1
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Gajewski MP, Barger SW. Design, synthesis, and characterization of novel system x C- transport inhibitors: inhibition of microglial glutamate release and neurotoxicity. J Neuroinflammation 2023; 20:292. [PMID: 38057869 PMCID: PMC10702053 DOI: 10.1186/s12974-023-02972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system xC- (SxC-) cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the SxC- antiporter. The compounds were based on L-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the SxC- antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. To confirm that the compounds were inhibitors of SxC-, two of them were further tested for the ability to inhibit cystine uptake. Finally, these agents were shown to protect primary cortical neurons from the toxicity exhibited by activated microglia. These agents may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions, such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariusz P Gajewski
- Department of Physical and Earth Sciences, Arkansas Tech University, McEver Building, 1701 N Boulder Ave, Russellville, AR, 72801, USA.
| | - Steven W Barger
- Departments of Geriatrics and Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
4
|
Yoshikawa M, Okubo M, Shirose K, Kan T, Kawaguchi M. d-Serine Increases Release of Acetylcholine in Rat Submandibular Glands. BIOLOGY 2023; 12:1227. [PMID: 37759626 PMCID: PMC10526048 DOI: 10.3390/biology12091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
d-serine has been observed in submandibular gland tissue in rats, but its functions remain to be clarified. Oral administration of d-serine, but not l-serine, increased its concentrations in the submandibular gland and pilocarpine-induced salivary secretion. In vivo microdialysis was used to collect the d- and l-enantiomers of amino acids from local interstitial fluid in the rat submandibular gland. The proportion of the d-form of serine in interstitial fluid was higher than that in plasma or saliva. Perfusion of the rat submandibular gland with d-serine and l-glutamic acid via the submandibular gland artery resulted in a significant increase in salivary secretion after stimulation of muscarinic receptors with carbachol. In vivo microdialysis applied to the submandibular glands of rats showed that infusion of d-serine along with l-glutamate through the microdialysis probe significantly elevated acetylcholine levels in local interstitial fluids in the submandibular glands of anesthetized rats as compared to that with l-glutamate alone in an N-methyl-d-aspartate receptor glycine site antagonist-sensitive manner. These results indicate that d-serine augments salivary secretion by increasing acetylcholine release in the salivary glands.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Migiwa Okubo
- Kawano Dental Clinic, Yachimata 289-1101, Japan;
| | - Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.)
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.)
| | - Mitsuru Kawaguchi
- Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| |
Collapse
|
5
|
Folorunso OO, Harvey TL, Brown SE, Chelini G, Berretta S, Balu DT. The D-serine biosynthetic enzyme serine racemase is expressed by reactive astrocytes in the amygdala of human and a mouse model of Alzheimer's disease. Neurosci Lett 2023; 792:136958. [PMID: 36356820 PMCID: PMC9730428 DOI: 10.1016/j.neulet.2022.136958] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is characterized behaviorally by cognitive deterioration and emotional disruption, and neuropathologically by amyloid-β (A β) plaques, neurofibrillary tangles, and complement C3 (C3)-expressing neurotoxic, reactive astrocytes. We previously demonstrated that C3 + reactive astrocytes in the hippocampus and entorhinal cortex of AD patients express serine racemase (SR), which produces the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine. We show here that C3 + reactive astrocytes express SR in the amygdala of AD patients and in an amyloid mouse model of familial AD (5xFAD). 5xFAD mice also have deficits in cue fear memory recall that is dependent on intact amygdala function. Our results suggest that D-serine produced by reactive astrocytes in the amygdala could contribute to glutamate excitotoxicity and neurodegeneration observed with AD progression.
Collapse
Affiliation(s)
- Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Theresa L Harvey
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Stephanie E Brown
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Gabriele Chelini
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
6
|
Billard JM, Freret T. Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine? Int J Mol Sci 2022; 23:ijms232415542. [PMID: 36555191 PMCID: PMC9779005 DOI: 10.3390/ijms232415542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) by D-serine is linked to cognitive aging. Whether this deregulation may be used to initiate pharmacological strategies has yet to be considered. To this end, we performed electrophysiological extracellular recordings at CA3/CA1 synapses in hippocampal slices from young and aged mice. We show that 0.1 nM of the soluble N-terminal recombinant fragment of the secreted amyloid-protein precursor-α (sAPPα) added in the bath significantly increased NMDAR activation in aged but not adult mice without impacting basal synaptic transmission. In addition, sAPPα rescued the age-related deficit of theta-burst-induced long-term potentiation. Significant NMDAR improvement occurred in adult mice when sAPPα was raised to 1 nM, and this effect was drastically reduced in transgenic mice deprived of D-serine through genetic deletion of the synthesizing enzyme serine racemase. Altogether, these results emphasize the interest to consider sAPPα treatment targeting D-serine-dependent NMDAR deregulation to alleviate cognitive aging.
Collapse
|
7
|
Maffioli E, Murtas G, Rabattoni V, Badone B, Tripodi F, Iannuzzi F, Licastro D, Nonnis S, Rinaldi AM, Motta Z, Sacchi S, Canu N, Tedeschi G, Coccetti P, Pollegioni L. Insulin and serine metabolism as sex-specific hallmarks of Alzheimer's disease in the human hippocampus. Cell Rep 2022; 40:111271. [PMID: 36070700 DOI: 10.1016/j.celrep.2022.111271] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Healthy aging is an ambitious aspiration for humans, but neurodegenerative disorders, such as Alzheimer's disease (AD), strongly affect quality of life. Using an integrated omics approach, we investigate alterations in the molecular composition of postmortem hippocampus samples of healthy persons and individuals with AD. Profound differences are apparent between control and AD male and female cohorts in terms of up- and downregulated metabolic pathways. A decrease in the insulin response is evident in AD when comparing the female with the male group. The serine metabolism (linked to the glycolytic pathway and generating the N-methyl-D-aspartate [NMDA] receptor coagonist D-serine) is also significantly modulated: the D-Ser/total serine ratio represents a way to counteract age-related cognitive decline in healthy men and during AD onset in women. These results show how AD changes and, in certain respects, almost reverses sex-specific proteomic and metabolomic profiles, highlighting how different pathophysiological mechanisms are active in men and women.
Collapse
Affiliation(s)
- Elisa Maffioli
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Beatrice Badone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Filomena Iannuzzi
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Simona Nonnis
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy
| | - Anna Maria Rinaldi
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata," 00133 Rome, Italy; Istituto di Biochimica e Biologia Cellulare (IBBC) CNR, 00015 Monterotondo Scalo, Italy.
| | - Gabriella Tedeschi
- DIVAS, Department of Veterinary Medicine and Animal Science, University of Milano, 20121 Milano, Italy; CIMAINA, University of Milano, 20121 Milano, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
8
|
Zhang H, Lu J, Shang H, Chen J, Lin Z, Liu Y, Wang X, Song L, Jiang X, Jiang H, Shi J, Yan D, Wu S. Alterations of serine racemase expression determine proliferation and differentiation of neuroblastoma cells. FASEB J 2022; 36:e22473. [PMID: 35976172 DOI: 10.1096/fj.202200394rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
Although the role of serine racemase (SR) in neuropsychiatric disorders has been extensively studied, its role in cell proliferation and differentiation remains unclear. Deletion of Srr, the encoding gene for SR, has been shown to reduce dendritic arborization and dendritic spine density in the brains of adult mice, whereas increased SR levels have been associated with differentiation in cell cultures. Previously, we demonstrated that valproic acid induces differentiation in the N2A neuroblastoma cell line, and that this differentiation is associated with increased SR expression. These observations suggest that SR may have a role in cell proliferation and differentiation. We herein found that both valproic acid and all-trans retinoic acid induced N2A differentiation. In contrast, knockdown of SR reduced levels of differentiation, increased N2A proliferation, promoted cell cycle entry, and modulated expression of cell cycle-related proteins. To further evaluate the effects of SR expression on cell proliferation and differentiation, we used an in vivo model of neuroblastoma in nude mice. N2A cells stably expressing scramble shRNA (Srrwt -N2A) or specific Srr shRNA (Srrkd -N2A) were subcutaneously injected into nude mice. The weights and volumes of Srrwt -N2A-derived tumors were lower than Srrkd -N2A-derived tumors. Furthermore, Srrwt -N2A-derived tumors were significantly mitigated by intraperitoneal injection of valproic acid, whereas Srrkd -N2A-derived tumors were unaffected. Taken together, our findings demonstrate for the first time that alterations in SR expression determine the transition between proliferation and differentiation in neural progenitor cells. Thus, in addition to its well-established roles in neuropsychiatric disorders, our study has highlighted a novel role for SR in cell proliferation and differentiation.
Collapse
Affiliation(s)
- He Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, P.R. China.,Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou, P.R. China.,School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, P.R. China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, P.R. China
| | - Huiping Shang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Juan Chen
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhengxiu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yimei Liu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xianwei Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Liping Song
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xue Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jiandong Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Dongsheng Yan
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
9
|
Neuroprotective activity of selenium nanoparticles against the effect of amino acid enantiomers in Alzheimer's disease. Anal Bioanal Chem 2022; 414:7573-7584. [PMID: 35982253 DOI: 10.1007/s00216-022-04285-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease, is characterized by extracellular accumulation of amyloid-beta protein (Aβ), which is believed to be the very starting event of AD neurodegeneration. In this work, D-Phe, D-Ala, and D-Glu amino acids, which are the non-occurring enantiomeric form in the human body, and also D-Asp and DL-SeMet, have proved to be amyloidogenic regarding Aβ42 aggregation in TEM studies. These amyloidogenic amino acid enantiomers also widened Aβ42 fibrils up to 437% regarding Aβ42 alone, suggesting that Aβ42 aggregation is enantiomerically dependent. To inhibit enantiomeric-induced amyloid aggregation, selenium nanoparticles stabilized with chitosan (Ch-SeNPs) were successfully synthesized and employed. Thus, Ch-SeNPs reduced and even completely inhibited Aβ42 aggregation produced in the presence of some amino acid enantiomers. In addition, through UV-Vis spectroscopy and fluorescence studies, it was deduced that Ch-SeNPs were able to interact differently with amino acids depending on their enantiomeric form. On the other hand, antioxidant properties of amino acid enantiomers were evaluated by DPPH and TBARS assays, with Tyr enantiomers being the only ones showing antioxidant effect. All spectroscopic data were statistically analysed through experimental design and response surface analysis, showing that the interaction between the Ch-SeNPs and the amino acids studied was enantioselective and allowing, in some cases, to establish the concentration ratios in which this interaction is maximum.
Collapse
|
10
|
Zhou J, Zhang Z, Yang Y, Liao F, Zhou P, Wang Y, Zhang H, Jiang H, Alinejad T, Shan G, Wu S. Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers. J Neurochem 2022; 163:8-25. [PMID: 35839294 DOI: 10.1111/jnc.15664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Dysregulation of insulin signaling in the Alzheimer's (AD) brain has been extensively reported. Serine racemase(SR) modulates insulin secretion in pancreatic islets. Similarly, we wonder whether or not SR regulates insulin synthesis and secretion in neurons, thereby modulating insulin signaling in the AD brain. Srr-knockout (Srr-/- ) mice generated with the CRISPR/Cas9 technique were used. Using immunofluorescence and fluorescence in situ hybridization, the levels of insulin protein and insulin(ins2) mRNA significantly increased in the hippocampal but not in the hypothalamic sections of Srr-/- mice compared with WT mice. Using real-time quantitative PCR, ins2 mRNA from primary hippocampal neuronal cultures of Srr-/- mice significantly increased compared with the cultured neurons from WT mice. Notably, the secretion of proinsulin C-peptide increased in Srr-/- neurons relative to WT neurons. By examining the membrane fractional proteins with immunoblotting, Srr-/- neurons retained ATP-dependent potassium channel on plasmalemma and correspondingly contained higher levels of p-AMPK. Under treatment by Aβ42, the phosphorylation levels of insulin receptor substrate at serine 616,636 (p-IRS1ser616,636 ) were significantly lower whereas p-AKT308 and p-AKT473 were higher in Srr-/- neurons, compared with WT neurons, respectively. The phosphorylated form of c-Jun N-terminal kinase decreased in the cultured Srr-/- neurons relative to the WT neurons upon Aβ42 treatment. In contrast, the phosphorylated protein kinase R remained at the same levels. Further, reactive oxygen species reduced in the cultured Srr-/- neurons under Aβ42 treatment relative to the WT neurons. Altogether, our study indicated that Srr deletion promoted insulin synthesis and secretion of proinsulin C-peptide, thereby reversing insulin resistance by Aβ42. This study suggests that targeting the neuronal SR may be utilized to enhance insulin signaling which is inhibited at the early stage of the AD brain.
Collapse
Affiliation(s)
- Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Zhiwen Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yuanhong Yang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Fei Liao
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Piansi Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Zhejiang, People's Republic of China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Zhejiang, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| |
Collapse
|
11
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
12
|
Tapanes SA, Arizanovska D, Díaz MM, Folorunso OO, Harvey T, Brown SE, Radzishevsky I, Close LN, Jagid JR, Graciolli Cordeiro J, Wolosker H, Balu DT, Liebl DJ. Inhibition of glial D-serine release rescues synaptic damage after brain injury. Glia 2022; 70:1133-1152. [PMID: 35195906 PMCID: PMC9305835 DOI: 10.1002/glia.24161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Synaptic damage is one of the most prevalent pathophysiological responses to traumatic CNS injury and underlies much of the associated cognitive dysfunction; however, it is poorly understood. The D-amino acid, D-serine, serves as the primary co-agonist at synaptic NMDA receptors (NDMARs) and is a critical mediator of NMDAR-dependent transmission and synaptic plasticity. In physiological conditions, D-serine is produced and released by neurons from the enzymatic conversion of L-serine by serine racemase (SRR). However, under inflammatory conditions, glial cells become a major source of D-serine. Here, we report that D-serine synthesized by reactive glia plays a critical role in synaptic damage after traumatic brain injury (TBI) and identify the therapeutic potential of inhibiting glial D-serine release though the transporter Slc1a4 (ASCT1). Furthermore, using cell-specific genetic strategies and pharmacology, we demonstrate that TBI-induced synaptic damage and memory impairment requires D-serine synthesis and release from both reactive astrocytes and microglia. Analysis of the murine cortex and acutely resected human TBI brain also show increased SRR and Slc1a4 levels. Together, these findings support a novel role for glial D-serine in acute pathological dysfunction following brain trauma, whereby these reactive cells provide the excess co-agonist levels necessary to initiate NMDAR-mediated synaptic damage.
Collapse
Affiliation(s)
- Stephen A. Tapanes
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Madelen M. Díaz
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Oluwarotimi O. Folorunso
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Theresa Harvey
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Stephanie E. Brown
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Inna Radzishevsky
- Department of Biochemistry, Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Liesl N. Close
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan R. Jagid
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Joacir Graciolli Cordeiro
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Darrick T. Balu
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Translational Psychiatry LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Daniel J. Liebl
- The Miami Project to Cure Paralysis, Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
13
|
Wu S, Zhou J, Zhang H, Barger SW. Serine Racemase Expression Differentiates Aging from Alzheimer's Brain. Curr Alzheimer Res 2022; 19:494-502. [PMID: 35929621 DOI: 10.2174/1567205019666220805105106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Aging is an inevitable process characterized by progressive loss of physiological integrity and increased susceptibility to cancer, diabetes, cardiovascular, and neurodegenerative diseases; aging is the primary risk factor for Alzheimer's disease (AD), the most common cause of dementia. AD is characterized by brain pathology, including extracellular deposition of amyloid aggregation and intracellular accumulation of neurofibrillary tangles composed of hyperphosphorylated tau protein. In addition, losses of synapses and a wide range of neurons are pivotal pathologies in the AD brain. Accumulating evidence demonstrates hypoactivation of hippocampal neural networks in the aging brain, whereas AD-related mild cognitive impairment (AD-MCI) begins with hyperactivation, followed by a diminution of hippocampal activity as AD develops. The biphasic trends of the activity of the hippocampal neural network are consistent with the alteration of N-methyl-D-aspartate receptor (NMDA-R) activity from aging to prodromal (AD-MCI) to mid-/late stage AD. D-serine, a product of racemization catalyzed by serine racemase (SR), is an important co-agonist of the NMDA-R which is involved in synaptic events including neurotransmission, synaptogenesis, long-term potentiation (LTP), development, and excitotoxicity. SR and D-serine are decreased in the hippocampus of the aging brain, correlating with impairment of cognitive function. By contrast, SR is increased in AD brain, which is associated with a greater degree of cognitive dysfunction. Emerging studies suggest that D-serine levels in the brain or in cerebral spinal fluid from AD patients are higher than in age-matched controls, but the results are inconsistent. Very recently, serum D-serine levels in AD were reported to correlate with sex and clinical dementia rating (CDR) stage. This review will discuss alterations of NMDA-R and SR in aging and AD brain, and the mechanisms underlying the differential regulation of SR will be probed. Collectively, we propose that SR may be a molecular switch that distinguishes the effects of aging from those of AD on the brain.
Collapse
Affiliation(s)
- Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, State Key Laboratory of Optometry, Wenzhou, Zhejiang 325003, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, P.R. China
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock AR, USA.,Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock AR, USA
| |
Collapse
|
14
|
Ni X, Mori H. Complex Processes Underlying the Dynamic Changes of D-serine Levels in AD Brains. Curr Alzheimer Res 2022; 19:485-493. [PMID: 35346007 DOI: 10.2174/1567205019666220328123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by extracellular β-amyloid (Aβ) plaques and cognitive impairments. D-Serine, produced by the enzyme serine racemase (SR) in the brain, functions as an endogenous co-agonist at the glycine-binding site of N-methyl-D-aspartate receptor (NMDAR), has been implicated in the pathophysiological progression of AD. OBJECTIVES Evidence regarding the understanding of the role and dynamic modulation of D-serine during AD progression remains controversial. This literature review aims to offer novel research directions for studying the functions and metabolisms of D-serine in AD brains. METHODS We searched PubMed, using D-serine/SR and AD as keywords. Studies related to NMDAR dysfunction, neuronal excitotoxicity, D-serine dynamic changes and inflammatory response were included. RESULTS This review primarily discusses: (i) Aβ oligomers' role in NMDAR dysregulation, and the subsequent synaptic dysfunction and neuronal damage in AD, (ii) D-serine's role in NMDAR-elicited excitotoxicity, and (iii) the involvement of D-serine and SR in AD-related inflammatory pathological progression. CONCLUSION We also presented supposed metabolism and dynamic changes of D-serine during AD progression and hypothesized that: (i) the possible modulation of D-serine levels or SR expression as an effective method of alleviating neurotoxicity during AD pathophysiological progression, and (ii) the dynamic changes of D-serine levels in AD brains possibly resulting from complex processes.
Collapse
Affiliation(s)
- Xiance Ni
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Hisashi Mori
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan.,Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
15
|
Amyloid peptide exerts a rapid induction of Dicer1 protein in neuron via reducing phosphorylation. Neurochem Int 2021; 151:105210. [PMID: 34695450 DOI: 10.1016/j.neuint.2021.105210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022]
Abstract
A growing number of evidence suggests that altered microRNA network in the brain contributes to the risk of Alzheimer's disease(AD). Dicer1 is a type III riboendonuclease which cleaves pre-microRNA into functional microRNA. Reduction of Dicer1 or Dicer1 mutation has been involved in cancer, aging or age-related macular degeneration. Recently, we found a possible link between Dicer1 and AD. In particular, Dicer1 protein and Dicer1 mRNA is reduced in the hippocampus and the cortex of an animal model of AD and exposure to Aβ42 oligomer(AβO) longer than 6 h reduces the transcription of Dicer1 gene in neuron, via depletion of NF-E2-related factor-2. In this study, exposure to AβO at shorter time increased Dicer1 protein in neuron in a dose-dependent mode; but the mRNA level remained unaltered. Under this treatment regime,AβO reduced phosphorylation level of Dicer1 and of its binding partner, transactivation response element RNA-binding protein(TRBP). Addition of a JNK inhibitor,SP600125, or an ERK inhibitor,U0126, further increased Dicer1 protein compared to Aβo treatment alone, with simultaneaous reduction of phospho-Dicer1, but with different effects on phospho-TRBP. Finally, an inhibitor of calcineurin,FK506, further increased Dicer1 protein compared to Aβo treatment alone. Thus, phosphorylation of Dicer1 and TRBP was determined by mitogen activated protein kinases JNK,ERK, and protein phosphatase 2B(calcineurin) which together determined Dicer1 stability. In summary, reduced phosphorylation of Dicer1 accounted for the rapid induction of Dicer1 by AβO. This study highlights a novel way by which AβO regulates Dicer1.
Collapse
|
16
|
d-Amino Acids and pLG72 in Alzheimer's Disease and Schizophrenia. Int J Mol Sci 2021; 22:ijms222010917. [PMID: 34681579 PMCID: PMC8535920 DOI: 10.3390/ijms222010917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Numerous studies over the last several years have shown that d-amino acids, especially d-serine, have been related to brain and neurological disorders. Acknowledged neurological functions of d-amino acids include neurotransmission and learning and memory functions through modulating N-methyl-d-aspartate type glutamate receptors (NMDARs). Aberrant d-amino acids level and polymorphisms of genes related to d-amino acids metabolism are associated with neurodegenerative brain conditions. This review summarizes the roles of d-amino acids and pLG72, also known as d-amino acid oxidase activator, on two neurodegenerative disorders, schizophrenia and Alzheimer’s disease (AD). The scope includes the changes in d-amino acids levels, gene polymorphisms of G72 genomics, and the role of pLG72 on NMDARs and mitochondria in schizophrenia and AD. The clinical diagnostic value of d-amino acids and pLG72 and the therapeutic importance are also reviewed.
Collapse
|
17
|
Piubelli L, Murtas G, Rabattoni V, Pollegioni L. The Role of D-Amino Acids in Alzheimer's Disease. J Alzheimers Dis 2021; 80:475-492. [PMID: 33554911 DOI: 10.3233/jad-201217] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), the main cause of dementia worldwide, is characterized by a complex and multifactorial etiology. In large part, excitatory neurotransmission in the central nervous system is mediated by glutamate and its receptors are involved in synaptic plasticity. The N-methyl-D-aspartate (NMDA) receptors, which require the agonist glutamate and a coagonist such as glycine or the D-enantiomer of serine for activation, play a main role here. A second D-amino acid, D-aspartate, acts as agonist of NMDA receptors. D-amino acids, present in low amounts in nature and long considered to be of bacterial origin, have distinctive functions in mammals. In recent years, alterations in physiological levels of various D-amino acids have been linked to various pathological states, ranging from chronic kidney disease to neurological disorders. Actually, the level of NMDA receptor signaling must be balanced to promote neuronal survival and prevent neurodegeneration: this signaling in AD is affected mainly by glutamate availability and modulation of the receptor's functions. Here, we report the experimental findings linking D-serine and D-aspartate, through NMDA receptor modulation, to AD and cognitive functions. Interestingly, AD progression has been also associated with the enzymes related to D-amino acid metabolism as well as with glucose and serine metabolism. Furthermore, the D-serine and D-/total serine ratio in serum have been recently proposed as biomarkers of AD progression. A greater understanding of the role of D-amino acids in excitotoxicity related to the pathogenesis of AD will facilitate novel therapeutic treatments to cure the disease and improve life expectancy.
Collapse
Affiliation(s)
- Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
18
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
19
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
20
|
Jiang H, Zhang H, Jiang X, Wu S. Overexpression of D-amino acid oxidase prevents retinal neurovascular pathologies in diabetic rats. Diabetologia 2021; 64:693-706. [PMID: 33319325 DOI: 10.1007/s00125-020-05333-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/06/2020] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is characterised by retinal neurodegeneration and retinal vascular abnormalities, affecting one third of diabetic patients with disease duration of more than 10 years. Accumulated evidence suggests that serine racemase (SR) and D-serine are correlated with the pathogenesis of diabetic retinopathy and the deletion of the Srr gene reverses neurovascular pathologies in diabetic mice. Since D-serine content is balanced by SR synthesis and D-amino acid oxidase (DAAO) degradation, we examined the roles of DAAO in diabetic retinopathy and further explored relevant therapy. METHODS Rats were used as a model of diabetes by i.p. injection of streptozotocin at the age of 2 months and blood glucose was monitored with a glucometer. Quantitative real-time PCR was used to examine Dao mRNA and western blotting to examine targeted proteins in the retinas. Bisulphite sequencing was used to examine the methylation of Dao mRNA promoter in the retinas. Intravitreal injection of DAAO-expressing adenovirus (AAV8-DAAO) was conducted one week before streptozotocin administration. Brain specific homeobox/POU domain protein 3a (Brn3a) immunofluorescence was conducted to indicate retinal ganglion cells at 3 months after virus injection. The permeability of the blood-retinal barrier was examined by Evans blue leakage from retinal capillaries. Periodic acid-Schiff staining and haematoxylin counterstaining were used to indicate retinal vasculature, which was further examined with double immunostaining at 7 months after virus injection. RESULTS At the age of 12 months, DAAO mRNA and protein levels in retinas from diabetic animals were reduced to 66.2% and 70.4% of those from normal (control) animals, respectively. The Dao proximal promoter contained higher levels of methylation in diabetic than in normal retinas. Consistent with the observation, DNA methyltransferase 1 was increased in diabetic retinas. Injection of DAAO-expressing virus completely prevented the loss of retinal ganglion cells and the disruption of blood-retinal barrier in diabetic rats. Diabetic retinas contained retinal ganglion cells at a density of 54 ± 4/mm2, which was restored to 68 ± 9/mm2 by DAAO overexpression, similar to the levels in normal retinas. The ratio between the number of endothelial cells and pericytes in diabetic retinas was 6.06 ± 1.93/mm2, which was reduced to 3.42 ± 0.55/mm2 by DAAO overexpression; the number of acellular capillaries in diabetic retinas was 10 ± 5/mm2, which was restored to 6 ± 2/mm2 by DAAO overexpression, similar to the levels in normal retinas. Injection of the DAAO-expressing virus increased the expression of occludin and reduced gliosis, which were examined to probe the mechanism by which the disrupted blood-retinal barrier in diabetic rats was rescued and retinal neurodegeneration was prevented. CONCLUSIONS/INTERPRETATION Altogether, overexpression of DAAO before the onset of diabetes protects against neurovascular abnormalities in retinas from diabetic rats, which suggests a novel strategy for preventing diabetic retinopathy. Graphical abstract.
Collapse
Affiliation(s)
- Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, People's Republic of China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Xue Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, People's Republic of China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Piubelli L, Pollegioni L, Rabattoni V, Mauri M, Princiotta Cariddi L, Versino M, Sacchi S. Serum D-serine levels are altered in early phases of Alzheimer's disease: towards a precocious biomarker. Transl Psychiatry 2021; 11:77. [PMID: 33500383 PMCID: PMC7838302 DOI: 10.1038/s41398-021-01202-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
D-Serine acts as a co-agonist of N-methyl-D-aspartate receptors (NMDAR) which appear overactivated in AD, while D-aspartate is a modulatory molecule acting on NMDAR as a second agonist. The aim of this work is to clarify whether the levels of these D-amino acids in serum are deregulated in AD, with the final goal to identify novel and precocious biomarkers in AD. Serum levels of L- and D-enantiomers of serine and aspartate were determined by HPLC using a pre-column derivatization procedure and a selective enzymatic degradation. Experimental data obtained from age-matched healthy subjects (HS) and AD patients were statistically evaluated by considering age, gender, and disease progression, and compared. Minor changes were apparent in the serum L- and D-aspartate levels in AD patients compared to HS. A positive correlation for the D-serine level and age was apparent in the AD cohort. Notably, the serum D-serine level and the D-/total serine ratio significantly increased with the progression of the disease. Gender seems to have a minor effect on the levels of all analytes tested. This work proposes that the serum D-serine level and D-/total serine ratio values as novel and valuable biomarkers for the progression of AD: the latter parameter allows to discriminate CDR 2 and CDR 1 patients from healthy (CDR 0) individuals.
Collapse
Affiliation(s)
- Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Mauri
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Neurology Unit, Ospedale di Circolo and Fondazione Macchi, ASST Settelaghi, Varese, Italy
| | - Lucia Princiotta Cariddi
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maurizio Versino
- Neurology Unit, Ospedale di Circolo and Fondazione Macchi, ASST Settelaghi, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
22
|
Orzylowski M, Fujiwara E, Mousseau DD, Baker GB. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front Psychiatry 2021; 12:754032. [PMID: 34707525 PMCID: PMC8542907 DOI: 10.3389/fpsyt.2021.754032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.
Collapse
Affiliation(s)
- Magdalena Orzylowski
- Villa Caritas Geriatric Psychiatry Hospital, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Socha E, Kośliński P, Koba M, Mądra-Gackowska K, Kędziora-Kornatowska K, Gackowski M, Daghir-Wojtkowiak E. Amino Acid Levels as Potential Biomarker of Elderly Patients with Dementia. Brain Sci 2020; 10:E914. [PMID: 33260889 PMCID: PMC7760342 DOI: 10.3390/brainsci10120914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023] Open
Abstract
Dementia is a clinical syndrome characterized by cognitive impairment, in which there is disturbance of multiple higher cortical functions. The primary risk factor of dementia is old age, and due to significant changes in the worldwide demographic structure, the prevalence of cognitive impairment is increasing dramatically with aging populations in most countries. Alzheimer's disease is the predominant and leading cause of dementia. The aim of this study was to evaluate the modifications of amino acids that characterize the initial stages of dementia to help our understanding of the complex and multifactorial pathogenesis of neurodegenerative disorders. A total of 123 participants were divided into two groups: healthy elderly subjects and patients with mild or moderate dementia. The results of this study indicate that the serum levels of three amino acids were changed significantly in patients with dementia, in relation to the subjects without dementia. In particular, we observed differences in concentrations for serine, arginine and isoleucine (all of them were significantly increased in patients with dementia, compared with the control group). Our results suggest that the metabolisms of some amino acids seem be changed in patients with dementia. We conclude that amino acid profiling might be helpful for the better understanding of biochemical and metabolic changes related to the pathogenesis and progression of dementia. However, considering the multifactorial, heterogenous and complex nature of this disease, validation with a greater study sample in further research is required.
Collapse
Affiliation(s)
- Edyta Socha
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (E.S.); (P.K.); (M.G.)
| | - Piotr Kośliński
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (E.S.); (P.K.); (M.G.)
| | - Marcin Koba
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (E.S.); (P.K.); (M.G.)
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum of Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (K.M.-G.); (K.K.-K.)
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum of Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (K.M.-G.); (K.K.-K.)
| | - Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland; (E.S.); (P.K.); (M.G.)
| | - Emilia Daghir-Wojtkowiak
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
24
|
D-serine mitigates cell loss associated with temporal lobe epilepsy. Nat Commun 2020; 11:4966. [PMID: 33009404 PMCID: PMC7532172 DOI: 10.1038/s41467-020-18757-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/09/2020] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy in adults, with an unknown etiology. A hallmark of TLE is the characteristic loss of layer 3 neurons in the medial entorhinal area (MEA) that underlies seizure development. One approach to intervention is preventing loss of these neurons through better understanding of underlying pathophysiological mechanisms. Here, we show that both neurons and glia together give rise to the pathology that is mitigated by the amino acid D-serine whose levels are potentially diminished under epileptic conditions. Focal administration of D-serine to the MEA attenuates neuronal loss in this region thereby preventing epileptogenesis in an animal model of TLE. Additionally, treatment with D-serine reduces astrocyte counts in the MEA, alters their reactive status, and attenuates proliferation and/or infiltration of microglia to the region thereby curtailing the deleterious consequences of neuroinflammation. Given the paucity of compounds that reduce hyperexcitability and neuron loss, have anti-inflammatory properties, and are well tolerated by the brain, D-serine, an endogenous amino acid, offers new hope as a therapeutic agent for refractory TLE. Temporal lobe epilepsy (TLE) can be unresponsive to treatment. Here, the authors show that treatment with D-Serine mitigates TLE and acts on neurons and glia, attenuating neuronal loss and reducing astro- and microgliosis in rodents.
Collapse
|
25
|
d-Serine and d-Alanine Regulate Adaptive Foraging Behavior in Caenorhabditis elegans via the NMDA Receptor. J Neurosci 2020; 40:7531-7544. [PMID: 32855271 DOI: 10.1523/jneurosci.2358-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/28/2023] Open
Abstract
d-Serine (d-Ser) is a coagonist for NMDA-type glutamate receptors and is thus important for higher brain function. d-Ser is synthesized by serine racemase and degraded by d-amino acid oxidase. However, the significance of these enzymes and the relevant functions of d-amino acids remain unclear. Here, we show that in the nematode Caenorhabditis elegans, the serine racemase homolog SERR-1 and d-amino acid oxidase DAAO-1 control an adaptive foraging behavior. Similar to many organisms, C. elegans immediately initiates local search for food when transferred to a new environment. With prolonged food deprivation, the worms exhibit a long-range dispersal behavior as the adaptive foraging strategy. We found that serr-1 deletion mutants did not display this behavior, whereas daao-1 deletion mutants immediately engaged in long-range dispersal after food removal. A quantitative analysis of d-amino acids indicated that d-Ser and d-alanine (d-Ala) are both synthesized and suppressed during food deprivation. A behavioral pharmacological analysis showed that the long-range dispersal behavior requires NMDA receptor desensitization. Long-term pretreatment with d-Ala, as well as with an NMDA receptor agonist, expanded the area searched by wild-type worms immediately after food removal, whereas pretreatment with d-Ser did not. We propose that d-Ser and d-Ala are endogenous regulators that cooperatively induce the long-range dispersal behavior in C. elegans through actions on the NMDA receptor.SIGNIFICANCE STATEMENT In mammals, d-serine (d-Ser) functions as an important neuromodulator of the NMDA-type glutamate receptor, which regulates higher brain functions. In Caenorhabditis elegans, previous studies failed to clearly define the physiological significance of d-Ser, d-alanine (d-Ala), and their metabolic enzymes. In this study, we found that these d-amino acids and their associated enzymes are active during food deprivation, leading to an adaptive foraging behavior. We also found that this behavior involved NMDA receptor desensitization.
Collapse
|
26
|
Ploux E, Freret T, Billard JM. d-serine in physiological and pathological brain aging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140542. [PMID: 32950692 DOI: 10.1016/j.bbapap.2020.140542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Among aging-induced impairments, those affecting cognitive functions certainly represent one the most major challenge to face to improve elderly quality of life. In last decades, our knowledge on changes in the morphology and function of neuronal networks associated with normal and pathological brain aging has rapidly progressed, initiating the development of different pharmacological and behavioural strategies to alleviate cognitive aging. In particular, experimental evidences have accumulated indicating that the communication between neurons and its plasticity gradually weakens with aging. Because of its pivotal role for brain functional plasticity, the N-Methyl‑d-Aspartate receptor subtype of glutamate receptors (NMDAr) has gathered much of the experimental interest. NMDAr activation is regulated by many mechanisms. Among is the mandatory binding of a co-agonist, such as the amino acid d-serine, in order to activate NMDAr. This mini-review presents the most recent information indicating how d-serine could contribute to mechanisms of physiological cognitive aging and also considers the divergent views relative of the role of the NMDAr co-agonist in Alzheimer's disease.
Collapse
Affiliation(s)
- E Ploux
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| | - T Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France
| | - J-M Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| |
Collapse
|
27
|
TGFβ1-Smad3 signaling mediates the formation of a stable serine racemase dimer in microglia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140447. [DOI: 10.1016/j.bbapap.2020.140447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
|
28
|
Zhang H, Lu J, Wu S. Sp4 controls constitutive expression of neuronal serine racemase and NF-E2-related factor-2 mediates its induction by valproic acid. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194597. [PMID: 32603878 DOI: 10.1016/j.bbagrm.2020.194597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 01/10/2023]
Abstract
Serine racemase (SR) synthesizes l-type serine to its enantimor, d-serine which participates in physiological processes and in pathological conditions. In the central nervous system, SR is highly expressed in neurons and astrocytes but expressed at relatively lower amount in microglia. However, the mechanism by which SR is highly expessed in neurons is hitherto unknown. We report that the SR mRNA and protein levels in Neuro-2a were increased by valproic acid (VPA), a neuron differentiation stimulator as well as a histone deacetylase inhibitor. SR proximal promoter contained nine putative Sp-binding elements and in the exon 1, three putative anti-oxidant elements (AREs) were conservative among human, rat, and mouse genome. The promoter constructs including 5'-, 3'-fragment, and full length fragment from mouse were individually cloned into a luciferase reporter. Using dual-luciferase assay, the promoter harboring 3'-fragment contained much lower activity than the construct containing 5'-fragment which was though resistant to VPA induction, relative to 3'-fragment. Overexpression of Sp4 or Nrf2 increased whereas knockdown of either decreased Srr mRNA and SR protein. Using site-directed mutagenesis, mutation of Sp-binding elements or AREs in the constructs significantly decreased luciferase activity of the corresponding promoter construct. With chromatin immunoprecipitation, Sp4 was demonstrated to interact directly with the Sp-binding elements whereas Nrf2 bound AREs in Srr mRNA promoter. Altogether, our study highlights that Sp4 controls constitutive expression of SR in neuron and VPA mediates SR expression in N2A cells which is associated with its effect on neuron differentiation, that is, the effect is mediated via Nrf2.
Collapse
Affiliation(s)
- He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Jinfang Lu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| |
Collapse
|
29
|
Ahnaou A, Broadbelt T, Biermans R, Huysmans H, Manyakov NV, Drinkenburg WHIM. The phosphodiesterase-4 and glycine transporter-1 inhibitors enhance in vivo hippocampal theta network connectivity and synaptic plasticity, whereas D-serine does not. Transl Psychiatry 2020; 10:197. [PMID: 32555167 PMCID: PMC7303193 DOI: 10.1038/s41398-020-00875-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Dysfunctional N-methyl-D-aspartate receptors (NMDARs) and cyclic adenosine monophosphate (cAMP) have been associated with deficits in synaptic plasticity and cognition found in neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Therapeutic approaches that indirectly enhance NMDAR function through increases in glycine and/or D-serine levels as well as inhibition of phosphodiesterases that reduces degradation of cAMP, are expected to enhance synaptic strength, connectivity and to potentially impact cognition processes. The present in vivo study investigated effects of subcutaneous administration of D-serine, the glycine transporter 1 (GlyT1) inhibitor SSR504734 and the PDE4 inhibitor rolipram, on network oscillations, connectivity and long-term potentiation (LTP) at the hippocampi circuits in Sprague-Dawley rats. In conscious animals, multichannel EEG recordings assessed network oscillations and connectivity at frontal and hippocampal CA1-CA3 circuits. Under urethane anaesthesia, field excitatory postsynaptic potentials (fEPSPs) were measured in the CA1 subfield of the hippocampus after high-frequency stimulation (HFS) of the Schaffer collateral-CA1 (SC) pathway. SSR504734 and rolipram significantly increased slow theta oscillations (4-6.5 Hz) at the CA1-CA3, slow gamma oscillations (30-50 Hz) in the frontal areas and enhanced coherence in the CA1-CA3 network, which were dissociated from motor behaviour. SSR504734 enhanced short-term potentiation (STP) and fEPSP responses were extended into LTP response, whereas the potentiation of EPSP slope was short-lived to STP with rolipram. Unlike glycine, increased levels of D-serine had no effect on network oscillations and limits the LTP induction and expression. The present data support a facilitating role of glycine and cAMP on network oscillations and synaptic efficacy at the CA3-CA1 circuit in rats, whereas raising endogenous D-serine levels had no such beneficial effects.
Collapse
Affiliation(s)
- A. Ahnaou
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - T. Broadbelt
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - R. Biermans
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - H. Huysmans
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - N. V. Manyakov
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - W. H. I. M. Drinkenburg
- grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
30
|
Zulfiqar S, Garg P, Nieweg K. Contribution of astrocytes to metabolic dysfunction in the Alzheimer's disease brain. Biol Chem 2020; 400:1113-1127. [PMID: 31188740 DOI: 10.1515/hsz-2019-0140] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022]
Abstract
Historically considered as accessory cells to neurons, there is an increasing interest in the role of astrocytes in normal and pathological conditions. Astrocytes are involved in neurotransmitter recycling, antioxidant supply, ion buffering and neuroinflammation, i.e. a lot of the same pathways that go astray in Alzheimer's disease (AD). AD remains the leading cause of dementia in the elderly, one for which there is still no cure. Efforts in AD drug development have largely focused on treating neuronal pathologies that appear relatively late in the disease. The neuroenergetic hypothesis, however, focuses on the early event of glucose hypometabolism in AD, where astrocytes play a key role, caused by an imbalanced neuron-astrocyte lactate shuttle. This further results in a state of oxidative stress and neuroinflammation, thereby compromising the integrity of astrocyte-neuron interaction. Compromised astrocytic energetics also enhance amyloid generation, further increasing the severity of the disease. Additionally, apolipoprotein E (APOE), the major genetic risk factor for AD, is predominantly secreted by astrocytes and plays a critical role in amyloid clearance and regulates glucose metabolism in an amyloid-independent manner. Thus, boosting the neuroprotective properties of astrocytes has potential applications in delaying the onset and progression of AD. This review explores how the metabolic dysfunction arising from astrocytes acts as a trigger for the development of AD.
Collapse
Affiliation(s)
- Shadaan Zulfiqar
- Institute for Pharmacology and Clinical Pharmacy, Philipps University, Karl-von-Frisch Strasse, Marburg D-35043, Germany.,Marburg Center for Mind, Brain and Behavior, Philipps University, Marburg, Germany
| | - Pretty Garg
- Institute for Pharmacology and Clinical Pharmacy, Philipps University, Karl-von-Frisch Strasse, Marburg D-35043, Germany.,Marburg Center for Mind, Brain and Behavior, Philipps University, Marburg, Germany.,Institute for Neuro and Sensory Physiology, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Katja Nieweg
- Institute for Pharmacology and Clinical Pharmacy, Philipps University, Karl-von-Frisch Strasse, Marburg D-35043, Germany.,Marburg Center for Mind, Brain and Behavior, Philipps University, Marburg, Germany
| |
Collapse
|
31
|
Koulouris CR, Bax BD, Atack JR, Roe SM. Conformational flexibility within the small domain of human serine racemase. Acta Crystallogr F Struct Biol Commun 2020; 76:65-73. [PMID: 32039887 PMCID: PMC7010357 DOI: 10.1107/s2053230x20001193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/28/2020] [Indexed: 01/28/2023] Open
Abstract
Serine racemase (SR) is a pyridoxal 5'-phosphate (PLP)-containing enzyme that converts L-serine to D-serine, an endogenous co-agonist for the N-methyl-D-aspartate receptor (NMDAR) subtype of glutamate ion channels. SR regulates D-serine levels by the reversible racemization of L-serine to D-serine, as well as the catabolism of serine by α,β-elimination to produce pyruvate. The modulation of SR activity is therefore an attractive therapeutic approach to disorders associated with abnormal glutamatergic signalling since it allows an indirect modulation of NMDAR function. In the present study, a 1.89 Å resolution crystal structure of the human SR holoenzyme (including the PLP cofactor) with four subunits in the asymmetric unit is described. Comparison of this new structure with the crystal structure of human SR with malonate (PDB entry 3l6b) shows an interdomain cleft that is open in the holo structure but which disappears when the inhibitor malonate binds and is enclosed. This is owing to a shift of the small domain (residues 78-155) in human SR similar to that previously described for the rat enzyme. This domain movement is accompanied by changes within the twist of the central four-stranded β-sheet of the small domain, including changes in the φ-ψ angles of all three residues in the C-terminal β-strand (residues 149-151). In the malonate-bound structure, Ser84 (a catalytic residue) points its side chain at the malonate and is preceded by a six-residue β-strand (residues 78-83), but in the holoenzyme the β-strand is only four residues (78-81) and His82 has φ-ψ values in the α-helical region of the Ramachandran plot. These data therefore represent a crystallographic platform that enables the structure-guided design of small-molecule modulators for this important but to date undrugged target.
Collapse
Affiliation(s)
- Chloe R. Koulouris
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton BN1 9QG, England
| | - Benjamin D. Bax
- Medicines Discovery Institute, School of Biosciences, University of Cardiff, Park Place, Cardiff CF10 3AT, Wales
| | - John R. Atack
- Medicines Discovery Institute, School of Biosciences, University of Cardiff, Park Place, Cardiff CF10 3AT, Wales
| | - S. Mark Roe
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, England
| |
Collapse
|
32
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Du Y, Du Y, Zhang Y, Huang Z, Fu M, Li J, Pang Y, Lei P, Wang YT, Song W, He G, Dong Z. MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer's disease models. Signal Transduct Target Ther 2019; 4:58. [PMID: 31840000 PMCID: PMC6895219 DOI: 10.1038/s41392-019-0091-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an essential negative regulator of MAPKs by dephosphorylating MAPKs at both tyrosine and threonine residues. Dysregulation of the MAPK signaling pathway has been associated with Alzheimer's disease (AD). However, the role of MKP-1 in AD pathogenesis remains elusive. Here, we report that MKP-1 levels were decreased in the brain tissues of patients with AD and an AD mouse model. The reduction in MKP-1 gene expression appeared to be a result of transcriptional inhibition via transcription factor specificity protein 1 (Sp1) cis-acting binding elements in the MKP-1 gene promoter. Amyloid-β (Aβ)-induced Sp1 activation decreased MKP-1 expression. However, upregulation of MKP-1 inhibited the expression of both Aβ precursor protein (APP) and β-site APP-cleaving enzyme 1 by inactivating the extracellular signal-regulated kinase 1/2 (ERK)/MAPK signaling pathway. Furthermore, upregulation of MKP-1 reduced Aβ production and plaque formation and improved hippocampal long-term potentiation (LTP) and cognitive deficits in APP/PS1 transgenic mice. Our results demonstrate that MKP-1 impairment facilitates the pathogenesis of AD, whereas upregulation of MKP-1 plays a neuroprotective role to reduce Alzheimer-related phenotypes. Thus, this study suggests that MKP-1 is a novel molecule for AD treatment.
Collapse
Affiliation(s)
- Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Yexiang Du
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016 PR China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Zhilin Huang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Min Fu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| | - Peng Lei
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan China
| | - Yu Tian Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Brain Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5 Canada
| | - Weihong Song
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Guiqiong He
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, 400016 PR China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 PR China
| |
Collapse
|
34
|
Wu M, Liu Y, Zhang H, Lian M, Chen J, Jiang H, Xu Y, Shan G, Wu S. Intravenous injection of l-aspartic acid β-hydroxamate attenuates choroidal neovascularization via anti-VEGF and anti-inflammation. Exp Eye Res 2019; 182:93-100. [DOI: 10.1016/j.exer.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
35
|
Dhami KS, Churchward MA, Baker GB, Todd KG. Fluoxetine and its metabolite norfluoxetine induce microglial apoptosis. J Neurochem 2019; 148:761-778. [DOI: 10.1111/jnc.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/28/2022]
|
36
|
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, Sadasivan C, Omkumar R. Cellular calcium signaling in the aging brain. J Chem Neuroanat 2019; 95:95-114. [DOI: 10.1016/j.jchemneu.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
37
|
Billard JM. Changes in Serine Racemase-Dependent Modulation of NMDA Receptor: Impact on Physiological and Pathological Brain Aging. Front Mol Biosci 2018; 5:106. [PMID: 30555832 PMCID: PMC6282039 DOI: 10.3389/fmolb.2018.00106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 02/02/2023] Open
Abstract
The N-methyl-D-Aspartate glutamate receptors (NMDARs) are pivotal for the functional and morphological plasticity that are required in neuronal networks for efficient brain activities and notably for cognitive-related abilities. Because NMDARs are heterogeneous in subunit composition and associated with multiple functional regulatory sites, their efficacy is under the tonic influence of numerous allosteric modulations, whose dysfunction generally represents the first step generating pathological states. Among the enzymatic candidates, serine racemase (SR) has recently gathered an increasing interest considering that it tightly regulates the production of d-serine, an amino acid now viewed as the main endogenous co-agonist necessary for NMDAR activation. Nowadays, SR deregulation is associated with a wide range of neurological and psychiatric diseases including schizophrenia, amyotrophic lateral sclerosis, and depression. This review aims at compelling the most recent experimental evidences indicating that changes in SR-related modulation of NMDARs also govern opposite functional dysfunctions in physiological and pathological (Alzheimer's disease) aging that finally results in memory disabilities in both cases. It also highlights SR as a relevant alternative target for new pharmacological strategies aimed at preventing functional alterations and cognitive impairments linked to the aging process.
Collapse
|
38
|
Finnell JE, Wood SK. Putative Inflammatory Sensitive Mechanisms Underlying Risk or Resilience to Social Stress. Front Behav Neurosci 2018; 12:240. [PMID: 30416436 PMCID: PMC6212591 DOI: 10.3389/fnbeh.2018.00240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
It has been well recognized that exposure to stress can lead to the onset of psychosocial disorders such as depression. While there are a number of antidepressant therapies currently available and despite producing immediate neurochemical alterations, they require weeks of continuous use in order to exhibit antidepressant efficacy. Moreover, up to 30% of patients do not respond to typical antidepressants, suggesting that our understanding of the pathophysiology underlying stress-induced depression is still limited. In recent years inflammation has become a major focus in the study of depression as several clinical and preclinical studies have demonstrated that peripheral and central inflammatory mediators, including interleukin (IL)-1β, are elevated in depressed patients. Moreover, it has been suggested that inflammation and particularly neuroinflammation may be a direct and immediate link in the emergence of stress-induced depression due to the broad neural and glial effects that are elicited by proinflammatory cytokines. Importantly, individual differences in inflammatory reactivity may further explain why certain individuals exhibit differing susceptibility to the consequences of stress. In this review article, we discuss sources of individual differences such as age, sex and coping mechanisms that are likely sources of distinct changes in stress-induced neuroimmune factors and highlight putative sources of exaggerated neuroinflammation in susceptible individuals. Furthermore, we review the current literature of specific neural and glial mechanisms that are regulated by stress and inflammation including mitochondrial function, oxidative stress and mechanisms of glutamate excitotoxicity. Taken together, the impetus for this review is to move towards a better understanding of mechanisms regulated by inflammatory cytokines and chemokines that are capable of contributing to the emergence of depressive-like behaviors in susceptible individuals.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,WJB Dorn Veterans Administration Medical Center, Columbia, SC, United States
| |
Collapse
|
39
|
Impact of Aging in Microglia-Mediated D-Serine Balance in the CNS. Mediators Inflamm 2018; 2018:7219732. [PMID: 30363571 PMCID: PMC6180939 DOI: 10.1155/2018/7219732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 01/12/2023] Open
Abstract
A mild chronic inflammatory state, like that observed in aged individuals, affects microglial function, inducing a dysfunctional phenotype that potentiates neuroinflammation and cytotoxicity instead of neuroprotection in response to additional challenges. Given that inflammatory activation of microglia promotes increased release of D-serine, we postulate that age-dependent inflammatory brain environment leads to microglia-mediated changes on the D-serine-regulated glutamatergic transmission. Furthermore, D-serine dysregulation, in addition to affecting synaptogenesis and synaptic plasticity, appears also to potentiate NMDAR-dependent excitotoxicity, promoting neurodegeneration and cognitive impairment. D-serine dysregulation promoted by microglia could have a role in age-related cognitive impairment and in the induction and progression of neurodegenerative processes like Alzheimer's disease.
Collapse
|
40
|
Katane M, Ariyoshi M, Tateishi S, Koiwai S, Takaku K, Nagai K, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Mita M, Hamase K, Matoba S, Homma H. Structural and enzymatic properties of mammalian d-glutamate cyclase. Arch Biochem Biophys 2018; 654:10-18. [PMID: 30003876 DOI: 10.1016/j.abb.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2018] [Accepted: 07/08/2018] [Indexed: 01/12/2023]
Abstract
d-Glutamate cyclase (DGLUCY) is a unique enzyme that reversibly converts free d-glutamate to 5-oxo-d-proline and H2O. Mammalian DGLUCY is highly expressed in the mitochondrial matrix in the heart, and its downregulation disrupts d-glutamate and/or 5-oxo-d-proline levels, contributing to the onset and/or exacerbation of heart failure. However, detailed characterisation of DGLUCY has not yet been performed. Herein, the structural and enzymatic properties of purified recombinant mouse DGLUCY were examined. The results revealed a dimeric oligomerisation state, and both d-glutamate-to-5-oxo-d-proline and 5-oxo-d-proline-to-d-glutamate reactions were catalysed in a stereospecific manner. Catalytic activity is modulated by divalent cations and nucleotides including ATP and ADP. Interestingly, the presence of Mn2+ completely abolished the 5-oxo-d-proline-to-d-glutamate reaction but stimulated the d-glutamate-to-5-oxo-d-proline reaction. The optimum pH is ∼8.0, similar to that in the mitochondrial matrix, and the catalytic efficiency for d-glutamate is markedly higher than that for 5-oxo-d-proline. These findings suggest that DGLUCY functions as a metalloenzyme that degrades d-glutamate in the mitochondrial matrix in mammalian cells. The results also provide insight into the correlation between DGLUCY enzyme activity and the physiological and pathological roles of d-glutamate and 5-oxo-d-proline in cardiac function, which is of relevance to the risk of onset of heart failure.
Collapse
Affiliation(s)
- Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Sachi Koiwai
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kaoruko Takaku
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuki Nakayama
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuaki Saitoh
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masae Sekine
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masashi Mita
- Shiseido Co., Ltd, 1-1-16 Higashi-shimbashi, Minato-ku, Tokyo 105-0021, Japan
| | - Kenji Hamase
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
41
|
Jiang H, Du J, Song J, Li Y, Wu M, Zhou J, Wu S. Loss-of-function mutation of serine racemase attenuates retinal ganglion cell loss in diabetic mice. Exp Eye Res 2018; 175:90-97. [PMID: 29913163 DOI: 10.1016/j.exer.2018.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/14/2018] [Accepted: 06/14/2018] [Indexed: 10/14/2022]
Abstract
Consistent results suggest the promoting roles of serine racemase (SR)/D-serine in retinal neurodegeneration in diabetic retinopathy (DR). However, the direct evidence connecting SR deficiency with retinal neuroprotection in genetic model of diabetes mellitus has not been reported. In this investigation, we explore the effect of absence of functional SR on the degeneration of retinal ganglion cells (RGCs) with a diabetic murine model, Ins2Akita mice. We established a murine strain with double mutation, termed Ins2Akita-Srr, by mating heterozygous Ins2Akita mice with homozygous Srrochre269 mice. Ins2Akita retained less RGC in posterior, middle, and peripheral retinae than the counterpart from non-diabetic sibling mice at the age of five or seven months. Ins2Akita-Srr mice retained more RGC in middle and peripheral--but not in posterior-- retinae than the counterpart from Ins2Akita sibling mice at the age of five months. By contrast, at the age of seven months, Ins2Akita-Srr mice contained more RGC in peripheral, middle, and posterior retinae than the counterpart from Ins2Akita. RGCs were identified with retrograde labeling in vivo or with immunolabeling against a RGC-specific transcription factor, Brn3a, in retinal flat mounts. Correspondingly, the aqueous humor of Ins2Akita-Srr contained less amount of D-serine than sibling Ins2Akita mice. Thus, SR deficiency significantly prevented RGC loss in diabetic mice. We conclude that D-serine is a critical factor in the degeneration of RGC in DR. Targeting SR expression or activity may be a strategy for ameliorating RGC loss in DR.
Collapse
Affiliation(s)
- Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Jinlin Du
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Juan Song
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Yanqi Li
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Mengjuan Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China.
| |
Collapse
|
42
|
Moldovan RC, Bodoki E, Servais AC, Chankvetadze B, Crommen J, Oprean R, Fillet M. Capillary electrophoresis-mass spectrometry of derivatized amino acids for targeted neurometabolomics - pH mediated reversal of diastereomer migration order. J Chromatogr A 2018; 1564:199-206. [PMID: 29910088 DOI: 10.1016/j.chroma.2018.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
A targeted CE-MS approach was developed for the chiral analysis of biologically relevant amino acids in artificial cerebrospinal fluid (aCSF). In order to achieve chiral resolution, the five amino acids (Ser, Asn, Asp, Gln and Glu) were derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate ((+)-FLEC). The diastereoselectivity was found to be highly dependent on pH for all analytes and the optimized background electrolyte (BGE) consisted of 150 mM acetic acid, adjusted to pH 3.7 with NH4OH. Furthermore, a reversal of the migration order of Asp derivatives was observed. This phenomenon seems to be caused by intra-molecular interactions affecting the pKa of the second ionizable group (the side chain carboxyl). The applicability of this method was evaluated using aCSF. A solid phase extraction (SPE) protocol was developed for the selective extraction of the FLEC derivatives. A full evaluation of the matrix effect and extraction yield was performed concluding that the matrix effect is marginal and the recoveries are between 46 and 92%. The method offers adequate sensitivity (limits of detection below 1 μM).
Collapse
Affiliation(s)
- Radu-Cristian Moldovan
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, Tbilisi, Georgia
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium.
| |
Collapse
|
43
|
Yoshihisa Y, Rehman MU, Nakagawa M, Matsukuma S, Makino T, Mori H, Shimizu T. Inflammatory cytokine-mediated induction of serine racemase in atopic dermatitis. J Cell Mol Med 2018; 22:3133-3138. [PMID: 29566294 PMCID: PMC5980141 DOI: 10.1111/jcmm.13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/05/2018] [Indexed: 01/15/2023] Open
Abstract
Serine racemase (SR) is an enzyme that catalyses the synthesis of d‐serine, an endogenous coagonist for N‐methyl‐D‐aspartate (NMDA)‐type glutamate receptor in the central nervous system. Our previous study demonstrated that SR was expressed in the epidermis of wild‐type (WT) mice but not in SR knockout (KO) mice. In addition, SR immune‐reactivity was only found in the granular and cornified layers of the epidermis in WT mice. These findings suggested that SR is involved in the differentiation of epidermal keratinocytes and the formation of the skin barrier. However, its role in skin barrier dysfunction such as atopic dermatitis (AD) remains elusive. AD is a chronic inflammatory disease of skin, and the clinical presentation of AD has been reported to be occasionally associated with psychological factors. Therefore, this study examined the content of d‐serine in stratum corneum in AD patients and healthy controls using a tape‐stripping method. Skin samples were collected from the cheek and upper arm skin of AD patient's lesion and healthy individuals. The d‐serine content was significantly increased in the involved skin of AD in comparison with healthy individuals. An immunohistochemical analysis also revealed an increased SR expression in the epidermis of AD patients. Furthermore, the SR expression in cultured human keratinocytes was significantly increased by the stimulation with tumour necrosis factor ‐α or macrophage migration inhibitory factor. Taken together, these findings suggest that d‐serine expressed particularly strongly in AD lesional skin and that the SR expression in the keratinocytes is linked to inflammatory cytokines.
Collapse
Affiliation(s)
- Yoko Yoshihisa
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mati Ur Rehman
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Maho Nakagawa
- Advanced Technology Research Center, FANCL Research Institute, Yokohama, Japan
| | - Shoko Matsukuma
- Advanced Technology Research Center, FANCL Research Institute, Yokohama, Japan
| | - Teruhiko Makino
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
44
|
Abstract
Excitatory glutamatergic neurotransmission via N-methyl-d-aspartate receptor (NMDAR) is critical for synaptic plasticity and survival of neurons. However, excessive NMDAR activity causes excitotoxicity and promotes cell death, underlying a potential mechanism of neurodegeneration occurred in Alzheimer's disease (AD). Studies indicate that the distinct outcomes of NMDAR-mediated responses are induced by regionalized receptor activities, followed by different downstream signaling pathways. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs promotes cell death and thus contributes to the etiology of AD, which can be blocked by an AD drug, memantine, an NMDAR antagonist that selectively blocks the function of extrasynaptic NMDARs.
Collapse
Affiliation(s)
- Rui Wang
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
45
|
Guercio GD, Panizzutti R. Potential and Challenges for the Clinical Use of d-Serine As a Cognitive Enhancer. Front Psychiatry 2018; 9:14. [PMID: 29459833 PMCID: PMC5807334 DOI: 10.3389/fpsyt.2018.00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
After 25 years of its discovery in the rat brain, d-serine is a recognized modulator of synaptic plasticity and cognitive processes through its actions on the NMDA-glutamate receptor. Importantly, cognitive impairment is a core feature of conditions, such as schizophrenia, Alzheimer's disease, depression, and aging, and is associated to disturbances in NMDA-glutamate receptors. The d-serine pathway has been associated with cognitive deficits and these conditions, and, for this reason, d-serine signaling is subject of intense research to probe its role in aiding diagnosis and therapy. Nevertheless, this has not resulted in new therapies being incorporated into clinical practice. Therefore, in this review we will address many questions that need to be solved by future studies, regarding d-serine pharmacokinetics, possible side effects, other strategies to modulate its levels, and combination with other therapies to increase its efficacy.
Collapse
Affiliation(s)
- Gerson D. Guercio
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogerio Panizzutti
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Astrocytes in primary cultures express serine racemase, synthesize d-serine and acquire A1 reactive astrocyte features. Biochem Pharmacol 2018; 151:245-251. [PMID: 29305854 DOI: 10.1016/j.bcp.2017.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
d-Serine is a co-agonist at forebrain N-methyl-d-aspartate receptors (NMDAR) and is synthesized by serine racemase (SR). Although d-serine and SR were originally reported to be localized to glia, recent studies have provided compelling evidence that under healthy physiologic conditions both are localized primarily in neurons. However, in pathologic conditions, reactive astrocytes can also express SR and synthesize d-serine. Since cultured astrocytes exhibit features of reactive astrocytes, we have characterized d-serine synthesis and the expression of enzymes involved in its disposition in primary glial cultures. The levels of SR were quite low early in culture and increased markedly in all astrocytes with the duration in vitro. The concentration of d-serine in the culture medium increased in parallel with SR expression in the astrocytes. Microglia, identified by robust expression of Iba1, did not express SR. While the levels of glial fibrillary acidic protein (GFAP), glycine decarboxylase (GLDC) and phosphoglycerate dehydrogenase (PHGDH), the initial enzyme in the pathway converting glycine to l-serine, remained constant in culture, the expression of lipocalin-2, a marker for pan-reactive astrocytes, increased several-fold. The cultured astrocytes also expressed Complement-3a, a marker for a subpopulation of reactive astrocytes (A1). Astrocytes grown from mice with a copy number variant associated with psychosis, which have four copies of the GLDC gene, showed a more rapid production of d-serine and a reduction in glycine in the culture medium. These results substantiate the conclusion that A1 reactive astrocytes express SR and release d-serine under pathologic conditions, which may contribute to their neurotoxic effects by activating extra-synaptic NMDARs.
Collapse
|
47
|
Suzuki M, Imanishi N, Mita M, Hamase K, Aiso S, Sasabe J. Heterogeneity of D-Serine Distribution in the Human Central Nervous System. ASN Neuro 2017; 9:1759091417713905. [PMID: 28604057 PMCID: PMC5470653 DOI: 10.1177/1759091417713905] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
D-serine is an endogenous ligand for N-methyl-D-aspartate glutamate receptors. Accumulating evidence including genetic associations of D-serine metabolism with neurological or psychiatric diseases suggest that D-serine is crucial in human neurophysiology. However, distribution and regulation of D-serine in humans are not well understood. Here, we found that D-serine is heterogeneously distributed in the human central nervous system (CNS). The cerebrum contains the highest level of D-serine among the areas in the CNS. There is heterogeneity in its distribution in the cerebrum and even within the cerebral neocortex. The neocortical heterogeneity is associated with Brodmann or functional areas but is unrelated to basic patterns of cortical layer structure or regional expressional variation of metabolic enzymes for D-serine. Such D-serine distribution may reflect functional diversity of glutamatergic neurons in the human CNS, which may serve as a basis for clinical and pharmacological studies on D-serine modulation.
Collapse
Affiliation(s)
- Masataka Suzuki
- 1 Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Nobuaki Imanishi
- 1 Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | | | - Kenji Hamase
- 3 Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sadakazu Aiso
- 1 Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Jumpei Sasabe
- 1 Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Jiang H, Wu M, Liu Y, Song L, Li S, Wang X, Zhang YF, Fang J, Wu S. Serine racemase deficiency attenuates choroidal neovascularization and reduces nitric oxide and VEGF levels by retinal pigment epithelial cells. J Neurochem 2017; 143:375-388. [PMID: 28892569 DOI: 10.1111/jnc.14214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
Abstract
Choroidal neovascularization (CNV) is a leading cause of blindness in age-related macular degeneration. Production of vascular endothelial growth factor (VEGF) and macrophage recruitment by retinal pigment epithelial cells (RPE) significantly contributes to the process of CNV in an experimental CNV model. Serine racemase (SR) is expressed in retinal neurons and glial cells, and its product, d-serine, is an endogenous co-agonist of N-methyl-d-aspartate receptor. Activation of the receptor results in production of nitric oxide (. NO), a molecule that promotes retinal and choroidal neovascularization. These observations suggest possible roles of SR in CNV. With laser-injured CNV mice, we found that inactivation of SR-coding gene (Srrnull ) significantly reduced CNV volume, neovascular density, and invading macrophages. We exploited the underlying mechanism in vivo and ex vivo. RPE from wild-type (WT) mice expressed SR. To explore the possible downstream target of SR inactivation, we showed that choroid/RPE homogenates extracted from laser-injured Srrnull mice contained less inducible nitric oxide synthase and decreased phospho-VEGFR2 compared to amounts in WT mice. In vitro, inflammation-primed WT RPEs expressed more inducible NOS, produced more. NO and VEGF than did inflammation-primed Srrnull RPEs. When co-cultured with inflammation-primed Srrnull RPE, significantly fewer RF/6A-a cell line of choroidal endothelial cell, migrated to the opposite side of the insert membrane than did cells co-cultured with pre-treated WT RPE. Altogether, SR deficiency reduces RPE response to laser-induced inflammatory stimuli, resulting in decreased production of a cascade of pro-angiogenic cytokines, including. NO and VEGF, and reduced macrophage recruitment, which contribute synergistically to attenuated angiogenesis.
Collapse
Affiliation(s)
- Haiyan Jiang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Mengjuan Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Yimei Liu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Liping Song
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Shifeng Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianwei Wang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Yun-Feng Zhang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Junxu Fang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
49
|
Zhang H, Song L, Chang Y, Wu M, Kuang X, Jiang H, Wu S. Potential deficit from decreased cerebellar granule cell migration in serine racemase-deficient mice is reversed by increased expression of GluN2B and elevated levels of NMDAR agonists. Mol Cell Neurosci 2017; 85:119-126. [PMID: 28939329 DOI: 10.1016/j.mcn.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/27/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022] Open
Abstract
Inward migration of cerebellar granule cells (CGCs) after birth is critical for lamination in the cerebellar cortex. N-methyl-d-aspartate (NMDA) subtype of glutamate receptor (NMDAR) tethering CGCs into Bergmann glial fibers mediates the inward movement during the glial-dependent migratory phase. Activation of NMDAR depends on simultaneous binding of the GluN2 subunit by glutamate, and of the GluN1 subunit by d-serine or glycine; d-serine is believed to be an endogenous ligand of NMDAR. We hypothesized that lamination of the cerebellar cortex may be compromised in Srr (the gene for serine racemase (SR)) mutated mice (Srrnull) because of significantly low levels of d-serine per se. Indeed, the external germinal cell layer (EGL) in Srrnull was thicker than in sibling wild-type (WT) mice on postnatal day7 (P7), which accords with decreased CGC migration in Srrnull mice. However, the cerebellar laminar structure in Srrnull mice was normal on P12 and later. Feeding d-serine to pregnant mice abrogated the increased EGL thickness in Srrnull mice on P7. To determine the underlying mechanism of abnormal laminar structure during cerebellar development in Srrnull mice, we examined NMDAR subunits and their ligands. We found increased GluN2B on P10 and increased glycine during P7-12 in the cerebellar homogenates from Srrnull mice compared with the corresponding values from sibling WT mice. In summary, the study revealed how the potential defect in early cerebellar development caused by Srr mutation is circumvented by a compensatory mechanism. This knowledge advances understanding of the adaptation of cerebellar development under the condition of Srr mutation.
Collapse
Affiliation(s)
- He Zhang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, P.R. China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, P.R. China
| | - Liping Song
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, P.R. China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, P.R. China
| | - Yuhua Chang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, P.R. China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, P.R. China
| | - Mengjuan Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, P.R. China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, P.R. China
| | - Xiuli Kuang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, P.R. China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, P.R. China
| | - Haiyan Jiang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, P.R. China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, P.R. China
| | - Shengzhou Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, P.R. China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, P.R. China.
| |
Collapse
|
50
|
Talukdar G, Inoue R, Yoshida T, Ishimoto T, Yaku K, Nakagawa T, Mori H. Novel role of serine racemase in anti-apoptosis and metabolism. Biochim Biophys Acta Gen Subj 2016; 1861:3378-3387. [PMID: 27585868 DOI: 10.1016/j.bbagen.2016.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/12/2016] [Accepted: 08/28/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Serine racemase (SR) catalyzes the production of d-serine, a co-agonist of the N-methyl-d-aspartate receptor (NMDAR). A previous report shows the contribution of SR in the NMDAR-mediated neuronal cell death process. METHODS AND RESULTS To analyze the intrinsic role of SR in the cell death process, we established the epithelial human embryonic kidney 293T (HEK293T) cell lines expressing wild-type SR (SR-WT), catalytically inactive mutant SR (SR-K56G), and catalytically hyperactive mutant SR (SR-Q155D). To these cell lines, staurosporine (STS), which induces apoptosis, was introduced. The cells expressing SR-WT and SR-Q155D showed resistance to STS-induced apoptosis, compared with nontransfected HEK293T cells and cells expressing SR-K56G. The SR-WT cells also showed a significant higher viability than the SR-QD cells. Furthermore, we detected elevated phosphorylation levels of Bcl-2 at serine-70 and Akt at serine-473 and threonine-308, which are related to cell survival, in the cells expressing SR-WT and SR-Q155D. From the results of metabolite analysis, we found elevated levels of acetyl CoA and ATP in cells expressing SR-WT. CONCLUSION Because SR has two enzymatic activities, namely, racemization and α, β-elimination, and SR-Q155D shows enhanced racemization and reduced α, β-elimination activities, we concluded that the racemization reaction catalyzed by SR may have a more protective role against apoptosis than the α, β-elimination reaction. Moreover, both of these activities are important for maximal survival and elevated levels of acetyl CoA and ATP. GENERAL SIGNIFICANCE Our findings reveal the NMDAR-independent roles of SR in metabolism and cell survival.
Collapse
Affiliation(s)
- Gourango Talukdar
- Department of Molecular Neuroscience, Graduate School of Innovative Life Science and Medicine and Pharmaceutical Sciences, University of Toyama, Japan; Department of Biochemistry, TMSS Medical College & Hospital, Bangladesh
| | - Ran Inoue
- Department of Molecular Neuroscience, Graduate School of Innovative Life Science and Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Innovative Life Science and Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Tetsuya Ishimoto
- Department of Molecular Neuroscience, Graduate School of Innovative Life Science and Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Keisuke Yaku
- Frontier Research Core for Life Sciences, University of Toyama, Japan
| | - Takashi Nakagawa
- Frontier Research Core for Life Sciences, University of Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Innovative Life Science and Medicine and Pharmaceutical Sciences, University of Toyama, Japan.
| |
Collapse
|