
Pezeshkpoor B, Oldenburg J, Pavlova A. Experiences in Routine Genetic Analysis of Hereditary Hemorrhagic, Thrombotic, and Platelet Disorders. Hamostaseologie 2022; 42:S5-S12. [PMID: 35226963 DOI: 10.1055/a-1726-4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Hemostasis is a complex and tightly regulated system that attempts to maintain a homeostatic balance to permit normal blood flow, without bleeding or thrombosis. Hemostasis reflects the subtle balance between procoagulant and anticoagulant factors in the pathways of primary hemostasis, secondary hemostasis, and fibrinolysis. The major components in this interplay include the vascular endothelium, platelets, coagulation factors, and fibrinolytic factors. After vessel wall injury, the subendothelium is exposed to the blood stream, followed by rapid activation of platelets via collagen binding and von Willebrand factor-mediated platelet adhesion to the damaged vessel wall through platelet glycoprotein receptor Ib/IX/V. Activated platelets change their shape, release bioactive molecules from their granules, and expose negatively charged phospholipids on their surface. For a proper function of this process, an adequate number of functional platelets are required. Subsequently, a rapid generation of sufficient amounts of thrombin begins; followed by activation of the coagulation system and its coagulation factors (secondary hemostasis), generating fibrin that consolidates the platelet plug. To maintain equilibrium between coagulation and anticoagulation, the naturally occurring anticoagulants such as protein C, protein S, and antithrombin keep this process in balance. Deficiencies (inherited or acquired) at any level of this fine-tuned system result in pathologic bleedings or increased hypercoagulability states leading to thrombosis. This review will focus on genetic diagnosis of inherited bleeding, thrombotic, and platelet disorders, discussing strengths and limitations of existing diagnostic settings and genetic tools and highlight some important considerations necessary for clinical application.
Collapse
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - A Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| |
Collapse
|
15
|
Wagner M, Uzun G, Bakchoul T, Althaus K. Diagnosis of Platelet Function Disorders: A Challenge for Laboratories. Hamostaseologie 2022; 42:36-45. [PMID: 35196730 DOI: 10.1055/a-1700-7036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In patients with normal plasmatic coagulation and bleeding tendency, platelet function defect can be assumed. Congenital platelet function defects are rare. Much more commonly they are acquired. The clinical bleeding tendency of platelet function defects is heterogeneous, which makes diagnostic approaches difficult. During the years, a large variety of tests for morphological phenotyping and functional analysis have been developed. The diagnosis of platelet function defects is based on standardized bleeding assessment tools followed by a profound morphological evaluation of the platelets. Platelet function assays like light transmission aggregation, luminoaggregometry, and impedance aggregometry followed by flow cytometry are commonly used to establish the diagnosis in these patients. Nevertheless, despite great efforts, standardization of these tests is poor and in most cases, quality control is lacking. In addition, these tests are still limited to specialized laboratories. This review summarizes the approaches to morphologic phenotyping and platelet testing in patients with suspected platelet dysfunction, beginning with a standardized bleeding score and ending with flow cytometry testing. The diagnosis of a functional defect requires a good collaboration between the laboratory and the clinician.
Collapse
Affiliation(s)
- Miriam Wagner
- Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Günalp Uzun
- Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany.,Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
| | - Karina Althaus
- Transfusion Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany.,Centre for Clinical Transfusion Medicine, Tübingen ZKT gGmbH, Tübingen, Germany
| |
Collapse
|
16
|
Stapley RJ, Poulter NS, Khan AO, Smith CW, Bignell P, Fratter C, Lester W, Lowe G, Morgan NV. Rare missense variants in Tropomyosin-4 (TPM4) are associated with platelet dysfunction, cytoskeletal defects, and excessive bleeding. J Thromb Haemost 2022; 20:478-485. [PMID: 34758189 DOI: 10.1111/jth.15584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND A significant challenge is faced for the genetic diagnosis of inherited platelet disorders in which candidate genetic variants can be found in more than 100 bleeding, thrombotic, and platelet disorder genes, especially within families in which there are both normal and low platelet counts. Genetic variants of unknown clinical significance (VUS) are found in a significant proportion of such patients in which functional studies are required to prove pathogenicity. OBJECTIVE To identify the genetic cause in patients with a suspected platelet disorder and subsequently perform a detailed functional analysis of the candidate genetic variants found. METHODS Genetic and functional studies were undertaken in three patients in two unrelated families with a suspected platelet disorder and excessive bleeding. A targeted gene panel of previously known bleeding and platelet genes was used to identify plausible genetic variants. Deep platelet phenotyping was performed using platelet spreading analysis, transmission electron microscopy, immunofluorescence, and platelet function testing using lumiaggregometry and flow cytometry. RESULTS We report rare conserved missense variants (p.R182C and p.A183V) in TPM4 encoding tromomyosin-4 in 3 patients. Deep platelet phenotyping studies revealed similar platelet function defects across the 3 patients including reduced platelet secretion, and aggregation and spreading defects suggesting that TPM4 missense variants impact platelet function and show a disordered pattern of tropomyosin staining. CONCLUSIONS Genetic and functional TPM4 defects are reported making TPM4 a diagnostic grade tier 1 gene and highlights the importance of including TPM4 in diagnostic genetic screening for patients with significant bleeding and undiagnosed platelet disorders, particularly for those with a normal platelet count.
Collapse
Affiliation(s)
- Rachel J Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Patricia Bignell
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Will Lester
- Comprehensive Care Haemophilia Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gillian Lowe
- Comprehensive Care Haemophilia Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Collins J, Astle WJ, Megy K, Mumford AD, Vuckovic D. Advances in understanding the pathogenesis of hereditary macrothrombocytopenia. Br J Haematol 2021; 195:25-45. [PMID: 33783834 DOI: 10.1111/bjh.17409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Low platelet count, or thrombocytopenia, is a common haematological abnormality, with a wide differential diagnosis, which may represent a clinically significant underlying pathology. Macrothrombocytopenia, the presence of large platelets in combination with thrombocytopenia, can be acquired or hereditary and indicative of a complex disorder. In this review, we discuss the interpretation of platelet count and volume measured by automated haematology analysers and highlight some important technical considerations relevant to the analysis of blood samples with macrothrombocytopenia. We review how large cohorts, such as the UK Biobank and INTERVAL studies, have enabled an accurate description of the distribution and co-variation of platelet parameters in adult populations. We discuss how genome-wide association studies have identified hundreds of genetic associations with platelet count and mean platelet volume, which in aggregate can explain large fractions of phenotypic variance, consistent with a complex genetic architecture and polygenic inheritance. Finally, we describe the large genetic diagnostic and discovery programmes, which, simultaneously to genome-wide association studies, have expanded the repertoire of genes and variants associated with extreme platelet phenotypes. These have advanced our understanding of the pathogenesis of hereditary macrothrombocytopenia and support a future clinical diagnostic strategy that utilises genotype alongside clinical and laboratory phenotype data.
Collapse
Affiliation(s)
- Janine Collins
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, Barts Health NHS Trust, London, UK
| | - William J Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge, UK
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Dragana Vuckovic
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Imperial College London, London, UK
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Marín-Quílez A, García-Tuñón I, Fernández-Infante C, Hernández-Cano L, Palma-Barqueros V, Vuelta E, Sánchez-Martín M, González-Porras JR, Guerrero C, Benito R, Rivera J, Hernández-Rivas JM, Bastida JM. Characterization of the Platelet Phenotype Caused by a Germline RUNX1 Variant in a CRISPR/Cas9-Generated Murine Model. Thromb Haemost 2021; 121:1193-1205. [PMID: 33626581 DOI: 10.1055/s-0041-1723987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
RUNX1-related disorder (RUNX1-RD) is caused by germline variants affecting the RUNX1 gene. This rare, heterogeneous disorder has no specific clinical or laboratory phenotype, making genetic diagnosis necessary. Although international recommendations have been established to classify the pathogenicity of variants, identifying the causative alteration remains a challenge in RUNX1-RD. Murine models may be useful not only for definitively settling the controversy about the pathogenicity of certain RUNX1 variants, but also for elucidating the mechanisms of molecular pathogenesis. Therefore, we developed a knock-in murine model, using the CRISPR/Cas9 system, carrying the RUNX1 p.Leu43Ser variant (mimicking human p.Leu56Ser) to study its pathogenic potential and mechanisms of platelet dysfunction. A total number of 75 mice were generated; 25 per genotype (RUNX1WT/WT, RUNX1WT/L43S, and RUNX1L43S/L43S). Platelet phenotype was assessed by flow cytometry and confocal microscopy. On average, RUNX1L43S/L43S and RUNX1WT/L43S mice had a significantly longer tail-bleeding time than RUNX1WT/WT mice, indicating the variant's involvement in hemostasis. However, only homozygous mice displayed mild thrombocytopenia. RUNX1L43S/L43S and RUNX1WT/L43S displayed impaired agonist-induced spreading and α-granule release, with no differences in δ-granule secretion. Levels of integrin αIIbβ3 activation, fibrinogen binding, and aggregation were significantly lower in platelets from RUNX1L43S/L43S and RUNX1WT/L43S using phorbol 12-myristate 13-acetate (PMA), adenosine diphosphate (ADP), and high thrombin doses. Lower levels of PKC phosphorylation in RUNX1L43S/L43S and RUNX1WT/L43S suggested that the PKC-signaling pathway was impaired. Overall, we demonstrated the deleterious effect of the RUNX1 p.Leu56Ser variant in mice via the impairment of integrin αIIbβ3 activation, aggregation, α-granule secretion, and platelet spreading, mimicking the phenotype associated with RUNX1 variants in the clinical setting.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Ignacio García-Tuñón
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Cristina Fernández-Infante
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
| | - Elena Vuelta
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - Carmen Guerrero
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Rocío Benito
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| | - Jesús María Hernández-Rivas
- Cancer Research Center - CSIC, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
| | - José María Bastida
- Department of Medicine, University of Salamanca, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca - IBSAL, Salamanca, Spain
- On behalf of the "Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)", Hemorrhagic Diathesis Working Group, SETH
| |
Collapse
|
19
|
Tsai FD, Battinelli EM. Inherited Platelet Disorders. Hematol Oncol Clin North Am 2021; 35:1069-1084. [PMID: 34391603 DOI: 10.1016/j.hoc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bleeding disorders due to platelet dysfunction are a common hematologic complication affecting patients, and typically present with mucocutaneous bleeding or hemorrhage. An inherited platelet disorder should be suspected in individuals with a suggestive family history and no identified secondary causes of bleeding. Genetic defects have been described at all levels of platelet activation, including receptor binding, signaling, granule release, cytoskeletal remodeling, and platelet hematopoiesis. Management of these disorders is typically supportive, with an emphasis on awareness, patient education, and anticipatory guidance to prevent future episodes of bleeding.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Zaninetti C, Wolff M, Greinacher A. Diagnosing Inherited Platelet Disorders: Modalities and Consequences. Hamostaseologie 2021; 41:475-488. [PMID: 34391210 DOI: 10.1055/a-1515-0813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Inherited platelet disorders (IPDs) are a group of rare conditions featured by reduced circulating platelets and/or impaired platelet function causing variable bleeding tendency. Additional hematological or non hematological features, which can be congenital or acquired, distinctively mark the clinical picture of a subgroup of patients. Recognizing an IPD is challenging, and diagnostic delay or mistakes are frequent. Despite the increasing availability of next-generation sequencing, a careful phenotyping of suspected patients-concerning the general clinical features, platelet morphology, and function-is still demanded. The cornerstones of IPD diagnosis are clinical evaluation, laboratory characterization, and genetic testing. Achieving a diagnosis of IPD is desirable for several reasons, including the possibility of tailored therapeutic strategies and individual follow-up programs. However, detailed investigations can also open complex scenarios raising ethical issues in case of IPDs predisposing to hematological malignancies. This review offers an overview of IPD diagnostic workup, from the interview with the proband to the molecular confirmation of the suspected disorder. The main implications of an IPD diagnosis are also discussed.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Martina Wolff
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Balduini C, Freson K, Greinacher A, Gresele P, Kühne T, Scully M, Bakchoul T, Coppo P, Dovc Drnovsek T, Godeau B, Gruel Y, Rao AK, Kremer Hovinga JA, Makris M, Matzdorff A, Mumford A, Pecci A, Raslova H, Rivera J, Roberts I, Scharf RE, Semple JW, Van Geet C. The EHA Research Roadmap: Platelet Disorders. Hemasphere 2021; 5:e601. [PMID: 34476343 PMCID: PMC8386910 DOI: 10.1097/hs9.0000000000000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Kathleen Freson
- Department of Carzdiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Germany
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Italy
| | - Thomas Kühne
- University Children’s Hospital Basel, Oncology/Hematology, Basel, Switzerland
| | - Marie Scully
- Cardiometabolic Programme, Biomedical Research Center, University College London, United Kingdom
| | | | - Paul Coppo
- Service d'Hématologie, Hôpital Saint Antoine, Sorbonne-Université, French Reference Center for Thrombotic Microangiopathies, Centre de Recherche des Cordeliers, Paris, France
| | | | - Bertrand Godeau
- Département de médecine interne, Hôpitaux Universitaires Henri Mondor, Université Paris Est Créteil, Créteil, France
| | - Yves Gruel
- Department of Haematology-Haemostasis, Tours University Hospital, Tours, France
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center and Hematology Section, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Johanna A. Kremer Hovinga
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Axel Matzdorff
- Department of Internal Medicine II, Asklepios Clinic Uckermark, Schwedt, Germany
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, United Kingdom
| | - Alessandro Pecci
- Department of Internal Medicine, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Policlinico San Matteo and University of Pavia, Italy
| | - Hana Raslova
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 1287, Gustave Roussy, Université Paris Saclay, Equipe labellisée Ligue Nationale contre le Cancer, Villejuif, France
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain
| | - Irene Roberts
- Department of Paediatrics and Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | | | - John W. Semple
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Sweden
| | | |
Collapse
|
22
|
The Emerging Role of Hematopathologists and Molecular Pathologists in Detection, Monitoring, and Management of Myeloid Neoplasms with Germline Predisposition. Curr Hematol Malig Rep 2021; 16:336-344. [PMID: 34028637 DOI: 10.1007/s11899-021-00636-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Awareness, widespread availability, and routine use of sequencing techniques in work-up of myelodysplastic syndromes and acute myeloid leukemia have facilitated increased recognition of these entities arising in a background of germline predisposition disorders (GPD). RECENT FINDINGS The latest revisions to the WHO classification of myeloid neoplasms incorporate "myeloid neoplasms with germline predisposition" as a separate entity due to the therapeutic implications of this diagnosis. It has become apparent that some of these entities have unique recognizable morphologic findings that can be challenging to interpret at time. Hence, much needs to be studied, posing a new layer of complexity to hematopathologists and oncologists. A thorough understanding of cytogenetic and molecular findings during disease evolution is essential. Consequently, hematopathologists and molecular pathologists play an increasing role in recognition of bone marrow morphologic features that help in recognition of underlying GPD, monitoring, and prompt identification of progression.
Collapse
|
23
|
Specifications of the variant curation guidelines for ITGA2B/ITGB3: ClinGen Platelet Disorder Variant Curation Panel. Blood Adv 2021; 5:414-431. [PMID: 33496739 PMCID: PMC7839359 DOI: 10.1182/bloodadvances.2020003712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Accurate and consistent sequence variant interpretation is critical to the correct diagnosis and appropriate clinical management and counseling of patients with inherited genetic disorders. To minimize discrepancies in variant curation and classification among different clinical laboratories, the American College of Medical Genetics and Genomics (ACMG), along with the Association for Molecular Pathology (AMP), published standards and guidelines for the interpretation of sequence variants in 2015. Because the rules are not universally applicable to different genes or disorders, the Clinical Genome Resource (ClinGen) Platelet Disorder Expert Panel (PD-EP) has been tasked to make ACMG/AMP rule specifications for inherited platelet disorders. ITGA2B and ITGB3, the genes underlying autosomal recessive Glanzmann thrombasthenia (GT), were selected as the pilot genes for specification. Eight types of evidence covering clinical phenotype, functional data, and computational/population data were evaluated in the context of GT by the ClinGen PD-EP. The preliminary specifications were validated with 70 pilot ITGA2B/ITGB3 variants and further refined. In the final adapted criteria, gene- or disease-based specifications were made to 16 rules, including 7 with adjustable strength; no modification was made to 5 rules; and 7 rules were deemed not applicable to GT. Employing the GT-specific ACMG/AMP criteria to the pilot variants resulted in a reduction of variants classified with unknown significance from 29% to 20%. The overall concordance with the initial expert assertions was 71%. These adapted criteria will serve as guidelines for GT-related variant interpretation to increase specificity and consistency across laboratories and allow for better clinical integration of genetic knowledge into patient care.
Collapse
|
24
|
Abstract
Professor A. Koneti Rao has made many critical contributions to the field of platelet research for over forty years. He joined the editorial board of Platelets as a Principal Editor in 1989 before the start of the journal and the appointment of Stan Heptinstall, who was Editor-in-Chief for 25 years. Professor Rao retired from the editorial board in 2018. This article is based on an interview with Professor Rao that took place prior to the Platelets Editorial Board meeting and lunch in 2019 during the ISTH Congress in Melbourne. Professor Rao was presented with a plaque in recognition of his service to the journal. The article is a reflection on Professor Rao's personal life and his career in science, along with his views on the past and future of Platelets. Professor Rao continues to serve as a referee for the journal.
Collapse
Affiliation(s)
- Gayle M Halford
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Amanda Dalby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Rosenberg N, Dardik R, Hauschner H, Nakav S, Barel O, Luboshitz J, Yacobovich J, Tamary H, Kenet G. Mutations in RASGRP2 gene identified in patients misdiagnosed as Glanzmann thrombasthenia patients. Blood Cells Mol Dis 2021; 89:102560. [PMID: 33711653 DOI: 10.1016/j.bcmd.2021.102560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Glanzmann thrombasthenia (GT) is a severe inherited platelet function disorder (IPFD), presenting with bleeding diathesis and impaired platelet aggregation, is caused by mutations in the genes ITGA2B or ITGB3. AIM We aimed to study the genetic cause of IPFD mimicking GT. METHODS During 2017-2019, 16 patients were referred to our tertiary center with bleeding symptoms, impaired platelet aggregation and normal platelet count and size. RESULTS Using flow cytometry, 13/16 patients were diagnosed with GT, yet three patients displayed normal surface expression of the integrins αIIbβ3 and αvβ3, as well as normal integrin αIIbβ3 activation following incubation with the activating monoclonal antibody anti-LIBS6, while platelet activation following ADP or epinephrine was impaired. Whole exome sequencing detected 2 variants in RASGRP2 gene in all 3 patients. DISCUSSION Both RASGRP2 mutations predicted frameshift, premature stop codon (p. I427Mfs*92 and p. R494Afs*54, respectively) and truncated calcium-sensing guanine nucleotide exchange factor [CalDAG-GEFI]- the major signaling molecule that regulates integrin-mediated aggregation and granule secretion, causing IPFD-18. CONCLUSION Patients who suffer from bleeding diathesis without immune dysregulation, may be mistakenly diagnosed as GT. Further studies are required to confirm the diagnosis of specific IPFD.
Collapse
Affiliation(s)
- Nurit Rosenberg
- The Israeli National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rima Dardik
- The Israeli National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Hagit Hauschner
- The Israeli National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Tel Hashomer, Israel; Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Nakav
- Coagulation and Hemostasis Laboratory, Hematology Laboratories, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Ortal Barel
- Bioinformatic Unit, Sheba Cancer Research Center, Tel-Hashomer, Israel
| | - Jacob Luboshitz
- The Israeli National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanne Yacobovich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Hematology, Schneider Children's Medical Center, Petach-Tikva; Israel
| | - Hannah Tamary
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Hematology, Schneider Children's Medical Center, Petach-Tikva; Israel
| | - Gili Kenet
- The Israeli National Hemophilia Center and Thrombosis Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
26
|
Almazni I, Chudakou P, Dawson-Meadows A, Downes K, Freson K, Mason J, Page P, Reay K, Myers B, Morgan NV. A novel RUNX1 exon 3 - 7 deletion causing a familial platelet disorder. Platelets 2021; 33:320-323. [PMID: 33616470 DOI: 10.1080/09537104.2021.1887470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM) is a rare inherited disorder confirmed with the presence of a pathogenic germline RUNX1 variant and is thought to be heavily underdiagnosed. RUNX1 has also been found to be mutated in up to 10% of adult AML cases and other cell malignancies. We performed targeted next-generation sequencing and subsequent MLPA analysis in a kindred with multiple affected individuals with low platelet counts and a bleeding history. We detected a novel heterozygous exon 3-7 large deletion in the RUNX1 gene in all affected family members which is predicted to remove all of the Runt-homology DNA-binding domain and a portion of the Activation domain. Our results show that the combination of targeted NGS and MLPA analysis is an effective way to detect copy number variants (CNVs) which would be missed by conventional sequencing methods. This precise diagnosis offers the possibility of accurate counseling and clinical management in such patients who could go onto develop other cell malignancies.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pavel Chudakou
- Department of Haematology, Lincoln County Hospital, Lincoln, UK
| | | | - Kate Downes
- East Genomic Laboratory Hub, Cambridge University Hospitals, Cambridge, UK
| | - Kathleen Freson
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Joanne Mason
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Paula Page
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Kim Reay
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - Bethan Myers
- Department of Haematology, Lincoln County Hospital, Lincoln, UK.,Department of Haematology, University Hospitals of Leicester, Leicester, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106:337-350. [PMID: 33147934 PMCID: PMC7849565 DOI: 10.3324/haematol.2020.248153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules. Important are mutations of P2RY12 encoding the major ADP receptor causal for an inherited platelet disorder with inheritance characteristics that depend on the variant identified. Interestingly, variants of GP6 encoding the major subunit of the collagen receptor GPVI/FcRγ associate only with mild bleeding. The numbers of genes involved in dense granule defects including Hermansky-Pudlak and Chediak Higashi syndromes continue to progress and are updated. The ANO6 gene encoding a Ca2+-activated ion channel required for phospholipid scrambling is responsible for the rare Scott syndrome and decreased procoagulant activity. A novel EPHB2 defect in a familial bleeding syndrome demonstrates a role for this tyrosine kinase receptor independent of the classical model of its interaction with ephrins. Such advances highlight the large diversity of variants affecting platelet function but not their production, despite the difficulties in establishing a clear phenotype when few families are affected. They have provided insights into essential pathways of platelet function and have been at the origin of new and improved therapies for ischemic disease. Nevertheless, many patients remain without a diagnosis and requiring new strategies that are now discussed.
Collapse
Affiliation(s)
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Remi Favier
- French National Reference Center for Inherited Platelet Disorders, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris
| | | |
Collapse
|
28
|
Oved JH, Lambert MP, Kowalska MA, Poncz M, Karczewski KJ. Population based frequency of naturally occurring loss-of-function variants in genes associated with platelet disorders. J Thromb Haemost 2021; 19:248-254. [PMID: 33006441 DOI: 10.1111/jth.15113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Essentials The frequency of predicted loss-of-function (pLoF) variants in platelet-associated genes is unknown in the general population. Datasets like Genome Aggregation Database allow us to analyze pLoF variants with increased resolution. Expected prevalence of significant pLoF variants in platelet-associated genes in 0.329% in the general population. Platelet-associated genes that cause phenotypes due to haploinsufficiency are significantly depleted for deleterious variation. ABSTRACT: Background Inherited platelet disorders are being recognized more frequently as advanced sequencing technologies become more commonplace in clinical scenarios. The prevalence of each inherited platelet disorder and the disorders in aggregate are not known. This deficit in the field makes it difficult for clinicians to discuss results of sequencing assays and provide appropriate anticipatory guidance. Objectives In this study, we aim to calculate the prevalence of predicted loss-of-function variants in platelet-associated genes in the general population. Methods Here, we leverage the aggregation of exomes from the general population in the form of Genome Aggregation Database to assess 58 platelet-associated genes with phenotypic correlates. We use the loss-of-function transcript effect estimator (LOFTEE) to identify predicted loss-of-function mutations in these platelet-associated genes. These variants are curated and we then quantify the frequency of predicted loss-of-function variants in each gene. Results Our data show that 0.329% of the general population have a clinically meaningful predicted loss-of-function variant in a platelet-associated gene. Thus, these individuals are at risk for bleeding disorders that can range from mild to severe. Conclusions These data provide a novel lens through which clinicians can analyze sequencing results in their patients as well as an additional method to curate newly discovered platelet-associated genes in the future.
Collapse
Affiliation(s)
- Joseph H Oved
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michele P Lambert
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M Anna Kowalska
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
29
|
Al-Hebshi A. Inherited Platelet Function Disorder From Novel Mutations in RAS Guanyl-Releasing Protein-2 Confirmed by Sanger Sequencing. Cureus 2020; 12:e11708. [PMID: 33391941 PMCID: PMC7769792 DOI: 10.7759/cureus.11708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Inherited platelet disorders (IPDs) are genetically heterogeneous rare disorders due to quantitative and/or qualitative abnormalities of the platelet. IPDs are often predisposed to significant medical complications. RAS guanyl-releasing protein-2 (RASGRP2) was recently identified as a gene affected in patients with platelet function defects and a bleeding complication. RASGRP2 codes for the protein CalDAG-GEFI RAS (guanyl-releasing protein-2), a guanine nucleotide exchange factor for small guanosine triphosphate(GTP)ase Rap1. We used Sanger sequencing to identify a novel function-disrupting homozygous mutation in RASGRP2 responsible for bleeding diathesis and platelet dysfunction in a patient.
Collapse
Affiliation(s)
- Abdulqader Al-Hebshi
- Pediatric Hematology Oncology, Prince Mohammed Bin Abdulaziz Hospital, Medina, SAU.,Pediatric Hematology Oncology, Ministry of National Guard Health Affairs, Medina, SAU.,Pediatric Hematology Oncology, King Abdullah International Medical Research Center, Riyadh, SAU.,Pediatric Hematology Oncology, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| |
Collapse
|
30
|
Mekchay P, Ittiwut C, Ittiwut R, Akkawat B, Le Grand SM, Leela-adisorn N, Muanpetch S, Khovidhunkit W, Sosothikul D, Shotelersuk V, Suphapeetiporn K, Rojnuckarin P. Whole exome sequencing for diagnosis of hereditary thrombocytopenia. Medicine (Baltimore) 2020; 99:e23275. [PMID: 33217855 PMCID: PMC7676547 DOI: 10.1097/md.0000000000023275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hereditary thrombocytopenia comprises extremely diverse diseases that are difficult to diagnose by phenotypes alone. Definite diagnoses are helpful for patient (Pt) management.To evaluate the role of whole exome sequencing (WES) in these Pts.Cases with unexplained long-standing thrombocytopenia and/or suggestive features were enrolled to the observational study. Bleeding scores and blood smear were evaluated. The variant pathogenicity from WES was determined by bioinformatics combined with all other information including platelet aggregometry, flow cytometry, and electron microscopy (EM).Seven unrelated Pts were recruited. All were female with macrothrombocytopenia. Clinical bleeding was presented in four Pts; extra-hematological features were minimal and family history was negative in every Pt. WES successfully identified all the 11 responsible mutant alleles; of these, four have never been previously reported. Pt 1 with GNE-related thrombocytopenia showed reduced lectin binding by flow cytometry, increased glycogen granules by EM and a novel homozygous mutation in GNE. Pts 2 and 3 had phenotypic diagnoses of Bernard Soulier syndrome and novel homozygous mutations in GP1BB and GP1BA, respectively. Pt 4 had impaired microtubule structures, concomitant delta storage pool disease by EM and a novel heterozygous TUBB1 mutation. Pt 5 had sitosterolemia showing platelets with reduced ristocetin responses and a dilated membrane system on EM with compound heterozygous ABCG5 mutations. Pts 6 and 7 had MYH9 disorders with heterozygous mutations in MYH9.This study substantiates the benefits of WES in identifying underlying mutations of macrothrombocytopenia, expands mutational spectra of four genes, and provides detailed clinical features for further phenotype-genotype correlations.
Collapse
Affiliation(s)
- Ponthip Mekchay
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society
| | - Benjaporn Akkawat
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University
| | | | | | - Suwanna Muanpetch
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University
| | - Weerapan Khovidhunkit
- Hormonal and Metabolic Disorders Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University
| | - Darintr Sosothikul
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University
| |
Collapse
|
31
|
Almazni I, Stapley RJ, Khan AO, Morgan NV. A comprehensive bioinformatic analysis of 126 patients with an inherited platelet disorder to identify both sequence and copy number genetic variants. Hum Mutat 2020; 41:1848-1865. [PMID: 32935436 DOI: 10.1002/humu.24114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
Inherited bleeding disorders (IBDs) comprise an extremely heterogeneous group of diseases that reflect abnormalities of blood vessels, coagulation proteins, and platelets. Previously the UK-GAPP study has used whole-exome sequencing in combination with deep platelet phenotyping to identify pathogenic genetic variants in both known and novel genes in approximately 40% of the patients. To interrogate the remaining "unknown" cohort and improve this detection rate, we employed an IBD-specific gene panel of 119 genes using the Congenica Clinical Interpretation Platform to detect both single-nucleotide variants and copy number variants in 126 patients. In total, 135 different heterozygous variants in genes implicated in bleeding disorders were identified. Of which, 22 were classified pathogenic, 26 likely pathogenic, and the remaining were of uncertain significance. There were marked differences in the number of reported variants in individuals between the four patient groups: platelet count (35), platelet function (43), combined platelet count and function (59), and normal count (17). Additionally, we report three novel copy number variations (CNVs) not previously detected. We show that a combined single-nucleotide variation (SNV)/CNV analysis using the Congenica platform not only improves detection rates for IBDs, suggesting that such an approach can be applied to other genetic disorders where there is a high degree of heterogeneity.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel J Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Downes K, Borry P, Ericson K, Gomez K, Greinacher A, Lambert M, Leinoe E, Noris P, Van Geet C, Freson K. Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost 2020; 18:2751-2758. [PMID: 33079472 PMCID: PMC7589386 DOI: 10.1111/jth.14993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Molecular diagnostics of inherited platelet disorders (IPD) has been revolutionized by the implementation of high-throughput sequencing (HTS) approaches. A conclusive diagnosis using HTS tests can be obtained quickly and cost-effectively in many, but not all patients. The expanding use of HTS tests has raised concerns regarding complex variant interpretation and the ethical implications of detecting unsolicited findings such as variants in IPD genes RUNX1, ETV6, and ANKRD26, which are associated with increased leukemic risk. This guidance document has been developed and written by a multidisciplinary team of researchers and clinicians, with expertise in hematology, clinical and molecular genetics, and bioethics, alongside a RUNX1 patient advocacy representative. We recommend that for clinical diagnostics, HTS for IPD should use a multigene panel of curated diagnostic-grade genes. Critically, we advise that an HTS test for clinical diagnostics should only be ordered by a clinical expert that is: (a) fully aware of the complexity of genotype-phenotype correlations for IPD; (b) able to discuss these complexities with a patient and family members before the test is initiated; and (c) able to interpret and appropriately communicate the results of a HTS diagnostic report, including the implication of variants of uncertain clinical significance. Each patient should know what an HTS test could mean for his or her clinical management before initiating a test. We hereby propose an exemplified informed consent document that includes information on these ethical concerns and can be used by the community for implementation of HTS of IPD in a clinical diagnostic setting. This paper does not include recommendations for HTS of IPD in a research setting.
Collapse
Affiliation(s)
- Kate Downes
- East Genomic Laboratory HubCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Pascal Borry
- Department of Public Health and Primary CareKU LeuvenLeuvenBelgium
| | | | - Keith Gomez
- Haemophilia Centre and Thrombosis UnitRoyal Free London NHS Foundation TrustLondonUK
| | - Andreas Greinacher
- Institut für Immunologie und TransfusionsmedizinUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Michele Lambert
- Division of HematologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Leinoe
- Department of HaematologyRigshospitaletNational University HospitalCopenhagenDenmark
| | - Patrizia Noris
- IRCCS Policlinico San Matteo Foundation and University of PaviaPaviaItaly
| | - Chris Van Geet
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | | |
Collapse
|
33
|
Al-Huniti A, Kahr WH. Inherited Platelet Disorders: Diagnosis and Management. Transfus Med Rev 2020; 34:277-285. [PMID: 33082057 DOI: 10.1016/j.tmrv.2020.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Inherited platelet disorders are rare but they can have considerable clinical impacts, and studies of their causes have advanced understanding of platelet formation and function. Effective hemostasis requires adequate circulating numbers of functional platelets. Quantitative, qualitative and combined platelet disorders with a bleeding phenotype have been linked to defects in platelet cytoskeletal elements, cell surface receptors, signal transduction pathways, secretory granules and other aspects. Inherited platelet disorders have variable clinical presentations, and diagnosis and management is often challenging. Evaluation begins with detailed patient and family histories, including a bleeding score. The physical exam identifies potential syndromic features of inherited platelet disorders and rules out other causes. Laboratory investigations include a complete blood count, blood film, coagulation testing and Von Willebrand factor assessment. A suspected platelet function disorder is further assessed by platelet aggregation, flow cytometry, platelet dense granule release and/or content, and genetic testing. The management of platelet function disorders aims to minimize the risk of bleeding and achieve adequate hemostasis when needed. Although not universal, platelet transfusion remains a crucial component in the management of many inherited platelet disorders.
Collapse
Affiliation(s)
- Ahmad Al-Huniti
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Walter Ha Kahr
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The increasing use of high throughput sequencing and genomic analysis has facilitated the discovery of new causes of inherited platelet disorders. Studies of these disorders and their respective mouse models have been central to understanding their biology, and also in revealing new aspects of platelet function and production. This review covers recent contributions to the identification of genes, proteins and variants associated with inherited platelet defects, and highlights how these studies have provided insights into platelet development and function. RECENT FINDINGS Novel genes recently implicated in human platelet dysfunction include the galactose metabolism enzyme UDP-galactose-4-epimerase in macrothrombocytopenia, and erythropoietin-producing hepatoma-amplified sequence receptor transmembrane tyrosine kinase EPHB2 in a severe bleeding disorder with deficiencies in platelet agonist response and granule secretion. Recent studies of disease-associated variants established or clarified roles in platelet function and/or production for the membrane receptor G6b-B, the FYN-binding protein FYB1/ADAP, the RAS guanyl-releasing protein RASGRP2/CalDAG-GEFI and the receptor-like protein tyrosine phosphatase PTPRJ/CD148. Studies of genes associated with platelet disorders advanced understanding of the cellular roles of neurobeachin-like 2, as well as several genes influenced by the transcription regulator RUNT-related transcription factor 1 (RUNX1), including NOTCH4. SUMMARY The molecular bases of many hereditary platelet disorders have been elucidated by the application of recent advances in cell imaging and manipulation, genomics and protein function analysis. These techniques have also aided the detection of new disorders, and enabled studies of disease-associated genes and variants to enhance understanding of platelet development and function.
Collapse
|
35
|
Le Blanc J, Mullier F, Vayne C, Lordkipanidzé M. Advances in Platelet Function Testing-Light Transmission Aggregometry and Beyond. J Clin Med 2020; 9:jcm9082636. [PMID: 32823782 PMCID: PMC7464122 DOI: 10.3390/jcm9082636] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023] Open
Abstract
Platelet function testing is essential for the diagnosis of hemostasis disorders. While there are many methods used to test platelet function for research purposes, standardization is often lacking, limiting their use in clinical practice. Light transmission aggregometry has been the gold standard for over 60 years, with inherent challenges of working with live dynamic cells in specialized laboratories with independent protocols. In recent years, standardization efforts have brought forward fully automated systems that could lead to more widespread use. Additionally, new technical approaches appear promising for the future of specialized hematology laboratories. This review presents developments in platelet function testing for clinical applications.
Collapse
Affiliation(s)
- Jessica Le Blanc
- Montreal Heart Institute Research Center, Montréal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - François Mullier
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, 5530 Yvoir, Belgium;
| | - Caroline Vayne
- Department of Hemostasis, University Hospital of Tours, 37044 Tours, France;
- EA 7501 GICC, University of Tours, 37000 Tours, France
| | - Marie Lordkipanidzé
- Montreal Heart Institute Research Center, Montréal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-514-376-3330 (ext. 2694); Fax: +1-514-376-0173
| |
Collapse
|
36
|
Ver Donck F, Downes K, Freson K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J Thromb Haemost 2020; 18:1839-1845. [PMID: 32521110 DOI: 10.1111/jth.14945] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022]
Abstract
Inherited bleeding and platelet disorders (BPD) are highly heterogeneous and their diagnosis involves a combination of clinical investigations, laboratory tests, and genetic screening. This review will outline some of the challenges that geneticists and experts in clinical hemostasis face when implementing high-throughput sequencing (HTS) for patient care. We will provide an overview of the strengths and limitations of the different HTS techniques that can be used to diagnose BPD. An HTS test is cost-efficient and expected to increase the diagnostic rate with a possibility to detect unexpected diagnoses and decrease the turnaround time to diagnose patients. On the other hand, technical shortcomings, variant interpretation difficulties, and ethical issues related to HTS for BPD will also be documented. Delivering a genetic diagnosis to patients is highly desirable to improve clinical management and allow family counseling, but making incorrect assumptions about variants and providing insufficient information to patients before initiating the test could be harmful. Data-sharing and improved HTS guidelines are essential to limit these major drawbacks of HTS.
Collapse
Affiliation(s)
- Fabienne Ver Donck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kate Downes
- East Midlands and East of England Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Cheng W, Ramachandran S, Crawford L. Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits. PLoS Genet 2020; 16:e1008855. [PMID: 32542026 PMCID: PMC7316356 DOI: 10.1371/journal.pgen.1008855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/25/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Traditional univariate genome-wide association studies generate false positives and negatives due to difficulties distinguishing associated variants from variants with spurious nonzero effects that do not directly influence the trait. Recent efforts have been directed at identifying genes or signaling pathways enriched for mutations in quantitative traits or case-control studies, but these can be computationally costly and hampered by strict model assumptions. Here, we present gene-ε, a new approach for identifying statistical associations between sets of variants and quantitative traits. Our key insight is that enrichment studies on the gene-level are improved when we reformulate the genome-wide SNP-level null hypothesis to identify spurious small-to-intermediate SNP effects and classify them as non-causal. gene-ε efficiently identifies enriched genes under a variety of simulated genetic architectures, achieving greater than a 90% true positive rate at 1% false positive rate for polygenic traits. Lastly, we apply gene-ε to summary statistics derived from six quantitative traits using European-ancestry individuals in the UK Biobank, and identify enriched genes that are in biologically relevant pathways.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (SR); (LC)
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America
- Center for Statistical Sciences, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (SR); (LC)
| |
Collapse
|
38
|
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105:2004-2019. [PMID: 32527953 PMCID: PMC7395261 DOI: 10.3324/haematol.2019.233197] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last 100 years the role of platelets in hemostatic events and their production by megakaryocytes have gradually been defined. Progressively, thrombocytopenia was recognized as a cause of bleeding, first through an acquired immune disorder; then, since 1948, when Bernard-Soulier syndrome was first described, inherited thrombocytopenia became a fascinating example of Mendelian disease. The platelet count is often severely decreased and platelet size variable; associated platelet function defects frequently aggravate bleeding. Macrothrombocytopenia with variable proportions of enlarged platelets is common. The number of circulating platelets will depend on platelet production, consumption and lifespan. The bulk of macrothrombocytopenias arise from defects in megakaryopoiesis with causal variants in transcription factor genes giving rise to altered stem cell differentiation and changes in early megakaryocyte development and maturation. Genes encoding surface receptors, cytoskeletal and signaling proteins also feature prominently and Sanger sequencing associated with careful phenotyping has allowed their early classification. It quickly became apparent that many inherited thrombocytopenias are syndromic while others are linked to an increased risk of hematologic malignancies. In the last decade, the application of next-generation sequencing, including whole exome sequencing, and the use of gene platforms for rapid testing have greatly accelerated the discovery of causal genes and extended the list of variants in more common disorders. Genes linked to an increased platelet turnover and apoptosis have also been identified. The current challenges are now to use next-generation sequencing in first-step screening and to define bleeding risk and treatment better.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France
| | | |
Collapse
|
39
|
Jung N, Shim YJ. Current Knowledge on Inherited Platelet Function Disorders. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2020. [DOI: 10.15264/cpho.2020.27.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nani Jung
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
40
|
Germline mutations in the transcription factor IKZF5 cause thrombocytopenia. Blood 2020; 134:2070-2081. [PMID: 31217188 DOI: 10.1182/blood.2019000782] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023] Open
Abstract
To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.
Collapse
|
41
|
Park ES. When to suspect inherited platelet disorders and how to diagnose them. Clin Exp Pediatr 2020; 63:98-99. [PMID: 32023406 PMCID: PMC7073383 DOI: 10.3345/cep.2019.01207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/31/2019] [Indexed: 11/27/2022] Open
Affiliation(s)
- Eun Sil Park
- Department of Pediatrics, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
42
|
Shim YJ. Genetic classification and confirmation of inherited platelet disorders: current status in Korea. Clin Exp Pediatr 2020; 63:79-87. [PMID: 31477680 PMCID: PMC7073384 DOI: 10.3345/kjp.2019.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Inherited platelet disorders (IPDs), which manifest as primary hemostasis defects, often underlie abnormal bleeding and a family history of thrombocytopenia, bone marrow failure, hematologic malignancies, undefined mucocutaneous bleeding disorder, or congenital bony defects. Wide heterogeneity in IPD types with regard to the presence or absence of thrombocytopenia, platelet dysfunction, bone marrow failure, and dysmegakaryopoiesis is observed in patients. The individual processes involved in platelet production and hemostasis are genetically controlled; to date, mutations of more than 50 genes involved in various platelet biogenesis steps have been implicated in IPDs. Representative IPDs resulting from defects in specific pathways, such as thrombopoietin/MPL signaling; transcriptional regulation; granule formation, trafficking, and secretion; proplatelet formation; cytoskeleton regulation; and transmembrane glycoprotein signaling are reviewed, and the underlying gene mutations are discussed based on the National Center for Biotechnology Information database and Online Mendelian Inheritance in Man accession number. Further, the status and prevalence of genetically confirmed IPDs in Korea are explored based on searches of the PubMed and KoreaMed databases. IPDs are congenital bleeding disorders that can be dangerous due to unexpected bleeding and require genetic counseling for family members and descendants. Therefore, the pediatrician should be suspicious and aware of IPDs and perform the appropriate tests if the patient has unexpected bleeding. However, all IPDs are extremely rare; thus, the domestic incidences of IPDs are unclear and their diagnosis is difficult. Diagnostic confirmation or differential diagnoses of IPDs are challenging, time-consuming, and expensive, and patients are frequently misdiagnosed. Comprehensive molecular characterization and classification of these disorders should enable accurate and precise diagnosis and facilitate improved patient management.
Collapse
Affiliation(s)
- Ye Jee Shim
- Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
43
|
Andersson NG, Rossing M, Fager Ferrari M, Gabrielaite M, Leinøe E, Ljung R, Mårtensson A, Norström E, Zetterberg E. Genetic screening of children with suspected inherited bleeding disorders. Haemophilia 2020; 26:314-324. [DOI: 10.1111/hae.13948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Nadine G. Andersson
- Department of Clinical Sciences Paediatrics Lund University Lund Sweden
- Centre for Thrombosis and Haemostasis Skåne University Hospital Malmö Sweden
- Department for Paediatric Haematology and Oncology Skåne University Hospital Malmö Sweden
| | - Maria Rossing
- Centre for Genomic Medicine Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| | - Marcus Fager Ferrari
- Centre for Thrombosis and Haemostasis Skåne University Hospital Malmö Sweden
- Department of Translational Medicine Lund University Malmö Sweden
| | - Migle Gabrielaite
- Centre for Genomic Medicine Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| | - Eva Leinøe
- Department of Haematology Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| | - Rolf Ljung
- Department of Clinical Sciences Paediatrics Lund University Lund Sweden
| | - Annika Mårtensson
- Department of Clinical Sciences Paediatrics Lund University Lund Sweden
- Department for Paediatric Haematology and Oncology Skåne University Hospital Malmö Sweden
| | - Eva Norström
- Department for Clinical Chemistry Skåne University Hospital Malmö Sweden
| | - Eva Zetterberg
- Centre for Thrombosis and Haemostasis Skåne University Hospital Malmö Sweden
- Department of Translational Medicine Lund University Malmö Sweden
| |
Collapse
|
44
|
Zaninetti C, Greinacher A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J Clin Med 2020; 9:jcm9020539. [PMID: 32079152 PMCID: PMC7074415 DOI: 10.3390/jcm9020539] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further. In principle, it is based on visualizing alterations in the distribution of proteins, which result from specific genetic mutations by using monoclonal antibodies. It can be applied to identify deficiencies in membrane proteins, disturbed distribution of cytoskeletal proteins, and alpha as well as delta granules. On the other hand, mutations associated with impaired signal transduction are difficult to identify by immunofluorescence of blood smears. This review summarizes technical aspects and the main diagnostic patterns achievable by this method.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- Correspondence: ; Tel.: +49-3834-865482; Fax: +49-3834-865489
| |
Collapse
|
45
|
Abstract
Platelets - blood cells continuously produced from megakaryocytes mainly in the bone marrow - are implicated not only in haemostasis and arterial thrombosis, but also in other physiological and pathophysiological processes. This Review describes current evidence for the heterogeneity in platelet structure, age, and activation properties, with consequences for a diversity of platelet functions. Signalling processes of platelet populations involved in thrombus formation with ongoing coagulation are well understood. Genetic approaches have provided information on multiple genes related to normal haemostasis, such as those encoding receptors and signalling or secretory proteins, that determine platelet count and/or responsiveness. As highly responsive and secretory cells, platelets can alter the environment through the release of growth factors, chemokines, coagulant factors, RNA species, and extracellular vesicles. Conversely, platelets will also adapt to their environment. In disease states, platelets can be positively primed to reach a pre-activated condition. At the inflamed vessel wall, platelets interact with leukocytes and the coagulation system, interactions mediating thromboinflammation. With current antiplatelet therapies invariably causing bleeding as an undesired adverse effect, novel therapies can be more beneficial if directed against specific platelet responses, populations, interactions, or priming conditions. On the basis of these novel concepts and processes, we discuss several initiatives to target platelets therapeutically.
Collapse
|
46
|
Blaauwgeers MW, Asten I, Kruip MJ, Beckers EA, Coppens M, Eikenboom J, Galen KP, Huisman A, Korporaal SJ, Ploos van Amstel HK, Tamminga RY, Urbanus RT, Schutgens RE. The limitation of genetic testing in diagnosing patients suspected for congenital platelet defects. Am J Hematol 2020; 95:E26-E28. [PMID: 31659778 PMCID: PMC6916199 DOI: 10.1002/ajh.25667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/05/2022]
Affiliation(s)
- Maaike W. Blaauwgeers
- Van CreveldkliniekUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
| | - Ivar Asten
- Van CreveldkliniekUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
- Van Creveld LaboratoryUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
- Center for Circulatory Health, Department of Clinical Chemistry and HaematologyUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
| | - Marieke J.H.A. Kruip
- Department of HaematologyErasmus University Medical Center Rotterdam The Netherlands
| | - Erik A.M. Beckers
- Department of HematologyMaastricht University Medical Center Maastricht The Netherlands
| | - Michiel Coppens
- Department of Vascular Medicine, Amsterdam Cardiovascular SciencesAmsterdam University Medical Center, location AMC Amsterdam The Netherlands
| | - Jeroen Eikenboom
- Department of Internal Medicine, division of Thrombosis and HaemostasisLeiden University Medical Center Leiden The Netherlands
| | - Karin P.M. Galen
- Van CreveldkliniekUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
| | - Albert Huisman
- Center for Circulatory Health, Department of Clinical Chemistry and HaematologyUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
| | - Suzanne J.A. Korporaal
- Center for Circulatory Health, Department of Clinical Chemistry and HaematologyUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
- Laboratory of Experimental CardiologyUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
| | | | - Rienk Y.J. Tamminga
- Department of Pediatric HematologyBeatrix Children's Hospital, University Medical Center Groningen Groningen The Netherlands
| | - Rolf T. Urbanus
- Van CreveldkliniekUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
- Van Creveld LaboratoryUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
| | - Roger E.G. Schutgens
- Van CreveldkliniekUniversity Medical Center Utrecht, University Utrecht Utrecht The Netherlands
| |
Collapse
|
47
|
Zegers SAM, Smit Y, Saes JL, van Duren C, Schuijt TJ, van Heerde WL, Schols SEM. Diagnostic work up of patients with increased bleeding tendency. Haemophilia 2019; 26:269-277. [PMID: 31886943 PMCID: PMC7155060 DOI: 10.1111/hae.13922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
Introduction The diagnostic trajectory of patients with increased bleeding tendency can be very costly and time‐consuming. In addition, previous studies have shown that half of these patients remain without final diagnosis despite all efforts. Aim This study aimed to improve insight into the current diagnostic process of these patients. Methods A total of 117 adult patients, referred to an academic hospital because of being suspected to have an increased bleeding tendency, were included. Different parameters were compared between patients receiving final diagnosis, patients without final diagnosis but a high Tosetto bleeding assessment tool (BAT) score (classified as bleeding of unknown cause, or BUC) and a control group consisting of patients without final diagnosis and a low BAT score. Results The BAT score was significantly higher in patients in the BUC group as compared to patients reaching final diagnosis (8.1 vs 4.9). Interestingly, the two subcategories most prevalently increased were surgery and post‐partum haemorrhage‐associated bleeding (surgery: 2.1 vs 1.1; post‐partum haemorrhage: 0.7 vs 0.0). Laboratory screening results were more often abnormal in patients reaching final diagnosis compared to patients remaining without diagnosis and a high BAT score (n = 32 (78%) vs n = 14 (46%), 95% CI 1.5‐12), especially concerning the PFA (=27 (66%) vs n = 10 (33%), 95% CI 1.4‐10) and von Willebrand factor activity levels (n = 11 (27%) vs n = 1 (3%), 95% CI 1.3‐91). Conclusion Isolated high bleeding score on surgical or post‐partum bleeding correlates with a lower chance of receiving final diagnosis. Withholding extensive haemostatic testing should be considered. Better screening and confirmative haemostatic assays are still needed.
Collapse
Affiliation(s)
- Suzanne A M Zegers
- Department of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yolba Smit
- Department of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joline L Saes
- Department of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Haemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Clint van Duren
- Department of Laboratory Medicine, Laboratory of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tim J Schuijt
- Department of Laboratory Medicine, Laboratory of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Waander L van Heerde
- Department of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Haemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Radboud University Medical Center, Nijmegen, The Netherlands.,Enzyre BV, Novio Tech Campus, Nijmegen, The Netherlands
| | - Saskia E M Schols
- Department of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Haemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
48
|
The next(gen) step in coagulation testing. Blood 2019; 134:2002-2003. [PMID: 31805193 DOI: 10.1182/blood.2019001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
|
50
|
Smith JD, Narayanan P, Li N. Biomarkers of platelet dysfunction in non-clinical safety studies and humans. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|