1
|
Duan H, Lai Q, Jiang Y, Yang L, Deng M, Lin Z, Shan W, Zhong M, Yao J, Zhang L, Xu B, Zha J. Chiglitazar diminishes the warburg effect through PPARγ/mTOR/PKM2 and increases the sensitivity of imatinib in chronic myeloid leukemia. Exp Hematol Oncol 2024; 13:121. [PMID: 39696470 DOI: 10.1186/s40164-024-00589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND A tyrosine kinase inhibitor (TKI) such as Imatinib (IM) is the preferred treatment for Chronic Myeloid Leukemia (CML). However, the emergence of IM resistance presents a significant challenge to disease management. A characteristic of cancer cells, including IM-resistant CMLs, are characterized by heightened uptake of glucose and aberrant glycolysis in the cytosol, which is known as the Warburg effect. In addition to its potential to modulate the Warburg effect, Chiglitazar (Chi), a compound that regulates glucose metabolism, has also been investigated for its implication in cancer treatment. This suggests that combining Chi with IM may be a therapeutic strategy for overcoming IM resistance in CML. METHODS Sensitive and IM-resistance CML cells were treated with Chi in vitro, followed by detecting of extracellular acidification rate (ECAR) using a Seahorse XF Analyzer. CML cell proliferation, cell cycle distribution, and apoptosis were tested by CCK-8 assay and flow cytometry. RNA sequencing was utilized to investigate potential transcriptional changes induced by Chi usage. In vivo studies were conducted on immunodeficient mice implanted with CML cells and given Chi and/or IM later. Tumor growth was monitored, as well as tumor burden and survival rates between groups. RESULTS Our metabonomic, transcriptomic, and molecular biology studies demonstrated that Chi, in part, diminished the Warburg effect by reducing glucose and lactate production in imatinib-resistant CML cells through the PPARγ/mTOR/PKM2 pathway. This modulation of glucose metabolism resulted in reduced cell proliferation and enhanced sensitivity to IM in imatinib-resistant CML cells in vitro. Rescue assay by introducing shPPARγ or mTOR activator verified the underlying regulatory pathway. Also, the combination of Chi and IM synergistically increased the sensitivity of IM in vivo and prolonged the survival of imatinib-resistance CML transplanted mice. CONCLUSIONS Our results demonstrated the potential of Chi to overcome IM resistance in vitro and in vivo. By inhibiting the Warburg effect through the PPARγ/mTOR/PKM2 pathway, Chi resensitizes CML cells towards imatinib treatment. Combining IM with Chi is an alternative therapeutic option for CML management, especially for IM-resistant CML patients.
Collapse
Affiliation(s)
- Hongpeng Duan
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Qian Lai
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Liuzhen Yang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Zhijuan Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Weihang Shan
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Li Zhang
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Zhenhai Road, Xiamen, 361003, Fujian, People's Republic of China.
| |
Collapse
|
2
|
Sengupta A, Chakraborty S, Biswas S, Patra SK, Ghosh S. S-nitrosoglutathione (GSNO) induces necroptotic cell death in K562 cells: Involvement of p73, TSC2 and SIRT1. Cell Signal 2024; 124:111377. [PMID: 39222864 DOI: 10.1016/j.cellsig.2024.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Nitric oxide and Reactive Nitrogen Species are known to effect tumorigenicity. GSNO is one of the main NO carrying signalling moiety in cell. In the current study, we tried to delve into the effect of GSNO induced nitrosative stress in three different myelogenous leukemic K562, U937 and THP-1 cell lines. METHOD WST-8 assay was performed to investigate cell viability. RT-PCR and western-blot analysis were done to investigate mRNA and protein expression. Spectrophotometric and fluorimetric assays were done to investigate enzyme activities. RESULT We found that GSNO exposure led to reduced cell viability and the mode of cell death in K562 was non apoptotic in nature. GSNO promoted impaired autophagic flux and necroptosis. GSNO treatment heightened phosphorylation of AMPK and TSC2 and inhibited mTOR pathway. We observed increase in NAD+/ NADH ratio following GSNO treatment. Increase in both SIRT1 m-RNA and protein expression was observed. While total SIRT activity remained unaltered. GSNO increased tumor suppressor TAp73/ oncogenic ∆Np73 ratio in K562 cells which was correlated with cell mortality. Surprisingly, GSNO did not alter cellular redox status or redox associated protein expression. However, steep increase in total SNO and PSNO content was observed. Furthermore, inhibition of autophagy, AMPK phosphorylation or SIRT1 exacerbated the effect of GSNO. Altogether our work gives insights into GSNO mediated necroptotic event in K562 cells which can be excavated to develop NO based anticancer therapeutics. CONCLUSION Our data suggests that GSNO could induce necroptotic cell death in K562 through mitochondrial dysfunctionality and PTM of different cellular proteins.
Collapse
Affiliation(s)
- Ayantika Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhamoy Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanchita Biswas
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
3
|
Zeng C, Nie D, Wang X, Zhong S, Zeng X, Liu X, Qiu K, Peng X, Zhang W, Chen S, Zha X, Chen C, Chen Z, Wang W, Li Y. Combined targeting of GPX4 and BCR-ABL tyrosine kinase selectively compromises BCR-ABL+ leukemia stem cells. Mol Cancer 2024; 23:240. [PMID: 39465372 PMCID: PMC11514791 DOI: 10.1186/s12943-024-02162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND In the ongoing battle against BCR-ABL+ leukemia, despite significant advances with tyrosine kinase inhibitors (TKIs), the persistent challenges of drug resistance and the enduring presence of leukemic stem cells (LSCs) remain formidable barriers to achieving a cure. METHODS In this study, we demonstrated that Disulfiram (DSF) induces ferroptosis to synergize with TKIs in inhibiting BCR-ABL+ cells, particularly targeting resistant cells and LSCs, using cell models, mouse models, and primary cells from patients. We elucidated the mechanism by which DSF promotes GPX4 degradation to induce ferroptosis through immunofluorescence, co-immunoprecipitation (CO-IP), RNA sequencing, lipid peroxidation assays, and rescue experiments. RESULTS Here, we present compelling evidence elucidating the sensitivity of DSF, an USA FDA-approved drug for alcohol dependence, towards BCR-ABL+ cells. Our findings underscore DSF's ability to selectively induce a potent cytotoxic effect on BCR-ABL+ cell lines and effectively inhibit primary BCR-ABL+ leukemia cells. Crucially, the combined treatment of DSF with TKIs selectively eradicates TKI-insensitive stem cells and resistant cells. Of particular note is DSF's capacity to disrupt GPX4 stability, elevate the labile iron pool, and intensify lipid peroxidation, ultimately leading to ferroptotic cell death. Our investigation shows that BCR-ABL expression induces alterations in cellular iron metabolism and increases GPX4 expression. Additionally, we demonstrate the indispensability of GPX4 for LSC development and the initiation/maintenance of BCR-ABL+ leukemia. Mechanical analysis further elucidates DSF's capacity to overcome resistance by reducing GPX4 levels through the disruption of its binding with HSPA8, thereby promoting STUB1-mediated GPX4 ubiquitination and subsequent proteasomal degradation. Furthermore, the combined treatment of DSF with TKIs effectively targets both BCR-ABL+ blast cells and drug-insensitive LSCs, conferring a significant survival advantage in mouse models. CONCLUSION In summary, the dual inhibition of GPX4 and BCR-ABL presents a promising therapeutic strategy to synergistically target blast cells and drug-insensitive LSCs in patients, offering potential avenues for advancing leukemia treatment.
Collapse
MESH Headings
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Humans
- Animals
- Mice
- Protein Kinase Inhibitors/pharmacology
- Disulfiram/pharmacology
- Ferroptosis/drug effects
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chengwu Zeng
- Guangzhou First People's Hospital, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China.
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Dingrui Nie
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianfeng Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shuxin Zhong
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiangbo Zeng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Liu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kangjie Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueting Peng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wenyi Zhang
- Guangdong Key Laboratory of Bioactive Drug Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shengting Chen
- Department of Hematology, Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xianfeng Zha
- Department of Hematology, Department of clinical laboratory, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Cunte Chen
- Guangzhou First People's Hospital, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China.
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
| | - Weizhang Wang
- Guangdong Key Laboratory of Bioactive Drug Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Pamuk GE, Chow ECY, Ionan AC, Chen H, Lee SL, Hsu V, Grimstein M, Zheng N, Sun J, Charlab R, Gehrke BJ, Vallejo J, Ehrlich LA, de Claro RA, Theoret MR. FDA Approval Summary: Asciminib for Ph+ CML in Chronic Phase Treated with Two or More Tyrosine Kinase Inhibitors and for the T315I Mutation. Clin Cancer Res 2024; 30:4266-4271. [PMID: 39088257 PMCID: PMC11444873 DOI: 10.1158/1078-0432.ccr-24-1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
On October 29, 2021, FDA granted accelerated approval to asciminib (SCEMBLIX; Novartis), a tyrosine kinase inhibitor (TKI), for the treatment of adult patients with Philadelphia chromosome positive chronic myeloid leukemia (Ph+ CML) in chronic phase (CP), previously treated with two or more TKIs, and granted traditional approval to asciminib for adult patients with Ph+ CML in CP with the T315I mutation. The first indication was approved based on major molecular response (MMR) at 24 weeks in the ASCEMBL study, a randomized trial comparing asciminib with bosutinib in patients who had failed two or more TKIs. This indication was ultimately granted traditional approval on October 12, 2022, based on safety data and MMR rate at 96 weeks of 38% [95% confidence interval (CI), 30-46] in the asciminib arm versus 16% (95% CI, 8-26) in the bosutinib arm (P value: 0.001). The second indication was approved based on MMR rate by 96 weeks of 49% (95% CI, 34-64) in the single-arm CABL001X2101 study. The most common (≥20%) adverse reactions included upper respiratory tract infections, musculoskeletal pain, headache, fatigue, nausea, rash, and diarrhea. The most common (≥20%) laboratory abnormalities were thrombocytopenia, neutropenia, anemia, lymphopenia, hypertriglyceridemia, hyperuricemia, and increases in creatine kinase, alanine aminotransferase, aspartate aminotransferase, lipase, and amylase. This manuscript describes the basis for approval of these indications.
Collapse
Affiliation(s)
- Gulsum E Pamuk
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Edwin C Y Chow
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Alexei C Ionan
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Haiyan Chen
- Office of Biostatistics, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Shwu-Luan Lee
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Vicky Hsu
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Manuela Grimstein
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Nan Zheng
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Jielin Sun
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Rosane Charlab
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Brenda J Gehrke
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Jonathon Vallejo
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Lori A Ehrlich
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - R Angelo de Claro
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Marc R Theoret
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
5
|
Rocha KML, Nascimento ÉCM, de Jesus RCC, Martins JBL. In Silico Molecular Modeling of Four New Afatinib Derived Molecules Targeting the Inhibition of the Mutated Form of BCR-ABL T315I. Molecules 2024; 29:4254. [PMID: 39275102 PMCID: PMC11397288 DOI: 10.3390/molecules29174254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Four afatinib derivatives were designed and modeled. These derivatives were compared to the known tyrosine-kinase inhibitors in treating Chronic Myeloid Leukemia, i.e., imatinib and ponatinib. The molecules were evaluated through computational methods, including docking studies, the non-covalent interaction index, Electron Localization and Fukui Functions, in silico ADMET analysis, QTAIM, and Heat Map analysis. The AFA(IV) candidate significantly increases the score value compared to afatinib. Furthermore, AFA(IV) was shown to be relatively similar to the ponatinib profile when evaluating a range of molecular descriptors. The addition of a methylpiperazine ring seems to be well distributed in the structure of afatinib when targeting the BCR-ABL enzyme, providing an important hydrogen bond interaction with the Asp381 residue of the DFG-switch of BCR-ABL active site residue and the AFA(IV) new chemical entities. Finally, in silico toxicity predictions show a favorable index, with some molecules presenting the loss of the irritant properties associated with afatinib in theoretical predictions.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/chemistry
- Afatinib/chemistry
- Afatinib/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Molecular Docking Simulation
- Humans
- Models, Molecular
- Computer Simulation
- Mutation
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Hydrogen Bonding
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Imidazoles/chemistry
- Imidazoles/pharmacology
- Pyridazines
Collapse
Affiliation(s)
- Kelvyn M. L. Rocha
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
| | - Érica C. M. Nascimento
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Rafael C. C. de Jesus
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
| | - João B. L. Martins
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
6
|
Hu L, Li Z, Yang S, Zhao T, Duan W, Qin Y, Jia J, Wang J, Lu S, Jiang H, Zhang X, Xu L, Wang Y, Lai Y, Shi H, Huang X, Jiang Q. Allogeneic stem cell transplantation is still a highly curative therapy in adults with philadelphia chromosome-positive acute lymphoblastic leukaemia. Ann Hematol 2024; 103:3745-3754. [PMID: 38441597 DOI: 10.1007/s00277-024-05682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 08/29/2024]
Abstract
The application of tyrosine kinase inhibitors (TKIs) and novel immunotherapies has improved outcomes in patients with Ph + acute lymphoblastic leukaemia (ALL), and the issue of whether there is still a need for stem cell transplantation has become controversial. We performed a retrospective study to explore whether stem cell transplantation still held a place in patients with Ph + ALL if only imatinib and 2nd generation TKIs are available and affordable. A total of 292 patients were included. The median age was 38 years [range 14-64, IQR 28-48]. Patients receiving transplants (n = 216) had better rates of 4-year disease-free survival (DFS, 68% vs. 24%, P < .0001) and overall survival (OS, 72% vs. 47%, P < .0001) than those receiving continuous TKIs plus chemotherapy (TKI-chemo) (n = 76). In the multivariate analysis, male sex, WBC count ≥ 95 × 109/L and PLT count ≤ 154 × 109/L at diagnosis were significantly associated with poorer outcomes, and transplantation was significantly associated with favourable DFS and OS. In addition, the transplant outcomes were superior in any subgroup according to the number of risk variables. Furthermore, propensity score matching (PSM) analyses showed similar findings in the whole cohort and in age- and BCR-ABL1 level-based subgroups after the first or second consolidation. In conclusion, transplantation as a one-time procedure for adults with Ph + ALL patients remains important in countries lacking accessibility to third-generation TKIs or immunotherapies, regardless of the depth of the molecular response.
Collapse
Affiliation(s)
- Lijuan Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Zongru Li
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Sen Yang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ting Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wenbing Duan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yazhen Qin
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jinsong Jia
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Shengye Lu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hao Jiang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yueyun Lai
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hongxia Shi
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Peking University People's Hospital, Qingdao, China
| | - Qian Jiang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China.
- Peking University People's Hospital, Qingdao, China.
| |
Collapse
|
7
|
Adamo FM, De Falco F, Dorillo E, Sorcini D, Stella A, Esposito A, Arcaleni R, Rosati E, Sportoletti P. Nanotechnology Advances in the Detection and Treatment of Lymphoid Malignancies. Int J Mol Sci 2024; 25:9253. [PMID: 39273202 PMCID: PMC11395233 DOI: 10.3390/ijms25179253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Lymphoid malignancies are complex diseases with distinct biological behaviors, clinical presentations, and treatment responses. Ongoing research and advancements in biotechnology enhance the understanding and management of these malignancies, moving towards more personalized approaches for diagnosis and treatment. Nanotechnology has emerged as a promising tool to improve some limitations of conventional diagnostics as well as treatment strategies for lymphoid malignancies. Nanoparticles (NPs) offer unique advantages such as enhanced multimodal detection, drug delivery, and targeted therapy capabilities, with the potential to improve precision medicine and patient outcomes. Here, we comprehensively examine the current landscape of nanoconstructs applied in the management of lymphoid disease. Through a comprehensive analysis of preclinical studies, we highlight the translational potential of NPs in revolutionizing the field of hematological malignancies, with a specific focus on lymphoid neoplasms.
Collapse
Affiliation(s)
- Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06132 Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy
| |
Collapse
|
8
|
Zheng J, Zhao Y, Luo Y, Yu J, Lai X, Wang J, Ye Y, Liu L, Fu H, Yang L, Wu Y, Sun J, Zheng W, He J, Zhao Y, Wu W, Cai Z, Wei G, Huang H, Shi J. Impact of additional cytogenetic aberrations at diagnosis on prognosis of adults patients with Philadelphia chromosome positive acute lymphoblastic leukemia undergoing allogeneic hematopoietic cell transplantation: a retrospective analysis. Ann Hematol 2024; 103:2983-2991. [PMID: 38963448 DOI: 10.1007/s00277-024-05871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Additional chromosomal abnormalities(ACAs) at diagnosis are associated with inferior prognosis in chronic myeloid leukemia. However, the prognostic significance of ACAs in adult patients with Philadelphia Chromosome Positive acute lymphoblastic leukemia (Ph + ALL) receiving TKI-targeted drugs and allogeneic hematopoietic stem cell transplantation(HSCT) is unknown. One hundred thirty-six adult patients with Ph + ALL were included in the study and retrospectively analysed, evaluating the effect of ACAs on outcomes of transplantation. ACAs are observed in 60 cases (44%). ACAs detected in more than 5% of cases were defined as major-route and encompass: +der(22), +der(9), + 8, -7 and complex karyotype. The median follow-up was 26.4 months. In the subgroup analyses of major route ACAs, three-year cumulative incidence of relapse (CIR) and progression-free survival(PFS) are statistically significant in + 8[66.7% vs.23.7%, P = 0.024; 77.8% vs. 23.7%, P = 0.0087], -7[53.8% vs. 23.7%, P = 0.035%; 61.5% vs. 32.9%, P = 0.033], and complex karyotypes[42.9% vs. 23.7%, P = 0.027; 47.6% vs. 23.7%] compared with t(9;22) sole. Additionally, the 3-year CIR for Ph + ALL with + der(22) is 44% vs. 23.7% for t(9;22) sole(P = 0.045). The 3-year overall survival (OS) in the - 7 group is 46.5%, which is statistically significant compared with the other groups(P = 0.001). In multivariate analyses, three years CIR and PFS are statistically significant in + der(22), + 8, -7 and complex karyotype compared with t(9;22) sole(P < 0.05). More importantly, Ph + ALL with - 7 was negatively associated with the rate of 3-year OS(P = 0.012). Thus, ACAs at diagnosis appear to have a significant prognostic impact on transplantation outcomes in patients with Ph + ALL.
Collapse
Affiliation(s)
- Jing Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Hematology, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, 443000, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jinuo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Luxin Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yibo Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
9
|
Zhang Q, Zhou JD, Ding H, Yang L, Lu C, Chu MQ, Qian J, Zhang TJ. A case of Ph + acute lymphoblastic leukemia and EGFR mutant lung adenocarcinoma synchronous overlap: may one TKI drug solve two diseases? BMC Med Genomics 2024; 17:182. [PMID: 38978091 PMCID: PMC11232208 DOI: 10.1186/s12920-024-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) refers to ALL patients with t(9;22) cytogenetic abnormalities, accounting for about 25% of ALL. Lung adenocarcinoma (LUAD) is the most common pathological type of non-small-cell lung cancer, which has a frequency of approximately 45% cases with mutations in EGFR. Both Ph+ ALL and EGFR mutant LUAD are involved in the pathogenesis of the abnormal activation of the tyrosine kinase pathway. Although the second primary hematological malignancy after the treatment of solid tumors is common in clinics, the synchronous multiple primary malignant tumors of hematological malignancy overlap solid tumors are uncommon, even both tumors involved in the pathogenesis of the abnormal activation of the tyrosine kinase pathway are extremely rare. CASE PRESENTATION An 84-year-old man with fatigue and dizziness was diagnosed with Ph+ ALL. Meanwhile, a chest CT indicated a space-occupying lesions, characterized by the presence of void, in the right lower lope with the enlargement of mediastinal lymph node and right pleural effusion. After a few weeks, the patient was diagnosed with LUAD with EGFR exon 19 mutation. Both tyrosine kinase inhibitors (TKI) (Flumatinib) and EGFR-TKI (Oxertinib) was used for the patients, and finally have controlled both diseases. CONCLUSION As far as we know, we for the first time reported a case of Ph+ ALL and EGFR mutant LUAD synchronous overlap, of which pathogenesis is related to abnormal tyrosine kinase activation. This patient was successfully treated with two different TKIs without serious adverse events.
Collapse
Grants
- 81900166, 82270179, 82300164 National Natural Science Foundation of China
- 81900166, 82270179, 82300164 National Natural Science Foundation of China
- 81900166, 82270179, 82300164 National Natural Science Foundation of China
- BK20221287, BK20230296 Natural Science Foundation of Jiangsu Province
- BK20221287, BK20230296 Natural Science Foundation of Jiangsu Province
- M2022123 Research Project of Jiangsu Commission of Health
- SH2022027, SH2023009 Social Development Foundation of Zhenjiang
- SH2022027, SH2023009 Social Development Foundation of Zhenjiang
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lei Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chao Lu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ming-Qiang Chu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Hou Y, Lyu Y, Zhou J, Zhang X, Hassani MA, Huang D, Zhao Z, Zhou D, Xie F, Zhang X, Yan J. LncRNA IRAIN overcomes imatinib resistance in chronic myeloid leukemia via NF-κB/CD44 pathway inhibition. iScience 2024; 27:109851. [PMID: 38784023 PMCID: PMC11112338 DOI: 10.1016/j.isci.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The development of tyrosine kinase inhibitors (TKIs) has revolutionarily increased the overall survival of patients with chronic myeloid leukemia (CML). However, drug resistance remains a major obstacle. Here, we demonstrated that a BCR-ABL1-independent long non-coding RNA, IRAIN, is constitutively expressed at low levels in CML, resulting in imatinib resistance. IRAIN knockdown decreased the sensitivity of CD34+ CML blasts and cell lines to imatinib, whereas IRAIN overexpression significantly increased sensitivity. Mechanistically, IRAIN downregulates CD44, a membrane receptor favorably affecting TKI resistance, by binding to the nuclear factor kappa B subunit p65 to reduce the expression of p65 and phosphorylated p65. Therefore, the demethylating drug decitabine, which upregulates IRAIN, combined with imatinib, formed a dual therapy strategy which can be applied to CML with resistance to TKIs.
Collapse
Affiliation(s)
- Xijia Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Yutong Hou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Yizhu Lyu
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Jiayin Zhou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Xin Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Mohammad Arian Hassani
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Zhijia Zhao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Dong Zhou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Fang Xie
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center of the Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| |
Collapse
|
11
|
Huang Y, Qin Y, He Y, Qiu D, Zheng Y, Wei J, Zhang L, Yang DH, Li Y. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies. Drug Resist Updat 2024; 74:101082. [PMID: 38569225 DOI: 10.1016/j.drup.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.
Collapse
Affiliation(s)
- Yuxian Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| | - Yinjie Qin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yingzhi He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dezhi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yeqin Zheng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Jiayue Wei
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Lenghe Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
12
|
Uchiyama S, Fukushima K, Katagiri S, Tsuchiya J, Kubo T, Chi S, Minami Y. Advancements in minimal residual disease detection: a practical approach using single-cell droplet PCR for comprehensive monitoring in hematological malignancy. Ther Adv Hematol 2024; 15:20406207241245510. [PMID: 38628436 PMCID: PMC11020714 DOI: 10.1177/20406207241245510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
The identification of chromosomal abnormalities accompanied by copy number alterations is important for understanding tumor characteristics. Testing methodologies for copy number abnormality have limited sensitivity, resulting in their use only for the sample provided at the time of diagnosis or recurrence of malignancy, but not for the monitoring of minimal residual disease (MRD) during and after therapy. We developped the "DimShift" technology which enable to measure the copy number of target gene/chromosome in each cell, which is given by the single cell droplet PCR. Qualitative result of DimShift given by peripheral blood was perfectly concordant with that of bone marrow. These findings and performances are promising to be the new methodology for MRD detection in malignant diseases utilizing bone marrow as well as peripheral blood.
Collapse
Affiliation(s)
- Satoshi Uchiyama
- Department of Hematology, National Cancer Center East Hospital, Kashiwa, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University Hospital, Shinjuku City, Japan
| | - Junichi Tsuchiya
- Department of Research and Development, TL Genomics Inc., Koganei City, Japan
| | - Tomohiro Kubo
- Department of Research and Development, TL Genomics Inc., Koganei City, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center East Hospital, Kashiwa, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center East Hospital, 2-7-1 Kashiwano-ha, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
13
|
Li Z, Xi Y, Tu L, Zhang X, Huang Y, Nie H, Peng C, Chai H, Zeng S, Zheng X, Cheng L. Investigation of the mechanism of USP28-mediated IFITM3 elevation in BCR-ABL-dependent imatinib resistance in CML. Biomed Pharmacother 2024; 173:116315. [PMID: 38394852 DOI: 10.1016/j.biopha.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Due to resistance and BCR-ABLT315I-mutated, CML remains a clinical challenge. It needs new potential therapeutic targets to overcome CML resistance related to BCR-ABL. Our research revealed that the deubiquitinating enzyme USP28 was highly expressed in BCR-ABL-dependent CML patients. Similarly, a high expression of USP28 was found in the K562 cell line, particularly in the imatinib-resistant strains. Notably, USP28 directly interacted with BCR-ABL. Furthermore, when BCR-ABL and its mutant BCR-ABLT315I were overexpressed in K562-IMR, they promoted the expression of IFITM3. However, when small molecule inhibitors targeting USP28 and small molecule degraders targeting BCR-ABL were combined, they significantly inhibited the expression of IFITM3. The experiments conducted on tumor-bearing animals revealed that co-treated mice showed a significant reduction in tumor size, effectively inhibiting the progression of CML tumors. In summary, USP28 promoted the proliferation and invasion of tumor cells in BCR-ABL-dependent CML by enhancing the expression of IFITM3. Moreover, imatinib resistance might be triggered by the activation of the USP28-BCR-ABL-IFITM3 pathway. Thus, the combined inhibition of USP28 and BCR-ABL could be a promising approach to overcome CML resistance dependent on BCR-ABL.
Collapse
Affiliation(s)
- Zilin Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiling Xi
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xu Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yue Huang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huizong Nie
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cheng Peng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haohuan Chai
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Liyan Cheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Zhao D, Long X, Wang J. Pharmacovigilance study of BCR-ABL1 tyrosine kinase inhibitors: a safety analysis of the FDA adverse event reporting system. BMC Pharmacol Toxicol 2024; 25:20. [PMID: 38395895 PMCID: PMC10885429 DOI: 10.1186/s40360-024-00741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND With the increased use of BCR-ABL1 tyrosine kinase inhibitors (TKIs) in cancer patients, adverse events (AEs) have garnered considerable interest. We conducted this pharmacovigilance study to evaluate the AEs of BCR-ABL1 TKIs in cancer patients using the Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS To query AE reports from the FAERS database, we used OpenVigil 2.1. Descriptive analysis was then employed to describe the characteristics of TKIs-associated AE reports. We also utilized the disproportionality analysis to detect safety signals by calculating the proportional reporting ratio (PRR) and reporting odds ratios (ROR). RESULTS From the FAERS database, a total of 85,989 AE reports were retrieved, with 3,080 significant AE signals identified. Specifically, imatinib, nilotinib, dasatinib, bosutinib, and ponatinib had significant AE signals of 1,058, 813, 232, 186, and 791, respectively. These significant signals were further categorized into 26 system organ classes (SOCs). The AE signals of imatinib and ponatinib were primarily associated with general disorders and administration site conditions. On the other hand, nilotinib, dasatinib, and bosutinib were mainly linked to investigations, respiratory, thoracic and mediastinal disorders, and gastrointestinal disorders, respectively. Notably, new signals of 245, 278, 47, 55, and 253 were observed in imatinib, nilotinib, dasatinib, bosutinib, and ponatinib, respectively. CONCLUSIONS The results of this study demonstrated that AE signals differ among the five BCR-ABL1 TKIs. Furthermore, each BCR-ABL1 TKI displayed several new signals. These findings provide valuable information for clinicians aiming to reduce the risk of AEs during BCR-ABL1 TKI treatment.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China.
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Kato K, Takagi S, Takano H, Tsunoda S, Watanabe O, Yamaguchi K, Kageyama K, Kaji D, Taya Y, Nishida A, Ishiwata K, Yamamoto H, Yamamoto G, Asano-Mori Y, Koike Y, Makino S, Wake A, Taniguchi S, Uchida N. A case report of a truncated ABL1 mutation in 2 cases with Philadelphia chromosome-positive B cell precursor acute lymphoblastic leukemia. Int J Hematol 2024; 119:205-209. [PMID: 38236369 DOI: 10.1007/s12185-023-03691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Acquired point mutations in the ABL1 gene are widely recognized as a cause of Philadelphia chromosome-positive B cell precursor acute lymphoblastic leukemia (Ph+ B-ALL) that is resistant to tyrosine kinase inhibitors, whereas there are few reports about other types of the ABL1 mutation. Here, we report 2 cases of Ph+ B-ALL gaining a partial deletion type mutation of the ABL1 gene (Δ184-274 mutation), which resulted in truncation of the ABL1 molecule and loss of kinase activity. In both cases, the disease was refractory to multiple agents in the recurrent phase after allogeneic hematopoietic cell transplantation. This is a case report of a truncated ABL1 mutation in 2 patients with Ph+ B-ALL.
Collapse
Affiliation(s)
- Kana Kato
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Shinsuke Takagi
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan.
- Center for Long-Term Follow-Up After Hematopoietic Cell Transplantation, Toranomon Hospital, Tokyo, Japan.
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan.
| | - Hirofumi Takano
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Shinichi Tsunoda
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Otoya Watanabe
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Kyosuke Yamaguchi
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Kosei Kageyama
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Daisuke Kaji
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Yuki Taya
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Aya Nishida
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Kazuya Ishiwata
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Hisashi Yamamoto
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
- Center for Long-Term Follow-Up After Hematopoietic Cell Transplantation, Toranomon Hospital, Tokyo, Japan
| | - Go Yamamoto
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Yuki Asano-Mori
- Center for Long-Term Follow-Up After Hematopoietic Cell Transplantation, Toranomon Hospital, Tokyo, Japan
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Yukako Koike
- Department of Clinical Laboratory, Toranomon Hospital, Tokyo, Japan
| | | | - Atsushi Wake
- Department of Hematology, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Shuichi Taniguchi
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
16
|
Sponseiler I, Bandian AM, Pusic P, Lion T. Combinatorial treatment options for highly resistant compound mutations in the kinase domain of the BCR::ABL1 fusion gene in Ph-positive leukemias. Am J Hematol 2024; 99:E9-E11. [PMID: 38085116 DOI: 10.1002/ajh.27095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 09/09/2023] [Indexed: 12/19/2023]
Affiliation(s)
| | | | - Petra Pusic
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Thomas Lion
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- LabDia Labordiagnostik GmbH, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Silva W, Rego E. How to Manage Philadelphia-Positive Acute Lymphoblastic Leukemia in Resource-Constrained Settings. Cancers (Basel) 2023; 15:5783. [PMID: 38136329 PMCID: PMC10741425 DOI: 10.3390/cancers15245783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/24/2023] Open
Abstract
Recent studies have indicated that more than half of adult patients newly diagnosed with Ph+ ALL can now achieve a cure. However, determining the most suitable protocol for less-resourced settings can be challenging. In these situations, we must consider the potential for treatment toxicity and limited access to newer agents and alloSCT facilities. Currently, it is advisable to use less intensive induction regimens for Ph+ ALL. These regimens can achieve high rates of complete remission while causing fewer induction deaths. For consolidation therapy, chemotherapy should remain relatively intensive, with careful monitoring of the BCR-ABL1 molecular transcript and minimal residual disease. AlloSCT may be considered, especially for patients who do not achieve complete molecular remission or have high-risk genetic abnormalities, such as IKZF1-plus. If there is a loss of molecular response, it is essential to screen patients for ABL mutations and, ideally, change the TKI therapy. The T315I mutation is the most common mechanism for disease resistance, being targetable to ponatinib. Blinatumomab, a bispecific antibody, has shown significant synergy with TKIs in treating this disease. It serves as an excellent salvage therapy, aside from achieving outstanding results when incorporated into the frontline.
Collapse
Affiliation(s)
- Wellington Silva
- Discipline of Hematology, Hospital das Clínicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-010, Brazil;
| | | |
Collapse
|
18
|
Ahamed A, Hasan M, Samanta A, Alam SSM, Jamil Z, Ali S, Hoque M. Prospective pharmacological potential of cryptotanshinone in cancer therapy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 9:100308. [DOI: 10.1016/j.prmcm.2023.100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
19
|
Al Shahrani M, Gahtani RM, Abohassan M, Alasmari S, Makkawi M. Identification by molecular dynamic simulation and in vitro validation of SISB-A1, N-[1-(4-bromophenyl)-3-methyl-1H-pyrazol-5-yl]-2-[(2-oxo-4-phenyl-2H-chromen-7-yl) oxy], as an inhibitor of the Abl T315I mutant kinase to combat imatinib resistance in chronic myeloid leukemia. Med Oncol 2023; 40:316. [PMID: 37789230 DOI: 10.1007/s12032-023-02182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
The discovery of imatinib, a specific inhibitor of Abl kinase, revolutionized the therapeutic approach to chronic myeloid leukemia (CML); however, its efficacy can be impeded by the emergence of novel mutations within the kinase domain, particularly AblT315I, that lead to the development of drug resistance. It therefore remains necessary to identify specific inhibitors that can effectively target imatinib-resistant CML harboring the AblT315I mutation. A natural product library sourced from the ZINC database was screened against the experimental structure of AblT315I kinase to identify compounds that selectively target the mutated kinase. The top-scoring compound was empirically tested for inhibition of AblT315I kinase using a luminescence-based kit and for impact on cellular proliferation using the BaF3-BCR-ABL-T315I stable cell line. Computational docking and molecular dynamic simulations identified the compound SISB-A1, N-[1-(4-bromophenyl)-3-methyl-1H-pyrazol-5-yl]-2-[(2-oxo-4-phenyl-2H-chromen-7-yl)oxy] acetamide, to effectively bind the catalytic domain of the mutant AblT315I kinase. Moreover, SISB-A1 exhibited greater preference than imatinib for amino acid residues of the mutant kinase's active site, including isoleucine 315. MMPBSA-based Gibbs binding free energy estimation predicted SISB-A1 to have a free energy of -51.5 versus -65.0 kcal/mol for the conventional AblT315I inhibitor ponatinib. Cell proliferation assays showed SISB-A1 to have a GI50 of 164.0 nM against the ABL-T315I stable cell line, whereas imatinib had a GI50 of 5035 nM. The IC50 value obtained for SISB-A1 against the AblT315I kinase was 197.9 nM. The results indicate SISB-A1 to have a notable ability to bind the catalytic domain of the AblT315I mutant kinase and effectively suppress its activity, thereby surpassing the associated resistance to imatinib. Continued advancement of this lead compound has the potential to yield innovative therapeutics for imatinib-resistant CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Fusion Proteins, bcr-abl
- Molecular Dynamics Simulation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mutation
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Sultan Alasmari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia
| | - Mohammed Makkawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 3665, 61481, Abha, Saudi Arabia.
| |
Collapse
|
20
|
Pendse S, Chavan S, Kale V, Vaidya A. A comprehensive analysis of cell-autonomous and non-cell-autonomous regulation of myeloid leukemic cells: The prospect of developing novel niche-targeting therapies. Cell Biol Int 2023; 47:1667-1683. [PMID: 37554060 DOI: 10.1002/cbin.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sayali Chavan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
21
|
Spiess B, Kleiner H, Tarnopolscaia I, Naumann N, Fabarius A, Hofmann WK, Saussele S, Seifarth W. Reverse Transcription Can Critically Impact the Diagnostic Outcome of BCR::ABL1 Quantitative Real-Time RT-PCR. Cancers (Basel) 2023; 15:3914. [PMID: 37568730 PMCID: PMC10417499 DOI: 10.3390/cancers15153914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Reverse transcriptases (RT) are essential tools in BCR::ABL1 fusion transcript monitoring in chronic myeloid leukemia (CML). The RT type and cDNA priming method may impair the stoichiometry of cDNA synthesis, thereby potentially introducing a bias in BCR::ABL1 qRT-PCR data. Using the Acrometrix™ BCR::ABL1 reference panel and 37 clinical specimens, we have comparatively investigated the performance of the RTs MLV and SuperScript IV with random hexamer vs. target-specific priming. Quantitative RT-PCR results identified the priming type and RT type as major factors for diagnostic data variation, mainly due to the different efficacies of processing BCR::ABL1 low-copy-numbers (<50) compared to GUSB or ABL1 high-copy targets. The impairment of SuperScript IV in processing low- and high-copy-number RNA targets equally was not reflected by the diagnostically relevant Log (BCR::ABL1/GUSB%) values. Therefore, the correct representation of housekeeping and BCR::ABL1 target genes should have priority when aiming at as high a number of housekeeping gene copies as possible. Our data suggest that for improving BCR::ABL1 assay sensitivity, increased RNA/cDNA amounts and the use of distinct RT/priming combinations are advantageous. However, for inter-laboratory harmonization, the proper conversion factor according to the CML international standard (IS) has to be reevaluated each time the grade of RT is changed.
Collapse
Affiliation(s)
- Birgit Spiess
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.K.); (I.T.); (N.N.); (A.F.); (W.-K.H.); (S.S.); (W.S.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lv M, Liu L, He Y, Yang D, Ma Q, Pang A, Zhai W, Wei J, Huang Y, Chen X, Zhang G, Feng S, Han M, Jiang E, Zhang R. Outcomes of allogeneic or autologous stem cell transplantation followed by maintenance chemotherapy in adult patient with B-ALL in CR1 with no detectable minimal residual disease. Br J Haematol 2023. [PMID: 37157187 DOI: 10.1111/bjh.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Autologous haematopoietic stem cell transplantation (auto-HSCT) as a treatment for B-cell acute lymphoblastic leukaemia (B-ALL) has been rigorously debated in recent years. We retrospectively analysed the outcomes of 355 adult patients with B-ALL in first complete remission who had received auto-HSCT or allogeneic HSCT (allo-HSCT) in our centre. The treatment efficacy was evaluated from a model stratified on the risk classification and minimal residue disease (MRD) status after three chemotherapy cycles. Auto-HSCT demonstrated comparable 3-year overall survival (OS) (72.7% vs. 68.5%, p = 0.441) and leukaemia-free survival rates (62.8% vs. 56.1%, p = 0.383) compared to allo-HSCT for patients with negative MRD, while the advantage of lower non-relapse mortality (1.5% vs. 25.1%, p < 0.001) was offset by a higher cumulative incidence of relapse (CIR) rates (35.7% vs. 18.9%, p = 0.018), especially in high-risk patients. For patients at high risk and with positive MRD, there was a lower trend of 3-year OS (50.0% vs. 66.0%, p = 0.078) and significantly higher CIR rates (71.4% vs. 39.1%, p = 0.018) in auto-HSCT. However, no significant interaction was observed in the tests. In conclusion, auto-HSCT appears to be an attractive treatment for patients with negative MRD after three chemotherapy cycles. For MRD-positive patients, allo-HSCT may be a more effective treatment.
Collapse
Affiliation(s)
- Mengnan Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Liangyi Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guixin Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
23
|
Wang J, Wu J, Wang Y, Zheng B, Wang Y, Jiang C, Zou M, Li H. Basic and clinical study of efficacy and adverse effects of flumatinib in Ph + ALL. Front Pharmacol 2023; 14:1178393. [PMID: 37214433 PMCID: PMC10196016 DOI: 10.3389/fphar.2023.1178393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Objective: To investigate the efficacy and safety of chemotherapy in treating Ph+ ALL based on flumatinib. Methods: The clinical data of 29 patients with Ph+ ALL receiving flumatinib-based chemotherapy in Sichuan Provincial People's Hospital from January 2020 to January 2023 were collected for analysis, with the concentrations of TKI in the peripheral blood, bone marrow, and cerebrospinal fluid of some patients monitored, Cytological experiments on SUP-B15 were conducted in a Ph+ ALL cell line. Results: A total of 29 patients were enrolled, showing the induced CR, 3-month CR, and 6-month CR rates of 96.3%, 87.5%, and 86.7%, respectively after flumatinib-based chemotherapy. The negative conversion ratio of MRD was 82.6%, 91.3%, and 95.6% in 1, 2, and 3 months after treatment, respectively, with 4.3% of patients failing the conversion in 3 months after treatment. The rates of MMR were 73.9%, 87.5%, and 93.3% in 1, 3, and 6 months after treatment, and CMR of 52.2%, 62.5%, and 73.3%, respectively. Among the 29 patients, 11 (37.9%) received transplant and the continuous flumatinib for 1 year after transplantation. The deep remission was maintained in all patients up to the time of follow-up, with the median follow-up of 12 months (1-33 months), progression-free survival (PFS) of 11 months (1-33 months), and median overall survival (OS) of 12 months (1-33 months). The adverse reactions mainly referred to myelosuppression, liver insufficiency and infection that were generally tolerable. In terms of blood concentration, the concentration of flumatinib was ordered as bone marrow > serum > cerebrospinal fluid in Ph+ ALL bone marrow. In contrast, the concentration of dasatinib and imatinib was ordered as serum > bone marrow > cerebrospinal fluid. At the same time, flumatinib has a high probability to cross the blood-brain barrier, while the concentration of cerebrospinal fluid in the patients using Dasatinib was lower compared to the lower limit of detection in this study. Compared with Imatinib and Dasatinib, flumatinib exerted the most potent inhibitory effect on Ph+ ALL cell lines according to pharmacodynamic analysis of SUP-B15 cells. Conclusion: Flumatinib combined with chemotherapy could achieve good efficacy and safety in treating Ph+ ALL, with flumatinib in a high probability of crossing the blood-brain barrier. Flumatinib could be a superior choice to Dasatinib and Imatinib in cell experiments.
Collapse
Affiliation(s)
- Jun Wang
- Department of Hematology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jiafei Wu
- School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yijing Wang
- Department of Hematology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Boyue Zheng
- School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Wang
- Department of Hematology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuanyan Jiang
- Department of Hematology, Chengdu Second People’s Hospital, Chengdu, China
| | - Mengying Zou
- Department of Hematology, Chengdu BOE Hospital, Chengdu, China
| | - Hui Li
- Department of Hematology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Hochhaus A, Réa D, Boquimpani C, Minami Y, Cortes JE, Hughes TP, Apperley JF, Lomaia E, Voloshin S, Turkina A, Kim DW, Abdo A, Fogliatto LM, le Coutre P, Sasaki K, Kim DDH, Saussele S, Annunziata M, Chaudhri N, Chee L, García-Gutiérrez V, Kapoor S, Allepuz A, Quenet S, Bédoucha V, Mauro MJ. Asciminib vs bosutinib in chronic-phase chronic myeloid leukemia previously treated with at least two tyrosine kinase inhibitors: longer-term follow-up of ASCEMBL. Leukemia 2023; 37:617-626. [PMID: 36717654 PMCID: PMC9991909 DOI: 10.1038/s41375-023-01829-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Asciminib, the first BCR::ABL1 inhibitor that Specifically Targets the ABL Myristoyl Pocket (STAMP), is approved worldwide for the treatment of adults with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase (CML-CP) treated with ≥2 prior tyrosine kinase inhibitors (TKIs). In ASCEMBL, patients with CML-CP treated with ≥2 prior TKIs were randomized (stratified by baseline major cytogenetic response [MCyR]) 2:1 to asciminib 40 mg twice daily or bosutinib 500 mg once daily. Consistent with previously published primary analysis results, after a median follow-up of 2.3 years, asciminib continued to demonstrate superior efficacy and better safety and tolerability than bosutinib. The major molecular response (MMR) rate at week 96 (key secondary endpoint) was 37.6% with asciminib vs 15.8% with bosutinib; the MMR rate difference between the arms, after adjusting for baseline MCyR, was 21.7% (95% CI, 10.53-32.95; two-sided p = 0.001). Fewer grade ≥3 adverse events (AEs) (56.4% vs 68.4%) and AEs leading to treatment discontinuation (7.7% vs 26.3%) occurred with asciminib than with bosutinib. A higher proportion of patients on asciminib than bosutinib remained on treatment and continued to derive benefit over time, supporting asciminib as a standard of care for patients with CML-CP previously treated with ≥2 TKIs.
Collapse
Affiliation(s)
| | - Delphine Réa
- Adult Hematology and INSERM CIC1427, Hôpital Saint-Louis, Paris, France
| | - Carla Boquimpani
- HEMORIO, State Institute of Hematology Arthur de Siquiera Cavalcanti, Rio de Janeiro, Brazil.,Oncoclínica Centro de Tratamento Oncológico, Rio de Janeiro, RJ, Brazil
| | - Yosuke Minami
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Timothy P Hughes
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, SA, Australia
| | | | - Elza Lomaia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Sergey Voloshin
- Russian Research Institute of Hematology and Transfusiology, St. Petersburg, Russia
| | - Anna Turkina
- National Medical Research Center for Hematology, Moscow, Russia
| | - Dong-Wook Kim
- Uijeongbu Eulji Medical Center, Geumo-dong, Uijeongbu-si, South Korea
| | - Andre Abdo
- Instituto do Câncer do Estado de São Paulo (ICESPSP), São Paulo, Brazil
| | | | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dennis Dong Hwan Kim
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Susanne Saussele
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Lynette Chee
- Peter MacCallum Cancer Center and The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Valentin García-Gutiérrez
- Servicio de Hematología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Shruti Kapoor
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | | | | | |
Collapse
|
25
|
Wang M, Cai J, Chen J, Liu J, Geng X, Yu X, Yang J. PCR Techniques and Their Clinical Applications. POLYMERASE CHAIN REACTION [WORKING TITLE] 2023. [DOI: 10.5772/intechopen.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Kary B. Mullis developed a revolutionary method name polymerase chain reaction (PCR) in 1983, which can synthesize new strand of DNA complementary to the template strand of DNA and produce billions of copies of a DNA fragment only in few hours. Denaturation, annealing, and extension are the three primary steps involved in the PCR process, which generally requires thermocyclers, DNA template, a pair of primers, Taq polymerase, nucleotides, buffers, etc. With the development of PCR, from traditional PCR, quantitative PCR, to next digital PCR, PCR has become a powerful tool in life sciences and medicine. Applications of PCR techniques for infectious diseases include specific or broad-spectrum pathogen detection, assessment and surveillance of emerging infections, early detection of biological threat agents, and antimicrobial resistance analysis. Applications of PCR techniques for genetic diseases include prenatal diagnosis and screening of neonatal genetic diseases. Applications of PCR techniques for cancer research include tumor-related gene detection. This chapter aimed to discuss about the different types of PCR techniques, including traditional PCR, quantitative PCR, digital PCR, etc., and their applications for rapid detection, mutation screen or diagnosis in infectious diseases, inherited diseases, cancer, and other diseases.
Collapse
|
26
|
Qin R, Wang T, He W, Wei W, Liu S, Gao M, Huang Z. Jak2/STAT6/c-Myc pathway is vital to the pathogenicity of Philadelphia-positive acute lymphoblastic leukemia caused by P190 BCR-ABL. Cell Commun Signal 2023; 21:27. [PMID: 36721266 PMCID: PMC9887777 DOI: 10.1186/s12964-023-01039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The Philadelphia chromosome encodes the BCR-ABL fusion protein, which has two primary subtypes, P210 and P190. P210 and P190 cause Philadelphia-positive chronic myeloid leukemia (Ph+ CML) and Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL), respectively. The Ph+ ALL is more malignant than Ph+ CML in disease phenotype and progression. This implies the key pathogenic molecules and regulatory mechanisms caused by BCR-ABL in two types of leukemia are different. It is reported that STAT6 was significantly activated only in P190 transformed cells. However, the potential role and the mechanism of STAT6 activation in Ph+ ALL and its activation mechanism by P190 are still unknown. METHODS The protein and mRNA levels of STAT6, c-Myc, and other molecules were measured by western blot and quantitative real-time PCR. The STAT6 inhibitor AS1517499 was used to specifically inhibit p-STAT6. The effect of p-STAT6 inhibition on Ph+ CML and Ph+ ALL cells was identified by CCK-8 and FCM assay. Dual luciferase reporter and ChIP assay were performed to confirm the direct binding between STAT6 and c-Myc. The impact of STAT6 inhibition on tumor progression was detected in Ph+ CML and Ph+ ALL mouse models. RESULTS Our results demonstrated that P210 induced CML-like disease, and P190 caused the more malignant ALL-like disease in mouse models. STAT6 was activated in P190 cell lines but not in P210 cell lines. Inhibition of STAT6 suppressed the malignancy of Ph+ ALL in vitro and in vivo, whereas it had little effect on Ph+ CML. We confirmed that p-STAT6 regulated the transcription of c-Myc, and STAT6 was phosphorylated by p-Jak2 in P190 cell lines, which accounted for the discrepant expression of p-STAT6 in P190 and P210 cell lines. STAT6 inhibition synergized with imatinib in Ph+ ALL cells. CONCLUSIONS Our study suggests that STAT6 activation plays an essential role in the development of Ph+ ALL and may be a potential therapeutic target in Ph+ ALL. Video abstract.
Collapse
Affiliation(s)
- Run Qin
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Teng Wang
- grid.412461.40000 0004 9334 6536Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei He
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Suotian Liu
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Zhenglan Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
How I treat with maintenance therapy after allogeneic HCT. Blood 2023; 141:39-48. [PMID: 35231083 DOI: 10.1182/blood.2021012412] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Disease relapse is the leading cause of failure for patients receiving allogeneic hematopoietic cell transplantation (allo-HCT). Maintenance therapy administered after allo-HCT is a promising strategy to reduce the incidence of relapse and enhance the curative potential of allo-HCT. Research investigations and clinical applications of this approach have greatly increased in recent years, with an expanding number of available therapeutic agents to introduce in the posttransplant setting. However, many questions and challenges remain regarding the feasibility and clinical impact of maintenance. In this article, we present four common case scenarios addressing select available therapeutic agents as a framework to review published data and ongoing studies and describe our current standard practice in the rapidly evolving field of maintenance therapy after allo-HCT.
Collapse
|
28
|
Kaehler M, Cascorbi I. Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Handb Exp Pharmacol 2023; 280:65-83. [PMID: 36882601 DOI: 10.1007/164_2023_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The hematopoietic neoplasm chronic myeloid leukemia (CML) is a rare disease caused by chromosomal reciprocal translocation t(9;22)(q34:q11) with subsequent formation of the BCR-ABL1 fusion gene. This fusion gene encodes a constitutively active tyrosine kinase, which results in malignant transformation of the cells. Since 2001, CML can be effectively treated using tyrosine kinase inhibitors (TKIs) such as imatinib, which prevent phosphorylation of downstream targets by blockade of the BCR-ABL kinase. Due to its tremendous success, this treatment became the role model of targeted therapy in precision oncology. Here, we review the mechanisms of TKI resistance focusing on BCR-ABL1-dependent and -independent mechanisms. These include the genomics of the BCR-ABL1, TKI metabolism and transport and alternative signaling pathways.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
29
|
Ahn J, Kim T, Jung S, Ahn S, Song G, Kim M, Yang D, Lee J, Kim MY, Moon JH, Zhang Z, Kim H, Kim DDH. Next-generation sequencing-based analysis to assess the pattern of relapse in patients with Philadelphia-positive acute lymphoblastic leukemia. EJHAEM 2022; 3:1145-1153. [PMID: 36467841 PMCID: PMC9713221 DOI: 10.1002/jha2.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 06/17/2023]
Abstract
In this study, we performed serial monitoring using targeted DNA sequencing to identify genetic alterations in adults with Philadelphia-positive acute lymphoblastic leukemia (Ph-ALL). Deep sequencing was performed by targeting the coding regions of 45 genes with recurrent driver mutations and 1129 single nucleotide polymorphism sites. Of the 43 patients that we examined, at least one case of genetic alterations was detected in 38 (88%) of the 43 patients at diagnosis (somatic mutations in 10 patients [23%] and copy number aberrations [CNA] in 36 patients [84%]). The most frequently detected CNA lesions were in IKZF1 (n = 25, 58%) and the most frequently mutated gene was SETD2 (n = 5). At least one genetic abnormality (loss, gain, or persistence) was observed in all the samples obtained at relapse that were available for analysis (n = 15), compared with the samples obtained at diagnosis (disappearance of any previously detected genetic alterations: 11 patients [73%]; new genetic abnormalities: nine patients [60%]; and persistent genetic abnormalities: eight patients [53%]]. The most frequently deleted lesions were in IKZF1 (n = 9, 60%), and the most frequently mutated gene was ABL1 (eight patients, 53%). Our data indicate that leukemic progression may be associated with complex genetic alterations in Ph-ALL during the course of treatment.
Collapse
Affiliation(s)
- Jae‐Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
- Genomic Research Center for Hematopoietic DiseasesChonnam National University Hwasun HospitalJeollanam‐doRepublic of Korea
| | - TaeHyung Kim
- The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
- Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada
| | - Sung‐Hoon Jung
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Seo‐Yeon Ahn
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Ga‐Young Song
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Mihee Kim
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Deok‐Hwan Yang
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Je‐Jung Lee
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
| | - Mi Yeon Kim
- Genomic Research Center for Hematopoietic DiseasesChonnam National University Hwasun HospitalJeollanam‐doRepublic of Korea
| | - Joon Ho Moon
- Department of Hematology‐OncologyKyungpook National University Hospital, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
- Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
| | - Hyeoung‐Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun HospitalChonnam National UniversityGwangjuRepublic of Korea
- Genomic Research Center for Hematopoietic DiseasesChonnam National University Hwasun HospitalJeollanam‐doRepublic of Korea
| | | |
Collapse
|
30
|
Wang M, Zhu Y, Huang M, Wang H, Zhou W, Lu D, Zhang Q. Pharmacokinetics, Bioequivalence, and Safety Studies of a Generic Selective Tyrosine Kinase Inhibitor Nilotinib Capsule Versus a Branded Product in Healthy Chinese Volunteers. Clin Pharmacol Drug Dev 2022; 11:1233-1240. [PMID: 35900031 DOI: 10.1002/cpdd.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Nilotinib, a second-generation tyrosine kinase inhibitor (TKI), has been approved in the United States and Europe as a treatment for patients with newly diagnosed chronic myeloid leukemia (CML)-chronic phase (CP) and patients with CML-CP or chronic myeloid leukemia-accelerated phase (CML-AP) who are resistant or intolerant to imatinib (a first-generation TKI). This study compared the bioequivalence and safety of the test nilotinib capsule and reference nilotinib capsule (Tasigna, Novartis) in healthy Chinese volunteers under fasting conditions for marketing authorization in China. The results of the study are reported for the first time. This was a single-dose, randomized, open-label, two-period, and cross-over study. Thirty healthy volunteers were randomly assigned to receive a single dose of a 200-mg test or reference capsule under fasting conditions in each period with a 10-day washout. Plasma samples were analyzed with liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were calculated with WinNonlin software. The geometric mean ratio and the corresponding 90% confidence intervals of Cmax , AUC0-t , and AUC0-∞ for nilotinib between the two fixed-dose combination formulations were within the bioequivalence acceptance range of 80%-125%, therefore the generic and branded formulations were bioequivalent in healthy Chinese volunteers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Yifang Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Ming Huang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Hao Wang
- Suzhou Thery Pharmaceutical Co., Ltd, Suzhou City, Jiangsu Province, P.R. China
| | - Wenjia Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Dan Lu
- Suzhou Thery Pharmaceutical Co., Ltd, Suzhou City, Jiangsu Province, P.R. China
| | - Quanying Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
31
|
Ulusoy NG, Emirdağ S, Sözer E, Radwan MO, Çiftçi H, Aksel M, Bölükbaşı SŞ, Özmen A, Yaylı N, Karayıldırım T, Alankuş Ö, Tateishi H, Otsuka M, Fujita M, Sever B. Design, semi-synthesis and examination of new gypsogenin derivatives against leukemia via Abl tyrosine kinase inhibition and apoptosis induction. Int J Biol Macromol 2022; 222:1487-1499. [PMID: 36195231 DOI: 10.1016/j.ijbiomac.2022.09.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Chronic myelogenous leukemia (CML) is characterized by Philadelphia translocation arising from Bcr-Abl fusion gene, which encodes abnormal oncoprotein showing tyrosine kinase (TK) function. Certain mutations in kinase domain, off-target effects and resistance problems of current TK inhibitors require the discovery of novel Abl TK inhibitors. For this purpose, herein, we synthesized new gypsogenin derivatives (6a-l) and evaluated their anticancer effects towards CML cells along with healthy cell line and different leukemic cells. Among these compounds, compound 6l was found as the most active anti-leukemic agent against K562 CML cells compared to imatinib exerting less cytotoxicity towards PBMCs (healthy). This compound also revealed significant anti-leukemic effects against Jurkat cell line. Besides, compound 6l enhanced apoptosis in CML cells with 52.4 % when compared with imatinib (61.8 %) and inhibited Abl TK significantly with an IC50 value of 13.04 ± 2.48 μM in a large panel of kinases accentuating Abl TK-mediated apoptosis of compound 6l in CML cells. Molecular docking outcomes showed that compound 6l formed mainly crucial interactions in the ATP-binding cleft of Abl TK similar to that of imatinib. Ultimately, in silico pharmacokinetic evaluation of compound 6l indicated that this compound was endowed with anti-leukemic drug candidate features.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Molecular Docking Simulation
- Benzamides/pharmacology
- Pyrimidines/pharmacology
- Piperazines
- Drug Resistance, Neoplasm
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Apoptosis
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
Collapse
Affiliation(s)
- Nafia Gökçe Ulusoy
- Chemistry Department, Faculty of Science, Ege University, Izmir 35040, Turkey
| | - Safiye Emirdağ
- Chemistry Department, Faculty of Science, Ege University, Izmir 35040, Turkey.
| | - Ece Sözer
- Chemistry Department, Faculty of Science, Ege University, Izmir 35040, Turkey
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Halilibrahim Çiftçi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan; Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Mehran Aksel
- Department of Biophysics, Faculty of Medicine, Adnan Menderes University, Aydin 09010, Turkey
| | - Serap Şahin Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyon, Turkey
| | - Ali Özmen
- Department of Medical Biology, Faculty of Medicine, Adnan Menderes University, Aydin 09010, Turkey
| | - Nurettin Yaylı
- Faculty of Pharmacy, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Tamer Karayıldırım
- Chemistry Department, Faculty of Science, Ege University, Izmir 35040, Turkey
| | - Özgen Alankuş
- Chemistry Department, Faculty of Science, Ege University, Izmir 35040, Turkey
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Belgin Sever
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey.
| |
Collapse
|
32
|
Liu Y, Zheng R, Liu Y, Yang L, Li T, Li Y, Jiang Z, Liu Y, Wang C, Wang S. An easy-to-use nomogram predicting overall survival of adult acute lymphoblastic leukemia. Front Oncol 2022; 12:977119. [PMID: 36226057 PMCID: PMC9549528 DOI: 10.3389/fonc.2022.977119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Adult acute lymphoblastic leukemia (ALL) is heterogeneous both biologically and clinically. The outcomes of ALL have been improved with the application of children-like regimens and novel agents including immune therapy in young adults. The refractory to therapy and relapse of ALL have occurred in most adult cases. Factors affecting the prognosis of ALL include age and white blood cell (WBC) count at diagnosis. The clinical implications of genetic biomarkers, including chromosome translocation and gene mutation, have been explored in ALL. The interactions of these factors on the prediction of prognosis have not been evaluated in adult ALL. A prognostic model based on clinical and genetic abnormalities is necessary for clinical practice in the management of adult ALL. The newly diagnosed adult ALL patients were divided into the training and the validation cohort at 7:3 ratio. Factors associated with overall survival (OS) were assessed by univariate/multivariate Cox regression analyses and a signature score was assigned to each independent factor. A nomogram based on the signature score was developed and validated. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to assess the performance of the nomogram model. This study included a total of 229 newly diagnosed ALL patients. Five independent variables including age, WBC, bone marrow (BM) blasts, MLL rearrangement, and ICT gene mutations (carried any positive mutation of IKZF1, CREBBP and TP53) were identified as independent adverse factors for OS evaluated by the univariate, Kaplan-Meier survival and multivariate Cox regression analyses. A prognostic nomogram was built based on these factors. The areas under the ROC curve and calibration curve showed good accuracy between the predicted and observed values. The DCA curve showed that the performance of our model was superior to current risk factors. A nomogram was developed and validated based on the clinical and laboratory factors in newly diagnosed ALL patients. This model is effective to predict the overall survival of adult ALL. It is a simple and easy-to-use model that could efficiently predict the prognosis of adult ALL and is useful for decision making of treatment.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyue Zheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Liu
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shujuan Wang,
| |
Collapse
|
33
|
Sánchez R, Dorado S, Ruíz-Heredia Y, Martín-Muñoz A, Rosa-Rosa JM, Ribera J, García O, Jimenez-Ubieto A, Carreño-Tarragona G, Linares M, Rufián L, Juárez A, Carrillo J, Espino MJ, Cáceres M, Expósito S, Cuevas B, Vanegas R, Casado LF, Torrent A, Zamora L, Mercadal S, Coll R, Cervera M, Morgades M, Hernández-Rivas JÁ, Bravo P, Serí C, Anguita E, Barragán E, Sargas C, Ferrer-Marín F, Sánchez-Calero J, Sevilla J, Ruíz E, Villalón L, Del Mar Herráez M, Riaza R, Magro E, Steegman JL, Wang C, de Toledo P, García-Gutiérrez V, Ayala R, Ribera JM, Barrio S, Martínez-López J. Detection of kinase domain mutations in BCR::ABL1 leukemia by ultra-deep sequencing of genomic DNA. Sci Rep 2022; 12:13057. [PMID: 35906470 PMCID: PMC9338264 DOI: 10.1038/s41598-022-17271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
The screening of the BCR::ABL1 kinase domain (KD) mutation has become a routine analysis in case of warning/failure for chronic myeloid leukemia (CML) and B-cell precursor acute lymphoblastic leukemia (ALL) Philadelphia (Ph)-positive patients. In this study, we present a novel DNA-based next-generation sequencing (NGS) methodology for KD ABL1 mutation detection and monitoring with a 1.0E-4 sensitivity. This approach was validated with a well-stablished RNA-based nested NGS method. The correlation of both techniques for the quantification of ABL1 mutations was high (Pearson r = 0.858, p < 0.001), offering DNA-DeepNGS a sensitivity of 92% and specificity of 82%. The clinical impact was studied in a cohort of 129 patients (n = 67 for CML and n = 62 for B-ALL patients). A total of 162 samples (n = 86 CML and n = 76 B-ALL) were studied. Of them, 27 out of 86 harbored mutations (6 in warning and 21 in failure) for CML, and 13 out of 76 (2 diagnostic and 11 relapse samples) did in B-ALL patients. In addition, in four cases were detected mutation despite BCR::ABL1 < 1%. In conclusion, we were able to detect KD ABL1 mutations with a 1.0E-4 sensitivity by NGS using DNA as starting material even in patients with low levels of disease.
Collapse
Affiliation(s)
- Ricardo Sánchez
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.
- Altum Sequencing Co., Madrid, Spain.
| | - Sara Dorado
- Altum Sequencing Co., Madrid, Spain
- Computer Science and Engineering Department, Carlos III University, Madrid, Spain
| | | | | | - Juan Manuel Rosa-Rosa
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
| | - Jordi Ribera
- Hematology Department, ICO-Hospital Germans Trias i Pujol. Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Olga García
- Hematology Department, ICO-Hospital Germans Trias i Pujol. Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ana Jimenez-Ubieto
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
| | - Gonzalo Carreño-Tarragona
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
| | - María Linares
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Rufián
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Alexandra Juárez
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | | | - María José Espino
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain
| | - Mercedes Cáceres
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain
| | - Sara Expósito
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Raúl Vanegas
- Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | | | - Anna Torrent
- Hematology Department, ICO-Hospital Germans Trias i Pujol. Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lurdes Zamora
- Hematology Department, ICO-Hospital Germans Trias i Pujol. Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Santiago Mercadal
- Hematology Department, ICO-Hospital Duran i Reynals (Bellvitge), Barcelona, Spain
| | - Rosa Coll
- Hematology Department, ICO-Hospital Dr. Josep Trueta, Girona, Spain
| | - Marta Cervera
- Hematology Department, ICO-Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Mireia Morgades
- Hematology Department, ICO-Hospital Germans Trias i Pujol. Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Pilar Bravo
- Hospital Universitario de Fuenlabrada, Fuenlabrada (Madrid), Spain
| | - Cristina Serí
- Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Eduardo Anguita
- Hospital Clínico San Carlos, Department of Medicine, UCM, Madrid, Spain
| | - Eva Barragán
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Claudia Sargas
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | | | - Elena Ruíz
- Hospital del Tajo, Aranjuez (Madrid), Spain
| | - Lucía Villalón
- Hospital Universitario Fundación Alcorcón, Alcorcón (Madrid), Spain
| | | | - Rosalía Riaza
- Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Elena Magro
- Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | | | - Chongwu Wang
- Hosea Precision Medical Technology Co., Ltd., Weihai, Shangdong, China
| | - Paula de Toledo
- Computer Science and Engineering Department, Carlos III University, Madrid, Spain
| | | | - Rosa Ayala
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Josep-Maria Ribera
- Hematology Department, ICO-Hospital Germans Trias i Pujol. Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Santiago Barrio
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital UniversitarioHospital Universitario 12 Octubre, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
34
|
Poudel G, Tolland MG, Hughes TP, Pagani IS. Mechanisms of Resistance and Implications for Treatment Strategies in Chronic Myeloid Leukaemia. Cancers (Basel) 2022; 14:cancers14143300. [PMID: 35884363 PMCID: PMC9317051 DOI: 10.3390/cancers14143300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Chronic myeloid leukaemia (CML) is a type of blood cancer that is currently well-managed with drugs that target cancer-causing proteins. However, a significant proportion of CML patients do not respond to those drug treatments or relapse when they stop those drugs because the cancer cells in those patients stop relying on that protein and instead develop a new way to survive. Therefore, new treatment strategies may be necessary for those patients. In this review, we discuss those additional survival pathways and outline combination treatment strategies to increase responses and clinical outcomes, improving the lives of CML patients. Abstract Tyrosine kinase inhibitors (TKIs) have revolutionised the management of chronic myeloid leukaemia (CML), with the disease now having a five-year survival rate over 80%. The primary focus in the treatment of CML has been on improving the specificity and potency of TKIs to inhibit the activation of the BCR::ABL1 kinase and/or overcoming resistance driven by mutations in the BCR::ABL1 oncogene. However, this approach may be limited in a significant proportion of patients who develop TKI resistance despite the effective inhibition of BCR::ABL1. These patients may require novel therapeutic strategies that target both BCR::ABL1-dependent and BCR::ABL1-independent mechanisms of resistance. The combination treatment strategies that target alternative survival signalling, which may contribute towards BCR::ABL1-independent resistance, could be a successful strategy for eradicating residual leukaemic cells and consequently increasing the response rate in CML patients.
Collapse
Affiliation(s)
- Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
| | - Molly G. Tolland
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Timothy P. Hughes
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
| | - Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (G.P.); (M.G.T.); (T.P.H.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- Correspondence:
| |
Collapse
|
35
|
Kumar V, Singh P, Gupta SK, Ali V, Jyotirmayee, Verma M. Alterations in cellular metabolisms after Imatinib therapy: a review. Med Oncol 2022; 39:95. [DOI: 10.1007/s12032-022-01699-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022]
|
36
|
Sharma R, Jani C. Mapping incidence and mortality of leukemia and its subtypes in 21 world regions in last three decades and projections to 2030. Ann Hematol 2022; 101:1523-1534. [PMID: 35536353 DOI: 10.1007/s00277-022-04843-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
This study examines the burden of leukemia and its subtypes at the global, regional, and national levels in 21 world regions and 204 countries in the last three decades. The estimates of incidence, deaths, and age-standardized rates of leukemia for 21 regions and 204 countries for 1990-2019 were extracted from the Global Burden of Disease 2019 study. Average annual percentage change in 1990-2019 for 21 regions was utilized for projecting leukemia burden in 2030. Globally, there were 643,579 [586,980-699,729] incident cases and 334,592 [306,818-360,214] deaths in 2019 due to leukemia, up from 474,924 [388,559-560,550] cases and 263,263 [233,664-298,696] deaths in 1990. Between 1990 and 2019, the age-standardized incidence rate (ASIR) decreased from 9.6 [8.1-11.0] in 1990 to 8.2 [7.5-8.9] per 100,000 person-years in 2019, and the age-standardized mortality rate (ASMR) decreased from 5.8/100,000 [5.2-6.4] in 1990 to 4.3/100,000 [3.9-4.6] in 2019. Between 1990 and 2019, the ASIR decreased in majority of regions except Western Europe and high-income Asia Pacific, whereas the ASMR decreased in all 21 regions. In 2019, country-wise, the ASIR varied from 3.0/100,000 [2.3-3.7] in Palau to 35.1/100,000 [26.4-47.2] in San Marino and the ASMR spanned from 2.3/100,000 [1.7-2.8] in San Marino to 15.8/100,000 [12.0-20.4] in Syria. As per our projections, globally, there will be 720,168 incident cases and 367,804 deaths due to leukemia in 2030. Substantial improvements have been witnessed in leukemia mortality rates in all regions, especially high-income regions and countries. Health care policies focusing on diagnostic improvements, cancer registration, and newer therapeutics at reduced cost or with insurance coverage are needed in low and middle-income countries.
Collapse
Affiliation(s)
- Rajesh Sharma
- University School of Management and Entreprenuership, Delhi Technological University, East Delhi Campus, Room No. 305, Vivek Vihar Phase II, Delhi, 110095, India.
| | - Chinmay Jani
- Mount Aubrun Hospital, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Yu Q, Wang G, Wang J, Zhang W, Meng L, Cao Y. Primary Testicular and Cutaneous Philadelphia Chromosome Positive B-Cell Lymphoblastic Lymphoma: A Rare Case and Review. Cancer Manag Res 2022; 14:1507-1514. [PMID: 35478711 PMCID: PMC9038153 DOI: 10.2147/cmar.s353022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Philadelphia chromosome positive B cell lymphoblastic lymphoma (Ph+ B-LBL) is an extremely rare disease. We report a 27-year-old patient diagnosed with primary testicular and cutaneous Ph+ B-LBL without bone marrow involvement. The CCCG-LBL-2016 regimen (https://clinicaltrials.gov/ct2/show/NCT02845882) was initially administered due to the fast pathological diagnosis as B-LBL that was first obtained. To identify potential therapeutic targets, RNA sequencing (RNAseq) was also performed on lymph node specimens as a part of the routine diagnostic workup in our center. Unexpectedly, IKZF1 deletions and BCR-ABL1 fusion transcripts were detected. Based on these results, we retrospectively performed fluorescence in situ hybridization (FISH) for BCR/ABL1 rearrangements in the same lymph node specimen, and a 70% positive signal was detected. The patient subsequently received the CCCG-LBL-2016 protocol combined with the BCR-ABL tyrosine kinase inhibitor (TKI) dasatinib, along with prophylactic intrathecal infusion. Then, the patient underwent TBI-based haploidentical (haplo) allogeneic hematopoietic stem cell transplantation (haplo-allo-HSCT) as consolidation following the achievement of remission and continued taking dasatinib as maintenance therapy. The patient was still in complete remission 1 year after diagnosis. This case indicates that the detection of potential molecular targets, especially those targets that can be pharmacologically treated, such as BCR/ABL1 fusion transcripts, is of important value to both LBL diagnosis and therapeutic strategy choices. FISH, reverse transcriptase polymerase chain reaction (RT-PCR) and/or RNAseq should be routinely carried out in lymphoma specimens to depict its genetic landscape for the further execution of a precise therapy strategy. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/GRnU8ppzX9w
Collapse
Affiliation(s)
- Qiuxia Yu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Li Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Correspondence: Yang Cao, Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, 430030, People’s Republic of China, Tel +86 2783662680, Fax +86 2783662680, Email
| |
Collapse
|
38
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
39
|
Ashaye A, Thomas C, Dalal M, Kota V, Krucien N, Sae-Hau M, Weiss E, Campbell S, Marsh K. Patient preferences for frontline therapies for Philadelphia chromosome-positive acute lymphoblastic leukemia: a discrete choice experiment. Future Oncol 2022; 18:2075-2085. [PMID: 35209721 DOI: 10.2217/fon-2022-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We examined the preferences of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) for benefits and risks of tyrosine kinase inhibitors combined with chemotherapy for first-line treatment. Methods: In a discrete choice experiment, 201 patients chose between hypothetical treatment alternatives with varied levels of remission duration and overall survival (OS), and risks of major cardiovascular (CV) events and myelosuppression. Results: Although OS was the most important attribute to patients with Ph+ ALL, they were willing to tolerate a 2.9% increase in CV risk for 1 additional month of OS. Older patients (>59 years) and patients not in remission were less likely to tolerate increased CV risk. Conclusion: Preferences and risk tolerance varied between patients, highlighting the importance of shared decision making when selecting treatments for Ph+ ALL.
Collapse
Affiliation(s)
- Ajibade Ashaye
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | | | - Mehul Dalal
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Vamsi Kota
- Section of Hematology & Oncology, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| | | | - Maria Sae-Hau
- The Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA
| | - Elisa Weiss
- The Leukemia & Lymphoma Society, Rye Brook, NY 10573, USA
| | - Scott Campbell
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | | |
Collapse
|
40
|
Sasaki Y, Kantarjian HM, Short NJ, Wang F, Furudate K, Uryu H, Garris R, Jain N, Sasaki K, Ravandi F, Konopleva M, Garcia-Manero G, Little L, Gumbs C, Zhao L, Futreal PA, Takahashi K, Jabbour E. Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia 2022; 36:1253-1260. [PMID: 35132195 DOI: 10.1038/s41375-021-01496-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022]
Abstract
Recurring genetic abnormalities have been identified in Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL). Among them, IKZF1 deletion was associated with poor prognosis in patients treated with imatinib-based or dasatinib-based regimens. However, the molecular determinants for clinical outcomes in ponatinib-treated patients remain unknown. We systematically analyzed genetic alterations in adults with Ph-positive ALL uniformly treated in clinical trials with dasatinib-based regimens or a ponatinib-based regimen and investigated the molecular determinants for treatment outcomes using pretreatment specimens collected from adults with Ph-positive ALL treated with Hyper-CVAD plus dasatinib or ponatinib. DNA sequencing and SNP microarray were performed and recurrent genetic abnormalities were found in 84% of the patients, among whom IKZF1 deletion was most frequently detected (60%). IKZF1 deletion frequently co-occurred with other copy-number abnormalities (IKZF1plus, 46%) and was significantly associated with unfavorable overall survival (OS) (false discovery rate < 0.1) and increased cumulative incidence of relapse (p = 0.01). In a multivariate analysis, dasatinib therapy, lack of achievement of 3-month complete molecular response, and the presence of IKZF1plus status were significantly associated with poor OS. The differential impact of IKZF1plus was largely restricted to patients given Hyper-CVAD plus ponatinib; dasatinib-based regimens had unfavorable outcomes regardless of the molecular abnormalities.
Collapse
Affiliation(s)
- Yuya Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Oral and Maxillofacial Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Garris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Zhang J, Liu X, Yin C, Zong S. hnRNPK/Beclin1 signaling regulates autophagy to promote imatinib resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia cells. Exp Hematol 2022; 108:46-54. [PMID: 35038545 DOI: 10.1016/j.exphem.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND This study sought to clarify the role of hnRNPK as a regulator of imatinib resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). METHODS The expression of hnRNPK was assessed in Ph+ ALL leukemia cells in vitro and in vivo, while imatinib susceptibility was assessed via CCK-8 assay. In cells in which hnRNPK levels had or had not been modulated, LC3Ⅰ/Ⅱ and mTOR/p-ERK/Beclin1levels were assessed via western blotting, while electron microscopy was used to evaluate autophagic vacuole formation. Interactions between hnRNPK and Beclin1 were assessed through an RNA binding protein immunoprecipitation assay. RESULTS Imatinib-resistant Ph+ ALL cell lines and patient bone marrow samples exhibited significant hnRNPK overexpression. The knockdown of hnRNPK increased the imatinib sensitivity of these tumor cells and decreased in vivo tumor burden in a xenograft model system as evidenced by a reduction in tumor volume. Levels of LC3Ⅰ/Ⅱand Beclin1, but not p-ERK and mTOR, were consistent with the regulatory activity of hnRNPK.Electronmicroscopy revealed that imatinib-resistant cells harbored significantly more autophagic vacuoles relative to wild-type cells, while hnRNPK knockdown reduced the number of these vacuoles. In an RNA binding protein immunoprecipitation assay, anti-hnRNPK was able to precipitate the Beclin1 mRNA. CONCLUSIONS These results suggest that the hnRNPK/Beclin1 signaling pathway may play a role in shaping imatinib resistance in Ph+ ALL cells.
Collapse
Affiliation(s)
- JinFang Zhang
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| | - XiaoLi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - ChangXin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sa Zong
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
42
|
Réa D, Hughes TP. Development of Asciminib, a Novel Allosteric Inhibitor of BCR-ABL1. Crit Rev Oncol Hematol 2022; 171:103580. [PMID: 35021069 DOI: 10.1016/j.critrevonc.2022.103580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is driven by a translocation event between chromosomes 9 and 22, leading to the formation of a constitutively active BCR-ABL1 oncoprotein. Approved tyrosine kinase inhibitors (TKIs) for CML inhibit BCR-ABL1 by competitively targeting its adenosine triphosphate (ATP)-binding site, which significantly improves patient outcomes. However, resistance to and intolerance of TKIs remains a clinical challenge. Asciminib is a promising investigational agent in development that allosterically targets BCR-ABL1 in a non-ATP-competitive manner. It binds to the ABL1 myristoyl-binding pocket and is effective against most ABL1 kinase domain mutations that confer resistance to ATP-competitive TKIs, including the T315I mutation. This review discusses unmet needs in the current CML treatment landscape, reports clinical data from asciminib trials that support the use of single-agent asciminib as third-line therapy and beyond, and explores the potential benefit of asciminib in combination with approved TKIs in earlier lines.
Collapse
Affiliation(s)
- Delphine Réa
- Department of Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Timothy P Hughes
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
43
|
De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming Resistance to Kinase Inhibitors: The Paradigm of Chronic Myeloid Leukemia. Onco Targets Ther 2022; 15:103-116. [PMID: 35115784 PMCID: PMC8800859 DOI: 10.2147/ott.s289306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) play crucial roles in cellular proliferation and survival, hence their deregulation is a common event in the pathogenesis of solid and hematologic malignancies. Targeting PKs has been a promising strategy in cancer treatment, and there are now a variety of approved anticancer drugs targeting PKs. However, the phenomenon of resistance remains an obstacle to be addressed and overcoming resistance is a goal to be achieved. Chronic myeloid leukemia (CML) is the first as well as one of the best examples of a cancer that can be targeted by molecular therapy; hence, it can be used as a model disease for other cancers. This review aims to summarize up-to-date knowledge on the main mechanisms implicated in resistance to PK inhibitory therapies and to outline the main strategies that are being explored to overcome resistance. The importance of molecular diagnostics and disease monitoring in counteracting resistance will also be discussed.
Collapse
Affiliation(s)
- Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- Correspondence: Sara De Santis Insitute of Hematology “Lorenzo e Ariosto Seràgnoli”, Via Massarenti 9, Bologna, 40138, ItalyTel +39 051 2143791Fax +39 051 2144037 Email
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Michele Cavo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| |
Collapse
|
44
|
Liu Y, Li C, Su R, Yin Z, Huang G, Yang J, Li Z, Zhang K, Fei J. Targeting SOS1 overcomes imatinib resistance with BCR-ABL independence through uptake transporter SLC22A4 in CML. Mol Ther Oncolytics 2021; 23:560-570. [PMID: 34938856 PMCID: PMC8654699 DOI: 10.1016/j.omto.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
Resistance to the BCR-ABL inhibitor imatinib mesylate poses a major problem for the treatment of chronic myeloid leukemia. Imatinib resistance often results from a secondary mutation in BCR-ABL that interferes with drug binding. However, sometimes there is no mutation in BCR-ABL, and the basis of such BCR-ABL-independent imatinib mesylate resistance remains to be elucidated. SOS1, a guanine nucleotide exchange factor for Ras protein, affects drug sensitivity and resistance to imatinib. The depletion of SOS1 markedly inhibits cell growth either in vitro or in vivo and significantly increases the sensitivity of chronic myeloid leukemia cells to imatinib. Furthermore, LC-MS/MS and RNA-seq assays reveal that SOS1 negatively regulates the expression of SLC22A4, a member of the carnitine/organic cation transporter family, which mediates the active uptake of imatinib into chronic myeloid leukemia cells. HPLC assay confirms that intracellular accumulation of imatinib is accompanied by upregulation of SLC22A4 through SOS1 inhibition in both sensitive and resistant chronic myeloid leukemia cells. BAY-293, an inhibitor of SOS1/Ras, was found to depress proliferation and colony formation in chronic myeloid leukemia cells with resistance and BCR-ABL independence. Altogether these findings indicate that targeting SOS1 inhibition promotes imatinib sensitivity and overcomes resistance with BCR-ABL independence by SLC22A4-mediated uptake transport.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhendong Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| |
Collapse
|
45
|
Extramedullary Hematopoiesis of the Liver and Spleen. J Clin Med 2021; 10:jcm10245831. [PMID: 34945127 PMCID: PMC8707658 DOI: 10.3390/jcm10245831] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is the formation of blood cellular components and, consequently, immune cells. In a more complete definition, this process refers to the formation, growth, maturation, and specialization of blood cells, from the hematopoietic stem cell, through the hematopoietic progenitor cells, to the s pecialized blood cells. This process is tightly regulated by several elements of the bone marrow microenvironment, such as growth factors, transcription factors, and cytokines. During embryonic and fetal development, hematopoiesis takes place in different organs: the yolk sac, the aorta–gonad mesonephros region, the lymph nodes, and not lastly, the fetal liver and the spleen. In the current review, we describe extramedullary hematopoiesis of the spleen and liver, with an emphasis on myeloproliferative conditions.
Collapse
|
46
|
Ismail MA, Nasrallah GK, Monne M, AlSayab A, Yassin MA, Varadharaj G, Younes S, Sorio C, Cook R, Modjtahedi H, Al-Dewik NI. Description of PTPRG genetic variants identified in a cohort of Chronic Myeloid Leukemia patients and their ability to influence response to Tyrosine kinase Inhibitors. Gene 2021; 813:146101. [PMID: 34906644 DOI: 10.1016/j.gene.2021.146101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have remarkably transformed Ph+ chronic myeloid leukemia (CML) management; however, TKI resistance remains a major clinical challenge. Mutations in BCR-ABL1 are well studied but fail to explain 20-40% of resistant cases, suggesting the activation of alternative, BCR-ABL1-independent pathways. Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a tumor suppressor, was found to be well expressed in CML patients responsive to TKIs and down-regulated in resistant patients. In this study, we aimed to identify genetic variants in PTPRG that could potentially modulate TKIs response in CML patients. DNA was extracted from peripheral blood samples collected from two CML cohorts (Qatar and Italy) and targeted exome sequencing was performed. Among 31 CML patients, six were TKI-responders and 25 were TKI-resistant. Sequencing identified ten variants, seven were annotated and three were novel SNPs (c.1602_1603insC, c.85+86delC, and c.2289-129delA). Among them, five variants were identified in 15 resistant cases. Of these, one novel exon variant (c.1602_1603insC), c.841-29C>T (rs199917960) and c.1378-224A>G (rs2063204) were found to be significantly different between the resistant cases compared to responders. Our findings suggest that PTPRG variants may act as an indirect resistance mechanism of BCR-ABL1 to affect TKI treatment.
Collapse
Affiliation(s)
- Mohamed A Ismail
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom; Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Maria Monne
- Centro di Diagnostica Biomolecolare e Citogenetica Emato-Oncologica, "San Francesco" Hospital, Nuoro, Italy
| | - Ali AlSayab
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A Yassin
- Department of Medical Oncology, National Centre for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar
| | | | - Salma Younes
- Department of Research, Women's Wellness and Research Center, Hamad Medical Corporation, Qatar
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Richard Cook
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom
| | - Helmout Modjtahedi
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom
| | - Nader I Al-Dewik
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar; Faculty of Health and Social Care Sciences, Kingston University, St. George's University of London, UK; Clinical and Metabolic Genetics, Department of Pediatrics, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| |
Collapse
|
47
|
Management of Philadelphia chromosome-positive acute lymphoblastic leukemia in a Jehovah's Witness in an outpatient setting: A case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2021. [DOI: 10.1016/j.cpccr.2021.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Zeng Q, Xiang B, Liu Z. Comparison of allogeneic hematopoietic stem cell transplantation and TKI combined with chemotherapy for adult philadelphia chromosome positive acute lymphoblastic leukemia: a systematic review and meta-analysis. Cancer Med 2021; 10:8741-8753. [PMID: 34761879 PMCID: PMC8683551 DOI: 10.1002/cam4.4413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study seeks to clarify whether allogeneic hematopoietic stem cell transplantation (allo-HSCT) is necessary for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) in post-remission based on a comparison with tyrosine kinase inhibitor (TKI) combined with chemotherapy. METHODS We searched the Pubmed, Embase, and Web of Science databases and limited the date range for the studies from January 2010 to August 2020. A hazard ratio (HR) with a 95% confidence interval (CI) was employed to assess overall survival (OS) and relapse-free survival (RFS), and an odds ratio (OR) with a 95% CI was used to evaluate the ratio of non-relapsed mortality (NRM) and non-relapsed survival (NRS). All analyses were conducted with Stata software 16.0 and Revman 5.3. RESULTS Fifteen studies, totaling 959 patients, were included in our analysis. Among those patients, 473 underwent allo-HSCT, and 486 received TKI plus chemotherapy. The pooled results showed no difference in OS between outcomes for patients receiving TKI plus chemotherapy and those treated with allo-HSCT (HR = 0.76, 95% CI [0.51-1.12], p = 0.16). Patients undergoing allo-HSCT did better than those receiving TKI plus chemotherapy regarding RFS (HR = 0.48, 95% CI [0.37-0.63], p = 0.00), and NRS (OR = 2.64, 95% CI [1.25-5.57], p = 0.00). The NRM rate of the TKI plus chemotherapy group was significantly lower than the allo-HSCT group (OR = 2.33, 95% CI [1.51-3.59], p = 0.00). CONCLUSION TKI combined with chemotherapy can be considered a post-remission treatment option for adult Ph+ ALL patients who are ineligible for allo-HSCT. However, more prospective studies with large sample sizes should be carried out in the future.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Xiang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigang Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Huang Y, Chen LM, Xie JY, Han H, Zhu BF, Wang LJ, Wang WJ. High Expression of PKM2 Was Associated with the Poor Prognosis of Acute Leukemia. Cancer Manag Res 2021; 13:7851-7858. [PMID: 34675679 PMCID: PMC8520821 DOI: 10.2147/cmar.s331076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose To explore the clinical significance of plasma pyruvate kinase M2 (PKM2) in assessing the incidence and prognosis of acute leukemia. Methods Plasma samples from 56 acute myeloid leukemia (AML) patients, 40 acute lymphoblastic leukemia (ALL) patients, and 66 plasma samples from healthy individuals were collected. The level of plasma PKM2 was detected by enzyme-linked immunosorbent assay. The clinical significance of PKM2 in acute leukemia was assessed by analyzing receiver operating characteristic and survival curves. Results The plasma levels of PKM2 in AML or ALL patients were significantly higher than those in healthy individuals, respectively. PKM2 can be used as a potential diagnostic index with the AUC of 0.827 for AML and 0.837 for ALL. The level of plasma PKM2 in ALL patients with a BCR/ABL-positive genotype was significantly higher than that in patients with a BCR/ABL-negative genotype (p<0.05). The event-free survival and the overall survival of acute leukemia patients with higher PKM2 expression was worse than those with lower PKM2 expression. Conclusion This study showed that higher levels of PKM2 was negatively correlated with the prognosis of acute leukemia. Therefore, PKM2 can be used as a potential index to assess the incidence and prognosis of acute leukemia.
Collapse
Affiliation(s)
- Yunxiu Huang
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Lin-Mu Chen
- Department of Pharmacy, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Jin-Ye Xie
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Hui Han
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Bao-Fang Zhu
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Luo-Jia Wang
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Wei-Jia Wang
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| |
Collapse
|
50
|
Rocha KML, Nascimento ÉCM, Martins JBL. Investigation on the interaction behavior of afatinib, dasatinib, and imatinib docked to the BCR-ABL protein. J Mol Model 2021; 27:309. [PMID: 34599372 DOI: 10.1007/s00894-021-04925-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Chronic myeloid leukemia (CML) is a pathological condition associated with the uncontrolled proliferation of white blood cells and respective loss of function. Imatinib was the first drug that could effectively treat this condition, but its use is hindered by the development of mutations of the BCR-ABL protein, which are the cause of resistance. Therefore, dasatinib and afatinib present similarities that can be explored to discover new molecules capable of overcoming the effects of imatinib. Afatinib exhibited electronic and docking behavior, indicating that a replacement with some minor modifications could design a new potential inhibitor. The amide group in each candidate is clearly of pharmacophoric importance, and it needs to concentrate a negative region. Sulfur group presents a good pharmacophoric profile, which was shown by dasatinib results, adding to the influence of the Met318 residue in the target protein active site configuration. This behavior suggests that the sulfur atom and other fragments that have an affinity for the methionine sidechain may provide a significant positive effect when present in TKI molecules such as afatinib or dasatinib.
Collapse
MESH Headings
- Afatinib/chemistry
- Afatinib/metabolism
- Afatinib/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/metabolism
- Catalytic Domain
- Dasatinib/chemistry
- Dasatinib/metabolism
- Dasatinib/pharmacology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate/chemistry
- Imatinib Mesylate/metabolism
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Methionine/chemistry
- Molecular Docking Simulation
- Mutation
- Quantum Theory
- Sulfur/chemistry
Collapse
Affiliation(s)
- Kelvyn M L Rocha
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Érica C M Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| | - João B L Martins
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| |
Collapse
|