1
|
Ye W, Liao Y, Liu X, Wang Y, Li T, Zhao Y, He Z, Chen J, Yin M, Sheng Y, Du Y, Ji Y, He H. Dectin-2 depletion alleviates osteoclast-induced bone loss in periodontitis via Syk/NOX2/ROS signaling. Free Radic Biol Med 2025; 229:13-29. [PMID: 39800085 DOI: 10.1016/j.freeradbiomed.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontitis is the sixth most common disease worldwide and is closely associated with various systemic diseases, impacting overall health. It is characterized by the over-differentiation and activity of osteoclasts, leading to increased bone resorption and subsequent bone loss. Current treatments for bone loss are not ideal, highlighting the need for new targeted therapeutic strategies. Dectin-2, a member of the C-type lectin receptor (CLR) family, has recently been reported to play an important role in immune regulation, but its role in osteoclastogenesis has not been documented. This study identified a significant upregulation of Dectin-2 expression during osteoclast differentiation through single-cell sequencing and transcriptomic analysis. Knocking down Dectin-2 significantly inhibits the differentiation of RAW264.7 cells and bone marrow-derived macrophages (BMDMs) into osteoclasts, while overexpressing Dectin-2 enhances osteoclast differentiation and function. Mechanistically, transcriptomic analysis indicates that Dectin-2 deficiency disrupts redox homeostasis and affects the MAPK signaling pathway. Furthermore, the study demonstrates that Dectin-2 promotes osteoclastogenesis via the Syk/NOX2/ROS/MAPK signaling axis. In vivo, Dectin-2 knockout mice show reduced osteoclast numbers and decreased alveolar bone resorption in a periodontitis model. In conclusion, these findings suggest that Dectin-2 is a key regulatory factor in osteoclast-mediated bone resorption and may serve as a promising therapeutic target for bone diseases characterized by osteoclast overactivity, such as periodontitis.
Collapse
Affiliation(s)
- Wengwanyue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
2
|
Nian F, Wang Y, Yang M, Zhang B. Identification the role of necroptosis in rheumatoid arthritis by WGCNA network. Autoimmunity 2024; 57:2358069. [PMID: 38869013 DOI: 10.1080/08916934.2024.2358069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Rheumatoid arthritis (RA) is the predominant manifestation of inflammatory arthritis, distinguished by an increasing burden of morbidity and mortality. The intricate interplay of genes and signalling pathways involved in synovial inflammation in patients with RA remains inadequately comprehended. This study aimed to ascertain the role of necroptosis in RA, as along with their associations with immune cell infiltration. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to identify central genes for RA. In this study, identified total of 28 differentially expressed genes (DEGs) were identified in RA. Utilising WGCNA, two co-expression modules were generated, with one module demonstrating the strongest correlation with RA. Through the integration of differential gene expression analysis, a total of 5 intersecting genes were discovered. These 5 hub genes, namely fused in sarcoma (FUS), transformer 2 beta homolog (TRA2B), eukaryotic translation elongation factor 2 (EEF2), cleavage and polyadenylation specific factor 6 (CPSF6) and signal transducer and activator of transcription 3 (STAT3) were found to possess significant diagnostic value as determined by receiver operating characteristic (ROC) curve analysis. The close association between the concentrations of various immune cells is anticipated to contribute to the diagnosis and treatment of RA. Furthermore, the infiltration of immune cells mentioned earlier is likely to exert a substantial influence on the initiation of this disease.
Collapse
Affiliation(s)
- Feige Nian
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Mingfeng Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Bin Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
3
|
Tao L, Jiang W, Li H, Wang X, Tian Z, Yang K, Zhu Y. Single-cell RNA sequencing reveals that an imbalance in monocyte subsets rather than changes in gene expression patterns is a feature of postmenopausal osteoporosis. J Bone Miner Res 2024; 39:980-993. [PMID: 38652170 DOI: 10.1093/jbmr/zjae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The role of monocytes in postmenopausal osteoporosis is widely recognized; however, the mechanisms underlying monocyte reprogramming remain unknown. In this study, single-cell RNA sequencing (scRNA-seq) was conducted on CD14+ bone marrow monocytes obtained from 3 postmenopausal women with normal BMD and 3 women with postmenopausal osteoporosis (PMOP). Monocle2 was used to classify the monocytes into 7 distinct clusters. The proportion of cluster 1 significantly decreased in PMOP patients, while the proportion of cluster 7 increased. Further analysis via GSEA, transcription factor activity analysis, and sc-metabolic analysis revealed significant differences between clusters 1 and 7. Cluster 7 exhibited upregulated pathways associated with inflammation, immunity, and osteoclast differentiation, whereas cluster 1 demonstrated the opposite results. Monocle2, TSCAN, VECTOR, and scVelo data indicated that cluster 1 represented the initial subset and that cluster 7 represents one of the terminal subsets. BayesPrism and ssGSEA were employed to analyze the bulk transcriptome data obtained from the GEO database. The observed alterations in the proportions of 1 and 7 were validated and found to have diagnostic significance. CD16 serves as the marker gene for cluster 7, thus leading to an increased proportion of CD16+ monocytes in women with PMOP. Flow cytometry was used to assess the consistency of outcomes with those of the bioinformatic analysis. Subsequently, an additional scRNA-seq analysis was conducted on bone marrow mononuclear cells obtained from 3 patients with PMOP and 3 postmenopausal women with normal BMD. The differential proportions of cluster 1 and cluster 7 were once again confirmed, with the pathological effect of cluster 7 may attribute to cell-cell communication. The scRNA-seq findings suggest that an imbalance in monocyte subsets is a characteristic feature of PMOP. These findings elucidate the limitations of utilizing bulk transcriptome data for detecting alterations in monocytes, which may influence novel research inquiries.
Collapse
Affiliation(s)
- Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Wen Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Hao Li
- Department of Internal Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 200000, China
| | - Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Zixuan Tian
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
4
|
Zheng H, Li Y, Deng Y, Li H, Shen X, Lin H, Yang Y, Tian X, Li B, Yuan H, Sheng W, Wang W, Yu H. Xuetongsu attenuates bone destruction in collagen-induced arthritis mice by inhibiting osteoclast differentiation and promoting osteoclast apoptosis. Int J Biochem Cell Biol 2024; 169:106550. [PMID: 38340949 DOI: 10.1016/j.biocel.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Tujia ethnomedicine Xuetong (the stems of Kadsura heteroclita) have been widely used in folk for rheumatoid arthritis (RA), which can alleviate rheumatic pain through liquor soaking in folk. In this study, we aimed to evaluate the pharmacological effects and underlying mechanism of Xuetongsu (a key chemical component of Xuetong) on bone destruction. In our previous study, it was found that Xuetong extract can reduce adjuvant arthritic rats paw swelling and inhibit inflammatory factors in serum. Furthermore, Xuetongsu has been demonstrated to inhibit the proliferation of fibroblast-like synoviocytes, but its potential to inhibit bone destruction has not been explored. To address this, we employed the STRING database to predict protein interactions and utilized Autodock software to simulate the binding of Xuetongsu to target proteins. In this study, administration of Xuetongsu significantly alleviated paw swelling and bone destruction in C57BL/6 mice with collagen-induced arthritis (CIA). Mechanistic studies have indicated that Xuetongsu promotes apoptosis of mature osteoclasts in joint tissues by activating Caspase-3 and Bax, while inhibiting Bcl-2. Additionally, Xuetongsu inhibits osteoclast differentiation by suppressing RANKL, RANK, P-NF-κB, and NFATc1, and reduces bone resorption activity by inhibiting MMP-9, CTSK, and TRAP. Importantly, Xuetongsu exhibits good biocompatibility in major organs of mice. In summary, Xuetongsu has the potential to treat bone destruction by promoting apoptosis of mature osteoclasts, inhibiting osteoclast differentiation, and reducing bone resorption. This study reveals the pharmacological effects of Xuetongsu and its mechanism of action, which may contribute to the development of novel approaches for treating RA.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huanjie Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xinyang Shen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Haokai Lin
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
6
|
Pascual-García S, Martínez-Peinado P, Pujalte-Satorre C, Navarro-Sempere A, Esteve-Girbés J, López-Jaén AB, Javaloyes-Antón J, Cobo-Velacoracho R, Navarro-Blasco FJ, Sempere-Ortells JM. Exosomal Osteoclast-Derived miRNA in Rheumatoid Arthritis: From Their Pathogenesis in Bone Erosion to New Therapeutic Approaches. Int J Mol Sci 2024; 25:1506. [PMID: 38338785 PMCID: PMC10855630 DOI: 10.3390/ijms25031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation, pain, and ultimately, bone erosion of the joints. The causes of this disease are multifactorial, including genetic factors, such as the presence of the human leukocyte antigen (HLA)-DRB1*04 variant, alterations in the microbiota, or immune factors including increased cytotoxic T lymphocytes (CTLs), neutrophils, or elevated M1 macrophages which, taken together, produce high levels of pro-inflammatory cytokines. In this review, we focused on the function exerted by osteoclasts on osteoblasts and other osteoclasts by means of the release of exosomal microRNAs (miRNAs). Based on a thorough revision, we classified these molecules into three categories according to their function: osteoclast inhibitors (miR-23a, miR-29b, and miR-214), osteoblast inhibitors (miR-22-3p, miR-26a, miR-27a, miR-29a, miR-125b, and miR-146a), and osteoblast enhancers (miR-20a, miR-34a, miR-96, miR-106a, miR-142, miR-199a, miR-324, and miR-486b). Finally, we analyzed potential therapeutic targets of these exosomal miRNAs, such as the use of antagomiRs, blockmiRs, agomiRs and competitive endogenous RNAs (ceRNAs), which are already being tested in murine and ex vivo models of RA. These strategies might have an important role in reestablishing the regulation of osteoclast and osteoblast differentiation making progress in the development of personalized medicine.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | | | - Alicia Navarro-Sempere
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Jorge Esteve-Girbés
- Department of Legal Studies of the State, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Juan Javaloyes-Antón
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Raúl Cobo-Velacoracho
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | | |
Collapse
|
7
|
Pandey A, Bhutani N. Profiling joint tissues at single-cell resolution: advances and insights. Nat Rev Rheumatol 2024; 20:7-20. [PMID: 38057475 PMCID: PMC11674069 DOI: 10.1038/s41584-023-01052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/08/2023]
Abstract
Advances in the profiling of human joint tissues at single-cell resolution have provided unique insights into the organization and function of these tissues in health and disease. Data generated by various single-cell technologies, including single-cell RNA sequencing and cytometry by time-of-flight, have identified the distinct subpopulations that constitute these tissues. These timely studies have provided the building blocks for the construction of single-cell atlases of joint tissues including cartilage, bone and synovium, leading to the identification of developmental trajectories, deciphering of crosstalk between cells and discovery of rare populations such as stem and progenitor cells. In addition, these studies have revealed unique pathogenetic populations that are potential therapeutic targets. The use of these approaches in synovial tissues has helped to identify how distinct cell subpopulations can orchestrate disease initiation and progression and be responsible for distinct pathological outcomes. Additionally, repair of tissues such as cartilage and meniscus remains an unmet medical need, and single-cell methodologies can be invaluable in providing a blueprint for both effective tissue-engineering strategies and therapeutic interventions for chronic joint diseases such as osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Akshay Pandey
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Engelmann J, Ragipoglu D, Ben-Batalla I, Loges S. The Role of TAM Receptors in Bone. Int J Mol Sci 2023; 25:233. [PMID: 38203403 PMCID: PMC10779100 DOI: 10.3390/ijms25010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The TAM (TYRO3, MERTK, and AXL) family of receptor tyrosine kinases are pleiotropic regulators of adult tissue homeostasis maintaining organ integrity and self-renewal. Disruption of their homeostatic balance fosters pathological conditions like autoinflammatory or degenerative diseases including rheumatoid arthritis, lupus erythematodes, or liver fibrosis. Moreover, TAM receptors exhibit prominent cell-transforming properties, promoting tumor progression, metastasis, and therapy resistance in various cancer entities. Emerging evidence shows that TAM receptors are involved in bone homeostasis by regulating osteoblastic bone formation and osteoclastic bone resorption. Therefore, TAM receptors emerge as new key players of the regulatory cytokine network of osteoblasts and osteoclasts and represent accessible targets for pharmacologic therapy for a broad set of different bone diseases, including primary and metastatic bone tumors, rheumatoid arthritis, or osteoporosis.
Collapse
Affiliation(s)
- Janik Engelmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Deniz Ragipoglu
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Isabel Ben-Batalla
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Peng Y, Kenney HM, de Mesy Bentley KL, Xing L, Ritchlin CT, Schwarz EM. Distinct mast cell subpopulations within and around lymphatic vessels regulate lymph flow and progression of inflammatory-erosive arthritis in TNF-transgenic mice. Front Immunol 2023; 14:1275871. [PMID: 38155962 PMCID: PMC10752982 DOI: 10.3389/fimmu.2023.1275871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Inflammatory-erosive arthritis is exacerbated by dysfunction of joint-draining popliteal lymphatic vessels (PLVs). Synovial mast cells are known to be pro-inflammatory in rheumatoid arthritis (RA). In other settings they have anti-inflammatory and tissue reparative effects. Herein, we elucidate the role of mast cells on PLV function and inflammatory-erosive arthritis in tumor necrosis factor transgenic (TNF-tg) mice that exhibit defects in PLVs commensurate with disease progression. Methods Whole mount immunofluorescent microscopy, toluidine blue stained histology, scanning electron microscopy, and in silico bioinformatics were performed to phenotype and quantify PLV mast cells. Ankle bone volumes were assessed by μCT, while corresponding histology quantified synovitis and osteoclasts. Near-infrared indocyanine green imaging measured lymphatic clearance as an outcome of PLV draining function. Effects of genetic MC depletion were assessed via comparison of 4.5-month-old WT, TNF-tg, MC deficient KitW-sh/W-sh (cKit-/-), and TNF-tg x cKit-/- mice. Pharmacological inhibition of mast cells was assessed by treating TNF-tg mice with placebo or cromolyn sodium (3.15mg/kg/day) for 3-weeks. Results PLVs are surrounded by MCT+/MCPT1+/MCPT4+ mast cells whose numbers are increased 2.8-fold in TNF-tg mice. The percentage of peri-vascular degranulating mast cells was inversely correlated with ICG clearance. A population of MCT+/MCPT1-/MCPT4- mast cells were embedded within the PLV structure. In silico single-cell RNA-seq (scRNAseq) analyses identified a population of PLV-associated mast cells (marker genes: Mcpt4, Cma1, Cpa3, Tpsb2, Kit, Fcer1a & Gata2) with enhanced TGFβ-related signaling that are phenotypically distinct from known MC subsets in the Mouse Cell Atlas. cKit-/- mice have greater lymphatic defects than TNF-tg mice with exacerbation of lymphatic dysfunction and inflammatory-erosive arthritis in TNF-tg x cKit-/- vs. TNF-Tg mice. Cromolyn sodium therapy stabilized PLV mast cells, increased TNF-induced bone loss, synovitis, and osteoclasts, and decreased ICG clearance. Conclusions Mast cells are required for normal lymphatic function. Genetic ablation and pharmacological inhibition of mast cells exacerbates TNF-induced inflammatory-erosive arthritis with decreased lymphatic clearance. Together, these findings support an inflammatory role of activated/degranulated peri-PLV mast cells during arthritic progression, and a homeostatic role of intra-PLV mast cells, in which loss of the latter dominantly exacerbates arthritis secondary to defects in joint-draining lymphatics, warranting investigation into specific cellular mechanisms.
Collapse
Affiliation(s)
- Yue Peng
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Park JS, Yang S, Song D, Kim SM, Choi J, Kang HY, Jeong HY, Han G, Min DS, Cho ML, Park SH. A newly developed PLD1 inhibitor ameliorates rheumatoid arthritis by regulating pathogenic T and B cells and inhibiting osteoclast differentiation. Immunol Lett 2023; 263:87-96. [PMID: 37722567 DOI: 10.1016/j.imlet.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro. A3373 also decreased the levels of IFN-γ and IL-17 and the frequencies of Th1, Th17 cells and germinal-center B cells, in splenocytes in vitro. A3373 ameliorated the severity of collagen-induced arthritis (CIA) and suppressed infiltration of inflammatory cells into the joint tissues of mice with CIA compared with vehicle-treated mice. Moreover, A3373 prevented systemic bone demineralization in mice with CIA and suppressed osteoclast differentiation and the mRNA levels of osteoclastogenesis markers in vitro. These results suggest that A3373 has therapeutic potential for RA.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Doona Song
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung-Min Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Yeon Kang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gyoonhee Han
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Do Sik Min
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea; Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea Seoul 06591, Republic of Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
11
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
12
|
Janakiraman V, Sudhan M, Patil S, Alzahrani KJ, Alzahrani FM, Halawani IF, Ahmed SSSJ. Rheumatoid arthritis treatment with zoledronic acid, a potentialinhibitorofGWAS-derived pharmacogenetics STAT3 and IL2 targets. Gene 2023; 866:147338. [PMID: 36889532 DOI: 10.1016/j.gene.2023.147338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory condition that primarily affects the joints and progress to affect other vital organs. Variety of drugs are being recommended to control the disease progression that benefits patients to perform day-to-day activities. Few of these RA drugs have noticeable side effects; therefore, it's crucial to choose the appropriate drug for treating RA with an understanding of the disease's pathophysiology. Herein, we investigated the RA genes from GWAS data to construct protein-protein interaction (PPI) network and to define appropriate drug targets for RA. The predicted drug targets were screened with the known RA drugs based on molecular docking. Further, the molecular dynamics simulations were performed to comprehend the conformational changes and stability of the targets upon binding of the selected top ranked RA drug. As a result, our constructed protein network from GWAS data revealed, STAT3 and IL2 could be potential pharmacogenetics targets that interlink most of the RA genes encoding proteins. These interlinked proteins of both the targets showed involvement in cell signaling, immune response, and TNF signaling pathway. Among the 192 RA drugs investigated, zoledronic acid had the lowest binding energy that inhibit both STAT3 (-6.307 kcal/mol) and IL2 (-6.231 kcal/mol). Additionally, STAT3 and IL2 trajectories on zoledronic acid binding exhibit notable differences in MD simulations as compared to a drug-free environment. Also, the in vitro assessment with the zoledronic acid confirms the outcome of our computational study. Overall, our study identify zoledronic acid could be potential inhibitor against these targets, that will benefits patients with RA. Comparative efficiency assessments between the RA drugs through clinical trials are needed to validate our findings in the treatment of RA.
Collapse
Affiliation(s)
- V Janakiraman
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - M Sudhan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
13
|
Yang S, Min HK, Park JS, Na HS, Cho ML, Park SH. A green-lipped mussel prevents rheumatoid arthritis via regulation of inflammatory response and osteoclastogenesis. PLoS One 2023; 18:e0280601. [PMID: 36662733 PMCID: PMC9858385 DOI: 10.1371/journal.pone.0280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by progressive joint destruction. Green-lipped mussel (GLM) has chondro-modulatory and anti-inflammatory properties, but the mechanism underlying the effect of GLM on RA is unclear. To investigate the roles of GLM on the pathogenesis of RA, we examined the effects of GLM in collagen-induced arthritis (CIA) mice and osteoclast differentiation. GLM was orally administrated CIA mice at 3 weeks after chicken type II collagen (CII) immunizations. GLM reduced arthritis severity and the histologic score of CIA mice compared to vehicle. The expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-17) was decreased in the ankle joints of GLM-treated CIA mice. The expression of CD4+ IL-17+ cells decreased in ex vivo splenocytes and the spleens of GLM-treated CIA mice. Moreover, GLM inhibited TRAP+ multinucleated cells among mouse bone marrow-derived monocytes/macrophages (BMM), and the expression of osteoclast-related genes in mouse BMMs and human monocytes in vitro. These results suggest that GLM has potential as a therapeutic agent that can improve disease by controlling pathologic immune cells and osteoclastogenesis.
Collapse
Affiliation(s)
- SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Ki Min
- Department of Internal Medicine, Division of Rheumatology, Konkuk University Medical Center, Seoul, Korea
| | - Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Divison of Rheumatology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
A Scoping Review of the Skeletal Effects of Naringenin. Nutrients 2022; 14:nu14224851. [PMID: 36432535 PMCID: PMC9699132 DOI: 10.3390/nu14224851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteoporosis is caused by the deterioration of bone density and microstructure, resulting in increased fracture risk. It transpires due to an imbalanced skeletal remodelling process favouring bone resorption. Various natural compounds can positively influence the skeletal remodelling process, of which naringenin is a candidate. Naringenin is an anti-inflammatory and antioxidant compound found in citrus fruits and grapefruit. This systematic review aims to present an overview of the available evidence on the skeletal protective effects of naringenin. METHOD A systematic literature search was conducted using the PubMed and Scopus databases in August 2022. Original research articles using cells, animals, or humans to investigate the bone protective effects of naringenin were included. RESULTS Sixteen eligible articles were included in this review. The existing evidence suggested that naringenin enhanced osteoblastogenesis and bone formation through BMP-2/p38MAPK/Runx2/Osx, SDF-1/CXCR4, and PI3K/Akt/c-Fos/c-Jun/AP-1 signalling pathways. Naringenin also inhibited osteoclastogenesis and bone resorption by inhibiting inflammation and the RANKL pathway. CONCLUSIONS Naringenin enhances bone formation while suppressing bone resorption, thus achieving its skeletal protective effects. It could be incorporated into the diet through fruit intake or supplements to prevent bone loss.
Collapse
|
15
|
Mechanism of Emodin in the Treatment of Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9482570. [PMID: 36225183 PMCID: PMC9550445 DOI: 10.1155/2022/9482570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and autoimmune disease, and its main pathological changes are inflammatory cell infiltration accompanied by the secretion and accumulation of a variety of related cytokines, which induce the destruction of cartilage and bone tissue. Therefore, the modulation of inflammatory cells and cytokines is a key therapeutic target for controlling inflammation in RA. This review details the effects of emodin on the differentiation and maturation of T lymphocytes, dendritic cells, and regulatory T cells. In addition, the systematic introduction of emodin directly or indirectly affects proinflammatory cytokines (TNF-α, IL-6, IL-1, IL-1β, IL-17, IL-19, and M-CSF) and anti-inflammatory cytokines (the secretion of IL-4, IL-10, IL-13, and TGF-β) through the coregulation of a variety of inflammatory cytokines to inhibit inflammation in RA and promote recovery. Understanding the potential mechanism of emodin in the treatment of RA in detail provides a systematic theoretical basis for the clinical application of emodin in the future.
Collapse
|
16
|
Sigalov AB. Inhibition of TREM-2 Markedly Suppresses Joint Inflammation and Damage in Experimental Arthritis. Int J Mol Sci 2022; 23:ijms23168857. [PMID: 36012120 PMCID: PMC9408405 DOI: 10.3390/ijms23168857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The triggering receptors expressed on myeloid cells (TREMs) are a family of activating immune receptors that regulate the inflammatory response. TREM-1, which is expressed on monocytes and/or macrophages and neutrophils, functions as an inflammation amplifier and plays a role in the pathogenesis of rheumatoid arthritis (RA). Unlike TREM-1, the role in RA of TREM-2, which is expressed on macrophages, immature monocyte-derived dendritic cells, osteoclasts, and microglia, remains unclear and controversial. TREM-2 ligands are still unknown, adding further uncertainty to our understanding of TREM-2 function. Previously, we demonstrated that TREM-1 blockade, using a ligand-independent TREM-1 inhibitory peptide sequence GF9 rationally designed by our signaling chain homooligomerization (SCHOOL) model of cell signaling, ameliorates collagen-induced arthritis (CIA) severity in mice. Here, we designed a TREM-2 inhibitory peptide sequence IA9 and tested it in the therapeutic CIA model, either as a free 9-mer peptide IA9, or as a part of a 31-mer peptide IA31 incorporated into lipopeptide complexes (IA31-LPC), for targeted delivery. We demonstrated that administration of IA9, but not a control peptide, after induction of arthritis diminished release of proinflammatory cytokines and dramatically suppressed joint inflammation and damage, suggesting that targeting TREM-2 may be a promising approach for the treatment of RA.
Collapse
|
17
|
Eckert D, Rapp F, Tsedeke AT, Kraft D, Wente I, Molendowska J, Basheer S, Langhans M, Meckel T, Friedrich T, Donaubauer AJ, Becker I, Frey B, Fournier C. Modulation of Differentiation and Bone Resorbing Activity of Human (Pre-) Osteoclasts After X-Ray Exposure. Front Immunol 2022; 13:817281. [PMID: 35603191 PMCID: PMC9116137 DOI: 10.3389/fimmu.2022.817281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Low-dose radiotherapy (LD-RT) is a local treatment option for patients with chronic degenerative and inflammatory diseases, in particular musculoskeletal diseases. Despite reported analgesic and anti-inflammatory effects, cellular and molecular mechanisms related to osteoimmunological effects are still elusive. Here we test the hypothesis that X-irradiation inhibits the differentiation of precursor osteoclasts into mature osteoclasts (mOC) and their bone resorbing activity. Circulating monocytes from healthy donors were isolated and irradiated after attachment with single or fractionated X-ray doses, comparable to an LD-RT treatment scheme. Then monocytes underwent ex vivo differentiation into OC during cultivation up to 21 days, under conditions mimicking the physiological microenvironment of OC on bone. After irradiation, apoptotic frequencies were low, but the total number of OC precursors and mOC decreased up to the end of the cultivation period. On top, we observed an impairment of terminal differentiation, i.e. a smaller fraction of mOC, reduced resorbing activity on bone, and release of collagen fragments. We further analyzed the effect of X-irradiation on multinucleation, resulting from the fusion of precursor OC, which occurs late during OC differentiation. At 21 days after exposure, the observation of smaller cellular areas and a reduced number of nuclei per mOC suggest an impaired fusion of OC precursors to form mOC. Before, at 14 days, the nuclear translocation of Nuclear Factor Of Activated T Cells 1 (NFATc1), a master regulator of osteoclast differentiation and fusion, was decreased. In first results, obtained in the frame of a longitudinal LD-RT study, we previously reported a pain-relieving effect in patients. However, in a subgroup of patients suffering from Calcaneodynia or Achillodynia, we did not observe a consistent decrease of established blood markers for resorption and formation of bone, or modified T cell subtypes involved in regulating these processes. To assess the relevance of changes in bone metabolism for other diseases treated with LD-RT will be subject of further studies. Taken together, we observed that in vitro X-irradiation of monocytes results in an inhibition of the differentiation into bone-resorbing OC and a concomitant reduction of resorbing activity. The detected reduced NFATc1 signaling could be one underlying mechanism.
Collapse
Affiliation(s)
- Denise Eckert
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ayele Taddese Tsedeke
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daniela Kraft
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Isabell Wente
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jessica Molendowska
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Sidra Basheer
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Markus Langhans
- Department of Macromolecular and Paper Chemistry and Membrane Dynamics, Technical University Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Macromolecular and Paper Chemistry and Membrane Dynamics, Technical University Darmstadt, Darmstadt, Germany
| | - Thomas Friedrich
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ina Becker
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudia Fournier
- Department of Biophysics, Gesellschaft für Schwerionenforschung (GSI) Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
18
|
Kim GM, Park H, Lee SY. Roles of osteoclast-associated receptor in rheumatoid arthritis and osteoarthritis. Joint Bone Spine 2022; 89:105400. [DOI: 10.1016/j.jbspin.2022.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
19
|
Glytabastan B, a coumestan isolated from Glycine tabacina, alleviated synovial inflammation, osteoclastogenesis and collagen-induced arthritis through inhibiting MAPK and PI3K/AKT pathways. Biochem Pharmacol 2022; 197:114912. [PMID: 35032460 DOI: 10.1016/j.bcp.2022.114912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
Abstract
The roots of Glycine tabacina are used to treat rheumatoid arthritis (RA) and joint infection in folk medicine. Glytabastan B (GlyB), a newly reported coumestan isolated from this species, was found to significantly attenuate IL-1β-induced inflammation in SW982 human synovial cells at 3 and 6 μM, as evidenced by the decreased levels of pro-inflammatory mediators and matrix metalloproteinases (MMPs). GlyB also suppressed RANKL-induced osteoclastogenesis, decreased the expression of osteoclastogenic markers (NFATc1, CTSK, MMP-9) and osteoclast-mediated bone resorption. Further, GlyB administration (12.5 and 25 mg/kg) significantly inhibited inflammation, osteoclast formation and disease progression in collagen-induced arthritis (CIA) mice. Integration of network pharmacology, quantitative phosphoproteomic and experimental pharmacology results revealed that these beneficial actions were closely associated with the blockade of GlyB on the activation of MAPK, PI3K/AKT and their downstream signals including NF-κB and GSK3β/NFATc1. Drug affinity responsive target stability (DARTS) assay, cellular thermal shift (CETSA) assay and molecular docking analysis confirmed that there were direct interactions between GlyB and its target proteins ERK2, JNK1 and class Ⅰ PI3K catalytic subunit p110 (α, β, δ and γ), which significantly contributed to the inhibition of activation of MAPK and PI3K/AKT pathways. In conclusion, these results strongly suggest GlyB is a promising multiple-target candidate for the development of agents for the prevention and treatment of RA.
Collapse
|
20
|
Bhagavatham SKS, Kannan V, Darshan VMD, Sivaramakrishnan V. Nucleotides modulate synoviocyte proliferation and osteoclast differentiation in macrophages with potential implications for rheumatoid arthritis. 3 Biotech 2021; 11:504. [PMID: 34840926 DOI: 10.1007/s13205-021-03052-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022] Open
Abstract
P2 receptors are nucleotide-activated receptors involved in inflammation, cell proliferation osteoblastogenesis, osteoclastogenesis and their function. They can be potential role players in the pathophysiology of rheumatoid arthritis (RA). Our analysis of gene expression datasets of synovial tissue biopsy from the GEO database shows changes in the expression levels of P2 receptors. HIG-82, a synovial fibroblast cell line and RAW 264.7, a macrophage cell line are good in vitro models to study RA. Nucleotide addition experiments showed UDP Glucose significantly increased the proliferation of synovial fibroblasts (HIG-82). Similarly, nucleotides such as Adenosine tri-phosphate (ATP), Adenosine di-phosphate (ADP), Uridine tri-phosphate (UTP), Uridine di-phosphate (UDP) and Uridine diphosphoglucose (UDPG) induced elevated reactive oxygen species (ROS) and tartrate Resistant Acid Phosphatase (TRAP) activity in RAW264.7 cells. The ADP-induced TRAP could be inhibited by clopidogrel a P2Y12 inhibitor. ATP, ADP, UTP, UDP and UDPG also induced osteoclastogenesis as evident from fused multinucleate cells and expression of osteoclast markers (TRAP, Cathepsin K [CTSK]) as determined by Q-PCR. Apyrase (APY) a nucleotidase and an enzyme that is used to modulate extracellular nucleotide concentration is sufficient to induce osteoclastogenesis. Taken together our results show that nucleotides modulate synoviocyte proliferation and macrophage differentiation into osteoclast and play an important role in RA. Nucleotide receptors might be potential therapeutic targets in RA. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03052-8.
Collapse
|
21
|
Interleukin-9 Facilitates Osteoclastogenesis in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms221910397. [PMID: 34638736 PMCID: PMC8508938 DOI: 10.3390/ijms221910397] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022] Open
Abstract
In rheumatoid arthritis (RA), inflammatory cytokines play a pivotal role in triggering abnormal osteoclastogenesis leading to articular destruction. Recent studies have demonstrated enhanced levels of interleukin-9 (IL-9) in the serum and synovial fluid of patients with RA. In RA, strong correlation has been observed between tissue inflammation and IL-9 expression in synovial tissue. Therefore, we investigated whether IL-9 influences osteoclastogenesis in patients with RA. We conducted the study in active RA patients. For inducing osteoclast differentiation, mononuclear cells were stimulated with soluble receptor activator of NF-kB ligand (sRANKL) and macrophage-colony-stimulating factor (M-CSF) in the presence or absence of recombinant (r) IL-9. IL-9 stimulation significantly enhanced M-CSF/sRANKL-mediated osteoclast formation and function. Transcriptome analysis revealed differential gene expression induced with IL-9 stimulation in the process of osteoclast differentiation. IL-9 mainly modulates the expression of genes, which are involved in the metabolic pathway. Moreover, we observed that IL-9 modulates the expression of matrix metalloproteinases (MMPs), which are critical players in bone degradation. Our results indicate that IL-9 has the potential to influence the structural damage in the RA by promoting osteoclastogenesis and modulating the expression of MMPs. Thus, blocking IL-9 pathways might be an attractive immunotherapeutic target for preventing bone degradation in RA.
Collapse
|
22
|
Uesato N, Inagaki K, Miyagawa N, Kitagawa Y, Kakefuda R, Matsuo Y, Yamaguchi T, Hata T, Ikegashira K, Matsushita M. JTE-952 Suppresses Bone Destruction in Collagen-Induced Arthritis in Mice by Inhibiting Colony Stimulating Factor 1 Receptor. Biol Pharm Bull 2021; 43:1884-1892. [PMID: 33268706 DOI: 10.1248/bpb.b20-00517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and structural destruction of the joints. Bone damage occurs in an early stage after onset and osteoclast activation plays a substantial role in its progression. Colony stimulating factor 1 receptor (CSF1R) is a receptor protein tyrosine kinase specifically expressed in monocytic-lineage cells such as macrophages and osteoclasts. Here, we investigated the effect of JTE-952, a novel CSF1R tyrosine kinase inhibitor, on osteoclast formation in vitro and on bone destruction in a mouse model of collagen-induced arthritis. JTE-952 completely inhibited osteoclast differentiation from human monocytes, with an IC50 of 2.8 nmol/L, and reduced osteoclast formation from the synovial cells of RA patients. Detectable levels of colony stimulating factor 1 (CSF1), a ligand of CSF1R, were observed in the synovial tissues of the arthritis model, similar to those observed in the pathology of human RA. JTE-952 significantly suppressed increases in the bone destruction score, the number of tartrate-resistant-acid-phosphatase-positive cells, and the severity of arthritis in the model mice. We also examined the efficacy of JTE-952 combined with methotrexate. This combination therapy more effectively reduced the severity of bone destruction and arthritis than monotherapy with either agent alone. In summary, JTE-952 potently inhibited human osteoclast formation in vitro and suppressed bone destruction in an experimental arthritis model, especially when combined with methotrexate. These results indicate that JTE-952 should strongly inhibit bone destruction and joint inflammation in RA patients and effectively prevent the progression of the structural destruction of joints.
Collapse
Affiliation(s)
- Naofumi Uesato
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Koji Inagaki
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Naoki Miyagawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Reina Kakefuda
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Yushi Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Takahiro Hata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | | |
Collapse
|
23
|
ELMO1 signaling is a promoter of osteoclast function and bone loss. Nat Commun 2021; 12:4974. [PMID: 34404802 PMCID: PMC8371122 DOI: 10.1038/s41467-021-25239-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis affects millions worldwide and is often caused by osteoclast induced bone loss. Here, we identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ in osteoclasts. We note that ELMO1 SNPs associate with bone abnormalities in humans, and that ELMO1 deletion in mice reduces bone loss in four in vivo models: osteoprotegerin deficiency, ovariectomy, and two types of inflammatory arthritis. Our transcriptomic analyses coupled with CRISPR/Cas9 genetic deletion identify Elmo1 associated regulators of osteoclast function, including cathepsin G and myeloperoxidase. Further, we define the ‘ELMO1 interactome’ in osteoclasts via proteomics and reveal proteins required for bone degradation. ELMO1 also contributes to osteoclast sealing zone on bone-like surfaces and distribution of osteoclast-specific proteases. Finally, a 3D structure-based ELMO1 inhibitory peptide reduces bone resorption in wild type osteoclasts. Collectively, we identify ELMO1 as a signaling hub that regulates osteoclast function and bone loss, with relevance to osteoporosis and arthritis. Osteoporosis and bone fractures affect millions of patients worldwide and are often due to increased bone resorption. Here the authors identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ promoting the bone resorption function of osteoclasts.
Collapse
|
24
|
Malhotra H, Garg V, Singh G. Biomarker Approach Towards Rheumatoid Arthritis Treatment. Curr Rheumatol Rev 2021; 17:162-175. [PMID: 33327920 DOI: 10.2174/1573397116666201216164013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
Rheumatoid arthritis is an auto-immune disorder, recognized by cartilage as well as bone destruction, which causes irreversible joint deformities, which further results in functional limitations in the patient. Genes like HLA-DRB1 and PTPN22 are likely implicated in the genetic predisposition of rheumatoid arthritis pathology. The first and foremost clinical manifestation in a person with rheumatoid arthritis is joint destruction followed by cartilage and bone destruction caused by cell-cell interactions. The cell-cell interactions are thought to be initialized through the contact of antigen-presenting cells (APC) with CD4+ cells, leading to the progression of the disease. APC includes a complex of class ІІ major histocompatibility complex molecules along with peptide antigens and binds to the receptors present on the surface of T-cells. Further, the activation of macrophages is followed by the release of various pro-inflammatory cytokines such as IL-1 and TNF-α, which lead to the secretion of enzymes that degrade proteoglycan and collagen, which in turn, increase tissue degradation. Biomarkers like IL-6, IL-12, IL-8 and IL-18, 14-3-3η, RANKL, IFN-γ, IFN-β and TGF-β have been designated as key biomarkers in disease development and progression. The study of these biomarkers is very important as they act as a molecular indicator of pathological processes that aggravate the disease.
Collapse
Affiliation(s)
- Hitesh Malhotra
- Chandigarh College of Pharmacy Landran, Mohali, Punjab, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
25
|
Wu G, Nie W, Wang Q, Hao Y, Gong S, Zheng Y, Lv H. Umbelliferone Ameliorates Complete Freund Adjuvant-Induced Arthritis via Reduction of NF-κB Signaling Pathway in Osteoclast Differentiation. Inflammation 2021; 44:1315-1329. [PMID: 33484396 DOI: 10.1007/s10753-021-01418-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022]
Abstract
Osteoclasts, bone-resorbing somatic cells, are directly responsible for bone destruction during rheumatoid arthritis. Complete Freund adjuvant (CFA) is a widely used animal model using rodents for studying rheumatoid arthritis (RA), which effectively manifests serious cartilage destruction and progressive bone erosion, affecting synovial joints and serious joint dysfunction. It was considered that joint injury in RA is induced through systemic inflammation pathway. Umbelliferone (UF), a coumarin derivative of Agele marmilosa, possesses anti-inflammatory activity. In the current study, we scrutinize the effect of umbelliferone on CFA-induced arthritis model and explore the possible mechanism on bone destruction. Intradermal administration of CFA (0.05 mL) was to induce RA manifestations in the experimental rats and the same oral administration of UF was received. The anti-arthritic activity of UF was determined by its inhibitory activity on various biochemical markers, viz., pro-inflammatory, inflammatory, antioxidant enzymes, and hematological parameters elevated during RA condition. We also estimated the mRNA expression of osteoclast parameters. Obtained result disclosed significant reduction in the paw edema and increment of the body weight after UF administration. UF reduce the inflammatory mediatory such as COX-2, PGE2, NF-kB, and VEGF; pro-inflammatory cytokines include TNF-α, IL-1β, IL-6, IL-10, and IL-17 significantly. Moreover, UF treatment significantly reduced the osteoclast number via modulating the RANKL/RANK/OPG ratio. Furthermore, administration of umbelliferone significantly (P < 0.001) suppressed the NF-κB and VEGF. Collectively, our results indicated the novel role of umbelliferone in osteoclastogenesis and proved that umbelliferone is a modern therapeutic tool as a natural agent for treating arthritis and other autoimmune disorders with bone degradation.
Collapse
Affiliation(s)
- Guofeng Wu
- Department of Articular Orthopaedics, The First People's Hospital of Changzhou, Changzhou, 213000, Jiangsu, China
| | - Wenbo Nie
- Department of Orthopaedics, Shanxian Central Hospital, Heze, 274300, Shandong, China
| | - Qiu Wang
- Department of Surgery, Hot Spring Sanatorium of Linyi, Shandong Coal (Linyi Hedong Central Hospital, Linyi, 276032, Shandong, China
| | - Youguo Hao
- Department of Rehabilitation, Shanghai Putuo People's Hospital, Shanghai, 200060, China
| | - Shaohua Gong
- Department of Spinal surgery, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yuxin Zheng
- Department of Orthopedics, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Hao Lv
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
26
|
Li X, Wang Y, Li L, Zhou S, Zhao F. Sclareol inhibits RANKL-induced osteoclastogenesis and promotes osteoblastogenesis through promoting CCN1 expression via repressing the MAPK pathway. Cell Biol Toxicol 2021; 37:849-871. [PMID: 33423118 DOI: 10.1007/s10565-020-09578-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022]
Abstract
Osteoclasts are crucial cellular components of bone and are the cause of various bone problems like osteoporosis. Various biological activities such as anti-tumorous, anti-inflammatory, antibacterial, and immunomodulatory function are influenced by Sclareol, as a natural diterpene compound. However, studies on the effect and mechanism of Sclareol on osteoporosis are rare. In the current research, the influence of Sclareol on osteoclastogenesis and osteoblastogenesis was targeted to be discovered in ovariectomy (OVX)-induced animal models and in vitro. The expression levels of osteoclast-related genes such as c-Fos, NFATc1, and CTSK were detected by RT-qPCR and western blotting to understand the inhibition of Sclareol on the creation of osteoclast. The influence of Sclareol on osteoblastogenesis and the expression of osteoblastogenic markers were also examined. Sclareol inhibited the osteoclastogenesis caused by receptor activator of nuclear factor-κB ligand (RANKL) which promoted osteoblastogenesis through upregulating the expression of cysteine-rich protein 61 (CYR61/CCN1), which is a matricellular protein of the CCN family. The p-ERK and p-P38 protein expression levels were considerably downregulated by Sclareol. Furthermore, CCN1 overexpression partially mimicked the inhibitory effect of Sclareol, while the opposite results were obtained after CCN1 silencing. Additionally, Sclareol protected against loss of bones in an osteoporosis mouse model generated by OVX. The acquired results indicated that Sclareol represses RANKL-induced osteoclastogenesis and promotes osteoblastogenesis via promoting the expression of CCN1 by constraining the mitogen-activated protein kinase (MAPK) pathway. Our findings proposed that for the avoidance and treatment of osteoclast-linked disorders, Sclareol is a potentially effective drug. A proposed model for mediated regulation of osteoclastogenesis and osteoblastogenesis by Sclareol. The basic model of the process by which Sclareol prevents osteoclastogenesis and promotes osteoblastogenesis. Sclareol may increase the expression of CCN1 through inhibiting the MAPK pathway, thereby inhibiting osteoclast differentiation and attenuating bone resorption. Sclareol represses the expression of c-Fos, which stimulates the formation of osteoclast. In contrast, Sclareol promotes osteoblast differentiation by upregulating Runx2 expression, thereby improving the formation of bones. Consequently, Sclareol protects against loss of bones by regulating the stability of bone makeover via inhibition of bone formation and stimulation of bone resorption. Graphical Headlights 1. Sclareol represses RANKL-induced osteoclastogenesis. 2. Sclareol promotes osteoblast differentiation. 3. Sclareol inhibits the MAPK pathway through induction of CCN1. 4. Sclareol protects against bone loss by regulating the balance of bone remodeling via inhibition of bone formation and stimulation of bone resorption.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
27
|
Tu Y, Wang K, Jia X, Tan L, Han B, Zhang Q, Li Y, He C. Isolation and Identification of Antiarthritic Constituents from Glycine tabacina and Network Pharmacology-Based Prediction of Their Protective Mechanisms against Rheumatoid Arthritis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10664-10677. [PMID: 32530618 DOI: 10.1021/acs.jafc.0c00878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glycine tabacina (Labill.) Benth is an edible medicinal herb for rheumatoid arthritis (RA) treatment in folk medicine. Current phytochemical research on this dried herb led to the isolation of eight new coumestans, named glytabastan A-H (1-8), and twenty-three known compounds 9-31. Their structures were elucidated using spectroscopic methods. The antiarthritic activities of all isolates were evaluated, and the results showed that coumestans 1-6 and 8-10 could inhibit arthritic inflammation in vitro, while coumestans 1, 2, 9, and 10 significantly blocked the osteoclastogenesis induced by receptor activator of nuclear factor (NF) κB ligand (RANKL). Moreover, network pharmacological analysis revealed that the anti-RA effect of G. tabacina involved multitargets, multipathways such as PI3K/Akt and MAPK signaling pathways, and various biological processes such as inflammatory response and cytokine-mediated signaling pathways. These results suggested that this species and its novel coumestans could serve as potential antiarthritic agents for functional food or medicinal use.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
28
|
Li J, Tang RS, Shi Z, Li JQ. Nuclear factor‐κB in rheumatoid arthritis. Int J Rheum Dis 2020; 23:1627-1635. [PMID: 32965792 DOI: 10.1111/1756-185x.13958] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Jie Li
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Rong-Shuang Tang
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhou Shi
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jin-Qi Li
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province & Sichuan Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
29
|
Salvatore T, Pafundi PC, Galiero R, Gjeloshi K, Masini F, Acierno C, Di Martino A, Albanese G, Alfano M, Rinaldi L, Sasso FC. Metformin: A Potential Therapeutic Tool for Rheumatologists. Pharmaceuticals (Basel) 2020; 13:ph13090234. [PMID: 32899806 PMCID: PMC7560003 DOI: 10.3390/ph13090234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes, acting via indirect activation of 5′ Adenosine Monophosphate-activated Protein Kinase (AMPK). Actually, evidence has accumulated of an intriguing anti-inflammatory activity, mainly mediated by AMPK through a variety of mechanisms such as the inhibition of cytokine-stimulated Nuclear Factor-κB (NF-κB) and the downregulation of the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathways. Moreover, AMPK plays an important role in the modulation of T lymphocytes and other pivotal cells of the innate immune system. The current understanding of these AMPK effects provides a strong rationale for metformin repurposing in the management of autoimmune and inflammatory conditions. Several studies demonstrated metformin’s beneficial effects on both animal and human rheumatologic diseases, especially on rheumatoid arthritis. Unfortunately, even though data are large and remarkable, they almost exclusively come from experimental investigations with only a few from clinical trials. The lack of support from prospective placebo-controlled trials does not allow metformin to enter the therapeutic repertoire of rheumatologists. However, a large proportion of rheumatologic patients can currently benefit from metformin, such as those with concomitant obesity and type 2 diabetes, two conditions strongly associated with rheumatoid arthritis, osteoarthritis, and gout, as well as those with diabetes secondary to steroid therapy.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Francesco Masini
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Carlo Acierno
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
30
|
Dimitrijević M, Arsenović-Ranin N, Bufan B, Nacka-Aleksić M, Kosec D, Pilipović I, Kotur-Stevuljević J, Simić L, Sopta J, Leposavić G. Sex-Based Differences in Monocytic Lineage Cells Contribute to More Severe Collagen-Induced Arthritis in Female Rats Compared with Male Rats. Inflammation 2020; 43:2312-2331. [PMID: 32857321 DOI: 10.1007/s10753-020-01302-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Monocytes' plasticity has an important role in the development of rheumatoid arthritis (RA), an autoimmune disease exhibiting greater prevalence in women. Contribution of this phenomenon to sex bias in RA severity was investigated in rat collagen-induced arthritis (CIA) model of RA. The greater severity of CIA in females (exhibiting signs of bone resorption) was accompanied by the higher blood level of advanced oxidation protein products and a more pro-oxidant profile. Consistently, in females, the greater density of giant multinuclear cells (monocytes/macrophages and osteoclasts) in inflamed joint tissue was found. This correlated with the higher frequencies of CCR2- and CX3CR1- expressing cells (precursors of inflammatory monocytes/macrophages and osteoclasts) among CD11b+ splenocytes. This in conjunction with the enhanced migratory capacity of CD11b+ monocytic cells in females compared with males could be linked with the higher frequencies of CCR2+CX3CR1-CD43lowCD11b+ and CCR2-CX3CR1+CD43hiCD11b+ cells (corresponding to "classical" and "non-classical" monocytes, respectively) and the greater density of CD68+ cells (monocytes/macrophages and osteoclast precursors/osteoclasts) in blood and inflamed paws from female rats, respectively. Consistently, the higher levels of GM-CSF, TNF-α and IL-6, IL-1β (driving Th17 cell differentiation), and IL-17 followed by the lower level of IL-10 were measured in inflamed paw cultures from female compared with male rats. To the greater IL-17 production (associated with enhanced monocyte immigration and differentiation into osteoclasts) most likely contributed augmented Th17 cell generation in the lymph nodes draining arthritic joints from female compared with male rats. Overall, the study suggests the sex-specific contribution of monocytic lineage cells to CIA, and possibly RA development.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Ljubica Simić
- Department for Pathology, Faculty of Medicine, University of Belgrade, Dr Subotića 4/2, Belgrade, Serbia
| | - Jelena Sopta
- Department for Pathology, Faculty of Medicine, University of Belgrade, Dr Subotića 4/2, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
31
|
Tu Y, Wang K, Tan L, Han B, Hu Y, Ding H, He C. Dolichosin A, a coumestan isolated from Glycine tabacina, inhibits IL-1β-induced inflammation in SW982 human synovial cells and suppresses RANKL-induced osteoclastogenesis: From network pharmacology to experimental pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112855. [PMID: 32376366 DOI: 10.1016/j.jep.2020.112855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycine tabacina (Labill.) Benth has been used as a traditional Chinese herbal medicine for the treatment of rheumatoid arthritis (RA) and joint infection. It is also one of the sources of the renowned native herbal medicine 'I-Tiao-Gung' in Taiwan. AIM OF THE STUDY This study aimed to investigate anti-arthritic effects and underlying mechanisms of dolichosin A (DoA), a coumestan compound isolated from G. tabacina, by the integration of network pharmacology and experimental pharmacology. MATERIALS AND METHODS Putative therapeutic targets and potential pharmacological mechanisms of DoA for RA treatment were predicted by network pharmacology approach. The regulated network of DoA acting on RA was constructed using Cytoscape 3.7.1. Anti-arthritic effects of DoA and predicted mechanisms were further validated using IL-1β-induced SW982 human synovial cell model and RANKL-induced osteoclastogenesis model. RESULTS A regulatory network of DoA-targets-pathways-RA was successfully constructed using network pharmacology approach. In this network, 65 candidate targets of DoA related to its therapeutic effect on RA were identified and the functional enrichment analysis revealed that these candidate targets were significantly involved in 12 central signaling pathways such as PI3K/AKT pathway, MAPK pathway and osteoclast differentiation. Furthermore, we found that DoA could significantly inhibit IL-1β-induced inflammation in SW982 human synovial cells, as evidenced by the decreased levels of pro-inflammatory mediators (TNF-α, IL-6 and COX-2) and MMP-3. DoA also suppressed RANKL-induced osteoclastogenesis in vitro, as evidenced by decreased number of TRAP-positive multinucleated osteoclasts and reduced TRAP activity. Further experimental mechanism evidence confirmed the predicted results of network pharmacology that the blockade of PI3K/AKT and MAPK pathways activation was closely associated with these regulated processes of DoA. CONCLUSIONS Our results demonstrated that DoA exhibited strong anti-arthritic activity through suppressing PI3K/AKT and MAPK pathways activation in activated synovial cells and osteoclasts, suggesting its potential as a hopeful candidate for the development of novel agents for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR, 999078, China.
| |
Collapse
|
32
|
Wu J, Fan KJ, Wang QS, Xu BX, Cai Q, Wang TY. DMY protects the knee joints of rats with collagen-induced arthritis by inhibition of NF-κB signaling and osteoclastic bone resorption. Food Funct 2020; 11:6251-6264. [PMID: 32596704 DOI: 10.1039/d0fo00396d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Collagen-induced arthritis (CIA) is a widely used animal model for studying rheumatoid arthritis (RA), which manifests serious joint dysfunction, progressive bone erosion and articular cartilage destruction. Considering that joint damage in RA is caused by systemic inflammation and dihydromyricetin (DMY), the main flavonoid of Ampelopsis Michx, possesses anti-inflammatory properties, in the present study we have investigated the potential capability of DMY to inhibit inflammation-mediated joint damage and explore the underlying mechanisms. A rat model of RA induced by CIA was administered with DMY for 5 weeks. Prior to histological analysis, the knee joints were scanned by microcomputed tomography (μCT) to detect bone damage. Articular cartilage destruction was assessed by Alcian blue and Toluidine blue staining and the pathological alteration of osteoblasts and osteoclasts in joints was evaluated by hematoxylin-eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining, respectively. The effects of DMY on osteoblast differentiation and osteoclast formation in vitro were investigated. Consistent with the in vivo results, DMY had no significant effect on osteoblast differentiation but an inhibitory effect on osteoclast formation. Furthermore, we determined that the mechanism of the DMY-suppressed osteoclast formation was blocking the phosphorylation of I-κB kinase (IKK) so as to hinder the activation of nuclear factor-κB (NF-κB). Collectively, DMY could ameliorate knee joint damage, especially in articular cartilage, which is the weight-bearing region, by inhibiting osteoclast formation through NF-κB signaling.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
33
|
Phenotypic and functional characterization of natural killer cells in rheumatoid arthritis-regulation with interleukin-15. Sci Rep 2020; 10:5858. [PMID: 32246007 PMCID: PMC7125139 DOI: 10.1038/s41598-020-62654-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and joint destruction. Previous studies have shown that natural killer (NK) cells may play an important role in the pathogenesis of RA. Interleukin (IL)-15, a pro-inflammatory cytokine which induces proliferation and differentiation of NK cells, is overexpressed in RA. In this present study, we examine various NKRs and adhesion molecule expression on NK cells from RA patients and their response to IL-15 stimulation. We also sought to study cytokine-induced memory-like (CIML) NK cells in RA patients. We established that 1. RA patients had higher NK cell percentages in peripheral blood and their serum IL-15 levels were higher compared to healthy volunteers; 2. NK cells from RA patients showed lower NKp46 expression and an impaired CD69 response to IL-15; 3. NK cells from RA patients showed higher CD158b and CD158e expression but lower CD62L expression; 4. exogenous IL-15 up-regulated CD69, CD158b, CD158e but down-regulated NKp46 and CD62L expression in RA; 5. As to CIML NK cells, restimulation - induced NK cytotoxicity and IFN-γ production was impaired in RA patients, 6. Reduced NKp46, perforin, and granzyme B expression on NK cells was found in RA patients with bone deformity and erosion, 7. RA disease activity (DAS28) showed inverse correlation with the percentages of CD56+CD3− NK cells, and NKp46 and perforin expression on NK cells, respectively. Taken together, our study demonstrated differential expression of various NK receptors in RA patients. NKp46, CD158e, and perforin expression on NK cells may serve as markers of RA severity.
Collapse
|
34
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Tokunaga T, Mokuda S, Kohno H, Yukawa K, Kuranobu T, Oi K, Yoshida Y, Hirata S, Sugiyama E. TGFβ1 Regulates Human RANKL-Induced Osteoclastogenesis via Suppression of NFATc1 Expression. Int J Mol Sci 2020; 21:ijms21030800. [PMID: 31991837 PMCID: PMC7038124 DOI: 10.3390/ijms21030800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are multinucleated giant cells responsible for bone resorption. Various mediators involved in osteoclast differentiation have been investigated as possible therapeutic targets for osteoporosis and rheumatoid arthritis (RA). Although transforming growth factor beta1 (TGFβ1) has been described as one such multifunctional cytokine essential for bone remodeling, its effect on osteoclastogenesis remains controversial. Therefore, we sought to examine the effect of TGFβ1 on osteoclast generation induced by receptor activator of nuclear factor (NF)-κB ligand (RANKL) in humans. Peripheral blood monocytes, isolated using magnetic bead sorting, were cultured with macrophage-colony stimulating factor (M-CSF) or RANKL with or without TGFβ1. Tartrate-resistant acid phosphatase (TRAP) staining, as well as bone resorption assays, revealed that TGFβ1 suppressed RANKL-mediated human osteoclast development. Real-time reverse transcription PCR and Western blotting revealed that TGFβ1 reduced the gene and protein expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), the master regulator of osteoclast differentiation, respectively. Luciferase assays indicated that TGFβ1 inhibited the NF-κB p65-stimulated promoter activity of NFATc1. Immunofluorescence analysis demonstrated that TGFβ1 abrogated RANKL-induced nuclear translocation of p65. Thus, TGFβ1 regulates human RANKL-induced osteoclastogenesis via downregulation of NFATc1 by blocking nuclear translocation of NF-κB, suggesting that TGFβ1 may be a potential therapeutic target for RA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eiji Sugiyama
- Correspondence: ; Tel.: +81 82 257 5539; Fax: +81 82 257 1584
| |
Collapse
|
36
|
Singh V, Kalliolias GD, Ostaszewski M, Veyssiere M, Pilalis E, Gawron P, Mazein A, Bonnet E, Petit-Teixeira E, Niarakis A. RA-map: building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database (Oxford) 2020; 2020:baaa017. [PMID: 32311035 PMCID: PMC7170216 DOI: 10.1093/database/baaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of unknown aetiology. The complex mechanism of aetiopathogenesis, progress and chronicity of the disease involves genetic, epigenetic and environmental factors. To understand the molecular mechanisms underlying disease phenotypes, one has to place implicated factors in their functional context. However, integration and organization of such data in a systematic manner remains a challenging task. Molecular maps are widely used in biology to provide a useful and intuitive way of depicting a variety of biological processes and disease mechanisms. Recent large-scale collaborative efforts such as the Disease Maps Project demonstrate the utility of such maps as versatile tools to organize and formalize disease-specific knowledge in a comprehensive way, both human and machine-readable. We present a systematic effort to construct a fully annotated, expert validated, state-of-the-art knowledge base for RA in the form of a molecular map. The RA map illustrates molecular and signalling pathways implicated in the disease. Signal transduction is depicted from receptors to the nucleus using the Systems Biology Graphical Notation (SBGN) standard representation. High-quality manual curation, use of only human-specific studies and focus on small-scale experiments aim to limit false positives in the map. The state-of-the-art molecular map for RA, using information from 353 peer-reviewed scientific publications, comprises 506 species, 446 reactions and 8 phenotypes. The species in the map are classified to 303 proteins, 61 complexes, 106 genes, 106 RNA entities, 2 ions and 7 simple molecules. The RA map is available online at ramap.elixir-luxembourg.org as an open-access knowledge base allowing for easy navigation and search of molecular pathways implicated in the disease. Furthermore, the RA map can serve as a template for omics data visualization.
Collapse
Affiliation(s)
- Vidisha Singh
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - George D Kalliolias
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
- Weill Cornell Medical Center, Weill Department of Medicine, 525 East 68th Street, New York, NY 10065, USA
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Maëva Veyssiere
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Eleftherios Pilalis
- eNIOS Applications P.C., R&D department, Alexandrou Pantou 25, 17671, Kallithea-Athens, Greece
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, 2 rue Gaston Crémieux, CP5706 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Elisabeth Petit-Teixeira
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Anna Niarakis
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| |
Collapse
|
37
|
Tongaonkar P, Punj V, Subramanian A, Tran DQ, Trinh KK, Schaal JB, Laragione T, Ouellette AJ, Gulko PS, Selsted ME. RTD-1 therapeutically normalizes synovial gene signatures in rat autoimmune arthritis and suppresses proinflammatory mediators in RA synovial fibroblasts. Physiol Genomics 2019; 51:657-667. [PMID: 31762409 DOI: 10.1152/physiolgenomics.00066.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rhesus theta defensin-1 (RTD-1), a macrocyclic immunomodulatory host defense peptide from Old World monkeys, is therapeutic in pristane-induced arthritis (PIA) in rats, a model of rheumatoid arthritis (RA). RNA-sequence (RNA-Seq) analysis was used to interrogate the changes in gene expression in PIA rats, which identified 617 differentially expressed genes (DEGs) in PIA synovial tissue of diseased rats. Upstream regulator analysis showed upregulation of gene expression pathways regulated by TNF, IL1B, IL6, proinflammatory cytokines, and matrix metalloproteases (MMPs) involved in RA. In contrast, ligand-dependent nuclear receptors like the liver X-receptors NR1H2 and NR1H3 and peroxisome proliferator-activated receptor gamma (PPARG) were downregulated in arthritic synovia. Daily RTD-1 treatment of PIA rats for 1-5 days following disease presentation modulated 340 of the 617 disease genes, and synovial gene expression in PIA rats treated 5 days with RTD-1 closely resembled the gene signature of naive synovium. Systemic RTD-1 inhibited proinflammatory upstream regulators such as TNF, IL1, and IL6 and activated antiarthritic ligand-dependent nuclear receptor pathways, including PPARG, NR1H2, and NR1H3, that were suppressed in untreated PIA rats. RTD-1 also inhibited proinflammatory responses in IL-1β-stimulated human RA fibroblast-like synoviocytes (FLS) in vitro and diminished expression of human orthologs of disease genes that are induced in rat PIA synovium. Thus, the antiarthritic mechanisms of systemic RTD-1 include homeostatic regulation of arthritogenic gene networks in a manner that correlates temporally with clinical resolution of rat PIA.
Collapse
Affiliation(s)
- Prasad Tongaonkar
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Akshay Subramanian
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dat Q Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Oryn Therapeutics, LLC, Vacaville, California
| | - Katie K Trinh
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Justin B Schaal
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York and
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Percio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York and
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Oryn Therapeutics, LLC, Vacaville, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
38
|
Hsu T, Nguyen-Tran HH, Trojanowska M. Active roles of dysfunctional vascular endothelium in fibrosis and cancer. J Biomed Sci 2019; 26:86. [PMID: 31656195 PMCID: PMC6816223 DOI: 10.1186/s12929-019-0580-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is the underlying pathological condition that results in fibrotic diseases. More recently, many forms of cancer have also been linked to chronic tissue inflammation. While stromal immune cells and myofibroblasts have been recognized as major contributors of cytokines and growth factors that foster the formation of fibrotic tissue, the endothelium has traditionally been regarded as a passive player in the pathogenic process, or even as a barrier since it provides a physical divide between the circulating immune cells and the inflamed tissues. Recent findings, however, have indicated that endothelial cells in fact play a crucial role in the inflammatory response. Endothelial cells can be activated by cytokine signaling and express inflammatory markers, which can sustain or exacerbate the inflammatory process. For example, the activated endothelium can recruit and activate leukocytes, thus perpetuating tissue inflammation, while sustained stimulation of endothelial cells may lead to endothelial-to-mesenchymal transition that contributes to fibrosis. Since chronic inflammation has now been recognized as a significant contributing factor to tumorigenesis, it has also emerged that activation of endothelium also occurs in the tumor microenvironment. This review summarizes recent findings characterizing the molecular and cellular changes in the vascular endothelium that contribute to tissue fibrosis, and potentially to cancer formation.
Collapse
Affiliation(s)
- Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China. .,Center for Chronic Disease Research, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China.
| | - Hieu-Huy Nguyen-Tran
- Department of Biomedical Sciences and Engineering, National Central University, 300 Jhongda Rd, Taoyuan City, Taiwan, Republic of China
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| |
Collapse
|
39
|
Li ZY, Zhou JJ, Luo CL, Zhang LM. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen II‑induced arthritis. Mol Med Rep 2019; 20:4540-4550. [PMID: 31702035 PMCID: PMC6797944 DOI: 10.3892/mmr.2019.10711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory synovitis resulting in progressive joint destruction. Persistent synovial inflammation is induced by activation of various inflammatory cells. G-protein-coupled bile acid receptor 1 (TGR5) is a G-protein-coupled receptor activated by various bile acids, which has been reported to act as a key adaptor in regulating various signaling pathways involved in inflammatory responses and a diverse array of physiological processes, including bile acid synthesis, lipid and carbohydrate metabolism, carcinogenesis, immunity and inflammation. In the present study, TGR5 expression was detected in RA peripheral blood mononuclear cells (PBMCs), and its association with clinical disease activity, histological synovitis severity and radiological joint destruction was analyzed. Subsequently, the role and potential underlying mechanisms of TGR5 in the PBMCs of patients with RA and mice with collagen II-induced arthritis (CIA) were investigated. PBMCs were obtained from 50 patients with RA and 40 healthy controls (HCs). The mRNA and protein expression levels of TGR5 were detected in PBMCs via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence staining, respectively. Additionally, the levels of proinflammatory cytokines were analyzed by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). The activation of nuclear factor-κB (NF-κB) and IκB kinase a was determined via western blot analysis. The anti-arthritic and anti-inflammatory effects of LCA on mice with CIA were then investigated. The arthritis score was assessed, and the protein levels of proinflammatory cytokines in the plasma of mice were detected via ELISA. TGR5 mRNA expression was significantly downregulated in the PBMCs of patients with RA compared with in those of the HCs (0.53±0.58 for patients vs. 1.49±0.83 for HCs; P<0.001); similar findings were observed at the protein level. The mRNA expression levels of TGR5 in the PBMCs of patients with RA with a high 28-Joint Disease Activity Score (DAS28) were significantly decreased compared with in patients with a low DAS28 (0.81±0.65 for low score vs. 0.35±0.46 for high score; P=0.002). Furthermore, TGR5 expression was significantly correlated with the levels of C-reactive protein (r=−0.429; P=0.002) and the DAS28 (r=−0.383; P=0.006). RT-qPCR and ELISA analyses indicated that lithocholic acid (LCA, 10 mg/kg/day) attenuated lipopolysaccharide-induced proinflammatory cytokine production via inhibition of NF-κB activity in the PBMCs of patients with RA. In addition, the arthritis score was significantly decreased in LCA-treated CIA mice compared with in non-treated CIA mice. The increased production of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-8 was significantly reduced in the plasma of LCA-treated CIA mice compared with the control. In conclusion, TGR5 may contribute to the inflammation of PBMCs in patients with RA and mice with CIA.
Collapse
Affiliation(s)
- Zhe-Yong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang 310017, P.R. China
| | - Jing-Jing Zhou
- Department of Rheumatology, Navy General Hospital, Beijing 100048, P.R. China
| | - Chun-Lei Luo
- Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 3150102, P.R. China
| | - Le-Meng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
40
|
Cutolo M, Sulli A. Testing the anti-osteoclastic function of biologic DMARDs. Nat Rev Rheumatol 2019; 14:446-448. [PMID: 29995843 DOI: 10.1038/s41584-018-0046-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine, University of Genova, San Martino Polyclinic Hospital, Genova, Italy.
| | - Alberto Sulli
- Research Laboratories and Academic Division of Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine, University of Genova, San Martino Polyclinic Hospital, Genova, Italy
| |
Collapse
|
41
|
Rajaei E, Haybar H, Mowla K, Zayeri ZD. Metformin one in a Million Efficient Medicines for Rheumatoid Arthritis Complications: Inflammation, Osteoblastogenesis, Cardiovascular Disease, Malignancies. Curr Rheumatol Rev 2019; 15:116-122. [PMID: 30019648 DOI: 10.2174/1573397114666180717145745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Rheumatoid arthritis is a widespread autoimmune disease and inflammation and bone destruction are two main issues in rheumatoid arthritis. OBJECTIVE To discussing metformin effects on rheumatoid arthritis complications. METHODS We conducted a narrative literature search including clinical trials, experimental studies on laboratory animals and cell lines. Our search covered Medline, PubMed and Google Scholar databases from 1999 until 2018. We used the terms" Metformin; Rheumatoid arthritis; Cardiovascular disease; Cancer; Osteoblastogenesis. DISCUSSION Inflammatory pro-cytokines such as Interlukin-6 play important roles in T. helper 17 cell lineage differentiation. Interlukin-6 and Tumor Necrosis Factor-α activate Janus kinase receptors signal through signaling transducer and activator of transcription signaling pathway which plays important role in inflammation, bone destruction and cancer in rheumatoid arthritis patients. Interlukin-6 and Tumor Necrosis Factor-α synergistically activate signaling transducer and activator of transcription and Nuclear Factor-kβ pathways and both cytokines increase the chance of cancer development in rheumatoid arthritis patients. Metformin is AMPK activators that can suppress mTOR, STAT3 and HIF-1 so AMPK activation plays important role in suppressing inflammation and osteoclastogenesis and decreasing cancer. CONCLUSION Metformin effect on AMPK and mTOR pathways gives the capability to change Treg/Th17 balance and decrease Th17 differentiation and inflammation, osteoclastogenesis and cancers in RA patients. Metformin can be useful in protecting bones especially in first stages of RA and it can decrease inflammation, CVD and cancer in RA patients so Metformin beside DAMARs can be useful in increasing RA patients' life quality with less harm and cost.
Collapse
Affiliation(s)
- Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Haybar
- Department of Cardiology, Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Karim Mowla
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab D Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis. Int Immunopharmacol 2019; 73:362-369. [DOI: 10.1016/j.intimp.2019.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 12/16/2022]
|
43
|
Pulles AE, Lafeber FPJG, van Vulpen LFD. Models of arthropathy: what can we learn from them to improve patient care? Rheumatology (Oxford) 2019; 58:565-566. [DOI: 10.1093/rheumatology/key278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Astrid E Pulles
- Department of Rheumatology & Clinical Immunology, Utrecht University, Utrecht, The Netherlands
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology & Clinical Immunology, Utrecht University, Utrecht, The Netherlands
| | - Lize F D van Vulpen
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
44
|
Inhibition of Osteoclastogenesis by Thioredoxin-Interacting Protein-Derived Peptide (TN13). J Clin Med 2019; 8:jcm8040431. [PMID: 30934850 PMCID: PMC6518213 DOI: 10.3390/jcm8040431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Overactivated osteoclasts lead to many bone diseases, including osteoporosis and rheumatoid arthritis. The p38 MAPK (p38) is an essential regulator of the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis and bone loss. We previously reported TAT conjugated thioredoxin-interacting protein-derived peptide (TAT-TN13) as an inhibitor of p38 in hematopoietic stem cells (HSCs). Here, we examined the role of TAT-TN13 in the differentiation and function of osteoclasts. TAT-TN13 significantly suppressed RANKL-mediated differentiation of RAW 264.7 cells and bone marrow macrophages (BMMs) into osteoclasts. TAT-TN13 also inhibited the RANKL-induced activation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), leading to the decreased expression of osteoclast-specific genes, including tartrate-resistant acid phosphatase (TRAP) and Cathepsin K. Additionally, TAT-TN13 treatment protected bone loss in ovariectomized (OVX) mice. Taken together, these results suggest that TAT-TN13 inhibits osteoclast differentiation by regulating the p38 and NF-κB signaling pathway; thus, it may be a useful agent for preventing or treating osteoporosis.
Collapse
|
45
|
Zheng L, Gao J, Jin K, Chen Z, Yu W, Zhu K, Huang W, Liu F, Mei L, Lou C, He D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. FASEB J 2019; 33:7667-7683. [PMID: 30893559 DOI: 10.1096/fj.201802364rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current pharmacological intervention for the treatment of osteolytic bone diseases such as osteoporosis focuses on the prevention of excessive osteoclastic bone resorption but does not enhance osteoblast-mediated bone formation. In our study, we have shown that 4-iodo-6-phenylpyrimidine (4-IPP), an irreversible inhibitor of macrophage migration inhibitory factor (MIF), can inhibit receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and potentiate osteoblast-mediated mineralization and bone nodule formation in vitro. Mechanistically, 4-IPP inhibited RANKL-induced p65 phosphorylation and nuclear translocation by preventing the interaction of MIF with thioredoxin-interacting protein-p65 complexes. This led to the suppression of late osteoclast marker genes such as nuclear factor of activated T cells cytoplasmic 1, resulting in impaired osteoclast formation. In contrast, 4-IPP potentiated osteoblast differentiation and mineralization also through the inhibition of the p65/NF-κB signaling cascade. In the murine model of pathologic osteolysis induced by titanium particles, 4-IPP protected against calvarial bone destruction. Similarly, in the murine model of ovariectomy-induced osteoporosis, 4-IPP treatment ameliorated the bone loss associated with estrogen deficiency by reducing osteoclastic activities and enhancing osteoblastic bone formation. Collectively, these findings provide evidence for the pharmacological targeting of MIF for the treatment of osteolytic bone disorders.-Zheng, L., Gao, J., Jin, K., Chen, Z., Yu, W., Zhu, K., Huang, W., Liu, F., Mei, L., Lou, C., He, D. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kangtao Jin
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Weiyang Yu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Kejun Zhu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Wenjun Huang
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Feijun Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Liangwei Mei
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| | - Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University-the Fifth Medical Affiliated Hospital of Wenzhou University-Lishui Central Hospital, Lishui, China
| |
Collapse
|
46
|
Jhun J, Lee SH, Kim SY, Ryu J, Kwon JY, Na HS, Jung K, Moon SJ, Cho ML, Min JK. RIPK1 inhibition attenuates experimental autoimmune arthritis via suppression of osteoclastogenesis. J Transl Med 2019; 17:84. [PMID: 30876479 PMCID: PMC6419814 DOI: 10.1186/s12967-019-1809-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic and systemic inflammatory disease characterized by upregulation of inflammatory cell death and osteoclastogenesis. Necrostatin (NST)-1s is a chemical inhibitor of receptor-interacting serine/threonine-protein kinase (RIPK)1, which plays a role in necroptosis. Methods We investigated whether NST-1s decreases inflammatory cell death and inflammatory responses in a mouse model of collagen-induced arthritis (CIA). Results NST-1s decreased the progression of CIA and the synovial expression of proinflammatory cytokines. Moreover, NST-1s treatment decreased the expression of necroptosis mediators such as RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL). In addition, NST-1s decreased osteoclastogenesis in vitro and in vivo. NST-1s downregulated T helper (Th)1 and Th17 cell expression, but promoted Th2 and regulatory T (Treg) cell expression in CIA mice. Conclusions These results suggest that NST-1s attenuates CIA progression via the inhibition of osteoclastogenesis and might be a potential therapeutic agent for RA therapy.
Collapse
Affiliation(s)
- Jooyeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jaeyoon Ryu
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | | | - Su-Jin Moon
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea. .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Jun-Ki Min
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea.
| |
Collapse
|
47
|
Yuan Q, Gao F, Yao Y, Cai P, Zhang X, Yuan J, Hou K, Gao L, Ren X, Gao X. Gold Clusters Prevent Inflammation-Induced Bone Erosion through Inhibiting the Activation of NF-κB Pathway. Theranostics 2019; 9:1825-1836. [PMID: 31037141 PMCID: PMC6485295 DOI: 10.7150/thno.31893] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/28/2019] [Indexed: 11/21/2022] Open
Abstract
Inflammation-induced bone erosion is a major pathological factor in several chronic inflammatory diseases that often cause severe outcomes, such as rheumatoid arthritis and periodontitis. Plenty of evidences indicated that the inflammatory bone destruction was attributed to an increase in the number of bone-resorbing osteoclasts. However, anti-resorptive therapy alone failed to prevent bone loss in an inflammatory condition. Conventional anti-inflammation treatments are usually intended to suppress inflammation only, but ignore debilitating the subsequent bone destruction. Therefore, inhibition of proinflammatory activation of osteoclastogenesis could be an important strategy for the development of drugs aimed at preventing inflammatory bone destruction. Methods: In this study, we synthesized a peptide coated gold cluster to evaluate its effects on inflammatory osteoclastogenesis in vitro and inflammation-induced bone destruction in vivo. The in vitro anti-inflammation and anti-osteoclastogenesis effects of the cluster were evaluated in LPS-stimulated and receptor activator of nuclear factor κB ligand (RANKL) stimulated macrophages, respectively. The LPS-induced expression of crucial pro-inflammation cytokines and RANKL-induced osteoclastogenesis as well as the activation of NF-κB pathway in both situations were detected. The inflammation-induced RANKL expression and subsequent inflammatory bone destruction in vivo were determined in collagen-immunized mice. Results: The gold cluster strongly suppresses RANKL-induced osteoclast formation via inhibiting the activation of NF-κB pathway in vitro. Moreover, treatment with the clusters at a dose of 5 mg Au/kg.bw significantly reduces the severity of inflammation-induced bone and cartilage destruction in vivo without any significant toxicity effects. Conclusion: Therefore, the gold clusters may offer a novel potent therapeutic stratagem for inhibiting chronic inflammation associated bone destruction.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Fuping Gao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Yao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Pengju Cai
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangchun Zhang
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jinling Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Kaixiao Hou
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaojun Ren
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Lee HJ, Ehlerding EB, Cai W. Antibody-Based Tracers for PET/SPECT Imaging of Chronic Inflammatory Diseases. Chembiochem 2019; 20:422-436. [PMID: 30240550 PMCID: PMC6377337 DOI: 10.1002/cbic.201800429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Emily B. Ehlerding
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Weibo Cai
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Department of Radiology and Carbone Cancer Center, University of Wisconsin – Madison, Madison WI 53705, USA
| |
Collapse
|
49
|
Das M, Laha D, Kanji S, Joseph M, Aggarwal R, Iwenofu OH, Pompili VJ, Jain MK, Das H. Induction of Krüppel-like factor 2 reduces K/BxN serum-induced arthritis. J Cell Mol Med 2019; 23:1386-1395. [PMID: 30506878 PMCID: PMC6349180 DOI: 10.1111/jcmm.14041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 12/27/2022] Open
Abstract
Krüppel-like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2-mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up-regulation of KLF2 and concomitant down-regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum-induced arthritic inflammation and joint destruction in mice in a dose-dependent manner. Finally, co-immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2-mediated regulation of K/BxN serum-induced arthritic inflammation.
Collapse
Affiliation(s)
- Manjusri Das
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Dipranjan Laha
- Department of Pharmaceutical SciencesSchool of PharmacyTexas Tech University Health Sciences CenterAmarilloTexas
| | - Suman Kanji
- Department of Pharmaceutical SciencesSchool of PharmacyTexas Tech University Health Sciences CenterAmarilloTexas
| | - Matthew Joseph
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Reeva Aggarwal
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Obiajulu H. Iwenofu
- Department of PathologyCollege of MedicineThe Ohio State UniversityColumbusOhio
| | - Vincent J. Pompili
- Department of Internal MedicineThe Ohio State University Medical CenterColumbusOhio
| | - Mukesh K. Jain
- Department of Internal MedicineCase Western Reserve UniversityClevelandOhio
| | - Hiranmoy Das
- Department of Pharmaceutical SciencesSchool of PharmacyTexas Tech University Health Sciences CenterAmarilloTexas
| |
Collapse
|
50
|
Deloch L, Rückert M, Fietkau R, Frey B, Gaipl US. Low-Dose Radiotherapy Has No Harmful Effects on Key Cells of Healthy Non-Inflamed Joints. Int J Mol Sci 2018; 19:ijms19103197. [PMID: 30332826 PMCID: PMC6214021 DOI: 10.3390/ijms19103197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Low-dose radiotherapy (LD-RT) for benign inflammatory and/or bone destructive diseases has been used long. Therefore, mechanistic investigations on cells being present in joints are mostly made in an inflammatory setting. This raises the question whether similar effects of LD-RT are also seen in healthy tissue and thus might cause possible harmful effects. We performed examinations on the functionality and phenotype of key cells within the joint, namely on fibroblast-like synoviocytes (FLS), osteoclasts and osteoblasts, as well as on immune cells. Low doses of ionizing radiation showed only a minor impact on cytokine release by healthy FLS as well as on molecules involved in cartilage and bone destruction and had no significant impact on cell death and migration properties. The bone resorbing abilities of healthy osteoclasts was slightly reduced following LD-RT and a positive impact on bone formation of healthy osteoblasts was observed after in particular exposure to 0.5 Gray (Gy). Cell death rates of bone-marrow cells were only marginally increased and immune cell composition of the bone marrow showed a slight shift from CD8+ to CD4+ T cell subsets. Taken together, our results indicate that LD-RT with particularly a single dose of 0.5 Gy has no harmful effects on cells of healthy joints.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|