1
|
Bagheri Y, Rouches M, Machta B, Veatch SL. Prewetting couples membrane and protein phase transitions to greatly enhance coexistence in models and cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609758. [PMID: 39253471 PMCID: PMC11383005 DOI: 10.1101/2024.08.26.609758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Both membranes and biopolymers can individually separate into coexisting liquid phases. Here we explore biopolymer prewetting at membranes, a phase transition that emerges when these two thermodynamic systems are coupled. In reconstitution, we couple short poly-L-Lysine and poly-L-Glutamic Acid polyelectrolytes to membranes of saturated lipids, unsaturated lipids, and cholesterol, and detect coexisting prewet and dry surface phases well outside of the region of coexistence for each individual system. Notability, polyelectrolyte prewetting is highly sensitive to membrane lipid composition, occurring at 10 fold lower polymer concentration in a membrane close to its phase transition compared to one without a phase transition. In cells, protein prewetting is achieved using an optogenetic tool that enables titration of condensing proteins and tethering to the plasma membrane inner leaflet. Here we show that protein prewetting occurs for conditions well outside those where proteins condense in the cytoplasm, and that the stability of prewet domains is sensitive to perturbations of plasma membrane composition and structure. Our work presents an example of how thermodynamic phase transitions can impact cellular structure outside their individual coexistence regions, suggesting new possible roles for phase-separation-prone systems in cell biology.
Collapse
Affiliation(s)
- Yousef Bagheri
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| | - Mason Rouches
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT USA
| | | | - Sarah L. Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
2
|
Xu R, Zhang W, Jin T, Tu W, Xu C, Wei Y, Han W, Yang K, Yuan B. Cholesterol Depletion and Membrane Deformation by MeβCD and the Resultant Enhanced T Cell Killing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6813-6824. [PMID: 38290472 DOI: 10.1021/acsami.3c16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Recent studies have demonstrated the crucial role of cholesterol (Chol) in regulating the mechanical properties and biological functions of cell membranes. Methyl-β-cyclodextrin (MeβCD) is commonly utilized to modulate the Chol content in cell membranes, but there remains a lack of a comprehensive understanding. In this study, using a range of different techniques, we find that the optimal ratio of MeβCD to Chol for complete removal of Chol from a phosphocholine (PC)/Chol mixed membrane with a 1:1 mol ratio is 4.5:1, while the critical MeβCD-to-Chol ratio for membrane permeation falls within the range between 1.5 and 2.4. MeβCD at elevated concentrations induces the formation of fibrils or tubes from a PC membrane. Single lipid tracking reveals that removing Chol restores the diffusion of lipid molecules in the PC/Chol membrane to levels observed in pure PC membranes. Exposure to 5 mM MeβCD for 30 min effectively eliminates Chol from various cell lines, leading to an up to 8-fold enhancement in melittin cytotoxicity over Hela cells and an up to 3.5-fold augmentation of T cell cytotoxicity against B16F10-OVA cells. This study presents a diagram that delineates the concentration- and time-dependent distribution of MeβCD-induced Chol depletion and membrane deformation, which holds significant potential for modulating the mechanical properties of cellular membranes in prospective biomedical applications.
Collapse
Affiliation(s)
- Rong Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Wanting Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Taoli Jin
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Wenqiang Tu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
3
|
Fazzari M, Lunghi G, Di Biase E, Maggioni M, Carsana EV, Cioccarelli L, Vigani L, Loberto N, Aureli M, Mauri L, Ciampa MG, Valsecchi M, Takato K, Imamura A, Ishida H, Ben Mariem O, Saporiti S, Palazzolo L, Chiricozzi E, Eberini I, Sonnino S. GM1 structural requirements to mediate neuronal functions. Glycoconj J 2023; 40:655-668. [PMID: 38100017 DOI: 10.1007/s10719-023-10141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Vigani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Koichi Takato
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Simona Saporiti
- Analytical Excellence & Program Management, Merck Serono S.p.A, Rome, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
- Data Science Research Center, Università degli Studi di Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| |
Collapse
|
4
|
Riitano G, Capozzi A, Recalchi S, Augusto M, Conti F, Misasi R, Garofalo T, Sorice M, Manganelli V. Role of Lipid Rafts on LRP8 Signaling Triggered by Anti-β2-GPI Antibodies in Endothelial Cells. Biomedicines 2023; 11:3135. [PMID: 38137358 PMCID: PMC10740635 DOI: 10.3390/biomedicines11123135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Antiphospholipid antibody syndrome is an autoimmune disease characterized by thrombosis and/or pregnancy morbidity in association with circulating antiphospholipid antibodies, mainly anti-β2 glycoprotein 1 antibodies (anti-β2-GPI antibodies). Previous studies demonstrated that the signaling pathway may involve lipid rafts, plasma membrane microdomains enriched in glycosphingolipid and cholesterol. In this study, we analyzed the signaling pathway of LRP8/ApoER2, a putative receptor of anti-β2-GPI antibodies, through lipid rafts in human endothelial cells. LRP8, Dab2 and endothelial nitric oxide synthase (e-NOS) phosphorylation were evaluated using Western blot, Nitric Oxide (NO) production with cytofluorimetric analysis, LRP8 enrichment in lipid rafts via sucrose gradient fractionation, and scanning confocal microscopy analysis of its association with ganglioside GM1 was also conducted. The analyses demonstrated that affinity-purified anti-β2-GPI antibodies induced LRP8 and Dab-2 phosphorylation, together with a significant decrease in e-NOS phosphorylation, with consequent decrease in NO intracellular production. These effects were almost completely prevented by Methyl-β-cyclodextrin (MβCD), indicating the involvement of lipid rafts. It was supported with the observation of LRP8 enrichment in lipid raft fractions and its association with ganglioside GM1, detected with scanning confocal microscopy. These findings demonstrate that LRP8 signaling triggered by anti-β2-GPI antibodies in endothelial cells occurs through lipid rafts. It represents a new task for valuable therapeutic approaches, such as raft-targeted therapy, including cyclodextrins and statins.
Collapse
Affiliation(s)
- Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Antonella Capozzi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Serena Recalchi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | | | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| |
Collapse
|
5
|
Santilli F, Fabrizi J, Martellucci S, Santacroce C, Iorio E, Pisanu ME, Chirico M, Lancia L, Pulcini F, Manganelli V, Sorice M, Delle Monache S, Mattei V. Lipid rafts mediate multilineage differentiation of human dental pulp-derived stem cells (DPSCs). Front Cell Dev Biol 2023; 11:1274462. [PMID: 38020931 PMCID: PMC10665896 DOI: 10.3389/fcell.2023.1274462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein domains, known as lipid rafts, which are involved in a variety of cellular processes, including receptor-mediated signal transduction and cellular differentiation process. In this study, we analyzed the lipidic composition of human Dental Pulp-Derived Stem Cells (DPSCs), and the role of lipid rafts during the multilineage differentiation process. The relative quantification of lipid metabolites in the organic fraction of DPSCs, performed by Nuclear Magnetic Resonance (NMR) spectroscopy, showed that mono-unsaturated fatty acids (MUFAs) were the most representative species in the total pool of acyl chains, compared to polyunsatured fatty acids (PUFAs). In addition, the stimulation of DPSCs with different culture media induces a multilineage differentiation process, determining changes in the gangliosides pattern. To understand the functional role of lipid rafts during multilineage differentiation, DPSCs were pretreated with a typical lipid raft affecting agent (MβCD). Subsequently, DPSCs were inducted to differentiate into osteoblast, chondroblast and adipoblast cells with specific media. We observed that raft-affecting agent MβCD prevented AKT activation and the expression of lineage-specific mRNA such as OSX, PPARγ2, and SOX9 during multilineage differentiation. Moreover, this compound significantly prevented the tri-lineage differentiation induced by specific stimuli, indicating that lipid raft integrity is essential for DPSCs differentiation. These results suggest that lipid rafts alteration may affect the signaling pathway activated, preventing multilineage differentiation.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Egidio Iorio
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Rome, Italy
| |
Collapse
|
6
|
Sonnino S. The relationship between depletion of brain GM1 ganglioside and Parkinson's disease. FEBS Open Bio 2023; 13:1548-1557. [PMID: 36638010 PMCID: PMC10476573 DOI: 10.1002/2211-5463.13554] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
GM1 is one of the main gangliosides of the nervous system, and it exerts neurotrophic and neuroprotective properties in neurons. It is involved in many processes necessary for the correct physiology of neuronal cells. In particular, it is necessary for the activity of neuronal receptors that control processes such as differentiation, survival, and mitochondrial activity. A shortage of GM1 in the substantia nigra is potentially responsible for the neurodegeneration present in Parkinson's disease patients. In this review, I report on the role played by GM1 in neurons and how its genetic shortage may be responsible for the onset of Parkinson's disease.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| |
Collapse
|
7
|
Lima MRN, Le KPN, Chakhalian D, Mao Y, Kohn J, Devore DI. Tyrosine-derived polymeric surfactant nanospheres insert cholesterol in cell membranes. J Colloid Interface Sci 2023; 644:264-274. [PMID: 37120875 DOI: 10.1016/j.jcis.2023.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
HYPOTHESIS The design of biodegradable tyrosine-derived polymeric surfactants (TyPS) through the use of calculated thermodynamic parameters could lead to phospholipid membrane surface modifiers capable of controlling cellular properties such as viability. Delivery of cholesterol by TyPS nanospheres into membrane phospholipid domains could provide further controlled modulation of membrane physical and biological properties. EXPERIMENT Calculated Hansen solubility parameters (∂T) and hydrophile:lipophile balances (HLB) were applied to design and synthesize a small family of diblock and triblock TyPS with different hydrophobic blocks and PEG hydrophilic blocks. Self-assembled TyPS/cholesterol nanospheres were prepared in aqueous media via co-precipitation. Cholesterol loading and Langmuir film balance surface pressures of phospholipid monolayers were obtained. TyPS and TyPS/cholesterol nanosphere effects on human dermal cell viability were evaluated by cell culture using poly(ethylene glycol) (PEG) and Poloxamer 188 as controls. FINDINGS Stable TyPS nanospheres incorporated between 1% and 5% cholesterol. Triblock TyPS formed nanosphere with dimensions significantly smaller than diblock TyPS nanospheres. In accord calculated thermodynamic parameters, cholesterol binding increased with increasing TyPS hydrophobicity. TyPS inserted into phospholipid monolayer films in a manner consistent with their thermodynamic properties and TyPS/cholesterol nanospheres delivered cholesterol into the films. Triblock TyPS/cholesterol nanospheres increased human dermal cell viability, which was indicative of potentially beneficial TyPS effects on cell membrane surface properties.
Collapse
Affiliation(s)
- Mariana R N Lima
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA.
| | - Kim-Phuong N Le
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA.
| | - Daniel Chakhalian
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA.
| | - Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA.
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA.
| | - David I Devore
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
8
|
Lunghi G, Fazzari M, Ciampa MG, Mauri L, Di Biase E, Chiricozzi E, Sonnino S. Regulation of signal transduction by gangliosides in lipid rafts: focus on GM3-IR and GM1-TrkA interactions. FEBS Lett 2022; 596:3124-3132. [PMID: 36331354 DOI: 10.1002/1873-3468.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The interactions between gangliosides and proteins belonging to the same or different lipid domains and their influence on physiological and pathological states have been analysed in detail. A well-known factor impacting on lipid-protein interactions and their biological outcomes is the dynamic composition of plasma membrane. This review focuses on GM1 and GM3 gangliosides because they are an integral part of protein-receptor complexes and dysregulation of their concentration shows a direct correlation with the onset of pathological conditions. We first discuss the interaction between GM3 and insulin receptor in relation to insulin responses, with an increase in GM3 correlating with the onset of metabolic dysfunction. Next, we describe the case of the GM1-TrkA interaction, relevant to nerve-cell differentiation and homeostasis as deficiency in plasma-membrane GM1 is known to promote neurodegeneration. These two examples highlight the fact that interactions between gangliosides and receptor proteins within the plasma membrane are crucial in controlling cell signalling and pathophysiological cellular states.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
9
|
Geda O, Tábi T, Lakatos PP, Szökő É. Differential Ganglioside and Cholesterol Depletion by Various Cyclodextrin Derivatives and Their Effect on Synaptosomal Glutamate Release. Int J Mol Sci 2022; 23:ijms23169460. [PMID: 36012724 PMCID: PMC9409351 DOI: 10.3390/ijms23169460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.
Collapse
|
10
|
The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels. Biomolecules 2022; 12:biom12030382. [PMID: 35327573 PMCID: PMC8945425 DOI: 10.3390/biom12030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3). However, the events required for channel gating downstream of PLC activation are still under debate and led to several hypotheses regarding the mechanisms by which lipids gate the channels. Despite many efforts, compelling evidence of the involvement of DAG accumulation, PIP2 depletion or IP3-mediated Ca2+ release in light activation of the TRP/TRPL channels are still lacking. Exogeneous application of poly unsaturated fatty acids (PUFAs), a product of DAG hydrolysis was demonstrated as an efficient way to activate the Drosophila TRP/TRPL channels. However, compelling evidence for the involvement of PUFAs in physiological light-activation of the TRP/TRPL channels is still lacking. Light-induced mechanical force generation was measured in photoreceptor cells prior to channel opening. This mechanical force depends on PLC activity, suggesting that the enzymatic activity of PLC converting PIP2 into DAG generates membrane tension, leading to mechanical gating of the channels. In this review, we will present the roles of membrane lipids in light activation of Drosophila TRP channels and present the many advantages of this model system in the exploration of TRP channel activation under physiological conditions.
Collapse
|
11
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
12
|
Nieto-Garai JA, Lorizate M, Contreras FX. Shedding light on membrane rafts structure and dynamics in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183813. [PMID: 34748743 DOI: 10.1016/j.bbamem.2021.183813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10-200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain.
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - F-Xabier Contreras
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
13
|
Novel insights on GM1 and Parkinson's disease: A critical review. Glycoconj J 2022; 39:27-38. [PMID: 35064857 PMCID: PMC8979868 DOI: 10.1007/s10719-021-10019-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022]
Abstract
GM1 is a crucial component of neuronal membrane residing both in the soma and nerve terminals. As reported in Parkinson’s disease patients, the reduction of GM1 determines the failure of fundamental functional processes leading to cumulative cell distress up to neuron death. This review reports on the role of GM1 in the pathogenesis of the disease, illustrating the current data available but also hypotheses on the additional mechanisms in which GM1 could be involved and which require further study. In the manuscript we discuss these points trying to explain the role of diminished content of brain GM1, particularly in the nigro-striatal system, in Parkinson’s disease etiology and progression.
Collapse
|
14
|
Kashimoto T, Sugiyama H, Kawamidori K, Yamazaki K, Kado T, Matsuda K, Kodama T, Mukai T, Ueno S. Vibiro vulnificus hemolysin associates with gangliosides. BMC Microbiol 2020; 20:69. [PMID: 32228455 PMCID: PMC7106661 DOI: 10.1186/s12866-020-01755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
Background Vibrio vulnificus hemolysin (VVH) is a pore-forming toxin secreted by Vibrio vulnificus. Cellular cholesterol was believed to be the receptor for VVH, because cholesterol could bind to VVH and preincubation with cholesterol inhibited cytotoxicity. It has been reported that specific glycans such as N-acetyl-D-galactosamine and N-acetyl-D-lactosamine bind to VVH, however, it has not been known whether these glycans could inhibit the cytotoxicity of VVH without oligomer formation. Thus, to date, binding mechanisms of VVH to cellular membrane, including specific receptors have not been elucidated. Results We show here that VVH associates with ganglioside GM1a, Fucosyl-GM1, GD1a, GT1c, and GD1b by glycan array. Among them, GM1a could pulldown VVH. Moreover, the GD1a inhibited the cytotoxicity of VVH without the formation of oligomers. Conclusion This is the first report of a molecule able to inhibit the binding of VVH to target cells without oligomerization of VVH.
Collapse
Affiliation(s)
- Takashige Kashimoto
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan.
| | - Hiroyuki Sugiyama
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Keigo Kawamidori
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kohei Yamazaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Takehiro Kado
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kaho Matsuda
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Toshio Kodama
- Department of Bacterial Infections, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takao Mukai
- Laboratory of Biomolecular Science, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Shunji Ueno
- Laboratory of Veterinary Public Health, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
15
|
Kumar GA, Chattopadhyay A. Statin-Induced Chronic Cholesterol Depletion Switches GPCR Endocytosis and Trafficking: Insights from the Serotonin 1A Receptor. ACS Chem Neurosci 2020; 11:453-465. [PMID: 31880914 DOI: 10.1021/acschemneuro.9b00659] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endocytosis is a key regulatory mechanism adopted by G protein-coupled receptors (GPCRs) to modulate downstream signaling responses within a stringent spatiotemporal regime. Although the role of membrane lipids has been extensively studied in the context of the function, organization, and dynamics of GPCRs, their role in receptor endocytosis remains largely unexplored. Cholesterol, the predominant sterol in higher eukaryotes, plays a crucial role in maintaining the structure and organization of cell membranes and is involved in essential cellular processes in health and disease. The serotonin1A receptor is a representative GPCR involved in neuronal development and in neuropsychiatric disorders such as anxiety and depression. We recently combined quantitative flow cytometric and confocal microscopic approaches to demonstrate that the serotonin1A receptor undergoes clathrin-mediated endocytosis upon agonist stimulation and subsequently traffics along the endosomal recycling pathway. In this work, we show that statin-induced chronic cholesterol depletion switches the endocytic pathway of the serotonin1A receptor from clathrin- to caveolin-mediated endocytosis. Interestingly, under these conditions, a significant proportion of endocytosed receptors is rerouted toward lysosomal degradation. To the best of our knowledge, these results constitute one of the first comprehensive reports on the role of membrane cholesterol in GPCR endocytosis and trafficking. These results are significant in our overall understanding of the modulatory effects of membrane lipids on GPCR endocytosis and trafficking and could provide novel insight in developing therapeutic interventions against neuropsychiatric disorders such as depression.
Collapse
Affiliation(s)
- G. Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
16
|
Gutorov R, Peters M, Katz B, Brandwine T, Barbera NA, Levitan I, Minke B. Modulation of Transient Receptor Potential C Channel Activity by Cholesterol. Front Pharmacol 2019; 10:1487. [PMID: 31920669 PMCID: PMC6923273 DOI: 10.3389/fphar.2019.01487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Changes of cholesterol level in the plasma membrane of cells have been shown to modulate ion channel function. The proposed mechanisms underlying these modulations include association of cholesterol to a single binding site at a single channel conformation, association to a highly flexible cholesterol binding site adopting multiple poses, and perturbation of lipid rafts. These perturbations have been shown to induce reversible targeting of mammalian transient receptor potential C (TRPC) channels to the cholesterol-rich membrane environment of lipid rafts. Thus, the observed inhibition of TRPC channels by methyl-β-cyclodextrin (MβCD), which induces cholesterol efflux from the plasma membrane, may result from disruption of lipid rafts. This perturbation was also shown to disrupt multimolecular signaling complexes containing TRPC channels. The Drosophila TRP and TRP-like (TRPL) channels belong to the TRPC channel subfamily. When the Drosophila TRPL channel was expressed in S2 or HEK293 cells and perfused with MβCD, the TRPL current was abolished in less than 100 s, fitting well the fast kinetic phase of cholesterol sequestration experiments in cells. It was thus suggested that the fast kinetics of TRPL channel suppression by MβCD arise from disruption of lipid rafts. Accordingly, lipid raft perturbation by cholesterol sequestration could give clues to the function of lipid environment in TRPC channel activity and its mechanism.
Collapse
Affiliation(s)
- Rita Gutorov
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Maximilian Peters
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ben Katz
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tal Brandwine
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Nicolas A Barbera
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Baruch Minke
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
17
|
Hörmann S, Gai Z, Kullak-Ublick GA, Visentin M. Plasma Membrane Cholesterol Regulates the Allosteric Binding of 1-Methyl-4-Phenylpyridinium to Organic Cation Transporter 2 (SLC22A2). J Pharmacol Exp Ther 2019; 372:46-53. [DOI: 10.1124/jpet.119.260877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
|
18
|
Guimarães AJ, de Cerqueira MD, Zamith-Miranda D, Lopez PH, Rodrigues ML, Pontes B, Viana NB, DeLeon-Rodriguez CM, Rossi DCP, Casadevall A, Gomes AMO, Martinez LR, Schnaar RL, Nosanchuk JD, Nimrichter L. Host membrane glycosphingolipids and lipid microdomains facilitate Histoplasma capsulatum internalisation by macrophages. Cell Microbiol 2018; 21:e12976. [PMID: 30427108 DOI: 10.1111/cmi.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated. An increase in membrane lateral organisation, which is a characteristic of lipid microdomains, was observed during the first steps of Hc-macrophage interaction. Cholesterol enrichment in macrophage membranes around Hc contact regions and reduced levels of Hc-macrophage association after cholesterol removal also suggested the participation of lipid microdomains during Hc-macrophage interaction. Using optical tweezers to study cell-to-cell interactions, we showed that cholesterol depletion increased the time required for Hc adhesion. Additionally, fungal internalisation was significantly reduced under these conditions. Moreover, macrophages treated with the ceramide-glucosyltransferase inhibitor (P4r) and macrophages with altered ganglioside synthesis (from B4galnt1-/- mice) showed a deficient ability to interact with Hc. Coincubation of oligo-GM1 and treatment with Cholera toxin Subunit B, which recognises the ganglioside GM1, also reduced Hc association. Although purified GM1 did not alter Hc binding, treatment with P4 significantly increased the time required for Hc binding to macrophages. The content of CD18 was displaced from lipid microdomains in B4galnt1-/- macrophages. In addition, macrophages with reduced CD18 expression (CD18low ) were associated with Hc at levels similar to wild-type cells. Finally, CD11b and CD18 colocalised with GM1 during Hc-macrophage interaction. Our results indicate that lipid rafts and particularly complex gangliosides that reside in lipid rafts stabilise Hc-macrophage adhesion and mediate efficient internalisation during histoplasmosis.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Mariana Duarte de Cerqueira
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo H Lopez
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcio L Rodrigues
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Bruno Pontes
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathan B Viana
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,LPO-COPEA, Institute of Physics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M DeLeon-Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diego Conrado Pereira Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andre M O Gomes
- Program of Structural Biology, Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis R Martinez
- Biological Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Leonardo Nimrichter
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Lorents A, Säälik P, Langel Ü, Pooga M. Arginine-Rich Cell-Penetrating Peptides Require Nucleolin and Cholesterol-Poor Subdomains for Translocation across Membranes. Bioconjug Chem 2018; 29:1168-1177. [PMID: 29510042 DOI: 10.1021/acs.bioconjchem.7b00805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proficient transport vectors called cell-penetrating peptides (CPPs) internalize into eukaryotic cells mostly via endocytic pathways and facilitate the uptake of various cargo molecules attached to them. However, some CPPs are able to induce disturbances in the plasma membrane and translocate through it seemingly in an energy-independent manner. For understanding this phenomenon, giant plasma membrane vesicles (GPMVs) derived from the cells are a beneficial model system, since GPMVs have a complex membrane composition comparable to the cells yet lack cellular energy-dependent mechanisms. We investigated the translocation of arginine-rich CPPs into GPMVs with different membrane compositions. Our results demonstrate that lower cholesterol content favors accumulation of nona-arginine and, additionally, sequestration of cholesterol increases the uptake of the CPPs in vesicles with higher cholesterol packing density. Furthermore, the proteins on the surface of vesicles are essential for the uptake of arginine-rich CPPs: downregulation of nucleolin decreases the accumulation and digestion of proteins on the membrane suppresses translocation even more efficiently.
Collapse
Affiliation(s)
- Annely Lorents
- Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
- Institute of Technology , University of Tartu , Nooruse 1 , 50411 Tartu , Estonia
| | - Pille Säälik
- Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
- Institute of Biomedicine and Translational Medicine , University of Tartu , Ravila 14B , 50411 Tartu , Estonia
| | - Ülo Langel
- Institute of Technology , University of Tartu , Nooruse 1 , 50411 Tartu , Estonia
- Department of Neurochemistry , Stockholm University , Svante Arrhenius väg 16B , 10691 Stockholm , Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
- Institute of Technology , University of Tartu , Nooruse 1 , 50411 Tartu , Estonia
| |
Collapse
|
20
|
Morissette M, Morin N, Rouillard C, Di Paolo T. Membrane cholesterol removal and replenishment affect rat and monkey brain monoamine transporters. Neuropharmacology 2018; 133:289-306. [PMID: 29407218 DOI: 10.1016/j.neuropharm.2018.01.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 12/16/2022]
Abstract
The dopamine transporter (DAT) is abundantly expressed in the striatum where it removes extracellular dopamine into the cytosol of presynaptic nerve terminals. It is the target of drugs of abuse and antidepressants. There is a loss of the DAT in Parkinson's disease affecting release of levodopa implicated in levodopa-induced dyskinesias. This study investigated the effect of cholesterol on DAT, serotonin transporter (SERT) and vesicular monoamine transporter 2 (VMAT2) in monkey and rat brains in vitro. DAT protein levels measured by Western blot remained unchanged with in vitro methyl-β-cyclodextrin (MCD) incubations to remove membrane cholesterol or with incubations to increase membrane cholesterol content. By contrast, striatal DAT specific binding labelled with [125I]RTI-121 or with [125I]RTI-55 decreased with increasing concentrations of MCD and increased with cholesterol loading. Moreover, [125I]RTI-121 specific binding of striatal membranes depleted of cholesterol with MCD was restored to initial DAT content with addition of cholesterol showing its rapid and reversible effect. By contrast, striatal VMAT2 and SERT specific binding showed no or limited changes by cholesterol manipulations. Similar results were obtained for monkey caudate nucleus, putamen and nucleus accumbens. Membrane microviscosity was assessed by fluorescence polarization spectroscopy, using the probe 1,6-diphenyl-1,3,5-hexatriene. DAT changes positively correlated with changes of membrane microviscosity in rat and monkey brain regions investigated and with membrane cholesterol contents. Similar findings were observed with desmosterol but to a lower extent than with cholesterol. These results show an important effect of cholesterol on the DAT associated with microviscosity changes that should be considered in drug therapies.
Collapse
Affiliation(s)
- Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada
| | - Nicolas Morin
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City G1K 7P4, Canada
| | - Claude Rouillard
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City G1K 7P4, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City G1V 4G2, Canada; Faculty of Pharmacy, Université Laval, Quebec City G1K 7P4, Canada.
| |
Collapse
|
21
|
Luo LD, Li G, Wang Y. PLD1 promotes dendritic spine development by inhibiting ADAM10-mediated N-cadherin cleavage. Sci Rep 2017; 7:6035. [PMID: 28729535 PMCID: PMC5519554 DOI: 10.1038/s41598-017-06121-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Synapses are the basic units of information transmission, processing and integration in the nervous system. Dysfunction of the synaptic development has been recognized as one of the main reasons for mental dementia and psychiatric diseases such as Alzheimer’s disease and autism. However, the underlying mechanisms of the synapse formation are far from clear. Here we report that phospholipase D1 (PLD1) promotes the development of dendritic spines in hippocampal neurons. We found that overexpressing PLD1 increases both the density and the area of dendritic spines. On the contrary, loss of function of PLD1, including overexpression of the catalytically-inactive PLD1 (PLD1ci) or knocking down PLD1 by siRNAs, leads to reduction in the spine density and the spine area. Moreover, we found that PLD1 promotes the dendritic spine development via regulating the membrane level of N-cadherin. Further studies showed that the regulation of surface N-cadherin by PLD1 is related with the cleavage of N-cadherin by a member of the disintegrin and metalloprotease family-ADAM10. Taking together, our results indicate a positive role of PLD1 in synaptogenesis by inhibiting the ADAM10 mediated N-cadherin cleavage and provide new therapeutic clues for some neurological diseases.
Collapse
Affiliation(s)
- Li-Da Luo
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China
| | - Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Leclercq L. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein J Org Chem 2016; 12:2644-2662. [PMID: 28144335 PMCID: PMC5238526 DOI: 10.3762/bjoc.12.261] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/25/2016] [Indexed: 11/23/2022] Open
Abstract
In the field of host-guest chemistry, some of the most widely used hosts are probably cyclodextrins (CDs). As CDs are able to increase the water solubility of numerous drugs by inclusion into their hydrophobic cavity, they have been widespread used to develop numerous pharmaceutical formulations. Nevertheless, CDs are also able to interact with endogenous substances that originate from an organism, tissue or cell. These interactions can be useful for a vast array of topics including cholesterol manipulation, treatment of Alzheimer's disease, control of pathogens, etc. In addition, the use of natural CDs offers the great advantage of avoiding or reducing the use of common petroleum-sourced drugs. In this paper, the general features and applications of CDs have been reviewed as well as their interactions with isolated biomolecules leading to the formation of inclusion or exclusion complexes. Finally, some potential medical applications are highlighted throughout several examples.
Collapse
Affiliation(s)
- Loïc Leclercq
- Univ. Lille, CNRS, ENSCL, UMR 8181 – UCCS - Equipe CÏSCO, F-59000 Lille, France
| |
Collapse
|
23
|
Glycosphingolipid storage in Fabry mice extends beyond globotriaosylceramide and is affected by ABCB1 depletion. Future Sci OA 2016; 2:FSO147. [PMID: 28116130 PMCID: PMC5242178 DOI: 10.4155/fsoa-2016-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/17/2022] Open
Abstract
Aim: Fabry disease is caused by α-galactosidase A deficiency leading to accumulation of globotriaosylceramide (Gb3) in tissues. Clinical manifestations do not appear to correlate with total Gb3 levels. Studies examining tissue distribution of specific acyl chain species of Gb3 and upstream glycosphingolipids are lacking. Material & methods/Results: Thorough characterization of the Fabry mouse sphingolipid profile by LC-MS revealed unique Gb3 acyl chain storage profiles. Storage extended beyond Gb3; all Fabry tissues also accumulated monohexosylceramides. Depletion of ABCB1 had a complex effect on glycosphingolipid storage. Conclusion: These data provide insights into how specific sphingolipid species correlate with one another and how these correlations change in the α-galactosidase A-deficient state, potentially leading to the identification of more specific biomarkers of Fabry disease. Fabry disease is caused by a shortage of the enzyme α-galactosidase A leading to storage of a fat called globotriaosylceramide (Gb3) in tissues. Disease severity does not appear to correlate directly with total Gb3. Importantly, Gb3 is comprised of many highly related but distinct species. We examined levels of Gb3 species and precursor molecules in Fabry mice. Gb3 species and storage are unique to each tissue. Furthermore, storage is not limited to Gb3; precursor fats are also elevated. Detailed analyses of differences in storage between the normal and α-galactosidase A-deficient state may provide a better understanding of the causes of Fabry disease.
Collapse
|
24
|
Kilbride P, Woodward HJ, Tan KB, Thanh NTK, Chu KME, Minogue S, Waugh MG. Modeling the effects of cyclodextrin on intracellular membrane vesicles from Cos-7 cells prepared by sonication and carbonate treatment. PeerJ 2015; 3:e1351. [PMID: 26528413 PMCID: PMC4627923 DOI: 10.7717/peerj.1351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
Cholesterol has important functions in the organization of membrane structure and this may be mediated via the formation of cholesterol-rich, liquid-ordered membrane microdomains often referred to as lipid rafts. Methyl-beta-cyclodextrin (cyclodextrin) is commonly used in cell biology studies to extract cholesterol and therefore disrupt lipid rafts. However, in this study we reassessed this experimental strategy and investigated the effects of cyclodextrin on the physical properties of sonicated and carbonate-treated intracellular membrane vesicles isolated from Cos-7 fibroblasts. We treated these membranes, which mainly originate from the trans-Golgi network and endosomes, with cyclodextrin and measured the effects on their equilibrium buoyant density, protein content, represented by the palmitoylated protein phosphatidylinositol 4-kinase type IIα, and cholesterol. Despite the reduction in mass stemming from cholesterol removal, the vesicles became denser, indicating a possible large volumetric decrease, and this was confirmed by measurements of hydrodynamic vesicle size. Subsequent mathematical analyses demonstrated that only half of this change in membrane size was attributable to cholesterol loss. Hence, the non-selective desorption properties of cyclodextrin are also involved in membrane size and density changes. These findings may have implications for preceding studies that interpreted cyclodextrin-induced changes to membrane biochemistry in the context of lipid raft disruption without taking into account our finding that cyclodextrin treatment also reduces membrane size.
Collapse
Affiliation(s)
- Peter Kilbride
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Holly J Woodward
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Kuan Boone Tan
- Biophysics Group, Department of Physics & Astronomy, University College London , London , United Kingdom
| | - Nguyễn T K Thanh
- Biophysics Group, Department of Physics & Astronomy, University College London , London , United Kingdom
| | - K M Emily Chu
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Shane Minogue
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Mark G Waugh
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| |
Collapse
|
25
|
Isoform dependent regulation of human HCN channels by cholesterol. Sci Rep 2015; 5:14270. [PMID: 26404789 PMCID: PMC4585891 DOI: 10.1038/srep14270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/21/2015] [Indexed: 11/15/2022] Open
Abstract
Cholesterol has been shown to regulate numerous ion channels. HCN channels represent the molecular correlate of If or Ih in sinoatrial node (SAN) and neuronal cells. Previous studies have implicated a role for cholesterol in the regulation of rabbit HCN4 channels with effects on pacing in the rabbit SAN. Using electrophysiological and biochemical approaches, we examined the effect of cholesterol modulation on human HCN1, HCN2 and HCN4 isoforms. Patch-clamp experiments uncovered isoform specific differences in the effect of cholesterol on gating kinetics upon depletion by MβCD or mevastatin or enrichment using MβCD/cholesterol. Most dramatically cholesterol had isoform specific effects on mode-shifting, which has been suggested to play a key role in stabilizing firing rate and preventing arrhythmic firing in SAN cells and neurons. Mode-shifting in HCN1 channels was insensitive to cholesterol manipulation, while HCN2 and HCN4 were strongly affected. Trafficking of each isoform to the plasma membrane was also affected by cholesterol modulation differentially between isoforms, however, each isoform remained localized in lipid raft domains after cholesterol depletion. These effects may contribute to the side effects of cholesterol reducing therapies including disrupted heart rhythm and neuropathic pain, as well as the susceptibility of sinus dysfunction in patients with elevated cholesterol.
Collapse
|
26
|
Korinek M, Vyklicky V, Borovska J, Lichnerova K, Kaniakova M, Krausova B, Krusek J, Balik A, Smejkalova T, Horak M, Vyklicky L. Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol 2015; 593:2279-93. [PMID: 25651798 DOI: 10.1113/jphysiol.2014.288209] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/30/2015] [Indexed: 01/14/2023] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid-NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs.
Collapse
Affiliation(s)
| | | | - Jirina Borovska
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | - Katarina Lichnerova
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Barbora Krausova
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic.,Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jan Krusek
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | - Ales Balik
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | | | - Martin Horak
- Institute of Physiology AS CR, v.v.i, Prague, Czech Republic
| | | |
Collapse
|
27
|
Raimondo F, Ceppi P, Guidi K, Masserini M, Foletti C, Pitto M. Proteomics of plasma membrane microdomains. Expert Rev Proteomics 2014; 2:793-807. [PMID: 16209657 DOI: 10.1586/14789450.2.5.793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plasma membrane microdomains represent subcompartments of the plasma membrane characterized by a specific lipid and protein composition. The recognition of microdomains in nearly all the eukaryotic membranes has accredited them with specialized functions in health and disease. Several proteomic studies have recently addressed the specific composition of plasma membrane microdomains, and will be reviewed in this paper. Peculiar information has been obtained, but a comprehensive view of the main protein classes required to define the microdomain proteome is still missing. The achievement of this information is slowed by the difficulties encountered in resolving and analyzing hydrophobic proteins, but it could help in understanding the overall function of plasma membrane microdomains and their involvement in human pathology.
Collapse
Affiliation(s)
- Francesca Raimondo
- Department of Experimental, Environmental Medicine & Biotechnology, University of Milano-Bicocca, 20052 Monza, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
29
|
Sonnino S, Mauri L, Ciampa MG, Prinetti A. Gangliosides as regulators of cell signaling: ganglioside-protein interactions or ganglioside-driven membrane organization? J Neurochem 2013; 124:432-5. [PMID: 23351079 DOI: 10.1111/jnc.12088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 12/01/2022]
|
30
|
Iwabuchi K, Nakayama H, Masuda H, Kina K, Ogawa H, Takamori K. Membrane microdomains in immunity: glycosphingolipid-enriched domain-mediated innate immune responses. Biofactors 2012; 38:275-83. [PMID: 22488955 DOI: 10.1002/biof.1017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/14/2012] [Indexed: 11/06/2022]
Abstract
Over the last 30 years, many studies have indicated that glycosphingolipids (GSLs) expressed on the cell surface may act as binding sites for microorganisms. Based on their physicochemical characteristics, GSLs form membrane microdomains with cholesterol, sphingomyelin, glycosylphosphatidylinositol (GPI)-anchored proteins, and various signaling molecules, and GSL-enriched domains have been shown to be involved in these defense responses. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms. LacCer is expressed at high levels on the plasma membrane of human neutrophils, and forms membrane microdomains associated with the Src family tyrosine kinase Lyn. LacCer-enriched membrane microdomains mediate superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. In contrast, several pathogens have developed infection mechanisms using membrane microdomains. In addition, some pathogens have the ability to avoid degradation by escaping from the vacuolar compartment or preventing phagosome maturation, utilizing membrane microdomains, such as LacCer-enriched domains, of host cells. The detailed molecular mechanisms of these membrane microdomain-associated host-pathogen interactions remain to be elucidated.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Zhao H, Cao X, Wu G, Loh HH, Law PY. Neurite outgrowth is dependent on the association of c-Src and lipid rafts. Neurochem Res 2011; 34:2197-205. [PMID: 19529986 DOI: 10.1007/s11064-009-0016-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2009] [Indexed: 11/24/2022]
Abstract
Regulation of neurite outgrowth is an important aspect not only for proper development of the nervous system but also for tissue regeneration after nerve injury and the treatment of neuropathological conditions. Here, we report that neurite outgrowth in cortical neuron and neuro 2A (N2A) cell was dependent on intact lipid rafts, as well as the enhanced localization of c-Src in the lipid rafts. Src inhibition or lipid rafts disruption could specifically block c-Src phosphorylation profile, pY416 Src increase and pY529 Src decrease, they also resulted in pY529 Src and c-terminal Src kinase (Csk) partition out of lipid rafts. Thus, we concluded that c-Src signal cascades within the lipid rafts is crucial for efficient neurite outgrowth.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Integrative Medicine and Neurobiology, National Key Lab of Medical Neurobiology, Institutes of Brain Research Sciences, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Box 291, 200032 Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
32
|
Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids 2011; 76:216-31. [PMID: 21074546 DOI: 10.1016/j.steroids.2010.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/20/2022]
Abstract
Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol probes available today.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany.
| | | |
Collapse
|
33
|
Lonchamp E, Dupont JL, Wioland L, Courjaret R, Mbebi-Liegeois C, Jover E, Doussau F, Popoff MR, Bossu JL, de Barry J, Poulain B. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PLoS One 2010; 5:e13046. [PMID: 20941361 PMCID: PMC2948003 DOI: 10.1371/journal.pone.0013046] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca(2+) rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.
Collapse
Affiliation(s)
- Etienne Lonchamp
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Jean-Luc Dupont
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Laetitia Wioland
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Raphaël Courjaret
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Corinne Mbebi-Liegeois
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Emmanuel Jover
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Frédéric Doussau
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Michel R. Popoff
- Unité des Anaérobies et Leurs Toxines, Institut Pasteur à Paris, Paris, France
| | - Jean-Louis Bossu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Jean de Barry
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Bernard Poulain
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| |
Collapse
|
34
|
Sankaran J, Manna M, Guo L, Kraut R, Wohland T. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy. Biophys J 2010; 97:2630-9. [PMID: 19883607 DOI: 10.1016/j.bpj.2009.08.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 01/31/2023] Open
Abstract
Cell membrane organization is dynamic and is assumed to have different characteristic length scales. These length scales, which are influenced by lipid and protein composition as well as by the cytoskeleton, can range from below the optical resolution limit (as with rafts or microdomains) to far above the resolution limit (as with capping phenomena or the formation of lipid "platforms"). The measurement of these membrane features poses a significant problem because membrane dynamics are on the millisecond timescale and are thus beyond the time resolution of conventional imaging approaches. Fluorescence correlation spectroscopy (FCS), a widely used spectroscopic technique to measure membrane dynamics, has the required time resolution but lacks imaging capabilities. A promising solution is the recently introduced method known as imaging total internal reflection (ITIR)-FCS, which can probe diffusion phenomena in lipid membranes with good temporal and spatial resolution. In this work, we extend ITIR-FCS to perform ITIR fluorescence cross-correlation spectroscopy (ITIR-FCCS) between pixel areas of arbitrary shape and derive a generalized expression that is applicable to active transport and diffusion. ITIR-FCCS is applied to model systems exhibiting diffusion, active transport, or a combination of the two. To demonstrate its applicability to live cells, we observe the diffusion of a marker, the sphingolipid-binding domain (SBD) derived from the amyloid peptide Abeta, on live neuroblastoma cells. We investigate the organization and dynamics of SBD-bound lipid microdomains under the conditions of cholesterol removal and cytoskeleton disruption.
Collapse
Affiliation(s)
- Jagadish Sankaran
- Department of Chemistry, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
35
|
Abstract
Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates the physical state of the phospholipid bilayer and is crucially involved in the formation of membrane microdomains. Cholesterol also affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Here, methods are described that are used to explore the binding and/or interaction of proteins to cholesterol. For this purpose, a variety of cholesterol probes bearing radio-, spin-, photoaffinity- or fluorescent labels are currently available. Examples of proven cholesterol binding molecules are polyene compounds, cholesterol-dependent cytolysins, enzymes accepting cholesterol as substrate, and proteins with cholesterol binding motifs. Main topics of this report are the localization of candidate membrane proteins in cholesterol-rich microdomains, the issue of specificity of cholesterol- protein interactions, and applications of the various cholesterol probes for these studies.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becherweg 30, Mainz, Germany.
| |
Collapse
|
36
|
Effect of β-cyclodextrin and its derivatives on caveolae disruption, relationships with their cholesterol extraction capacities. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9718-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Fantini J, Barrantes FJ. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2345-61. [PMID: 19733149 DOI: 10.1016/j.bbamem.2009.08.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/17/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Like all other monomeric or multimeric transmembrane proteins, receptors for neurotransmitters are surrounded by a shell of lipids which form an interfacial boundary between the protein and the bulk membrane. Among these lipids, cholesterol and sphingolipids have attracted much attention because of their well-known propensity to segregate into ordered platform domains commonly referred to as lipid rafts. In this review we present a critical analysis of the molecular mechanisms involved in the interaction of cholesterol/sphingolipids with neurotransmitter receptors, in particular acetylcholine and serotonin receptors, chosen as representative members of ligand-gated ion channels and G protein-coupled receptors. Cholesterol and sphingolipids interact with these receptors through typical binding sites located in both the transmembrane helices and the extracellular loops. By altering the conformation of the receptors ("chaperone-like" effect), these lipids can regulate neurotransmitter binding, signal transducing functions, and, in the case of multimeric receptors, subunit assembly and subsequent receptor trafficking to the cell surface. Several sphingolipids (especially gangliosides) also exhibit low/moderate affinity for neurotransmitters. We suggest that such lipids could facilitate (i) the attachment of neurotransmitters to the post-synaptic membrane and in some cases (ii) their subsequent delivery to specific protein receptors. Overall, various experimental approaches provide converging evidence that the biological functions of neurotransmitters and their receptors are highly dependent upon sphingolipids and cholesterol, which are active partners of synaptic transmission. Several decades of research have been necessary to untangle the skein of a complex network of molecular interactions between neurotransmitters, their receptors, cholesterol and sphingolipids. This sophisticated crosstalk between all four distinctive partners may allow a fine biochemical tuning of synaptic transmission.
Collapse
Affiliation(s)
- Jacques Fantini
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), University of Aix-Marseille 2 and Aix-Marseille 3, CNRS UMR 6231, INRA USC 2027, Faculté des Sciences de St. Jérôme, Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France
| | | |
Collapse
|
38
|
Glycine transporter 1 associates with cholesterol-rich membrane raft microdomains. Biochem Biophys Res Commun 2009; 384:530-4. [PMID: 19427831 DOI: 10.1016/j.bbrc.2009.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/21/2022]
Abstract
Membrane rafts, the highly-ordered, cholesterol-rich microdomains of the plasma membrane play important roles in cellular functions. In this study, GLYT1-CFP and GLYT2-CFP were constructed, followed by investigation of whether the tagged transporters associate with a fluorescence probe that labels membrane rafts (DilC16) by using Fluorescence Resonance Energy Transfer. A close association was observed between DiIC16 and GLYT1-CFP, but not for GLYT2-CFP. The glycine transport ability of GLYT1 is also highly dependent on the integrity of this area. Together, the results suggest that GLYT1 and membrane rafts are co-localized in the membrane, and that this influences the rate of glycine transport.
Collapse
|
39
|
Cheng HT, Megha, London E. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 2009; 284:6079-92. [PMID: 19129198 DOI: 10.1074/jbc.m806077200] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A methyl-beta-cyclodextrin-induced lipid exchange technique was devised to prepare small unilamellar vesicles with stable asymmetric lipid compositions. Asymmetric vesicles that mimic biological membranes were prepared with sphingomyelin (SM) or SM mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) as the predominant lipids in the outer leaflet and dioleoylphosphatidylcholine (DOPC), POPC, 1-palmitoyl-2-oleoyl-phosphatidyl-L-serine (POPS), or POPS mixed with 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) in the inner leaflet. Fluorescence-based assays were developed to confirm lipid asymmetry. Cholesterol was introduced into these vesicles using a second methyl-beta-cyclodextrin exchange step. In asymmetric vesicles composed of SM outside, DOPC inside (SMo/DOPCi) or SM outside, 2:1 mol:mol POPE:POPS inside (SMo/2:1 POPE:POPSi) the outer leaflet SM formed an ordered state with a thermal stability similar to that in pure SM vesicles and significantly greater than that in symmetric vesicles with the same overall lipid composition. Analogous behavior was observed in vesicles containing cholesterol. This shows that an asymmetric lipid distribution like that in eukaryotic plasma membranes can be conducive to ordered domain (raft) formation. Furthermore asymmetric vesicles containing approximately 25 mol % cholesterol formed ordered domains more thermally stable than those in asymmetric vesicles lacking cholesterol, showing that the crucial ability of cholesterol to stabilize ordered domain formation is likely to contribute to ordered domain formation in cell membranes. Additional studies demonstrated that hydrophobic helix orientation is affected by lipid asymmetry with asymmetry favoring formation of the transmembrane configuration. The ability to form asymmetric vesicles represents an important improvement in model membrane studies and should find many applications in the future.
Collapse
Affiliation(s)
- Hui-Ting Cheng
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | | | | |
Collapse
|
40
|
Bulloj A, Leal MC, Surace EI, Zhang X, Xu H, Ledesma MD, Castaño EM, Morelli L. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Abeta and insulin degradation. Mol Neurodegener 2008; 3:22. [PMID: 19117523 PMCID: PMC2648957 DOI: 10.1186/1750-1326-3-22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/31/2008] [Indexed: 11/10/2022] Open
Abstract
Background Insulin degrading enzyme (IDE) is implicated in the regulation of amyloid β (Aβ) steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD). Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Results Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM)-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs) and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD), endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol) due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Conclusion Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for insulin proteolysis. The concept that mis-location of Aβ degrading proteases away from DRMs may impair the physiological turn-over of Aβ in vivo deserves further investigation in light of therapeutic strategies based on enhancing Aβ proteolysis in which DRM protease-targeting may need to be taken into account.
Collapse
Affiliation(s)
- Ayelén Bulloj
- Fundación Instituto Leloir, IIBBA-CONICET, Ave, Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sorice M, Molinari S, Di Marzio L, Mattei V, Tasciotti V, Ciarlo L, Hiraiwa M, Garofalo T, Misasi R. Neurotrophic signalling pathway triggered by prosaposin in PC12 cells occurs through lipid rafts. FEBS J 2008; 275:4903-12. [DOI: 10.1111/j.1742-4658.2008.06630.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Thammacharoen S, Lutz TA, Geary N, Asarian L. Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 2008; 149:1609-17. [PMID: 18096668 PMCID: PMC2276711 DOI: 10.1210/en.2007-0340] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17beta-estradiol (E2), acting via estrogen receptor (ER)-alpha, inhibits feeding in animals. One mechanism apparently involves an increase in the satiating potency of cholecystokinin (CCK) released from the small intestine by ingested food. For example, the satiating potency of intraduodenal lipid infusions is increased by E2 in ovariectomized rats; this increased satiation is dependent on CCK, and it is accompanied by increases in the numbers of ERalpha-positive cells that express c-Fos in a subregion of the caudal nucleus tractus solitarius (cNTS) that receives abdominal vagal afferent projections. To test whether direct administration of E2 to this area of the hindbrain is sufficient to inhibit food intake, we first implanted 0.2 microg estradiol benzoate (EB) in cholesterol or cholesterol alone either sc or onto the surface of the hindbrain over the cNTS. Food intake was significantly reduced after hindbrain EB implants but not after sc EB implants. Next we verified that equimolar hindbrain implants of E2 and EB had similar feeding-inhibitory effects and determined that only small amounts of E2 reached brain areas outside the dorsal caudal hindbrain after hindbrain implants of (3)H-labeled E2. Neither plasma estradiol concentration nor plasma inflammatory cytokine concentration was increased by either hindbrain or sc EB implants. Finally, hindbrain EB implants, but not sc implants, increased c-Fos in ERalpha-positive cells in the cNTS after ip injection of 4 microg/kg CCK-8. We conclude that E2, acting via ERalpha in cNTS neurons, including neurons stimulated by ip CCK, is sufficient to inhibit feeding.
Collapse
Affiliation(s)
- Sumpun Thammacharoen
- Institute of Animal Science, Physiology and Behaviour Group, ETH-Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
43
|
Yoshizaki F, Nakayama H, Iwahara C, Takamori K, Ogawa H, Iwabuchi K. Role of glycosphingolipid-enriched microdomains in innate immunity: Microdomain-dependent phagocytic cell functions. Biochim Biophys Acta Gen Subj 2008; 1780:383-92. [DOI: 10.1016/j.bbagen.2007.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/10/2007] [Accepted: 11/13/2007] [Indexed: 12/16/2022]
|
44
|
Hichem, D. G, Konrad S. Principles of microdomain formation in biological membranes— Are there lipid liquid ordered domains in living cellular membranes? TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Levitan I, Gooch KJ. Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL. Antioxid Redox Signal 2007; 9:1519-34. [PMID: 17576163 DOI: 10.1089/ars.2007.1686] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane-cytoskeleton coupling is known to play major roles in a plethora of cellular responses, such as cell growth, differentiation, polarization, motility, and others. In this review, the authors discuss the growing amount of evidence indicating that membrane-cytoskeleton interactions are regulated by the lipid composition of the plasma membrane, suggesting that cholesterol-rich membrane domains (lipid rafts), including caveolae, are essential for membrane-cytoskeleton coupling. Several models for raft-cytoskeleton interactions are discussed. Also described is the evidence suggesting that raft-cytoskeleton interactions play key roles in several cytoskeleton-dependent processes, particularly in the regulation of cellular biomechanical properties. To address further the physiological significance of raft-cytoskeleton coupling, the authors focus on the impact of oxidized low density lipoproteins, one of the major cholesterol carriers and proatherogenic factors, on the integrity of lipid rafts/caveolae, and on the organization of the cytoskeleton. Finally, the authors review the recent studies showing that oxLDL and cholesterol depletion have similar impacts on the biomechanical properties of vascular endothelial cells, which in turn affect endothelial angiogenic potential.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
46
|
Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:1311-24. [PMID: 17493580 PMCID: PMC1948080 DOI: 10.1016/j.bbamem.2007.03.026] [Citation(s) in RCA: 821] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 12/14/2022]
Abstract
The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol.
Collapse
Affiliation(s)
- Raphael Zidovetzki
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 90291, USA
| | | |
Collapse
|
47
|
Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains. Am J Physiol Cell Physiol 2007; 293:C440-50. [PMID: 17459945 DOI: 10.1152/ajpcell.00492.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Our earlier studies have shown that Kir2.x channels are suppressed by an increase in the level of cellular cholesterol, whereas cholesterol depletion enhances the activity of the channels. In this study, we show that Kir2.1 and Kir2.3 channels have double-peak distributions between cholesterol-rich (raft) and cholesterol-poor (non-raft) membrane fractions, indicating that the channels exist in two different types of lipid environment. We also show that whereas methyl-beta-cyclodextrin-induced cholesterol depletion removes cholesterol from both raft and non-raft membrane fractions, cholesterol enrichment results in cholesterol increase exclusively in the raft fractions. Kinetics of both depletion-induced Kir2.1 enhancement and enrichment-induced Kir2.1 suppression correlate with the changes in the level of raft cholesterol. Furthermore, we show not only that cholesterol depletion shifts the distribution of the channels from cholesterol-rich to cholesterol-poor membrane fractions but also that cholesterol enrichment has the opposite effect. These observations suggest that change in the level of raft cholesterol alone is sufficient to suppress Kir2 activity and to facilitate partitioning of the channels to cholesterol-rich domains. Therefore, we suggest that partitioning to membrane rafts plays an important role in the sensitivity of Kir2 channels to cholesterol.
Collapse
Affiliation(s)
- Saloni Tikku
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
48
|
Botto L, Masserini M, Palestini P. Changes in the composition of detergent-resistant membrane domains of cultured neurons following protein kinase C activation. J Neurosci Res 2007; 85:443-50. [PMID: 17086551 DOI: 10.1002/jnr.21111] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Changes in the composition of cell fractions, and in particular of detergent-resistant membranes (DRM) isolated from cultured rat cerebellar granule cells, were taken as possible changes in lipid raft composition during a signal transduction event. After activation of protein kinase C (PKC) with phorbol esters (PMA) or glutamate, the content of PKC and of proteins highly enriched (GAP43, Fyn, and PrP(c)) or not (MARCKS) in DRM was followed. PKC activation strongly increased its association with membranes (from 2% to 75%), causing its enrichment within DRM; the substrate GAP43, enriched in DRM, remained membrane associated, but its proportion in DRM dramatically decreased (from about 40% to 2.5%), suggesting its shift from raft to nonraft membranes, possibly as a consequence of phosphorylation by PKC. The distribution of Fyn and PrP(c) (DRM-enriched) and of MARCKS (present mainly outside DRM) did not change. PKC activation was followed by an increase of GAP43 and MARCKS phosphorylation (about 7- and 8-fold, respectively). Noteworthy was that, after cell treatment with the lipid raft-disrupting drug methyl-beta-cyclodextrin, PKC activation occurred normally, followed by MARCKS phosphorylation, but GAP43 phosphorylation did not occur. Taken altogether, these data suggest that the integrity of lipid rafts is necessary for PKC to affect GAP43 and catalyze its phosphorylation.
Collapse
Affiliation(s)
- L Botto
- Department of Experimental Medicine (DIMS), Medical School, University of Milano-Bicocca, Monza, Italy
| | | | | |
Collapse
|
49
|
Shvartsman DE, Gutman O, Tietz A, Henis YI. Cyclodextrins but not compactin inhibit the lateral diffusion of membrane proteins independent of cholesterol. Traffic 2006; 7:917-26. [PMID: 16787400 DOI: 10.1111/j.1600-0854.2006.00437.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholesterol and glycosphingolipid-enriched membrane domains, termed lipid rafts, were proposed to play important roles in trafficking and signaling events. These functions are inhibited following putative disruption of rafts by cholesterol depletion, commonly induced by treatment with methyl-beta-cyclodextrin (MbetaCD). However, several studies showed that the lateral diffusion of membrane proteins is inhibited by MbetaCD, suggesting that it may have additional effects on membrane organization unrelated to cholesterol removal. Here, we investigated this possibility by comparison of the effects of cholesterol depletion by MbetaCD and by metabolic inhibition (compactin), and of treatment with alpha-CD, which does not bind cholesterol. The studies employed two series of proteins (Ras and influenza hemagglutinin), each containing as internal controls related mutants that differ in raft association. Mild MbetaCD treatment retarded the lateral diffusion of both raft and non-raft mutants, whereas similar cholesterol reduction (30-33%) by metabolic inhibition enhanced selectively the diffusion of the raft-associated mutants. Moreover, alpha-CD also inhibited the diffusion of raft and non-raft mutants, despite its lack of effect on cholesterol content. These findings suggest that the widely used treatment with CD to reduce cholesterol has additional, cholesterol-independent effects on membrane protein mobility, which do not necessarily distinguish between raft and non-raft proteins.
Collapse
Affiliation(s)
- Dmitry E Shvartsman
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
50
|
Escartin C, Brouillet E, Gubellini P, Trioulier Y, Jacquard C, Smadja C, Knott GW, Goff LKL, Déglon N, Hantraye P, Bonvento G. Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo. J Neurosci 2006; 26:5978-89. [PMID: 16738240 PMCID: PMC6675222 DOI: 10.1523/jneurosci.0302-06.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To study the functional role of activated astrocytes in glutamate homeostasis in vivo, we used a model of sustained astrocytic activation in the rat striatum through lentiviral-mediated gene delivery of ciliary neurotrophic factor (CNTF). CNTF-activated astrocytes were hypertrophic, expressed immature intermediate filament proteins and highly glycosylated forms of their glutamate transporters GLAST and GLT-1. CNTF overexpression produced a redistribution of GLAST and GLT-1 into raft functional membrane microdomains, which are important for glutamate uptake. In contrast, CNTF had no detectable effect on the expression of a number of neuronal proteins and on the spontaneous glutamatergic transmission recorded from striatal medium spiny neurons. These results were replicated in vitro by application of recombinant CNTF on a mixed neuron/astrocyte striatal culture. Using microdialysis in the rat striatum, we found that the accumulation of extracellular glutamate induced by quinolinate (QA) was reduced threefold with CNTF. In line with this result, CNTF significantly increased QA-induced [(18)F]-fluoro-2-deoxyglucose uptake, an indirect index of glutamate uptake by astrocytes. Together, these data demonstrate that CNTF activation of astrocytes in vivo is associated with marked phenotypic and molecular changes leading to a better handling of increased levels of extracellular glutamate. Activated astrocytes may therefore be important prosurvival agents in pathological conditions involving defects in glutamate homeostasis.
Collapse
|