1
|
Wang Y, Moh-Moh-Aung A, Wang T, Fujisawa M, Ohara T, Yamamoto KI, Sakaguchi M, Yoshimura T, Matsukawa A. Exosomal delivery of miR-200b-3p suppresses the growth of hepatocellular carcinoma cells by targeting ERG- and VEGF-mediated angiogenesis. Gene 2024; 931:148874. [PMID: 39159792 DOI: 10.1016/j.gene.2024.148874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hepatocellular carcinoma (HCC) remains a lethal malignancy with limited treatment options. Recent discoveries have highlighted the pivotal role of miRNAs in HCC progression. We previously reported that the expression of miR-200b-3p was decreased in HCC cells and exosomal miR-200b-3p from hepatocytes inhibited angiogenesis by suppressing the expression of the endothelial transcription factor ERG (erythroblast transformation-specific (ETS)-related gene), leading to the hypothesis that the delivery of this miRNA may inhibit angiogenesis and suppress HCC growth in vivo. Here, we tested this hypothesis by using human HCC inoculation models. First, we transfected the human HepG2 HCC cells and established a stable cell line that overexpressed a high level of miR-200b-3p. When miR-200b-3p-overexpressing cells were injected into severe combined immunedeficiency (SCID)-beige mice, tumor growth was significantly reduced compared to tumors of control cells, with a reduction in the expression of ERG and vascular endothelial growth factor (VEGF) and subsequent angiogenesis. Intra-tumoral injection of exosomes containing high levels of miR-200b-3p also reduced the growth of parental HepG2 tumors with reduced ERG and VEGF expression and angiogenesis. These results validate the inhibitory role of miR-200b-3p in tumor angiogenesis, thereby suppressing HCC tumor growth, and provide a novel insight into its potential therapeutic application.
Collapse
Affiliation(s)
- Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Aye Moh-Moh-Aung
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Tianyi Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
2
|
Jang J, He Z, Huang L, Hwang JY, Kim MY, Cho JY. Upregulation of NK cell activity, cytokine expression, and NF-κB pathway by ginsenoside concentrates from Panax ginseng berries in healthy mice and macrophage cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118681. [PMID: 39121929 DOI: 10.1016/j.jep.2024.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C.A. Meyer. Has been studied for decades for its various biological activities, especially in terms of immune-regulatory properties. Traditionally, it has been known that root, leaves, and fruits of P. ginseng were eaten for improving body's Qi and homeostasis. Also, these were used to protect body from various types of infectious diseases. However, molecular mechanisms of immunomodulatory activities of ginseng berries have not been systemically studied as often as other parts of the plant. AIM OF THE STUDY The aim of this research is to discover the regulatory effects of P. ginseng berries, more importantly, their ginsenosides, on innate immune responses and to elucidate the molecular mechanism. MATERIALS AND METHODS Ginseng berry concentrate (GBC) was orally injected into BALB/c mice for 30 days, and spleens were extracted for evaluation of immune-regulatory effects. Murine macrophage RAW264.7 cells were used for detailed molecular mechanism studies. Splenic natural killer (NK) cells were isolated using the magnetic-activated cell sorting (MACS) system, and the cytotoxic activity of isolated NK cells was measured using a lactate dehydrogenase (LDH) release assay. The splenic immune cell population was determined by flow-cytometry. NF-κB promoter activity was assessed by in vitro luciferase assay. Expression of inflammatory proteins and cytokines of the spleen and RAW264.7 cells were evaluated using western blotting and real-time PCR, respectively. RESULTS The GBC enhanced cytotoxic activity of NK cells and the immune-regulation-related splenic cell population. Moreover, GBC promoted NF-κB promoter activity and stimulated the NF-κB signaling cascade. In spleen and RAW264.7 cells, expression of pro-inflammatory cytokines was increased upon GBC application, while expression of anti-inflammatory cytokines decreased. CONCLUSIONS These results suggest that P. ginseng berry can stimulate innate immune responses and help maintain a balanced immune condition, mostly due to the action of its key ginsenoside Re, along with other protopanaxadiol- and protopanaxatriol-type ginsenosides. Such finding will provide a new insight into the field of well-being diet research as well as non-chemical immune modulator, by providing nature-derived and plant-based bioactive materials.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ziliang He
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Yeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
4
|
Hushmandi K, Klionsky DJ, Aref AR, Bonyadi M, Reiter RJ, Nabavi N, Salimimoghadam S, Saadat SH. Ferroptosis contributes to the progression of female-specific neoplasms, from breast cancer to gynecological malignancies in a manner regulated by non-coding RNAs: Mechanistic implications. Noncoding RNA Res 2024; 9:1159-1177. [PMID: 39022677 PMCID: PMC11250880 DOI: 10.1016/j.ncrna.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non-coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as therapeutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further investigation. The current review comprehensively highlights ferroptosis and its association with non-coding RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and even block the expansion and development of these tumors.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Bhardwaj JS, Paliwal S, Singhvi G, Taliyan R. Immunological challenges and opportunities in glioblastoma multiforme: A comprehensive view from immune system lens. Life Sci 2024; 357:123089. [PMID: 39362586 DOI: 10.1016/j.lfs.2024.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
Collapse
Affiliation(s)
- Jayant Singh Bhardwaj
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Shivangi Paliwal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
6
|
Wu G, Zhang Y, Jia S, Qi X, Feng X, Ren Y, Lu X, Hu L. Preparation of Dysprosium(III)-Metal Organic Framework Nanofiber for Exosome Capture and Biomarker Discovery toward Liver Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56874-56883. [PMID: 39393007 DOI: 10.1021/acsami.4c14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
As an emerging source for liquid biopsy, exosomes hold significant promise for clinical diagnosis. However, commonly used exosome isolation methods (e.g., ultracentrifugation) suffer from low throughput for a large number of clinical samples. Herein, a dysprosium-metal organic framework was synthesized and doped with nanofibers by electrospinning for efficient capture of exosomes from body fluid. With the integration of multichannel of pipet or robot automatic workstation, high throughput exosome isolation can be achieved with clinical samples with high reproducibility. To evaluate the clinical value of the developed method, urinary exosomes were enriched from 34 liver disease samples of different stages for the profiling of metabolites by mass spectrometry. The results showed that HCC, cirrhosis, and healthy controls can be significantly differentiated by the Random Forest classification model. The dysprosium-metal organic framework has promising applications in exosome-based liquid biopsy for large-scale clinical disease diagnosis.
Collapse
Affiliation(s)
- Guangyao Wu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Xiulei Qi
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yujuan Ren
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Singh S, Gupta S, Abhishek R, Sachan M. Regulation of m 6A (N 6-Methyladenosine) methylation modifiers in solid cancers. Funct Integr Genomics 2024; 24:193. [PMID: 39438339 DOI: 10.1007/s10142-024-01467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Solid cancers constitute a tremendous burden on global healthcare, requiring a deeper understanding of the molecular mechanisms underlying cancer development and progression. Epigenetic changes, notably N6-methyladenosine (m6A) RNA methylation, have emerged as important contributors to the biology of solid tumors in recent years. This epigenetic mark dynamically affects gene expression at the post-transcriptional level and modulates a variety of cellular processes, making it a focus of research in the context of solid tumors. m6A modification patterns are dysregulated in a variety of solid cancers, including ovarian, breast, lung, colorectal, pancreatic, and others. This dysregulated m6A landscape has been shown to induce significant changes in the expression of oncogenes, tumor suppressors, and genes involved in cancer stem cells, metastasis, and treatment resistance. In solid tumors, the interaction of m6A "writers" (e.g., METTL3, METTL14, and others), "erasers" (e.g., ALKBH5, FTO), and "readers" (e.g., members of YTHDF proteins and others) delicately changes the m6A methylome. Targeting m6A regulators as a potential therapeutic method to control gene expression and prevent tumor development seems a novel strategy. To enhance treatment results, advances in this area of research have led to the development of targeted treatments aiming at restoring or altering m6A alteration patterns in solid tumors.
Collapse
Affiliation(s)
- Sakshi Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Rajul Abhishek
- Deparment of Surgical Oncology, Motilal Nehru Medical College, Uttar Pradesh, Prayagraj, 211002, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India.
| |
Collapse
|
8
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
9
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
10
|
Hamdy NM, El-Sisi MG, Ibrahim SM, ElNokoudy H, Hady AA, Abd-Ellatef GEF, Sallam AAM, Barakat BM. In silico analysis and comprehensive review of circular-RNA regulatory roles in breast diseases; a step-toward non-coding RNA precision. Pathol Res Pract 2024; 263:155651. [PMID: 39454476 DOI: 10.1016/j.prp.2024.155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In the current comprehensive review, we first highlighted circRNAs, which are key ncRNAs. Next, we discussed the relationships among circRNAs and breast cancer subtypes via in silico databases analysis and extensive literature search. CircRNAs, that sponge miRNA axes or act as silencers of oncogenic mRNAs, have been extensively addressed in the context of this review. During BC pathogenesis, the circRNA/microRNA/messenger RNA (mRNA) axis plays a major role in disease growth, progression, and survival/resistance and could be targeted for improved treatment options. This review also aimed to address oncogenic and tumor suppressor mRNAs, which are regulated by various circRNAs in BC. Moreover, we mentioned the relation of different circRNAs with cancer hallmarks, patient survival together with drug resistance. Additionally, we discussed circRNAs as vaccines and biomarkers in BC. Finally, we studied exosomal circRNAs as a hot interesting area in the research. REVIEW SIGNIFICANCE: Via using in silico databases, bioinformatics analysis, and a thorough literature search to first highlight circRNA as a crucial ncRNA and its biogenesis, and then we explored the connection between circRNA and breast illnesses. In the framework of the review, circRNA sponged-miRNAs axis or as silencers to oncogenic mRNAs were extensively discussed. In the pathophysiology of BC, the circular RNA/microRNA/messenger RNA axis is crucial for the propagation of the disease and resistance that may be targeted for more effective treatment options, in order to confront tumor suppressor and oncogenic mRNAs that are presently regulated by circRNAs in BC. For better patient results, we advised further mechanistic research to elucidate additional ncRNA axis that may be targeted for the therapy of BC and for prognosis/ or early diagnosis.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Heba ElNokoudy
- Medication Management & Pharmacy Affairs, Egypt Healthcare Authority, Cairo, Egypt
| | - Ahmad A Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Gamal Eldein Fathy Abd-Ellatef
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt; Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Bassant Mohamed Barakat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al Baha University, Al Baha 1988, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
11
|
Zhu M, Gao Y, Zhu K, Yuan Y, Bai H, Meng L. Exosomal miRNA as biomarker in cancer diagnosis and prognosis: A review. Medicine (Baltimore) 2024; 103:e40082. [PMID: 39432619 PMCID: PMC11495718 DOI: 10.1097/md.0000000000040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Exosomes, which are extracellular vesicles with a diameter ranging from 40 to 160 nm, are abundantly present in various body fluids. Exosomal microRNA (ex-miR), due to its exceptional sensitivity and specificity, has garnered significant attention. Notably, ex-miR is consistently detected in almost all bodily fluids, highlighting its potential as a reliable biomarker. This attribute of ex-miR has piqued considerable interest in its application as a diagnostic tool for the early detection, continuous monitoring, and prognosis evaluation of cancer. Given the critical role of exosomes and their cargo in cancer biology, this review explores the intricate processes of exosome biogenesis and uptake, their multifaceted roles in cancer development and progression, and the potential of ex-miRs as biomarkers for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- Mingliao Zhu
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Yuan Gao
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Kaijun Zhu
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Ying Yuan
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Haoyang Bai
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, People’s Republic of China
| |
Collapse
|
12
|
Qi Q, Pang J, Chen Y, Tang Y, Wang H, Gul S, Sun Y, Tang W, Sheng M. Targeted Drug Screening Leveraging Senescence-Induced T-Cell Exhaustion Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:11232. [PMID: 39457014 PMCID: PMC11508728 DOI: 10.3390/ijms252011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and a leading cause of cancer-related mortality globally, with most patients diagnosed at advanced stages and facing limited early treatment options. This study aimed to identify characteristic genes associated with T-cell exhaustion due to senescence in hepatocellular carcinoma patients, elucidating the interplay between senescence and T-cell exhaustion. We constructed prognostic models based on five signature genes (ENO1, STMN1, PRDX1, RAN, and RANBP1) linked to T-cell exhaustion, utilizing elastic net regression. The findings indicate that increased expression of ENO1 in T cells may contribute to T-cell exhaustion and Treg infiltration in hepatocellular carcinoma. Furthermore, molecular docking was employed to screen small molecule compounds that target the anti-tumor effects of these exhaustion-related genes. This study provides crucial insights into the diagnosis and treatment of hepatocellular carcinoma, establishing a strong foundation for the development of predictive biomarkers and therapeutic targets for affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| |
Collapse
|
13
|
Al-Wahaibi LH, El-Sheref EM, Tawfeek HN, Abou-Zied HA, Rabea SM, Bräse S, Youssif BGM. Design, synthesis, and biological evaluation of novel quinoline-based EGFR/HER-2 dual-target inhibitors as potential anti-tumor agents. RSC Adv 2024; 14:32978-32991. [PMID: 39434991 PMCID: PMC11492426 DOI: 10.1039/d4ra06394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Dual targeting of EGFR and HER2 is a valid anti-cancer approach for treating solid tumors. We designed and synthesized a new series of EGFR/HER-2 dual-target inhibitors based on quinoline derivatives. The structure of the newly synthesized compounds was verified using 1H NMR, 13C NMR, and elemental analysis. The targeted compounds were tested for antiproliferative efficacy against four cancer cell lines. All the compounds had GI50s ranging from 25 to 82 nM, with breast (MCF-7) and lung (A-549) cancer cell lines being the most sensitive. Compound 5a demonstrated the most significant antiproliferative action. With inhibitory (IC50) values of 71 and 31 nM, respectively, compound 5a proved to be the most effective dual-target inhibitor of EGFR and HER-2, outperforming the reference erlotinib (IC50 = 80 nM) as an EGFR inhibitor but falling short of the clinically used agent lapatinib (IC50 = 26 nM) as a HER2 inhibitor. The apoptotic potential activity of 5a was examined, and the findings demonstrated that 5a promotes apoptosis by activating caspase-3, 8, and Bax while simultaneously reducing the expression of the anti-apoptotic protein Bcl-2. The docking studies provided valuable insights into the binding interactions of compounds 3e and 5a with EGFR, effectively rationalizing the observed SAR trends.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University El-Minia 61519 Egypt
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University Minia Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology Karlsruhe 76131 Germany
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20-01098294419
| |
Collapse
|
14
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2024:1-23. [PMID: 39291740 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Alsagaby SA. Biological roles of THRAP3, STMN1 and GNA13 in human blood cancer cells. 3 Biotech 2024; 14:248. [PMID: 39345963 PMCID: PMC11424602 DOI: 10.1007/s13205-024-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Blood cancers, such as diffuse large B-cell lymphoma (DLBCL), Burkitt's lymphoma (BL) and acute myeloid leukemia (AML), are aggressive neoplasms that are characterized by undesired clinical courses with dismal survival rates. The objective of the current work is to study the expression THRAP3, STMN1 and GNA13 in DLBCL, BL and AML, and to investigate if these proteins are implicated in the prognosis and progression of the blood cancers. Isolation of normal blood cells was performed using lymphoprep coupled with gradient centrifugation and magnetic beads. Flow-cytometric analysis showed high quality of the isolated cells. Western blotting identified THRAP3, STMN1 and GNA13 to be overexpressed in the blood cancer cells but hardly detected in normal blood cells from healthy donors. Consistently, investigations performed using genotype-tissue expression (GTEx) and gene expression profiling interactive analysis (GEPIA) showed that the three proteins had higher mRNA expression in various cancers compared with matched normal tissues (p ≤ 0.01). Furthermore, the up-regulated transcript expression of these proteins was a feature of short overall survival (OS; p ≤ 0.02) in patients with the blood cancers. Interestingly, functional profiling using gProfiler and protein-protein interaction network analysis using STRING with cytoscape reported THRAP3 to be associated with cancer-dependent proliferation and survival pathways (corrected p ≤ 0.05) and to interact with proteins (p = 1 × 10-16) implicated in tumourigenesis and chemotherapy resistance. Taken together, these findings indicated a possible implication of THRAP3, STMN1 and GNA13 in the progression and prognosis of the blood cancers. Additional work using clinical samples of the blood cancers is required to further investigate and validate the results reported here. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04093-5.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11932 Saudi Arabia
| |
Collapse
|
17
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Qu X, Zhang Y, Li H, Tan Y. The m 5C/m 6A/m 7G-related non-apoptotic regulatory cell death genes for the prediction of the prognosis and immune infiltration status in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4714-4735. [PMID: 39430855 PMCID: PMC11483456 DOI: 10.21037/tcr-24-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background 5-methylcytosine/N6-methyladenosine/N7-methylguanosine (m5C/m6A/m7G)-related genes play a critical role in tumor occurrence and progression, and non-apoptotic regulatory cell death (NARCD) is closely linked to tumor development and immunity. However, the role of m5C/m6A/m7G-related NARCD genes in hepatocellular carcinoma (HCC) remains unclear. We used m5C/m6A/m7G-related NARCD genes to construct a prognostic model of HCC for prognostic prediction and clinical treatment of patients. Methods We obtained transcriptome data for HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Using the least absolute shrinkage and selection operator (LASSO) regression, we identified m5C/m6A/m7G-related NARCD genes and constructed a prognostic model through multivariate Cox regression. Model performance was assessed using Kaplan-Meier and receiver operating characteristic (ROC) curves, with external validation using the ICGC. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to study differentially expressed genes between high- and low-risk groups. We also examined immune cell infiltration, drug response, and cell communication between tumor cells and immune cells in high-risk groups. Results We identified 140 m5C/m6A/m7G-related NARCD genes, using five of them to build the prognostic model. Functional enrichment analysis revealed enrichment in tumor and immune-related pathways for risk genes. The high-risk group displayed increased immune cell infiltration and better responses to immune checkpoint inhibitors (ICIs). High-risk patients were more responsive to cisplatin, doxorubicin, and mitomycin C, while low-risk patients were more sensitive to erlotinib. Cell communication analysis indicated that high-risk tumor cells used insulin-like growth factor (IGF) and macrophage migration inhibitory factor (MIF) signaling pathways to send signals to immune cells and received signals through the bone morphogenetic protein (BMP) and lymphotoxin-related inducible ligand (LIGHT) pathways. Conclusions We have developed a prognostic model with m5C/m6A/m7G-related NARCD genes to predict the prognosis of HCC patients. This model can offer insights into the effectiveness of immunotherapy and chemotherapy for HCC patients.
Collapse
Affiliation(s)
- Xiangyu Qu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yigang Zhang
- Department of Plastic Surgery, Bengbu Third People’s Hospital, Bengbu, China
| | - Haoling Li
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
19
|
Permain J, Hock B, Eglinton T, Purcell R. Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis. Cancer Metastasis Rev 2024:10.1007/s10555-024-10215-5. [PMID: 39340753 DOI: 10.1007/s10555-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Collapse
Affiliation(s)
- Jessica Permain
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Barry Hock
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Timothy Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
20
|
Devi CM, Deka K, Das AK, Talukdar A, Sola P. Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma. Mol Biotechnol 2024:10.1007/s12033-024-01287-3. [PMID: 39327380 DOI: 10.1007/s12033-024-01287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Glioma is the most common and aggressive type of central nervous system tumor as categorized by the World Health Organization. Glioblastoma (GBA), in general, exhibits a grim prognosis and short life expectancy, rarely exceeding 14 months. The dismal prognosis is primarily attributed to the development of chemoresistance to temozolomide, the primary therapeutic agent for GBA treatment. Hence, it becomes imperative to develop novel drugs with antitumor efficacy rooted in distinct mechanisms compared to temozolomide. The vast marine environment contains a wealth of naturally occurring compounds from the sea (known as marine-derived natural products), which hold promise for future research in the quest for new anticancer drugs. Ongoing advancements in anticancer pharmaceuticals have led to an upswing in the isolation and validation of numerous pioneering breakthroughs and improvements in anticancer therapeutics. Nonetheless, the availability of FDA-approved marine-derived anticancer drugs remains limited, owing to various challenges and constraints. Among these challenges, drug delivery is a prominent hurdle. This review delves into an alternative approach for delivering marine-derived drugs using nanotechnological formulations and their mechanism of action for treating GBA.
Collapse
Affiliation(s)
- Chanam Melody Devi
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Amit Kumar Das
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Apurba Talukdar
- Department of Pharmaceutics, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Santipur, Kamrup, Assam, 781125, India.
| |
Collapse
|
21
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03451-7. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Kao AT, Cabanlong CV, Padilla K, Xue X. Unveiling ferroptosis as a promising therapeutic avenue for colorectal cancer and colitis treatment. Acta Pharm Sin B 2024; 14:3785-3801. [PMID: 39309484 PMCID: PMC11413686 DOI: 10.1016/j.apsb.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) involving iron accumulation and lipid peroxidation. Since its discovery in 2012, various studies have shown that ferroptosis is associated with the pathogenesis of various diseases. Ferroptotic cell death has also been linked to intestinal dysfunction but can act as either a positive or negative regulator of intestinal disease, depending on the cell type and disease context. The continued investigation of mechanisms underlying ferroptosis provides a wealth of potential for developing novel treatments. Considering the growing prevalence of intestinal diseases, particularly colorectal cancer (CRC) and inflammatory bowel disease (IBD), this review article focuses on potential therapeutics targeting the ferroptotic pathway in relation to CRC and IBD.
Collapse
Affiliation(s)
| | | | - Kendra Padilla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
23
|
Bharadwaj D, Mandal M. Tumor microenvironment: A playground for cells from multiple diverse origins. Biochim Biophys Acta Rev Cancer 2024; 1879:189158. [PMID: 39032537 DOI: 10.1016/j.bbcan.2024.189158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Tumor microenvironment is formed by various cellular and non-cellular components which interact with one another and form a complex network of interactions. Some of these cellular components also attain a secretory phenotype and release growth factors, cytokines, chemokines etc. in the surroundings which are capable of inducing even greater number of signalling networks. All these interactions play a decisive role in determining the course of tumorigenesis. The treatment strategies against cancer also exert their impact on the local microenvironment. Such interactions and anticancer therapies have been found to induce more deleterious outcomes like immunosuppression and chemoresistance in the process of tumor progression. Hence, understanding the tumor microenvironment is crucial for dealing with cancer and chemoresistance. This review is an attempt to develop some understanding about the tumor microenvironment and different factors which modulate it, thereby contributing to tumorigenesis. Along with summarising the major components of tumor microenvironment and various interactions taking place between them, it also throws some light on how the existing and potential therapies exert their impact on these dynamics.
Collapse
Affiliation(s)
- Deblina Bharadwaj
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
24
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
26
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
El-Sawy WSM, El-Bahrawy AH, Messiha BAS, Hemeida RAM, Khalaf MM. The impact of PPAR-γ/Nrf-2/HO-1, NF-κB/IL-6/ Keap-1, and Bcl-2/caspase-3/ATG-5 pathways in mitigation of DOX-induced cardiotoxicity in an animal model: The potential cardioprotective role of oxyresveratrol and/or dapagliflozin. Food Chem Toxicol 2024; 191:114863. [PMID: 38997059 DOI: 10.1016/j.fct.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Antioxidants given concurrently with chemotherapy offer an effective strategy for reducing the negative effects of the drug. One remaining obstacle to the use of doxorubicin (DOX) in chemotherapy is cardiotoxicity. Using vitamin E (Vit. E) as a reference standard, our study focuses on the potential preventive benefits of oxyresveratrol (ORES) and/or dapagliflozin (DAPA) against DOX-induced cardiac injury. Acute cardiotoxicity was noticed after a single intravenous injection of a male rat's tail vein with 10 mg/kg of DOX. Oral doses of ORES (80 mg/kg), DAPA (10 mg/kg), and Vit. E (1 g/kg) were given, respectively. Pretreatment of animals with Vit. E, ORES and/or DAPA revealed a considerable alleviation of heart damage, as evidenced by histopathological change mitigation and a notable drop in serum AST, LDH, CK, CK-MB, and cardiac contents of MDA and NO2-. Also, serum TAC, tissue GSH, and SOD showed substantial increases. Additionally, tissue caspase-3, serum IL-6, and TNF-α were considerably reduced. Moreover, a downregulation in cardiac gene expression of ATG-5, Keap-1, and NF-κB in addition to an upregulation of Bcl-2 gene expression and HO-1, Nrf-2, and PPAR-γ protein expression clearly appeared. Ultimately, ORES and/or DAPA have an optimistic preventive action against severe heart deterioration caused by DOX.
Collapse
Affiliation(s)
- Waleed S M El-Sawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ali H El-Bahrawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Basim A S Messiha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
28
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
29
|
Hashemi M, Khosroshahi EM, Chegini MK, Asadi S, Hamyani Z, Jafari YA, Rezaei F, Eskadehi RK, Kojoori KK, Jamshidian F, Nabavi N, Alimohammadi M, Rashidi M, Mahmoodieh B, Khorrami R, Taheriazam A, Entezari M. Mechanistic insights into cisplatin response in breast tumors: Molecular determinants and drug/nanotechnology-based therapeutic opportunities. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108513. [PMID: 39216513 DOI: 10.1016/j.mrrev.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer continues to be a major global health challenge, driving the need for effective therapeutic strategies. Cisplatin, a powerful chemotherapeutic agent, is widely used in breast cancer treatment. However, its effectiveness is often limited by systemic toxicity and the development of drug resistance. This review examines the molecular factors that influence cisplatin response and resistance, offering crucial insights for the scientific community. It highlights the significance of understanding cisplatin resistance's genetic and epigenetic contributors, which could lead to more personalized treatment approaches. Additionally, the review explores innovative strategies to counteract cisplatin resistance, including combination therapies, nanoparticle-based drug delivery systems, and targeted therapies. These approaches are under intensive investigation and promise to enhance breast cancer treatment outcomes. This comprehensive discussion is a valuable resource to advance breast cancer therapeutics and address the challenge of cisplatin resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Hamyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Yasamin Alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast Eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Faranak Jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
30
|
Zhu H, Chen H, Zhu X, Zhang B, Jin C. Diagnostic lncRNA high expression for liver patients prognosis and medication guidance: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1462512. [PMID: 39211780 PMCID: PMC11357924 DOI: 10.3389/fphar.2024.1462512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The study of long non-coding RNAs (lncRNAs) has gained significant attention due to their roles in regulating gene expression and their potential as diagnostic biomarkers. This systematic review and meta-analysis aimed to evaluate the diagnostic value of high-expression lncRNAs in liver disease patients, including those with hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Methods A comprehensive literature search was conducted across multiple electronic databases, including PubMed, Embase, Web of Science, and Cochrane Library, up to July 2024. Studies were included if they investigated the expression of lncRNAs in liver disease patients and evaluated their diagnostic performance. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess the quality of included studies. Pooled sensitivity, specificity, diagnostic odds ratios (DOR), and summary receiver operating characteristic (SROC) curves were calculated using a bivariate random-effects model. Results Nine studies involving 888 samples were included in the meta-analysis. The pooled hazard ratio (HR) for overall survival (OS) was 2.01 (95% CI: 1.71-2.36), indicating a significant association between high lncRNA expression and poor liver disease outcomes. Subgroup analyses revealed a pooled odds ratio (OR) of 1.99 (95% CI: 1.53-2.60) for tissue samples and 8.62 (95% CI: 1.16-63.71) for blood samples, suggesting a stronger diagnostic value for blood-based lncRNAs. The funnel plots indicated minimal publication bias, and sensitivity analyses confirmed the robustness of the findings. Conclusion High-expression lncRNAs show significant potential as diagnostic biomarkers for liver diseases, offering non-invasive, accurate, and timely diagnostic information. Despite the promising results, further research is needed to standardize detection methods, elucidate the biological functions of lncRNAs, and validate their clinical utility in diverse patient populations. Integrating lncRNA biomarkers with traditional diagnostic approaches could enhance diagnostic accuracy and improve patient management and outcomes in liver disease.
Collapse
Affiliation(s)
- Hengzhou Zhu
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Haoyan Chen
- Department of Respiratory, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Xiaodan Zhu
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Baonan Zhang
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital of Triditional Chinese Medicine, Wuxi, China
| |
Collapse
|
31
|
Huang J, Cong F, Zhao Y, Chen J, Luo T, Tang W. The circular RNA circ_0001742 regulates colorectal carcinoma proliferation and migration via the MicroRNA-431-5p/ALG8 axis. Heliyon 2024; 10:e34660. [PMID: 39170557 PMCID: PMC11336282 DOI: 10.1016/j.heliyon.2024.e34660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Background Accumulating studies have found that circular RNAs (circRNAs) have a regulatory effect in a variety of tumors. However, to date, the relationship between specific circRNAs and colorectal cancer (CRC) remains elusive. Methods An RNA-sequencing method based on different metastatic potential of CRC cell lines was applied to evaluate the circRNA expression profile. Additionally, we conducted a series of experiments to assess the relationship between circRNAs and CRC progression. Results Circ_0001742 was upregulated in CRC cells with high metastatic potential, and circ_0001742 overexpression was observed to facilitate proliferation, migration and metastasis while knockdown will inhibit. More importantly, we found that circ_0001742 acted as a sponge for miR-431-5p, thus affecting ALG8 levels and the development of CRC. Conclusions This study demonstrated an essential function for the circ_0001742/miR-431-5p/ALG8 axis in CRC development, and it may be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Jiahao Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Fengyun Cong
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Yang Zhao
- Department of Radiology, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Jinglian Chen
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Tao Luo
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| |
Collapse
|
32
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
33
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
34
|
Das PK, Matada GSP, Pal R, Maji L, Dhiwar PS, Manjushree BV, Viji MP. Poly (ADP-ribose) polymerase (PARP) inhibitors as anticancer agents: An outlook on clinical progress, synthetic strategies, biological activity, and structure-activity relationship. Eur J Med Chem 2024; 274:116535. [PMID: 38838546 DOI: 10.1016/j.ejmech.2024.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) is considered an essential component in case of DNA (Deoxyribonucleic acid) damage, response by sensing DNA damage and engaging DNA repair proteins. Those proteins repair the damaged DNA via an aspect of posttranslational modification, known as poly (ADP-Ribosyl)ation (PARylation). Specifically, PARP inhibitors (PARPi) have shown better results when administered alone in a variety of cancer types with BRCA (Breast Cancer gene) mutation. The clinical therapeutic benefits of PARP inhibitors have been diminished by their cytotoxicity, progression of drug resistance, and limitation of indication, regardless of their tremendous clinical effectiveness. A growing number of PARP-1 inhibitors, particularly those associated with BRCA-1/2 mutations, have been identified as potential cancer treatments. Recently, several researchers have identified various promising scaffolds, which have resulted in the resuscitation of the faith in PARP inhibitors as cancer therapies. This review provided a comprehensive update on the anatomy and physiology of the PARP enzyme, the profile of FDA (Food and Drug Administration) and CFDA (China Food and Drug Administration)-approved drugs, and small-molecule inhibitors of PARP, including their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Lalmohan Maji
- Tarifa Memorial Institute of Pharmacy, Department of Pharmaceutical Chemistry, Murshidabad, 742166, West Bengal, India
| | - Prasad Sanjay Dhiwar
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - B V Manjushree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
35
|
Rezaie N, Ashrafian F, Shidvash F, Aghamohammad S, Rohani M. The effect of novel paraprobiotic cocktail on dextran sodium sulfate induced acute colitis control focusing on autophagy signaling pathway. Eur J Nutr 2024; 63:1797-1805. [PMID: 38592518 DOI: 10.1007/s00394-024-03376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Paraprobiotics are a non-viable form of probiotics that are reported to provide significant health benefits. Nevertheless, little is known about the beneficial effects of paraprobiotics on inflammatory bowel disease. Although probiotics show potential as therapeutic agents for a range of diseases, including inflammatory bowel disease (IBD), there are certain risks associated with their use. These risks include toxin production, hemolytic potential, antibiotic resistance, and the need to analyze metabolic activities. Hence Using paraprobiotic with the lower aforementioned risk would therefore be the preferable option. Here, we conducted an in vivo study to evaluate the preventive effect of our native paraprobiotic cocktail against dextran sulfate sodium (DSS)-induced murine colitis by affecting the autophagy signaling pathway. METHODS Four-week-old male C57Bl/6 mice were randomly divided into three groups after a two-week acclimation period with normal standard laboratory food diet. Mice were administered PBS (PBS group as control), PBS along with DSS (DSS group, as a control), and a cocktail of paraprobiotics along with DSS (Para group). The severity of colitis, length and histopathology of the colon were evaluated. In addition, the expression of autophagy was assessed using real-time PCR. RESULTS The results showed that administration of the paraprobiotic cocktail to DSS-treated mice inhibited the severity of colitis symptoms, as evidenced by the inhibition of weight loss and DAI, as well as histopathological scores in the study colon, as well as shortening of colon length caused by DSS. In contrast to the DSS group, the cocktail was able to modulate inflammation through upregulation of autophagy-related genes (becline 1, atg5, atg7, atg12, and atg13). CONCLUSION Although there are some limitations in our investigation, such as the dosage and duration of treatments, our native paraprobiotic blend effectively prevented the advancement of colitis. This suggests that it plays a vital role in regulating inflammation and preventing colitis by promoting the autophagy mechanism in cases where the consumption of probiotics may have negative consequences.
Collapse
Affiliation(s)
- Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Shidvash
- Department of Microbiology, Science and Research Campus, Islamic Azad University, Tehran, Iran
| | | | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
36
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15:1431211. [PMID: 39136031 PMCID: PMC11317284 DOI: 10.3389/fimmu.2024.1431211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
Collapse
Affiliation(s)
- Guangtan Du
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Cunmiao Dou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
38
|
James C, Whitehead A, Plummer JT, Thompson R, Badal S. Failure to progress: breast and prostate cancer cell lines in developing targeted therapies. Cancer Metastasis Rev 2024:10.1007/s10555-024-10202-w. [PMID: 39060878 DOI: 10.1007/s10555-024-10202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Developing anticancer drugs from preclinical to clinical takes approximately a decade in a cutting-edge biomedical lab and still 97% of most fail at clinical trials. Cell line usage is critical in expediting the advancement of anticancer therapies. Yet developing appropriate cell lines has been challenging and overcoming these obstacles whilst implementing a systematic approach of utilizing 3D models that recapitulate the tumour microenvironment is prudent. Using a robust and continuous supply of cell lines representing all ethnic groups from all locales is necessary to capture the evolving tumour landscape in culture. Next, the conversion of these models to systems on a chip that can by way of high throughput cytotoxic assays identify drug leads for clinical trials should fast-track drug development while markedly improving success rates. In this review, we describe the challenges that have hindered the progression of cell line models over seven decades and methods to overcome this. We outline the gaps in breast and prostate cancer cell line pathology and racial representation alongside their involvement in relevant drug development.
Collapse
Affiliation(s)
- Chelsi James
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica
| | - Akeem Whitehead
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica
| | | | - Rory Thompson
- Department of Pathology, The University of the West Indies, Mona, Jamaica
| | - Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica.
| |
Collapse
|
39
|
Han X, Zhu Y, Ke J, Zhai Y, Huang M, Zhang X, He H, Zhang X, Zhao X, Guo K, Li X, Han Z, Zhang Y. Progression of m 6A in the tumor microenvironment: hypoxia, immune and metabolic reprogramming. Cell Death Discov 2024; 10:331. [PMID: 39033180 PMCID: PMC11271487 DOI: 10.1038/s41420-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.
Collapse
Affiliation(s)
- Xuan Han
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Yu Zhu
- Linfen Central Hospital, Linfen, China
| | - Juan Ke
- Linfen Central Hospital, Linfen, China
| | | | - Min Huang
- Linfen Central Hospital, Linfen, China
| | - Xin Zhang
- Linfen Central Hospital, Linfen, China
| | | | | | | | | | | | - Zhongyu Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
40
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
41
|
Li W, Nadeem M. Decarbonizing progress: Exploring the nexus of renewable energy, digital economy, and economic development in South American countries. Heliyon 2024; 10:e33446. [PMID: 39071722 PMCID: PMC11283105 DOI: 10.1016/j.heliyon.2024.e33446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Examining the relationship between green energy, the digital economy, and economic advancement in eighteen South American nations, the study used the Principal Component Factor (PCF) approach. A Green Energy Transition Index (GETI) and a Digital Economy Index (DEI) were developed as a consequence of this study. Confirmation of the large influence of switching to green energy on economic development and environmental sustainability is provided by the research's use of Fixed Effect Panel Threshold Regression (FEPTR) analysis. In today's global industrial value chain, hydrocarbons are the main source of energy. As a result, it hastened the decarburization of the world energy system to lower the noteworthy quantities of CO2 emissions from these sources. All quantile groups' economic development is strongly impacted by the digital economy and the move to green energy, according to the Methodology of instants of quantile regression (MMQR). The only element that positively impacts environmental sustainability across all quantile groups is the switch to Green energy. Reducing CO2 emissions and increasing economic development are characteristics of the low-quantile group. While the median quantile group does see a decrease in carbon dioxide emissions, economic growth remains stagnant.
Collapse
Affiliation(s)
- Wei Li
- School of Economics and Management, Hefei Normal University, Hefei, Anhui, 230601, China
| | - Muhammad Nadeem
- School of Economics and Finance, Xi'an Jiao Tong University, Xian, 710061, China
| |
Collapse
|
42
|
Rahman MA, Rakib-Uz-Zaman SM, Chakraborti S, Bhajan SK, Gupta RD, Jalouli M, Parvez MAK, Shaikh MH, Hoque Apu E, Harrath AH, Moon S, Kim B. Advancements in Utilizing Natural Compounds for Modulating Autophagy in Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Cells 2024; 13:1186. [PMID: 39056768 PMCID: PMC11274515 DOI: 10.3390/cells13141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy, an intrinsic catabolic mechanism that eliminates misfolded proteins, dysfunctional organelles, and lipid droplets, plays a vital function in energy balance and cytoplasmic quality control, in addition to maintaining cellular homeostasis. Liver cancer such as hepatocellular carcinoma (HCC) is one of the most common causes of cancer deaths globally and shows resistance to several anticancer drugs. Despite the rising incidence and poor prognosis of malignant HCC, the underlying molecular mechanisms driving this aggressive cancer remain unclear. Several natural compounds, such as phytochemicals of dietary and non-dietary origin, affect hepatocarcinogenesis signaling pathways in vitro and in vivo, which may help prevent and treat HCC cells. Current HCC cells treatments include chemotherapy, radiation, and surgery. However, these standard therapies have substantial side effects, and combination therapy enhances side effects for an acceptable therapeutic benefit. Therefore, there is a need to develop treatment strategies for HCC cells that are more efficacious and have fewer adverse effects. Multiple genetic and epigenetic factors are responsible for the HCC cells to become resistant to standard treatment. Autophagy contributes to maintain cellular homeostasis, which activates autophagy for biosynthesis and mitochondrial regulation and recycling. Therefore, modifying autophagic signaling would present a promising opportunity to identify novel therapies to treat HCC cells resistant to current standard treatments. This comprehensive review illustrates how natural compounds demonstrate their anti-hepatocellular carcinoma function through autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - S M Rakib-Uz-Zaman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Somdeepa Chakraborti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (S.M.R.-U.-Z.); (S.C.)
| | - Sujay Kumar Bhajan
- Department of Biotechnology & Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj 8100, Bangladesh;
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | | | - Mushfiq H. Shaikh
- Department of Otolaryngology-Head & Neck Surgery, Western University, London, ON N6A 4V2, Canada;
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1–5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
43
|
Qian Y, Zhang Q, Ren Y, Cao L, Zheng S, Li B, Wu X, Meng Z, Xu K. Prognostic Value and Immune Landscapes of Four Types of RNA Modification Writer-Related LncRNAs Signature in Lung Adenocarcinoma. J Cancer 2024; 15:4818-4837. [PMID: 39132150 PMCID: PMC11310873 DOI: 10.7150/jca.96755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the predominant pathological subtype of non-small cell lung cancer (NSCLC). The four primary forms of RNA adenosine modifications, N6-methyladenosine (m6A), N1-methyladenosine (m1A), alternative polyadenylation (APA) and adenosine-to-inosine (A-to-I) RNA editing, play a critical role in tumor progression. However, the clinical significance of RNA modification writer-related long non-coding RNAs (lncRNAs) in LUAD remains unclear. Methods: The Cancer Genome Atlas (TCGA) database was used to obtain transcriptomic and clinicopathological data. Univariate Cox regression analysis, consensus cluster analysis, and least absolute shrinkage and selection operator (LASSO) Cox regression were used to establish the molecular subtypes and prognostic signatures of LUAD based on the expression levels of lncRNAs. ESTIMATE, CIBERSORT, ssGSEA, and TIDE algorithms were used to investigate immune cell infiltration and immunotherapy. In addition, IC50 of chemotherapeutic agents were calculated for different risk subgroups using the "pRRophetic" R package. Finally, the expression of prognosis-associated lncRNAs in lung cancer tissues was verified using qPCR. Results: A prognostic risk signature containing seven lncRNAs associated with four types of RNA modification writers was established. The high-risk group had a poorer prognosis and higher clinicopathological grade. Most immune checkpoint genes and immune cell infiltration differed significantly between the two risk groups. The high-risk group had a higher tumor mutation burden (TMB), lower TIDE score, and was more sensitive to immunotherapy. Conclusion: We developed an RNA modification writer-related seven-lncRNA signature prognostic model that was associated with prognosis, tumor microenvironment, and response to immunotherapy in LUAD patients. Among them, LINC01352, AC024075.1, AC005070.3, AL133445.2, AC005856.1, and LINC00968 were downregulated in LUAD, whereas AC092168.2 was upregulated. This model may be a valuable tool for personalized LUAD therapies.
Collapse
Affiliation(s)
- Yongmei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sijia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bingbing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
44
|
Sharma NK, Dwivedi P, Bhushan R, Maurya PK, Kumar A, Dakal TC. Engineering circular RNA for molecular and metabolic reprogramming. Funct Integr Genomics 2024; 24:117. [PMID: 38918231 DOI: 10.1007/s10142-024-01394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The role of messenger RNA (mRNA) in biological systems is extremely versatile. However, it's extremely short half-life poses a fundamental restriction on its application. Moreover, the translation efficiency of mRNA is also limited. On the contrary, circular RNAs, also known as circRNAs, are a common and stable form of RNA found in eukaryotic cells. These molecules are synthesized via back-splicing. Both synthetic circRNAs and certain endogenous circRNAs have the potential to encode proteins, hence suggesting the potential of circRNA as a gene expression machinery. Herein, we aim to summarize all engineering aspects that allow exogenous circular RNA (circRNA) to prolong the time that proteins are expressed from full-length RNA signals. This review presents a systematic engineering approach that have been devised to efficiently assemble circRNAs and evaluate several aspects that have an impact on protein production derived from. We have also reviewed how optimization of the key components of circRNAs, including the topology of vector, 5' and 3' untranslated sections, entrance site of the internal ribosome, and engineered aptamers could be efficiently impacting the translation machinery for molecular and metabolic reprogramming. Collectively, molecular and metabolic reprogramming present a novel way of regulating distinctive cellular features, for instance growth traits to neoplastic cells, and offer new possibilities for therapeutic inventions.
Collapse
Affiliation(s)
- Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India.
| | - Pragya Dwivedi
- Department of Bioscience and Biotechnology, Banasthali Vidyapith (Deemed University), P.O. Banasthali Vidyapith Distt. Tonk, Rajasthan, 304 022, India
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
45
|
Payervand N, Pakravan K, Razmara E, Vinu KK, Ghodsi S, Heshmati M, Babashah S. Exosomal circ_0084043 derived from colorectal cancer-associated fibroblasts promotes in vitro endothelial cell angiogenesis by regulating the miR-140-3p/HIF-1α/VEGF signaling axis. Heliyon 2024; 10:e31584. [PMID: 38828320 PMCID: PMC11140710 DOI: 10.1016/j.heliyon.2024.e31584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Background Circular RNAs (circRNAs) hold potential as diagnostic markers for colorectal cancer (CRC); however, their functional mechanisms remain incompletely elucidated. This work investigates the clinical implications of a unique set comprising six circRNAs derived from serum in CRC. Furthermore, we delve into the role of exosomal circ_0084043, originating from colorectal cancer-associated fibroblasts (CAFs), with a specific focus on its contribution to endothelial cell angiogenesis. Methods The study analyzed circRNA levels in serum samples obtained from both CRC and control groups using qRT-PCR. Additionally, exosomes originating from colorectal CAFs and normal fibroblasts (NFs) were purified and confirmed by electron microscopy and Western blotting techniques. The proangiogenic effects of CAF-derived exosomal circ_0084043 were assessed in endothelial cells through proliferation, migration, and in vitro capillary tube formation assays. Gain- and loss-of-function experiments were employed to clarify the role of the circ_0084043/miR-140-3p/HIF-1α axis in endothelial cell angiogenesis, utilizing luciferase reporter assay, Western blotting, and ELISA for mechanism elucidation. Results The candidate circRNAs (circ_0060745, circ_001569, circ_007142, circ_0084043, Circ_BANP, and CiRS-7) exhibited notably elevated expression in CRC patient sera compared to the levels observed in healthy individuals. Except for CiRS-7, all circRNAs showed elevated expression in CRC patients with positive lymph node metastasis and advanced tumor stages. Exosomes released by colorectal CAFs augmented endothelial cell proliferation, migration, and angiogenesis by upregulating VEGF expression and secretion. Circ_0084043 was highly detected in endothelial cells treated with CAF-derived exosomes. Silencing circ_0084043 reduced VEGFA expression and diminished CAF exosome-induced endothelial cell processes, indicating its pivotal role in angiogenesis. Circ_0084043 sponges miR-140-3p, regulating HIF-1α, and a reverse relationship was also identified between miR-140-3p and VEGFA in endothelial cells. Inhibiting miR-140-3p mitigated circ_0084043 knockdown effects in CAF exosome-treated endothelial cells. Co-transfection of si-circ_0084043 and a miR-140-3p inhibitor reversed the inhibited migration and angiogenesis caused by circ_0084043 knockdown in CAF exosome-treated endothelial cells. Inhibiting miR-140-3p rescued reduced VEGFA expression due to circ_0084043 knockdown in endothelial cells exposed to CAF-derived exosomes, indicating modulation of the circ_0084043/miR-140-3p/VEGF signaling in CAF-derived exosome-induced angiogenesis. Conclusions This study unveiled a distinctive signature of six serum-derived circular RNAs, indicating their potential as promising diagnostic biomarkers for CRC. Importantly, exosomal circ_0084043 originating from colorectal CAFs was identified as playing a crucial role in endothelial cell angiogenesis, exerting its influence through the modulation of the miR-140-3p/HIF-1α/VEGF signaling axis.
Collapse
Affiliation(s)
- Nafiseh Payervand
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kailash Kumar Vinu
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Ghodsi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
46
|
Hao MJ, Cheng ZY, Gao Y, Xin L, Yu CT, Wang TL, Li ZS, Wang LW. Liquid biopsy of oesophageal squamous cell carcinoma: implications in diagnosis, prognosis, and treatment monitoring. Scand J Gastroenterol 2024; 59:698-709. [PMID: 38466190 DOI: 10.1080/00365521.2024.2310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/20/2024] [Indexed: 03/12/2024]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a common malignant tumour of the gastrointestinal tract. Early detection and access to appropriate treatment are crucial for the long-term survival of patients. However, limited diagnostic and monitoring methods are available for identifying early stage ESCC. Endoscopic screening and surgical resection are commonly used to diagnose and treat early ESCC. However, these methods have disadvantages, such as high recurrence, lethality, and mortality rates. Therefore, methods to improve early diagnosis of ESCC and reduce its mortality rate are urgently required. In 1961, Gary et al. proposed a novel liquid biopsy approach for clinical diagnosis. This involved examining exosomes, circulating tumour cells, circulating free DNA, and circulating free RNA in body fluids. The ability of liquid biopsy to obtain samples repeatedly, wide detection range, and fast detection speed make it a feasible option for non-invasive tumour detection. In clinical practice, liquid biopsy technology has gained popularity for early screening, diagnosis, treatment efficacy monitoring, and prognosis assessment. Thus, this is a highly promising examination method. However, there have been no comprehensive reviews on the four factors of liquid biopsy in the context of ESCC. This review aimed to analyse the progress of liquid biopsy research for ESCC, including its classification, components, and potential future applications.
Collapse
Affiliation(s)
- Mei-Juan Hao
- University of Shanghai for Science and Technology, Shanghai, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Anaesthesia and Surgery, Guiyang Fourth People's Hospital, Guiyang, China
| | - Zhi-Yuan Cheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Xin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chu-Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ting-Lu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Luo-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
47
|
Hashemi M, Mousavian Roshanzamir S, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Deldar Abad Paskeh M, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res 2024; 9:508-522. [PMID: 38511060 PMCID: PMC10950594 DOI: 10.1016/j.ncrna.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haleh Zokaee
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Salmani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
48
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
49
|
Liu X, Zhang J, Zheng S, Li M, Xu W, Shi J, Kamei KI, Tian C. Hybrid adipocyte-derived exosome nano platform for potent chemo-phototherapy in targeted hepatocellular carcinoma. J Control Release 2024; 370:168-181. [PMID: 38643936 DOI: 10.1016/j.jconrel.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The high prevalence and severity of hepatocellular carcinoma (HCC) present a significant menace to human health. Despite the significant advancements in nanotechnology-driven antineoplastic agents, there remains a conspicuous gap in the development of targeted chemotherapeutic agents specifically designed for HCC. Consequently, there is an urgent need to explore potent drug delivery systems for effective HCC treatment. Here we have exploited the interplay between HCC and adipocyte to engineer a hybrid adipocyte-derived exosome platform, serving as a versatile vehicle to specifically target HCC and exsert potent antitumor effect. A lipid-like prodrug of docetaxel (DSTG) with a reactive oxygen species (ROS)-cleavable linker, and a lipid-conjugated photosensitizer (PPLA), spontaneously co-assemble into nanoparticles, functioning as the lipid cores of the hybrid exosomes (HEMPs and NEMPs). These nanoparticles are further encapsuled within adipocyte-derived exosome membranes, enhancing their affinity towards HCC cancer cells. As such, cancer cell uptakes of hybrid exosomes are increased up to 5.73-fold compared to lipid core nanoparticles. Our in vitro and in vivo experiments have demonstrated that HEMPs not only enhance the bioactivity of the prodrug and extend its circulation in the bloodstream but also effectively inhibit tumor growth by selectively targeting hepatocellular carcinoma tumor cells. Self-facilitated synergistic drug release subsequently promoting antitumor efficacy, inducing significant inhibition of tumor growth with minimal side effects. Our findings herald a promising direction for the development of targeted HCC therapeutics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaxin Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenqian Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Program of Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program of Bioengineering, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, Tandon School of Engineering, New York University, MetroTech, Brooklyn, NY 11201, United States of America.
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
50
|
McDevitt T, Durkie M, Arnold N, Burghel GJ, Butler S, Claes KBM, Logan P, Robinson R, Sheils K, Wolstenholme N, Hanson H, Turnbull C, Hume S. EMQN best practice guidelines for genetic testing in hereditary breast and ovarian cancer. Eur J Hum Genet 2024; 32:479-488. [PMID: 38443545 PMCID: PMC11061103 DOI: 10.1038/s41431-023-01507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) is a genetic condition associated with increased risk of cancers. The past decade has brought about significant changes to hereditary breast and ovarian cancer (HBOC) diagnostic testing with new treatments, testing methods and strategies, and evolving information on genetic associations. These best practice guidelines have been produced to assist clinical laboratories in effectively addressing the complexities of HBOC testing, while taking into account advancements since the last guidelines were published in 2007. These guidelines summarise cancer risk data from recent studies for the most commonly tested high and moderate risk HBOC genes for laboratories to refer to as a guide. Furthermore, recommendations are provided for somatic and germline testing services with regards to clinical referral, laboratory analyses, variant interpretation, and reporting. The guidelines present recommendations where 'must' is assigned to advocate that the recommendation is essential; and 'should' is assigned to advocate that the recommendation is highly advised but may not be universally applicable. Recommendations are presented in the form of shaded italicised statements throughout the document, and in the form of a table in supplementary materials (Table S4). Finally, for the purposes of encouraging standardisation and aiding implementation of recommendations, example report wording covering the essential points to be included is provided for the most common HBOC referral and reporting scenarios. These guidelines are aimed primarily at genomic scientists working in diagnostic testing laboratories.
Collapse
Affiliation(s)
- Trudi McDevitt
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland.
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust Western Bank, Sheffield, UK
| | - Norbert Arnold
- UKSH Campus Kiel, Gynecology and Obstetrics, Institut of Clinical Chemistry, Institut of Clinical Molecular Biology, Kiel, Germany
| | - George J Burghel
- Manchester University NHS Foundation Trust, North West Genomic Laboratory Hub, Manchester, UK
| | - Samantha Butler
- Central and South Genomic Laboratory Hub, West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Peter Logan
- HSCNI / Belfast Trust Laboratories, Regional Molecular Diagnostics Service, Belfast, Northern Ireland
| | - Rachel Robinson
- Leeds Teaching Hospitals NHS Trust, Genetics Department, Leeds, UK
| | | | | | - Helen Hanson
- St George's University Hospitals NHS Foundation Trust, Clinical Genetics, London, UK
| | | | - Stacey Hume
- University of British Columbia, Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|