1
|
Guo Y, Li M, Liu X, Wang X, Zhang Z, Liu D, Wang X. A versatile tumor-targeted drug-delivery system based on IR808-modified nanoparticles, its co-loading with PTX and R848 and its extraordinary antitumor efficacy. NANOSCALE 2024. [PMID: 39422582 DOI: 10.1039/d4nr02837f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Nearly all antitumor drugs can benefit greatly from effective tumor-targeted delivery for improved therapeutic efficacy and reduced toxic side effects. However, the vast majority of tumor-targeting ligands can only target specific tumor cells that highly express the corresponding receptors and thus are only applicable to limited tumor types. Heptamethine cyanines with medium cyclohexene and medium Cl atoms, such as IR780 and IR808, have shown an unusual ability to indiscriminately accumulate into virtually all tumor types. In this study, IR808 was conjugated with DSPE-mPEG2000-NH2, and the resultant DSPE-PEG2000-IR808 (DP-IR808) in combination with TPGS successfully encapsulated paclitaxel (PTX) and immunomodulator R848 into nanoparticles with a small particle size of 150.20 nm, negative charge of -16.50 mV, rod-like morphology, and PTX loading content of 31.6%. The obtained DP-IR808@PTX-R848 NPs rapidly accumulated in 4T1 tumors with a tumor/liver fluorescence ratio of 1.71, and it demonstrated a significant photothermal effect and could be directly used for NIR imaging. The DP-IR808@PTX-R848 NPs achieved a high tumor inhibition rate of 94%, a mean survival time of >90 d, and a tumor-free survival percentage of 57%. To the best of our knowledge, this was the first time that nanoparticles were modified with heptamethylcyanine molecules. The nanoparticles system based on DSPE-PEG-IR808, which integrates tumor-targeted drug delivery, in vivo infrared imaging and photothermal therapy, is expected to become a versatile drug-delivery platform for tumor therapy.
Collapse
Affiliation(s)
- Yaoyao Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110000, China.
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Ziqi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110000, China.
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang Y, Li J, Li J, Wang J. Dysregulation of systemic immunity and its clinical application in gastric cancer. Front Immunol 2024; 15:1450128. [PMID: 39301031 PMCID: PMC11410619 DOI: 10.3389/fimmu.2024.1450128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Immunotherapy has profoundly changed the treatment of gastric cancer, but only a minority of patients benefit from immunotherapy. Therefore, numerous studies have been devoted to clarifying the mechanisms underlying resistance to immunotherapy or developing biomarkers for patient stratification. However, previous studies have focused mainly on the tumor microenvironment. Systemic immune perturbations have long been observed in patients with gastric cancer, and the involvement of the peripheral immune system in effective anticancer responses has attracted much attention in recent years. Therefore, understanding the distinct types of systemic immune organization in gastric cancer will aid personalized treatment designed to pair with traditional therapies to alleviate their detrimental effects on systemic immunity or to directly activate the anticancer response of systemic immunity. Herein, this review aims to comprehensively summarize systemic immunity in gastric cancer, including perturbations in systemic immunity induced by cancer and traditional therapies, and the potential clinical applications of systemic immunity in the detection, prediction, prognosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- Yao Zhang
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Junfeng Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jisheng Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Kitelinger LE, Thim EA, Zipkowitz SY, Price RJ, Bullock TNJ. Tissue- and Temporal-Dependent Dynamics of Myeloablation in Response to Gemcitabine Chemotherapy. Cells 2024; 13:1317. [PMID: 39195207 DOI: 10.3390/cells13161317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
For triple-negative breast cancer (TNBC), the most aggressive subset of breast cancer, immune cell infiltrates have prognostic implications. The presence of myeloid-derived suppressor cells supports tumor progression, while tumor-infiltrating lymphocytes (TILs) correlate with improved survival and responsiveness to immunotherapy. Manipulating the abundance of these populations may enhance tumor immunity. Gemcitabine (GEM), a clinically employed chemotherapeutic, is reported to be systemically myeloablative, and thus it is a potentially useful adjunct therapy for promoting anti-tumor immunity. However, knowledge about the immunological effects of GEM intratumorally is limited. Thus, we directly compared the impact of systemic GEM on immune cell presence and functionality in the tumor microenvironment (TME) to its effects in the periphery. We found that GEM is not myeloablative in the TME; rather, we observed sustained, significant reductions in TILs and dendritic cells-crucial components in initiating an adaptive immune response. We also performed bulk-RNA sequencing to identify immunological alterations transcriptionally induced by GEM. While we found evidence of upregulation in the interferon-gamma (IFN-γ) response pathway, we determined that GEM-mediated growth control is not dependent on IFN-γ. Overall, our findings yield new insights into the tissue- and temporal-dependent immune ablative effects of GEM, contrasting the paradigm that this therapy is specifically myeloablative.
Collapse
Affiliation(s)
- Lydia E Kitelinger
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric A Thim
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Sarah Y Zipkowitz
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Alissa N, Fang WB, Medrano M, Bergeron N, Kozai Y, Hu Q, Redding C, Thyfault J, Hamilton-Reeves J, Berkland C, Cheng N. CCL2 signaling promotes skeletal muscle wasting in non-tumor and breast tumor models. Dis Model Mech 2024; 17:dmm050398. [PMID: 38973385 DOI: 10.1242/dmm.050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Nadia Alissa
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nick Bergeron
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuuka Kozai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chloe Redding
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John Thyfault
- Department of Cell Biology and Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Nikki Cheng
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Gonçalves IV, Pinheiro-Rosa N, Torres L, Oliveira MDA, Rapozo Guimarães G, Leite CDS, Ortega JM, Lopes MTP, Faria AMC, Martins MLB, Felicori LF. Dynamic changes in B cell subpopulations in response to triple-negative breast cancer development. Sci Rep 2024; 14:11576. [PMID: 38773133 PMCID: PMC11109097 DOI: 10.1038/s41598-024-60243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/19/2024] [Indexed: 05/23/2024] Open
Abstract
Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.
Collapse
Affiliation(s)
- Igor Visconte Gonçalves
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Pinheiro-Rosa
- NYU Grossman School of Medicine, NYU Langone Health, New York University, 550 1st Ave, New York, NY, 10016, USA
| | - Lícia Torres
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana de Almeida Oliveira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela Rapozo Guimarães
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Christiana da Silva Leite
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Miriam Teresa Paz Lopes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana Lima Boroni Martins
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
6
|
Kaskas A, Clavijo P, Friedman J, Craveiro M, Allen CT. Complete tumor resection reverses neutrophilia-associated suppression of systemic anti-tumor immunity. Oral Oncol 2024; 150:106705. [PMID: 38280289 PMCID: PMC10939739 DOI: 10.1016/j.oraloncology.2024.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
OBJECTIVES Tumor infiltrating neutrophils suppress T cell function, but whether neutrophils in circulation contribute to systemic immunosuppression is unclear. We aimed to study whether peripheral neutrophils that accumulate with tumor progression contribute to systemic immunosuppression, and if observed suppression of systemic anti-tumor immunity could be reversed with complete surgical tumor removal. MATERIALS AND METHODS Syngeneic murine oral cancers were established in immunocompetent mice. Proteomic and functional immune assays were used to study plasma cytokine concentration, peripheral immune frequencies, and systemic anti-tumor immunity with and without complete primary tumor resection. RESULTS Ly6G+ neutrophilic cells, but not other myeloid cell types, accumulated in the periphery of mice with progressing tumors. This accumulation positively associated with plasma G-CSF concentration. Circulating neutrophils were functionally immunosuppressive. Complete surgical tumor removal reversed the observed neutrophilia, with neutrophil frequencies returning to baseline in 21 days. Multiple independent functional assays revealed enhanced systemic anti-tumor immunity in mice following tumor resection compared to tumor-bearing mice, and the observed enhanced systemic immunity could be reproduced with selective neutrophil depletion. CONCLUSIONS Complete primary tumor resection can reverse neutrophilia that develops during tumor progression and result in enhanced systemic anti-tumor immunity. Primary tumor removal relieves neutrophil-driven systemic immunosuppression and may itself contribute to the clinical benefit observed with neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Amir Kaskas
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Clavijo
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay Friedman
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Craveiro
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Banuelos A, Zhang A, Berouti H, Baez M, Yılmaz L, Georgeos N, Marjon KD, Miyanishi M, Weissman IL. CXCR2 inhibition in G-MDSCs enhances CD47 blockade for melanoma tumor cell clearance. Proc Natl Acad Sci U S A 2024; 121:e2318534121. [PMID: 38261615 PMCID: PMC10835053 DOI: 10.1073/pnas.2318534121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/16/2023] [Indexed: 01/25/2024] Open
Abstract
The use of colony-stimulating factor-1 receptor (CSF1R) inhibitors has been widely explored as a strategy for cancer immunotherapy due to their robust depletion of tumor-associated macrophages (TAMs). While CSF1R blockade effectively eliminates TAMs from the solid tumor microenvironment, its clinical efficacy is limited. Here, we use an inducible CSF1R knockout model to investigate the persistence of tumor progression in the absence of TAMs. We find increased frequencies of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the bone marrow, throughout circulation, and in the tumor following CSF1R deletion and loss of TAMs. We find that G-MDSCs are capable of suppressing macrophage phagocytosis, and the elimination of G-MDSCs through CXCR2 inhibition increases macrophage capacity for tumor cell clearance. Further, we find that combination therapy of CXCR2 inhibition and CD47 blockade synergize to elicit a significant anti-tumor response. These findings reveal G-MDSCs as key drivers of tumor immunosuppression and demonstrate their inhibition as a potent strategy to increase macrophage phagocytosis and enhance the anti-tumor efficacy of CD47 blockade in B16-F10 melanoma.
Collapse
Affiliation(s)
- Allison Banuelos
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
| | - Allison Zhang
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
| | - Hala Berouti
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
| | - Michelle Baez
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
| | - Leyla Yılmaz
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
| | - Nardin Georgeos
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
| | - Kristopher D. Marjon
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
| | - Masanori Miyanishi
- Hematopoietic Stem Cell Biology and Medical Innovation (HSCBMI), Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
| | - Irving L. Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA94305
- Department of Pathology, Stanford University, Stanford, CA94305
| |
Collapse
|
8
|
Orbach SM, DeVaull CY, Bealer EJ, Ross BC, Jeruss JS, Shea LD. An engineered niche delineates metastatic potential of breast cancer. Bioeng Transl Med 2024; 9:e10606. [PMID: 38193115 PMCID: PMC10771563 DOI: 10.1002/btm2.10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 01/10/2024] Open
Abstract
Metastatic breast cancer is often not diagnosed until secondary tumors have become macroscopically visible and millions of tumor cells have invaded distant tissues. Yet, metastasis is initiated by a cascade of events leading to formation of the pre-metastatic niche, which can precede tumor formation by a matter of years. We aimed to distinguish the potential for metastatic disease from nonmetastatic disease at early times in triple-negative breast cancer using sister cell lines 4T1 (metastatic), 4T07 (invasive, nonmetastatic), and 67NR (nonmetastatic). We used a porous, polycaprolactone scaffold, that serves as an engineered metastatic niche, to identify metastatic disease through the characteristics of the microenvironment. Analysis of the immune cell composition at the scaffold was able to distinguish noninvasive 67NR tumor-bearing mice from 4T07 and 4T1 tumor-bearing mice but could not delineate metastatic potential between the two invasive cell lines. Gene expression in the scaffolds correlated with the up-regulation of cancer hallmarks (e.g., angiogenesis, hypoxia) in the 4T1 mice relative to 4T07 mice. We developed a 9-gene signature (Dhx9, Dusp12, Fth1, Ifitm1, Ndufs1, Pja2, Slc1a3, Soga1, Spon2) that successfully distinguished 4T1 disease from 67NR or 4T07 disease throughout metastatic progression. Furthermore, this signature proved highly effective at distinguishing diseased lungs in publicly available datasets of mouse models of metastatic breast cancer and in human models of lung cancer. The early and accurate detection of metastatic disease that could lead to early treatment has the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sophia M. Orbach
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | | | - Elizabeth J. Bealer
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Brian C. Ross
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Jacqueline S. Jeruss
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
- Department of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Lonnie D. Shea
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
9
|
Varghese GR, Patra D, Jaikumar VS, Rajan A, Latha NR, Srinivas P. βhCG mediates immune suppression through upregulation of CD11b + Gr1 + myeloid derived suppressor cells, CD206 + M2 macrophages, and CD4 + FOXP3 + regulatory T-cells in BRCA1 deficient breast cancers. Immunology 2023; 170:270-285. [PMID: 37340549 DOI: 10.1111/imm.13673] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
BRCA1 mutation is reported in about 70% of all triple negative breast cancers (TNBC), while BRCA1 defect due to promoter hypermethylation is seen in about 30%-60% of sporadic breast cancers. Although PARP inhibitors and platinum-based chemotherapy are used to treat these cancers, more efficient therapeutic approaches are required to overcome the resistance to treatment. Our previous findings have reported elevated βhCG expression but not αhCG in BRCA1 deficient breast cancers. As βhCG causes immune suppression in pregnancy, this study explored the immunomodulatory effect of βhCG in BRCA1mutated/deficient TNBC. We observed that Th1, Th2, and Th17 cytokines are upregulated in the presence of βhCG in BRCA1 defective cancers. In NOD-SCID and syngeneic mouse models, βhCG increases the frequency of Myeloid-derived suppressor cells in tumour tissues and contributes to macrophage reprogramming from antitumor M1 to pro-tumour M2 phenotype. βhCG reduces the CD4+ T-cell infiltration while increasing the density of CD4+ CD25+ FOXP3+ regulatory T-cell in BRCA1 deficient tumour tissues. In contrast, xenograft tumours with βhCG knocked down TNBC cells did not show these immune suppressive effects. We have also shown that βhCG upregulates pro-tumorigenic markers arginase1(Arg1), inducible nitric oxide synthase, PD-L1/PD-1, and NFκB in BRCA1 defective tumours. Thus, for the first time, this study proves that βhCG suppresses the host antitumor immune response and contributes to tumour progression in BRCA1 deficient tumours. This study will help develop new immunotherapeutic approaches for treating BRCA1 defective TNBC by regulating βhCG.
Collapse
Affiliation(s)
- Geetu Rose Varghese
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Dipyaman Patra
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Vishnu Sunil Jaikumar
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Arathi Rajan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neetha R Latha
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
10
|
Maldonado MDM, Schlom J, Hamilton DH. Blockade of tumor-derived colony-stimulating factor 1 (CSF1) promotes an immune-permissive tumor microenvironment. Cancer Immunol Immunother 2023; 72:3349-3362. [PMID: 37505292 PMCID: PMC10491706 DOI: 10.1007/s00262-023-03496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
The macrophage colony-stimulating factor 1 (CSF1) is a chemokine essential for the survival, proliferation, and differentiation of mononuclear phagocytes from hemopoietic stem cells. In addition to its essential physiological role in normal tissues, the CSF1/CSF1 receptor axis is known to be overexpressed in many tumor types and associated with poor prognosis. High levels of CSF1 within the tumor microenvironment have been shown to recruit and reeducate macrophages to produce factors that promote tumor invasiveness and accelerate metastasis. In this study, we demonstrate, for the first time, that treating established syngeneic murine colon and breast carcinoma tumors with a CSF1R-blocking antibody also promotes the expansion of neoepitope-specific T cells. To assess the role of tumor-derived CSF1 in these model systems, we generated and characterized CSF1 CRISPR-Cas9 knockouts. Eliminating tumor-derived CSF1 results in decreased tumor growth and enhanced immunity against tumor-associated neoepitopes, potentially promoting an immune permissive tumor microenvironment in tumor-bearing mice. The combination of neoepitope vaccine with anti-PDL1 in the MC38 CSF1-/- tumor model significantly decreased tumor growth in vivo. Moreover, anti-CSF1R therapy combined with the adeno-TWIST1 vaccine resulted in tumor control, decreased metastasis, and a synergistic increase in CD8 T cell infiltration in 4T1 mammary tumors. Analysis of the tumor microenvironment demonstrated greater CD8 T cell infiltration and a reduction in tumor-associated macrophages following CSF1R inhibition in both tumor models. Our findings thus add to the therapeutic potential of CSF1 targeting agents by employing combinations with vaccines to modulate anti-neoepitope responses in the tumor microenvironment.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Duane H Hamilton
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Davis RW, Klampatsa A, Cramer GM, Kim MM, Miller JM, Yuan M, Houser C, Snyder E, Putt M, Vinogradov SA, Albelda SM, Cengel KA, Busch TM. Surgical Inflammation Alters Immune Response to Intraoperative Photodynamic Therapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1810-1822. [PMID: 37700795 PMCID: PMC10494787 DOI: 10.1158/2767-9764.crc-22-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Surgical cytoreduction for patients with malignant pleural mesothelioma (MPM) is used for selected patients as a part of multi-modality management strategy. Our group has previously described the clinical use of photodynamic therapy (PDT), a form of non-ionizing radiation, as an intraoperative therapy option for MPM. Although necessary for the removal of bulk disease, the effects of surgery on residual MPM burden are not understood. In this bedside-to-bench study, Photofrin-based PDT introduced the possibility of achieving a long-term response in murine models of MPM tumors that were surgically debulked by 60% to 90%. Thus, the addition of PDT provided curative potential after an incomplete resection. Despite this success, we postulated that surgical induction of inflammation may mitigate the comprehensive response of residual disease to further therapy. Utilizing a previously validated tumor incision (TI) model, we demonstrated that the introduction of surgical incisions had no effect on acute cytotoxicity by PDT. However, we found that surgically induced inflammation limited the generation of antitumor immunity by PDT. Compared with PDT alone, when TI preceded PDT of mouse tumors, splenocytes and/or CD8+ T cells from the treated mice transferred less antitumor immunity to recipient animals. These results demonstrate that addition of PDT to surgical cytoreduction significantly improves long-term response compared with cytoreduction alone, but at the same time, the inflammation induced by surgery may limit the antitumor immunity generated by PDT. These data inform future potential approaches aimed at blocking surgically induced immunosuppression that might improve the outcomes of intraoperative combined modality treatment. Significance Although mesothelioma is difficult to treat, we have shown that combining surgery with a form of radiation, photodynamic therapy, may help people with mesothelioma live longer. In this study, we demonstrate in mice that this regimen could be further improved by addressing the inflammation induced as a by-product of surgery.
Collapse
Affiliation(s)
- Richard W. Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gwendolyn M. Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joann M. Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cassandra Houser
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emma Snyder
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Zheng C, Xu X, Wu M, Xue L, Zhu J, Xia H, Ding S, Fu S, Wang X, Wang Y, He G, Liu X, Deng X. Neutrophils in triple-negative breast cancer: an underestimated player with increasingly recognized importance. Breast Cancer Res 2023; 25:88. [PMID: 37496019 PMCID: PMC10373263 DOI: 10.1186/s13058-023-01676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, with limited therapeutic options readily available. Immunotherapy such as immune checkpoint inhibition has been investigated in TNBC but still encounters low overall response. Neutrophils, the most abundant leukocytes in the body, are increasingly recognized as an active cancer-modulating entity. In the bloodstream, neutrophils escort circulating tumor cells to promote their survival and stimulate their proliferation and metastasis. In the tumor microenvironment, neutrophils modulate the immune milieu through polarization between the anti-tumor and the pro-tumor phenotypes. Through a comprehensive review of recently published literature, it is evident that neutrophils are an important player in TNBC immunobiology and can be used as an important prognostic marker of TNBC. Particularly, in their pro-tumor form, neutrophils facilitate TNBC metastasis through formation of neutrophil extracellular traps and the pre-metastatic niche. These findings will help advance the potential utilization of neutrophils as a therapeutic target in TNBC.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xi Xu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jianyu Zhu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, Jishou University, Jishou, Hunan, China
| | - Hongzhuo Xia
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xia Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China.
| |
Collapse
|
13
|
Mehdizadeh R, Shariatpanahi SP, Goliaei B, Rüegg C. Targeting myeloid-derived suppressor cells in combination with tumor cell vaccination predicts anti-tumor immunity and breast cancer dormancy: an in silico experiment. Sci Rep 2023; 13:5875. [PMID: 37041172 PMCID: PMC10090155 DOI: 10.1038/s41598-023-32554-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
Among the different breast cancer subsets, triple-negative breast cancer (TNBC) has the worst prognosis and limited options for targeted therapies. Immunotherapies are emerging as novel treatment opportunities for TNBC. However, the surging immune response elicited by immunotherapies to eradicate cancer cells can select resistant cancer cells, which may result in immune escape and tumor evolution and progression. Alternatively, maintaining the equilibrium phase of the immune response may be advantageous for keeping a long-term immune response in the presence of a small-size residual tumor. Myeloid-derived suppressor cells (MDSCs) are activated, expanded, and recruited to the tumor microenvironment by tumor-derived signals and can shape a pro-tumorigenic micro-environment by suppressing the innate and adaptive anti-tumor immune responses. We recently proposed a model describing immune-mediated breast cancer dormancy instigated by a vaccine consisting of dormant, immunogenic breast cancer cells derived from the murine 4T1 TNBC-like cell line. Strikingly, these 4T1-derived dormant cells recruited fewer MDSCs compared to aggressive 4T1 cells. Recent experimental studies demonstrated that inactivating MDSCs has a profound impact on reconstituting immune surveillance against the tumor. Here, we developed a deterministic mathematical model for simulating MDSCs depletion from mice bearing aggressive 4T1 tumors resulting in immunomodulation. Our computational simulations indicate that a vaccination strategy with a small number of tumor cells in combination with MDSC depletion can elicit an effective immune response suppressing the growth of a subsequent challenge with aggressive tumor cells, resulting in sustained tumor dormancy. The results predict a novel therapeutic opportunity based on the induction of effective anti-tumor immunity and tumor dormancy.
Collapse
Affiliation(s)
- Reza Mehdizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
14
|
Virassamy B, Caramia F, Savas P, Sant S, Wang J, Christo SN, Byrne A, Clarke K, Brown E, Teo ZL, von Scheidt B, Freestone D, Gandolfo LC, Weber K, Teply-Szymanski J, Li R, Luen SJ, Denkert C, Loibl S, Lucas O, Swanton C, Speed TP, Darcy PK, Neeson PJ, Mackay LK, Loi S. Intratumoral CD8 + T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. Cancer Cell 2023; 41:585-601.e8. [PMID: 36827978 DOI: 10.1016/j.ccell.2023.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023]
Abstract
CD8+ tumor-infiltrating lymphocytes with a tissue-resident memory T (TRM) cell phenotype are associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, the relative contribution of CD8+ TRM cells to anti-tumor immunity and immune checkpoint blockade efficacy in breast cancer remains unknown. Here, we show that intratumoral CD8+ T cells in murine mammary tumors transcriptionally resemble those from TNBC patients. Phenotypic and transcriptional studies established two intratumoral sub-populations: one more enriched in markers of terminal exhaustion (TEX-like) and the other with a bona fide resident phenotype (TRM-like). Treatment with anti-PD-1 and anti-CTLA-4 therapy resulted in expansion of these intratumoral populations, with the TRM-like subset displaying significantly enhanced cytotoxic capacity. TRM-like CD8+ T cells could also provide local immune protection against tumor rechallenge and a TRM gene signature extracted from tumor-free tissue was significantly associated with improved clinical outcomes in TNBC patients treated with checkpoint inhibitors.
Collapse
Affiliation(s)
- Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Franco Caramia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sneha Sant
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jianan Wang
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ann Byrne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kylie Clarke
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Emmaline Brown
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Zhi Ling Teo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Bianca von Scheidt
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - David Freestone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Karsten Weber
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany
| | - Julia Teply-Szymanski
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany; Department of Pathology, University Marburg-Giessen, Campus Marburg, Germany
| | - Ran Li
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen J Luen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Carsten Denkert
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany; Department of Pathology, University Marburg-Giessen, Campus Marburg, Germany
| | - Sibylle Loibl
- German Breast Cancer Group, GBG-Forschungs GmbH, Neu-Isenburg, Germany
| | - Olivia Lucas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Phillip K Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Paul J Neeson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Laura K Mackay
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Bernardo G, Le Noci V, Ottaviano E, De Cecco L, Camisaschi C, Guglielmetti S, Di Modica M, Gargari G, Bianchi F, Indino S, Sartori P, Borghi E, Sommariva M, Tagliabue E, Triulzi T, Sfondrini L. Reduction of Staphylococcus epidermidis in the mammary tumor microbiota induces antitumor immunity and decreases breast cancer aggressiveness. Cancer Lett 2023; 555:216041. [PMID: 36565918 DOI: 10.1016/j.canlet.2022.216041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The mammary gland hosts a microbiota, which differs between malignant versus normal tissue. We found that aerosolized antibiotics decrease murine mammary tumor growth and strongly limit lung metastasis. Oral absorbable antibiotics also reduced mammary tumors. In ampicillin-treated nodules, the immune microenvironment consisted of an M1 profile and improved T cell/macrophage infiltration. In these tumors, we noted an under-representation of microbial recognition and complement pathways, supported by TLR2/TLR7 protein and C3-fragment deposition reduction. By 16S rRNA gene profiling, we observed increased Staphylococcus levels in untreated tumors, among which we isolated Staphylococcus epidermidis, which had potent inflammatory activity and increased Tregs. Conversely, oral ampicillin lowered Staphylococcus epidermidis in mammary tumors and expanded bacteria promoting an M1 phenotype and reducing MDSCs and tumor growth. Ampicillin/paclitaxel combination improved the chemotherapeutic efficacy. Notably, an Amp-like signature, based on genes differentially expressed in murine tumors, identified breast cancer patients with better prognosis and high immune infiltration that correlated with a bacteria response signature. This study highlights the significant influence of mammary tumor microbiota on local immune status and the relevance of its treatment with antibiotics, in combination with breast cancer therapies.
Collapse
Affiliation(s)
- Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Emerenziana Ottaviano
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì 8, 20142, Milan, Italy.
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Chiara Camisaschi
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Simone Guglielmetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Giorgio Gargari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, 20097, San Donato Milanese, Milan, Italy.
| | - Serena Indino
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Elisa Borghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì 8, 20142, Milan, Italy.
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
16
|
Surgery in the Setting of Metastatic Breast Cancer. CURRENT BREAST CANCER REPORTS 2023. [DOI: 10.1007/s12609-023-00476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Stravokefalou V, Stellas D, Karaliota S, Nagy BA, Valentin A, Bergamaschi C, Dimas K, Pavlakis GN. Heterodimeric IL-15 (hetIL-15) reduces circulating tumor cells and metastasis formation improving chemotherapy and surgery in 4T1 mouse model of TNBC. Front Immunol 2023; 13:1014802. [PMID: 36713398 PMCID: PMC9880212 DOI: 10.3389/fimmu.2022.1014802] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Immunotherapy has emerged as a viable approach in cancer therapy, with cytokines being of great interest. Interleukin IL-15 (IL-15), a cytokine that supports cytotoxic immune cells, has been successfully tested as an anti-cancer and anti-metastatic agent, but combinations with conventional chemotherapy and surgery protocols have not been extensively studied. We have produced heterodimeric IL-15 (hetIL-15), which has shown anti-tumor efficacy in several murine cancer models and is being evaluated in clinical trials for metastatic cancers. In this study, we examined the therapeutic effects of hetIL-15 in combination with chemotherapy and surgery in the 4T1 mouse model of metastatic triple negative breast cancer (TNBC). hetIL-15 monotherapy exhibited potent anti-metastatic effects by diminishing the number of circulating tumor cells (CTCs) and by controlling tumor cells colonization of the lungs. hetIL-15 treatment in combination with doxorubicin resulted in enhanced anti-metastatic activity and extended animal survival. Systemic immune phenotype analysis showed that the chemoimmunotherapeutic regimen shifted the tumor-induced imbalance of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in favor of cytotoxic effector cells, by simultaneously decreasing PMN-MDSCs and increasing the frequency and activation of effector (CD8+T and NK) cells. Tumor resection supported by neoadjuvant and adjuvant administration of hetIL-15, either alone or in combination with doxorubicin, resulted in the cure of approximately half of the treated animals and the development of anti-4T1 tumor immunity. Our findings demonstrate a significant anti-metastatic potential of hetIL-15 in combination with chemotherapy and surgery and suggest exploring the use of this regimen for the treatment of TNBC.
Collapse
Affiliation(s)
- Vasiliki Stravokefalou
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,Department of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sevasti Karaliota
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, United States
| | - Bethany A. Nagy
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece,*Correspondence: Konstantinos Dimas, ; George N. Pavlakis,
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States,*Correspondence: Konstantinos Dimas, ; George N. Pavlakis,
| |
Collapse
|
18
|
Muller AJ, Mondal A, Dey S, Prendergast GC. IDO1 and inflammatory neovascularization: bringing new blood to tumor-promoting inflammation. Front Oncol 2023; 13:1165298. [PMID: 37182174 PMCID: PMC10172587 DOI: 10.3389/fonc.2023.1165298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
In parallel with the genetic and epigenetic changes that accumulate in tumor cells, chronic tumor-promoting inflammation establishes a local microenvironment that fosters the development of malignancy. While knowledge of the specific factors that distinguish tumor-promoting from non-tumor-promoting inflammation remains inchoate, nevertheless, as highlighted in this series on the 'Hallmarks of Cancer', it is clear that tumor-promoting inflammation is essential to neoplasia and metastatic progression making identification of specific factors critical. Studies of immunometabolism and inflamometabolism have revealed a role for the tryptophan catabolizing enzyme IDO1 as a core element in tumor-promoting inflammation. At one level, IDO1 expression promotes immune tolerance to tumor antigens, thereby helping tumors evade adaptive immune control. Additionally, recent findings indicate that IDO1 also promotes tumor neovascularization by subverting local innate immunity. This newly recognized function for IDO1 is mediated by a unique myeloid cell population termed IDVCs (IDO1-dependent vascularizing cells). Initially identified in metastatic lesions, IDVCs may exert broader effects on pathologic neovascularization in various disease settings. Mechanistically, induction of IDO1 expression in IDVCs by the inflammatory cytokine IFNγ blocks the antagonistic effect of IFNγ on neovascularization by stimulating the expression of IL6, a powerful pro-angiogenic cytokine. By contributing to vascular access, this newly ascribed function for IDO1 aligns with its involvement in other cancer hallmark functionalities, (tumor-promoting inflammation, immune escape, altered cellular metabolism, metastasis), which may stem from an underlying role in normal physiological functions such as wound healing and pregnancy. Understanding the nuances of how IDO1 involvement in these cancer hallmark functionalities varies between different tumor settings will be crucial to the future development of successful IDO1-directed therapies.
Collapse
Affiliation(s)
- Alexander J. Muller
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Alexander J. Muller,
| | - Arpita Mondal
- Arbutus Biopharma, Inc., Warminster, PA, United States
| | - Souvik Dey
- Wuxi Advanced Therapeutics, Inc., Philadelphia, PA, United States
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Systemic pharmacological verification of Salvia miltiorrhiza-Ginseng Chinese herb pair in inhibiting spontaneous breast cancer metastasis. Biomed Pharmacother 2022; 156:113897. [DOI: 10.1016/j.biopha.2022.113897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
|
20
|
Orbach SM, Brooks MD, Zhang Y, Campit SE, Bushnell GG, Decker JT, Rebernick RJ, Chandrasekaran S, Wicha MS, Jeruss JS, Shea LD. Single-cell RNA-sequencing identifies anti-cancer immune phenotypes in the early lung metastatic niche during breast cancer. Clin Exp Metastasis 2022; 39:865-881. [PMID: 36002598 PMCID: PMC9643644 DOI: 10.1007/s10585-022-10185-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Microenvironmental changes in the early metastatic niche may be exploited to identify therapeutic targets to inhibit secondary tumor formation and improve disease outcomes. We dissected the developing lung metastatic niche in a model of metastatic, triple-negative breast cancer using single-cell RNA-sequencing. Lungs were extracted from mice at 7-, 14-, or 21 days after tumor inoculation corresponding to the pre-metastatic, micro-metastatic, and metastatic niche, respectively. The progression of the metastatic niche was marked by an increase in neutrophil infiltration (5% of cells at day 0 to 81% of cells at day 21) and signaling pathways corresponding to the hallmarks of cancer. Importantly, the pre-metastatic and early metastatic niche were composed of immune cells with an anti-cancer phenotype not traditionally associated with metastatic disease. As expected, the metastatic niche exhibited pro-cancer phenotypes. The transition from anti-cancer to pro-cancer phenotypes was directly associated with neutrophil and monocyte behaviors at these time points. Predicted metabolic, transcription factor, and receptor-ligand signaling suggested that changes in the neutrophils likely induced the transitions in the other immune cells. Conditioned medium generated by cells extracted from the pre-metastatic niche successfully inhibited tumor cell proliferation and migration in vitro and the in vivo depletion of pre-metastatic neutrophils and monocytes worsened survival outcomes, thus validating the anti-cancer phenotype of the developing niche. Genes associated with the early anti-cancer response could act as biomarkers that could serve as targets for the treatment of early metastatic disease. Such therapies have the potential to revolutionize clinical outcomes in metastatic breast cancer.
Collapse
Affiliation(s)
- Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Brooks
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Scott E Campit
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Medical Science Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Kato T, Fukushima H, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Takao S, Choyke PL, Kobayashi H. Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response. Oncoimmunology 2022; 11:2152248. [PMID: 36465486 PMCID: PMC9718564 DOI: 10.1080/2162402x.2022.2152248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The immune system is recognized as an important factor in regulating the development, progression, and metastasis of cancer. Myeloid-derived suppressor cells (MDSCs) are a major immune-suppressive cell type by interfering with T cell activation, promoting effector T cell apoptosis, and inducing regulatory T cell expansion. Consequently, reducing or eliminating MDSCs has become a goal of some systemic immunotherapies. However, by systemically reducing MDSCs, unwanted side effects can occur. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed treatment that selectively kills targeted cells without damaging adjacent normal cells. The aim of this study is to evaluate the antitumor efficacy of MDSC-directed NIR-PIT utilizing anti-Ly6G antibodies to specifically destroy polymorphonuclear (PMN)-MDSCs in the tumor microenvironment (TME) in syngeneic mouse models. PMN-MDSCs were selectively eliminated within tumors by Ly6G-targeted NIR-PIT. There was significant tumor growth suppression and prolonged survival in three treated tumor models. In the early phase after NIR-PIT, dendritic cell maturation/activation and CD8+ T cell activation were enhanced in both intratumoral tissues and tumor-draining lymph nodes, and NK cells demonstrated increased expression of cytotoxic molecules. Host immunity remained activated in the TME for at least one week after NIR-PIT. Abscopal effects in bilateral tumor models were observed. Furthermore, the combination of NIR-PIT targeting cancer cells and PMN-MDSCs yielded synergistic effects and demonstrated highly activated host tumor immunity. In conclusion, we demonstrated that selective local PMN-MDSCs depletion by NIR-PIT could be a promising new cancer immunotherapy.
Collapse
Affiliation(s)
- Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA,CONTACT Hisataka Kobayashi Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD20892, USA
| |
Collapse
|
22
|
DNA barcoding reveals ongoing immunoediting of clonal cancer populations during metastatic progression and immunotherapy response. Nat Commun 2022; 13:6539. [PMID: 36344500 PMCID: PMC9640547 DOI: 10.1038/s41467-022-34041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Cancers evade the immune system through the process of cancer immunoediting. While immune checkpoint inhibitors are effective for reactivating tumour immunity in some cancer types, many other solid cancers, including breast cancer, remain largely non-responsive. Understanding how non-responsive cancers evade immunity and whether this occurs at the clonal level will improve immunotherapeutic design. Here we use DNA barcoding to track murine mammary cancer cell clones during immunoediting and determine clonal transcriptional profiles that allow immune evasion following anti-PD1 plus anti-CTLA4 immunotherapy. Clonal diversity is significantly restricted by immunotherapy treatment in both primary tumours and metastases, demonstrating selection for pre-existing breast cancer cell populations and ongoing immunoediting during metastasis and treatment. Immunotherapy resistant clones express a common gene signature associated with poor survival of basal-like breast cancer patient cohorts. At least one of these genes has an existing small molecule that can potentially be used to improve immunotherapy response.
Collapse
|
23
|
Beach C, MacLean D, Majorova D, Arnold JN, Olcina MM. The effects of radiation therapy on the macrophage response in cancer. Front Oncol 2022; 12:1020606. [PMID: 36249052 PMCID: PMC9559862 DOI: 10.3389/fonc.2022.1020606] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
The efficacy of radiotherapy, a mainstay of cancer treatment, is strongly influenced by both cellular and non-cellular features of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a heterogeneous population within the TME and their prevalence significantly correlates with patient prognosis in a range of cancers. Macrophages display intrinsic radio-resistance and radiotherapy can influence TAM recruitment and phenotype. However, whether radiotherapy alone can effectively "reprogram" TAMs to display anti-tumor phenotypes appears conflicting. Here, we discuss the effect of radiation on macrophage recruitment and plasticity in cancer, while emphasizing the role of specific TME components which may compromise the tumor response to radiation and influence macrophage function. In particular, this review will focus on soluble factors (cytokines, chemokines and components of the complement system) as well as physical changes to the TME. Since the macrophage response has the potential to influence radiotherapy outcomes this population may represent a drug target for improving treatment. An enhanced understanding of components of the TME impacting radiation-induced TAM recruitment and function may help consider the scope for future therapeutic avenues to target this plastic and pervasive population.
Collapse
Affiliation(s)
- Callum Beach
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - David MacLean
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Dominika Majorova
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Monica M. Olcina
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom,*Correspondence: Monica M. Olcina,
| |
Collapse
|
24
|
Nief CA, Swartz AM, Chelales E, Sheu LY, Crouch BT, Ramanujam N, Nair SK. Ethanol Ablation Therapy Drives Immune-Mediated Antitumor Effects in Murine Breast Cancer Models. Cancers (Basel) 2022; 14:cancers14194669. [PMID: 36230591 PMCID: PMC9564135 DOI: 10.3390/cancers14194669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Tumor ablation is the process of directly destroying tumor tissue by injecting a cytotoxic substance, in this case, ethanol ethylcellulose. In this report, we characterized the effect of ablation on local and systemic immunologic markers known to impact disease progression in several mouse models. Ablation improved overall survival in poorly invasive breast cancer models and was notable for demonstrating an increase in tumor infiltrating lymphocytes. However, in a metastatic breast cancer model, the response to ablation was more nuanced: the growth of the primary tumor was only modestly slowed compared to controls, and there was a reduction in pro-tumor granulocytic myeloid derived suppressor cells (gMDSCs) with a reduction in metastatic disease. A single ablation reduced circulating granulocytic colony stimulating factor, tumoral gMDSCs, splenic gMDSCs, and pulmonary gMDSCs, as well as the suppressive ability of MDSCs on CD4 and CD8 T cells. The immunomodulation incited by tumor ablation was utilized to recover response to checkpoint inhibitors, resulting in increased overall survival compared to checkpoint inhibitors alone, demonstrating a proof-of-concept for using ethanol ablation as an adjuvant immunomodulatory therapy. Abstract Ethanol ablation is a minimally invasive, cost-effective method of destroying tumor tissue through an intratumoral injection of high concentrations of cytotoxic alcohol. Ethyl-cellulose ethanol (ECE) ablation, a modified version of ethanol ablation, contains the phase-changing polysaccharide ethyl-cellulose to reduce ethanol leakage away from the tumor. Ablation produces tissue necrosis and initiates a wound healing process; however, the characteristic of the immunologic events after ECE ablation of tumors has yet to be explored. Models of triple-negative breast cancer (TNBC), which are classically immunosuppressive and difficult to treat clinically, were used to characterize the immunophenotypic changes after ECE ablation. In poorly invasive TNBC rodent models, the injury to the tumor induced by ECE increased tumor infiltrating lymphocytes (TILs) and reduced tumor growth. In a metastatic TNBC model (4T1), TILs did not increase after ECE ablation, though lung metastases were reduced. 4T1 tumors secrete high levels of granulocytic colony stimulating factor (G-CSF), which induces a suppressive milieu of granulocytic myeloid-derived suppressor cells (gMDSCs) aiding in the formation of metastases and suppression of antitumor immunity. We found that a single intratumoral injection of ECE normalized tumor-induced myeloid changes: reducing serum G-CSF and gMDSC populations. ECE also dampened the suppressive strength of gMDSC on CD4 and CD8 cell proliferation, which are crucial for anti-tumor immunity. To demonstrate the utility of these findings, ECE ablation was administered before checkpoint inhibitor (CPI) therapy in the 4T1 model and was found to significantly increase survival compared to a control of saline and CPI. Sixty days after tumor implant no primary tumors or metastatic lung lesions were found in 6/10 mice treated with CPI plus ECE, compared to 1/10 with ECE alone and 0/10 with CPI and saline.
Collapse
Affiliation(s)
- Corrine A. Nief
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (C.A.N.); (A.M.S.)
| | - Adam M. Swartz
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
- Correspondence: (C.A.N.); (A.M.S.)
| | - Erika Chelales
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lauren Y. Sheu
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Brian T. Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| | - Smita K. Nair
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27708, USA
| |
Collapse
|
25
|
Rasé VJ, Hayward R, Haughian JM, Pullen NA. Th17, Th22, and Myeloid-Derived Suppressor Cell Population Dynamics and Response to IL-6 in 4T1 Mammary Carcinoma. Int J Mol Sci 2022; 23:ijms231810299. [PMID: 36142210 PMCID: PMC9498998 DOI: 10.3390/ijms231810299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapies relying on type 1 immunity have shown robust clinical responses in some cancers yet remain relatively ineffective in solid breast tumors. Polarization toward type 2 immunity and expansion of myeloid-derived suppressor cells (MDSC) confer resistance to therapy, though it remains unclear whether polarization toward type 3 immunity occurs or has a similar effect. Therefore, we investigated the involvement of type 3 Th17 and Th22 cells and their association with expanding MDSC populations in the 4T1 mouse mammary carcinoma model. Th17 and Th22 were detected in the earliest measurable mass at d 14 and remained present until the final sampling on d 28. In peripheral organs, Th17 populations were significantly higher than the non-tumor bearing control and peaked early at d 7, before a palpable tumor had formed. Peripheral Th22 proportions were also significantly increased, though at later times when tumors were established. To further address the mechanism underlying type 3 immune cell and MDSC recruitment, we used CRISPR-Cas9 to knock out 4T1 tumor production of interleukin-6 (4T1-IL-6-KO), which functions in myelopoiesis, MDSC recruitment, and Th maturation. While 4T1-IL-6-KO tumor growth was similar to the control, the reduced IL-6 significantly expanded the total CD4+ Th population and Th17 in tumors, while Th22 and MDSC were reduced in all tissues; this suggests that clinical IL-6 depletion combined with immunotherapy could improve outcomes. In sum, 4T1 mammary carcinomas secrete IL-6 and other factors, to polarize and reshape Th populations and expand distinct Th17 and Th22 populations, which may facilitate tumor growth and confer immunotherapy resistance.
Collapse
Affiliation(s)
- Viva J. Rasé
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
| | - James M. Haughian
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Nicholas A. Pullen
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Correspondence: ; Tel.: +1-970-351-1843; Fax: +1-970-351-2335
| |
Collapse
|
26
|
Zahid KR, Raza U, Tumbath S, Jiang L, Xu W, Huang X. Neutrophils: Musketeers against immunotherapy. Front Oncol 2022; 12:975981. [PMID: 36091114 PMCID: PMC9453237 DOI: 10.3389/fonc.2022.975981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, the most copious leukocytes in human blood, play a critical role in tumorigenesis, cancer progression, and immune suppression. Recently, neutrophils have attracted the attention of researchers, immunologists, and oncologists because of their potential role in orchestrating immune evasion in human diseases including cancer, which has led to a hot debate redefining the contribution of neutrophils in tumor progression and immunity. To make this debate fruitful, this review seeks to provide a recent update about the contribution of neutrophils in immune suppression and tumor progression. Here, we first described the molecular pathways through which neutrophils aid in cancer progression and orchestrate immune suppression/evasion. Later, we summarized the underlying molecular mechanisms of neutrophil-mediated therapy resistance and highlighted various approaches through which neutrophil antagonism may heighten the efficacy of the immune checkpoint blockade therapy. Finally, we have highlighted several unsolved questions and hope that answering these questions will provide a new avenue toward immunotherapy revolution.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Soumya Tumbath
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjuan Xu
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Xiumei Huang,
| |
Collapse
|
27
|
Barnett JD, Jin J, Penet MF, Kobayashi H, Bhujwalla ZM. Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice. Cancers (Basel) 2022; 14:cancers14153578. [PMID: 35892836 PMCID: PMC9332589 DOI: 10.3390/cancers14153578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: MDSCs play an active role in the immune surveillance escape of cancer cells. Because MDSCs in mice are CD11b+Gr1+, near-infrared photoimmunotherapy (NIR-PIT) using the NIR dye IR700 conjugated to an MDSC-binding antibody provides an opportunity for targeted elimination of MDSCs. (2) Methods: The efficacy of Gr1-IR700-mediated NIR-PIT was evaluated in vitro using magnetically separated CD11b+Gr1+ MDSCs from spleens of 4T1-luc tumor-bearing (TB) mice. For in vivo evaluation, spleens of Gr1-IR700-injected 4T1-luc TB mice were irradiated with NIR light, and splenocyte viability was determined using CCK-8 assays. Metabolic profiling of NIR-PIT-irradiated spleens was performed using 1H MRS. (3) Results: Flow cytometric analysis confirmed a ten-fold increase in splenic MDSCs in 4T1-luc TB mice. Gr1-IR700-mediated NIR-PIT eliminated tumor-induced splenic MDSCs in culture. Ex vivo fluorescence imaging revealed an 8- and 9-fold increase in mean fluorescence intensity (MFI) in the spleen and lungs of Gr1-IR700-injected compared to IgG-IR700-injected TB mice. Splenocytes from Gr1-IR700-injected TB mice exposed in vivo to NIR-PIT demonstrated significantly lower viability compared to no light exposure or untreated control groups. Significant metabolic changes were observed in spleens following NIR-PIT. (4) Conclusions: Our data confirm the ability of NIR-PIT to eliminate splenic MDSCs, identifying its potential to eliminate MDSCs in tumors to reduce immune suppression. The metabolic changes observed may identify potential biomarkers of splenic MDSC depletion as well as potential metabolic targets of MDSCs.
Collapse
Affiliation(s)
- James D. Barnett
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20814, USA;
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
28
|
Cederberg RA, Franks SE, Wadsworth BJ, So A, Decotret LR, Hall MG, Shi R, Hughes MR, McNagny KM, Bennewith KL. Eosinophils Decrease Pulmonary Metastatic Mammary Tumor Growth. Front Oncol 2022; 12:841921. [PMID: 35756626 PMCID: PMC9213661 DOI: 10.3389/fonc.2022.841921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic breast cancer is challenging to effectively treat, highlighting the need for an improved understanding of host factors that influence metastatic tumor cell colonization and growth in distant tissues. The lungs are a common site of breast cancer metastasis and are host to a population of tissue-resident eosinophils. Eosinophils are granulocytic innate immune cells known for their prominent roles in allergy and Th2 immunity. Though their presence in solid tumors and metastases have been reported for decades, the influence of eosinophils on metastatic tumor growth in the lungs is unclear. We used transgenic mouse models characterized by elevated pulmonary eosinophils (IL5Tg mice) and eosinophil-deficiency (ΔdblGATA mice), as well as antibody-mediated depletion of eosinophils, to study the role of eosinophils in EO771 mammary tumor growth in the lungs. We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. Eosinophils co-cultured with tumor cells ex vivo produced peroxidase activity and induced tumor cell death, indicating that eosinophils are capable of releasing eosinophil peroxidase (EPX) and killing EO771 tumor cells. We found that lung eosinophils expressed phenotypic markers of activation during EO771 tumor growth in the lungs, and that metastatic growth was accelerated in eosinophil-deficient mice and in WT mice after immunological depletion of eosinophils. Our results highlight an important role for eosinophils in restricting mammary tumor cell growth in the lungs and support further work to determine whether strategies to trigger local eosinophil degranulation may decrease pulmonary metastatic growth.
Collapse
Affiliation(s)
- Rachel A Cederberg
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Brennan J Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alvina So
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lisa R Decotret
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael G Hall
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hughes
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada.,Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Kaplon H. Translational Learnings in the Development of Chemo-Immunotherapy Combination to Bypass the Cold Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:835502. [PMID: 35664786 PMCID: PMC9159762 DOI: 10.3389/fonc.2022.835502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, with a 5-year relative survival rate of 5%. The desmoplastic stroma found in the tumor microenvironment of PDAC is suggested to be partly responsible for the resistance to most therapeutic strategies. This review outlines the clinical results obtained with an immune checkpoint inhibitor in PDAC and discusses the rationale to use a combination of chemotherapy and immune checkpoint therapy. Moreover, essential parameters to take into account in designing an efficient combination have been highlighted.
Collapse
Affiliation(s)
- Hélène Kaplon
- Institut de Recherches Internationales Servier, Translational Medicine Department, Servier, Suresnes, France
| |
Collapse
|
30
|
Lu J, Wei N, Zhu S, Chen X, Gong H, Mi R, Huang Y, Chen Z, Li G. Exosomes Derived From Dendritic Cells Infected With Toxoplasma gondii Show Antitumoral Activity in a Mouse Model of Colorectal Cancer. Front Oncol 2022; 12:899737. [PMID: 35600363 PMCID: PMC9114749 DOI: 10.3389/fonc.2022.899737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pathogen-based cancer therapies have been widely studied. Parasites, such as Toxoplasma gondii have elicited great interest in cancer therapy. Considering safety in clinical applications, we tried to develop an exosome-based immunomodulator instead of a live parasite for tumor treatment. The exosomes, called DC-Me49-exo were isolated from culture supernatants of dendritic cells (DCs) infected with the Me49 strain of T. gondii and identified. We assessed the antitumoral effect of these exosomes in a mouse model of colorectal cancer (CRC). Results showed that the tumor growth was significantly inhibited after treatment with DC-Me49-exo. Proportion of polymorphonuclear granulocytic bone marrow-derived suppressor cells (G-MDSCs, CD11b+Ly6G+) and monocytic myeloid-derived suppressor cells (M-MDSCs, CD11b+Ly6C+) were decreased in the DC-Me49-exo group compared with the control groups in vitro and in vivo. The proportion of DCs (CD45+CD11c+) increased significantly in the DC-Me49-exo group. Levels of interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly decreased after treatment with DC-Me49-exo. Furthermore, we found that DC-Me49-exo regulated the lever of MDSC mainly by inhibiting the signal transducer and activator of transcription (STAT3) signaling pathway. These results indicated that exosomes derived from DCs infected with T. gondii could be used as part of a novel cancer therapeutic strategy by reducing the proportion of MDSCs.
Collapse
Affiliation(s)
- Jinmiao Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nana Wei
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shilan Zhu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoyu Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Liu S, Tian W, Ma Y, Li J, Yang J, Li B. Serum exosomal proteomics analysis of lung adenocarcinoma to discover new tumor markers. BMC Cancer 2022; 22:279. [PMID: 35291954 PMCID: PMC8925168 DOI: 10.1186/s12885-022-09366-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the most aggressive and rapidly lethal types of lung cancer, lung adenocarcinoma is the most common type. Exosomes, as a hot area, play an influential role in cancer. By using proteomics analysis, we aimed to identify potential markers of lung adenocarcinoma in serum. METHODS In our study, we used the ultracentrifugation method to isolate serum exosomes. The Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics analysis were used to identify potential serum exosomal proteins with altered expression among patients with advanced lung adenocarcinoma, early lung adenocarcinoma, and healthy controls. A western blot (WB) was performed to confirm the above differential expression levels in a separate serum sample-isolated exosome, and immunohistochemistry (IHC) staining was conducted to detect expression levels of the above differential proteins of serum exosomes in lung adenocarcinoma tissues and adjacent tissues. Furthermore, we compared different expression models of the above differential proteins in serum and exosomes. RESULT According to the ITGAM (Integrin alpha M chain) and CLU (Clusterin) were differentially expressed in serum exosomes among different groups as well as tumor tissues and adjacent tissues. ITGAM was significantly and specifically enriched in exosomes. As compared to serum, CLU did not appear to be significantly enriched in exosomes. ITGAM and CLU were identified as serum exosomal protein markers of lung adenocarcinoma. CONCLUSIONS This study can provide novel ideas and a research basis for targeting lung adenocarcinoma treatment as a preliminary study.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China.,Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Wenjuan Tian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China.,Internal Medicine Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Jiaji Li
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, P. R. China
| | - Jun Yang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Burong Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China.
| |
Collapse
|
32
|
CCL5 Deficiency Enhanced Cryo–Thermal-Triggered Long-Term Anti-Tumor Immunity in 4T1 Murine Breast Cancer. Biomedicines 2022; 10:biomedicines10030559. [PMID: 35327361 PMCID: PMC8945488 DOI: 10.3390/biomedicines10030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer remains one of the most common solid tumors. Tumor immunosuppressive factors mainly hinder the control of tumors. We previously developed an innovative cryo–thermal therapy that was shown to significantly suppress distal metastasis and improve long-term survival in murine B16F10 melanoma and 4T1 mammary carcinoma models. However, the effect of cryo–thermal therapy on the 4T1 model was not excellent. CCL5 has been reported to help the progression of breast cancer, so in this study, CCL5−/− was used to explore the role of host-derived CCL5 after cryo–thermal therapy. CCL5−/− could not completely resist tumor development, but it significantly improved survival rates when combined with cryo–thermal therapy. Mechanically, CCL5−/− mildly decreases the percentage of MDSCs, increases DC maturation and macrophage’s inflammatory function at an early stage after tumor inoculation, and later up-regulate the level of Th1 and down-regulate the level of Tregs. When combined with cryo–thermal therapy, CCL5−/− dramatically down-regulated the proportion of MDSCs and induced full M1 macrophage polarization, which further promoted Th1 differentiation and the cytotoxicity of CD8+ T cells. Our results indicated that CCL5−/− contributed to cryo–thermal-triggered, long-lasting anti-tumor memory immunity. The combination of cryo–thermal therapy and CCL5 blockades might extend the survival rates of patients with aggressive breast cancer.
Collapse
|
33
|
Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis. Acta Pharm Sin B 2022; 12:3383-3397. [PMID: 35967277 PMCID: PMC9366231 DOI: 10.1016/j.apsb.2022.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor recurrence and metastasis is the leading cause of mortality for postoperative breast cancer patients. However, chemotherapy intervention after surgery is often unsatisfactory, because residual microtumors are difficult to target and require frequent administration. Here, an all-in-one and once-for-all drug depot based on in situ-formed hydrogel was applied to fit the irregular surgical trauma, and enable direct contact with residual tumors and sustained drug release. Our immunological analysis after resection of orthotopic breast tumor revealed that postsurgical activation of CXCR4–CXCL12 signal exacerbated the immunosuppression and correlated with adaptive upregulation of PD-L1 in recurrent tumors. Thus, a multifunctional hydrogel toolkit was developed integrating strategies of CXCR4 inhibition, immunogenicity activation and PD-L1 blockade. Our results showed that the hydrogel toolkit not only exerted local effect on inhibiting residual tumor cell “seeds” but also resulted in abscopal effect on disturbing pre-metastatic “soil”. Furthermore, vaccine-like effect and durable antitumor memory were generated, which resisted a secondary tumor rechallenge in 100% cured mice. Strikingly, one single dose of such modality was able to eradicate recurrent tumors, completely prevent pulmonary metastasis and minimize off-target toxicity, thus providing an effective option for postoperative intervention.
Collapse
|
34
|
Tian S, Welte T, Mai J, Liu Y, Ramirez M, Shen H. Identification of an Aptamer With Binding Specificity to Tumor-Homing Myeloid-Derived Suppressor Cells. Front Pharmacol 2022; 12:752934. [PMID: 35126104 PMCID: PMC8814529 DOI: 10.3389/fphar.2021.752934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor growth and metastasis. Since they constantly infiltrate into the tumor tissue, these cells are considered as an ideal carrier for tumor-targeted drug delivery. We recently identified a DNA-based thioaptamer (T1) with tumor accumulating activity, demonstrated its potential on tumor targeting and drug delivery. In the current study, we have carried out structure-activity relationship analysis to further optimize the aptamer. In the process, we have identified a sequence-modified aptamer (M1) that shows an enhanced binding affinity to MDSCs over the parental T1 aptamer. In addition, M1 can penetrate into the tumor tissue more effectively by hitchhiking on MDSCs. Taken together, we have identified a new reagent for enhanced tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Shaohui Tian
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States,Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Thomas Welte
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Maricela Ramirez
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States,Weill Cornell Medical College, White Plains, NY, United States,*Correspondence: Haifa Shen,
| |
Collapse
|
35
|
Ma T, Renz BW, Ilmer M, Koch D, Yang Y, Werner J, Bazhin AV. Myeloid-Derived Suppressor Cells in Solid Tumors. Cells 2022; 11:cells11020310. [PMID: 35053426 PMCID: PMC8774531 DOI: 10.3390/cells11020310] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the main suppressive cell population of the immune system. They play a pivotal role in the establishment of the tumor microenvironment (TME). In the context of cancers or other pathological conditions, MDSCs can differentiate, expand, and migrate in large quantities during circulation, inhibiting the cytotoxic functions of T cells and NK cells. This process is regulated by ROS, iNOS/NO, arginase-1, and multiple soluble cytokines. The definition of MDSCs and their phenotypes in humans are not as well represented as in other organisms such as mice, owing to the absence of the cognate molecule. However, a comprehensive understanding of the differences between different species and subsets will be beneficial for clarifying the immunosuppressive properties and potential clinical values of these cells during tumor progression. Recently, experimental evidence and clinical investigations have demonstrated that MDSCs have a close relationship with poor prognosis and drug resistance, which is considered to be a leading marker for practical applications and therapeutic methods. In this review, we summarize the remarkable position of MDSCs in solid tumors, explain their classifications in different models, and introduce new treatment approaches to target MDSCs to better understand the advancement of new approaches to cancer treatment.
Collapse
Affiliation(s)
- Tianmiao Ma
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Bernhard W. Renz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Dominik Koch
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (T.M.); (B.W.R.); (M.I.); (D.K.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
36
|
Advancing Tumor Microenvironment Research by Combining Organs-on-Chips and Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:171-203. [DOI: 10.1007/978-3-031-04039-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Zhu S, Zhao Y, Quan Y, Ma X. Targeting Myeloid-Derived Suppressor Cells Derived From Surgical Stress: The Key to Prevent Post-surgical Metastasis. Front Surg 2021; 8:783218. [PMID: 34957205 PMCID: PMC8695559 DOI: 10.3389/fsurg.2021.783218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are known to play an essential part in tumor progression under chronic stress settings through their manipulation of adaptive and innate immune systems. Previous researches mainly focus on MDSC's role in the chronic tumor immune environment. In addition, surgery can also serve as a form of acute stress within the patient's internal environment. Nevertheless, the part that MDSCs play in post-surgical tumor development has not gained enough attention yet. Although surgery is known to be an effective definite treatment for most localized solid tumors, there are still plenty of cancer patients who experience recurrence or metastasis after radical resection of the primary tumor. It is believed that surgery has the paradoxical capability to enhance tumor growth. Many possible mechanisms exist for explaining post-surgical metastasis. We hypothesize that surgical resection of the primary tumor can also facilitate the expansion of MDSCs and their pro-tumor role since these surgery-induced MDSCs can prepare the pre-metastatic niche (the "soil") and at the same time interact with circulating tumor cells (the "seeds"). This vicious, reciprocal mechanism is a crucial point in the emergence of post-surgical metastasis. According to our hypothesis, MDSCs can be the precise target to prevent cancer patients from post-surgical recurrence and metastasis during the perioperative phase to break the wretched cycle and provide better long-term survival for these patients. Future studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Quan
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Mouchemore KA, Anderson RL. Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol 2021; 54:101512. [PMID: 34763974 DOI: 10.1016/j.smim.2021.101512] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.
Collapse
Affiliation(s)
- Kellie A Mouchemore
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
39
|
Revuri V, Rajendrakumar SK, Park M, Mohapatra A, Uthaman S, Mondal J, Bae WK, Park I, Lee Y. Heat-Confined Tumor-Docking Reversible Thermogel Potentiates Systemic Antitumor Immune Response During Near-Infrared Photothermal Ablation in Triple-Negative Breast Cancer. Adv Healthc Mater 2021; 10:e2100907. [PMID: 34541833 DOI: 10.1002/adhm.202100907] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) features immunologically "cold" tumor microenvironments with limited cytotoxic T lymphocyte (CTL) infiltration. Although ablation therapies have demonstrated modulation of "cold" TNBC tumors to inflamed "hot" tumors, recruitment of myeloid derived suppressor cells (MDSCs) at the tumors post ablation therapies prevents the infiltration of CTLs and challenge the antitumor potentials of T-cell therapies. Here, a thermal ablation immunotherapy strategy is developed to prevent the immune suppressive effects of MDSCs during photothermal ablation and induce a durable systemic antitumor immunity to eradicate TNBC tumors. An injectable pluronic F127/hyaluronic acid (HA)-based hydrogel embedded with manganese dioxide (BM) nanoparticles and TLR7 agonist resiquimod (R848) (BAGEL-R848), is synthesized to induce in situ laser-assisted gelation of the hydrogel and achieve desired ablation temperatures at a low laser-exposure time. Upon 808-nm laser irradiation, a significant reduction in the tumor burden is observed in BAGEL-R848-injected 4T1 tumor-bearing mice. The ablation induced immunogenic cell death and sustained release of R848 from BAGEL-R848 promotes dendritic cell maturation and reduced MDSCs localization in tumors. In addition, inflammatory M1 macrophages and CD8+IFN+ CTL are enriched in distant tumors in bilateral 4T1 tumor model, preventing metastatic tumor growth and signifying the potential of BAGEL-R848 to treat TNBC.
Collapse
Affiliation(s)
- Vishnu Revuri
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| | - Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Myong‐Suk Park
- Department of Hematology‐Oncology Chonnam National University Medical School Gwangju 61469 South Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Jagannath Mondal
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology‐Oncology Chonnam National University Medical School Gwangju 61469 South Korea
| | - In‐Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University Chonnam National University Medical School Gwangju 61469 Republic of Korea
| | - Yong‐Kyu Lee
- Department of Green Bioengineering Korea National University of Transportation Chungju 27469 Republic of Korea
| |
Collapse
|
40
|
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021; 9:77. [PMID: 34689842 PMCID: PMC8543853 DOI: 10.1186/s40364-021-00333-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of immature cells that produced by emergency myelopoiesis. Emerging evidences have identified the vital role of MDSC in cancer microenvironment, in which MDSC exerts both immunological and non-immunological activities to assist the progression of cancer. Advances in pre-clinical research have provided us the understanding of MDSC in cancer context from the perspective of molecular mechanism. In clinical scenario, MDSC and its subsets have been discovered to exist in peripheral blood and tumor site of patients from various types of cancers. In this review, we highlight the clinical value of MDSC in predicting prognosis of cancer patients and the responses of immunotherapies, therefore to propose the MDSC-inhibiting strategy in the scenario of cancer immunotherapies. Phenotypes and biological functions of MDSC in cancer microenvironment are comprehensively summarized to provide potential targets of MDSC-inhibiting strategy from the aspect of molecular mechanisms.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Gynecology and Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
41
|
TGF-β Increases MFGE8 Production in Myeloid-Derived Suppressor Cells to Promote B16F10 Melanoma Metastasis. Biomedicines 2021; 9:biomedicines9080896. [PMID: 34440100 PMCID: PMC8389657 DOI: 10.3390/biomedicines9080896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
There is growing evidence that myeloid-derived suppressor cells (MDSCs) are directly involved in all stages leading to metastasis. Many mechanisms for this effect have been proposed, but mechanisms of coregulation between tumor cells and MDSCs remain poorly understood. In this study, we demonstrate that MDSCs are a source of milk fat globule-epidermal growth factor (EGF) factor 8 (MFGE8), which is known to be involved in tumor metastasis. Interestingly, TGF-β, an abundant cytokine in the tumor microenvironment (TME), increased MFGE8 production by MDSCs. In addition, co-culturing MDSCs with B16F10 melanoma cells increased B16F10 cell migration, while MFGE8 neutralization decreased their migration. Taken together, these findings suggest that MFGE8 is an important effector molecule through which MDSCs promote tumor metastasis, and the TME positively regulates MFGE8 production by MDSCs through TGF-β.
Collapse
|
42
|
Tang F, Tie Y, Hong W, Wei Y, Tu C, Wei X. Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection. Ann Surg Oncol 2021; 28:4030-4048. [PMID: 33258011 PMCID: PMC7703739 DOI: 10.1245/s10434-020-09371-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Surgical resection is a common therapeutic option for primary solid tumors. However, high cancer recurrence and metastatic rates after resection are the main cause of cancer related mortalities. This implies the existence of a "fertile soil" following surgery that facilitates colonization by circulating cancer cells. Myeloid-derived suppressor cells (MDSCs) are essential for premetastatic niche formation, and may persist in distant organs for up to 2 weeks after surgery. These postsurgical persistent lung MDSCs exhibit stronger immunosuppression compared with presurgical MDSCs, suggesting that surgery enhances MDSC function. Surgical stress and trauma trigger the secretion of systemic inflammatory cytokines, which enhance MDSC mobilization and proliferation. Additionally, damage associated molecular patterns (DAMPs) directly activate MDSCs through pattern recognition receptor-mediated signals. Surgery also increases vascular permeability, induces an increase in lysyl oxidase and extracellular matrix remodeling in lungs, that enhances MDSC mobilization. Postsurgical therapies that inhibit the induction of premetastatic niches by MDSCs promote the long-term survival of patients. Cyclooxygenase-2 inhibitors and β-blockade, or their combination, may minimize the impact of surgical stress on MDSCs. Anti-DAMPs and associated inflammatory signaling inhibitors also are potential therapies. Existing therapies under tumor-bearing conditions, such as MDSCs depletion with low-dose chemotherapy or tyrosine kinase inhibitors, MDSCs differentiation using all-trans retinoic acid, and STAT3 inhibition merit clinical evaluation during the perioperative period. In addition, combining low-dose epigenetic drugs with chemokine receptors, reversing immunosuppression through the Enhanced Recovery After Surgery protocol, repairing vascular leakage, or inhibiting extracellular matrix remodeling also may enhance the long-term survival of curative resection patients.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Tie
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
43
|
Kähkönen TE, Halleen JM, Bernoulli J. Osteoimmuno-Oncology: Therapeutic Opportunities for Targeting Immune Cells in Bone Metastasis. Cells 2021; 10:1529. [PMID: 34204474 PMCID: PMC8233913 DOI: 10.3390/cells10061529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies provide a potential treatment option for currently incurable bone metastases. Bone marrow is an important secondary lymphoid organ with a unique immune contexture. Even at non-disease state immune cells and bone cells interact with each other, bone cells supporting the development of immune cells and immune cells regulating bone turnover. In cancer, tumor cells interfere with this homeostatic process starting from formation of pre-metastatic niche and later supporting growth of bone metastases. In this review, we introduce a novel concept osteoimmuno-oncology (OIO), which refers to interactions between bone, immune and tumor cells in bone metastatic microenvironment. We also discuss therapeutic opportunities of targeting immune cells in bone metastases, and associated efficacy and safety concerns.
Collapse
Affiliation(s)
| | | | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, 20500 Turku, Finland;
| |
Collapse
|
44
|
Abstract
Immunotherapy has revolutionized cancer treatment, but efficacy remains limited in most clinical settings. Cancer is a systemic disease that induces many functional and compositional changes to the immune system as a whole. Immunity is regulated by interactions of diverse cell lineages across tissues. Therefore, an improved understanding of tumour immunology must assess the systemic immune landscape beyond the tumour microenvironment (TME). Importantly, the peripheral immune system is required to drive effective natural and therapeutically induced antitumour immune responses. In fact, emerging evidence suggests that immunotherapy drives new immune responses rather than the reinvigoration of pre-existing immune responses. However, new immune responses in individuals burdened with tumours are compromised even beyond the TME. Herein, we aim to comprehensively outline the current knowledge of systemic immunity in cancer.
Collapse
Affiliation(s)
- Kamir J Hiam-Galvez
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Breanna M Allen
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Matthew H Spitzer
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
Dey S, Mondal A, DuHadaway JB, Sutanto-Ward E, Laury-Kleintop LD, Thomas S, Prendergast GC, Mandik-Nayak L, Muller AJ. IDO1 Signaling through GCN2 in a Subpopulation of Gr-1 + Cells Shifts the IFNγ/IL6 Balance to Promote Neovascularization. Cancer Immunol Res 2021; 9:514-528. [PMID: 33622713 DOI: 10.1158/2326-6066.cir-20-0226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
In addition to immunosuppression, it is generally accepted that myeloid-derived suppressor cells (MDSC) also support tumor angiogenesis. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO1) has been implicated in promoting neovascularization through its positioning as a key regulatory node between the inflammatory cytokines IFNγ and IL6. Here, we report that within the heterogeneous expanse of Gr-1+ MDSCs, both IDO1 expression and the ability to elicit neovascularization in vivo were associated with a minor subset of autofluorescent, CD11blo cells. IDO1 expression was further restricted to a discrete, CD11c and asialo-GM1 double-positive subpopulation of these cells, designated here as IDVCs (IDO1-dependent vascularizing cells), due to the dominant role that IDO1 activity in these cells was found to play in promoting neovascularization. Mechanistically, the induction of IDO1 in IDVCs provided a negative-feedback constraint on the antiangiogenic effect of host IFNγ by intrinsically signaling for the production of IL6 through general control nonderepressible 2 (GCN2)-mediated activation of the integrated stress response. These findings reveal fundamental molecular and cellular insights into how IDO1 interfaces with the inflammatory milieu to promote neovascularization.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Disease Models, Animal
- Female
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inflammation/metabolism
- Inflammation/pathology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasm Metastasis
- Neoplasms/etiology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Souvik Dey
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Arpita Mondal
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | | | - Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - George C Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Alexander J Muller
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Song G, Zhang Y, Tian J, Ma J, Yin K, Xu H, Wang S. TRAF6 Regulates the Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Tumor-Bearing Host. Front Immunol 2021; 12:649020. [PMID: 33717204 PMCID: PMC7946975 DOI: 10.3389/fimmu.2021.649020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous cells derived from the bone marrow and they are the major component of the tumor-induced immunosuppressive environment. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, catalyzes the polyubiquitination of target proteins. TRAF6 plays a critical role in modulating the immune system. However, whether TRAF6 is involved in the regulation of MDSCs has not been thoroughly elucidated to date. In this study, we found that the expression of TRAF6 in MDSCs derived from tumor tissue was significantly upregulated compared with that of MDSCs from spleen of tumor-bearing mice. Knockdown of TRAF6 remarkably attenuated the immunosuppressive effects of MDSCs. Mechanistically, TRAF6 might improve the immunosuppression of MDSCs by mediating K63-linked polyubiquitination and phosphorylation of signal transducer and activator of transcription 3 (STAT3). Additionally, it was discovered that the accumulation of MDSCs was abnormal in peripheral blood of lung cancer patients. TRAF6 and arginase 1 were highly expressed in MDSCs of patients with lung cancer. Taken together, our study demonstrated that TRAF6 participates in promoting the immunosuppressive function of MDSCs and provided a potential target for antitumor immunotherapy.
Collapse
Affiliation(s)
- Ge Song
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| |
Collapse
|
47
|
Zhu H, Klement JD, Lu C, Redd PS, Yang D, Smith AD, Poschel DB, Zou J, Liu D, Wang PG, Ostrov D, Coant N, Hannun YA, Colby AH, Grinstaff MW, Liu K. Asah2 Represses the p53-Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1395-1404. [PMID: 33547170 DOI: 10.4049/jimmunol.2000500] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16-25.91 μM for human ASAH2 and 18.6-30.2 μM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, and inhibition of ferroptosis decreased NC06-induced MDSC death. NC06 increases glutathione synthesis and decreases lipid reactive oxygen species to suppress ferroptosis in MDSCs. Gene expression profiling identified the p53 pathway as the Asah2 target in MDSCs. Inhibition of Asah2 increased p53 protein stability to upregulate Hmox1 expression to suppress lipid reactive oxygen species production to suppress ferroptosis in MDSCs. NC06 therapy increases MDSC death and reduces MDSC accumulation in tumor-bearing mice, resulting in increased activation of tumor-infiltrating CTLs and suppression of tumor growth in vivo. Our data indicate that ASAH2 protects MDSCs from ferroptosis through destabilizing p53 protein to suppress the p53 pathway in MDSCs in the tumor microenvironment. Targeting ASAH2 with NC06 to induce MDSC ferroptosis is potentially an effective therapy to suppress MDSC accumulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Dakota B Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912.,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Juan Zou
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Nicolas Coant
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA 02445; and.,Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912; .,Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30904
| |
Collapse
|
48
|
Zhang Y, Hughes KR, Raghani RM, Ma J, Orbach S, Jeruss JS, Shea LD. Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials 2021; 269:120666. [PMID: 33461057 DOI: 10.1016/j.biomaterials.2021.120666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The presence of immunosuppressive innate immune cells such as myeloid derived suppressor cells (MDSCs), Ly6C-high monocytes, and tumor-associated macrophages (TAMs) at a tumor can inhibit effector T cell and NK cell function. Immune checkpoint blockade using anti-PD-1 antibody aims to overcome the immune suppressive environment, yet only a fraction of patients responds. Herein, we test the hypothesis that cargo-free PLG nanoparticles administered intravenously can divert circulating immune cells from the tumor microenvironment to enhance the efficacy of anti-PD-1 immunotherapy in the 4T1 mouse model of metastatic triple-negative breast cancer. In vitro studies demonstrate that these nanoparticles decrease the expression of MCP-1 by 5-fold and increase the expression of TNF-α by more than 2-fold upon uptake by innate immune cells. Intravenous administration of particles results in internalization by MDSCs and monocytes, with particles detected in the liver, lung, spleen, and primary tumor. Nanoparticle delivery decreased the abundance of MDSCs in circulation and in the lung, the latter being the primary metastatic site. Combined with anti-PD-1 antibody, nanoparticles significantly slowed tumor growth and resulted in a survival benefit. Gene expression analysis by GSEA indicated inflammatory myeloid cell pathways were downregulated in the lung and upregulated in the spleen and tumor. Upregulation of extrinsic apoptotic pathways was also observed in the primary tumor. Collectively, these results demonstrate that cargo-free PLG nanoparticles can reprogram immune cell responses and alter the tumor microenvironment in vivo to overcome the local immune suppression attributed to myeloid cells and enhance the efficacy of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
49
|
Farc O, Cristea V. An overview of the tumor microenvironment, from cells to complex networks (Review). Exp Ther Med 2021; 21:96. [PMID: 33363607 PMCID: PMC7725019 DOI: 10.3892/etm.2020.9528] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023] Open
Abstract
For a long period, cancer has been believed to be a gene disease, in which oncogenic and suppressor mutations accumulate gradually, finally leading to the malignant transformation of cells. This vision has changed in the last few years, the involvement of the tumor microenvironment, the non-malignant part of the tumors, as an important contributor to the malignant growth being now largely recognized. There is a consensus according to which the understanding of the tumor microenvironment is important as a means to develop new approaches in the therapy of cancer. In this context, the present study is a review of the different types of non-malignant cells that can be found in tumors, with their pro or antitumoral actions, presence in tumors and therapeutic targeting. These cells establish complex relations between them, through cytokines, exosomes, cell adhesion, co-stimulation and co-inhibition; these relations will also be examined in the present work.
Collapse
Affiliation(s)
- Ovidiu Farc
- Immunology Department, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Victor Cristea
- Immunology Department, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
50
|
Benavente S, Sánchez-García A, Naches S, LLeonart ME, Lorente J. Therapy-Induced Modulation of the Tumor Microenvironment: New Opportunities for Cancer Therapies. Front Oncol 2020; 10:582884. [PMID: 33194719 PMCID: PMC7645077 DOI: 10.3389/fonc.2020.582884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in immunotherapy have achieved remarkable clinical outcomes in tumors with low curability, but their effects are limited, and increasing evidence has implicated tumoral and non-tumoral components of the tumor microenvironment as critical mediators of cancer progression. At the same time, the clinical successes achieved with minimally invasive and optically-guided surgery and image-guided and ablative radiation strategies have been successfully implemented in clinical care. More effective, localized and safer treatments have fueled strong research interest in radioimmunotherapy, which has shown the potential immunomodulatory effects of ionizing radiation. However, increasingly more observations suggest that immunosuppressive changes, metabolic remodeling, and angiogenic responses in the local tumor microenvironment play a central role in tumor recurrence. In this review, we address challenges to identify responders vs. non-responders to the immune checkpoint blockade, discuss recent developments in combinations of immunotherapy and radiotherapy for clinical evaluation, and consider the clinical impact of immunosuppressive changes in the tumor microenvironment in the context of surgery and radiation. Since the therapy-induced modulation of the tumor microenvironment presents a multiplicity of forms, we propose that overcoming microenvironment related resistance can become clinically relevant and represents a novel strategy to optimize treatment immunogenicity and improve patient outcome.
Collapse
Affiliation(s)
- Sergi Benavente
- Radiation Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Naches
- Otorhinolaryngology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Barcelona, Spain
| | - Juan Lorente
- Otorhinolaryngology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|