1
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024. [PMID: 39499674 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Parvez F, Sangpal D, Paithankar H, Amin Z, Chugh J. Differential conformational dynamics in two type-A RNA-binding domains drive the double-stranded RNA recognition and binding. eLife 2024; 13:RP94842. [PMID: 39116184 PMCID: PMC11309768 DOI: 10.7554/elife.94842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.
Collapse
Affiliation(s)
- Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Devika Sangpal
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune UniversityPuneIndia
| | - Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Zainab Amin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| |
Collapse
|
3
|
Toropko M, Chuvpilo S, Karabelsky A. miRNA-Mediated Mechanisms in the Generation of Effective and Safe Oncolytic Viruses. Pharmaceutics 2024; 16:986. [PMID: 39204331 PMCID: PMC11360794 DOI: 10.3390/pharmaceutics16080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by inhibiting the translation of target transcripts. The expression profiles of miRNAs vary in different tissues and change with the development of diseases, including cancer. This feature has begun to be used for the modification of oncolytic viruses (OVs) in order to increase their selectivity and efficacy. OVs represent a relatively new class of anticancer drugs; they are designed to replicate in cancer tumors and destroy them. These can be natural viruses that can replicate within cancer tumor cells, or recombinant viruses created in laboratories. There are some concerns regarding OVs' toxicity, due to their ability to partially replicate in healthy tissues. In addition, lytic and immunological responses upon OV therapy are not always sufficient, so various OV editing methods are used. This review discusses the latest results of preclinical and clinical studies of OVs, modifications of which are associated with the miRNA-mediated mechanism of gene silencing.
Collapse
Affiliation(s)
- Mariia Toropko
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (S.C.); (A.K.)
| | | | | |
Collapse
|
4
|
Ahn I, Kang CS, Han J. Where should siRNAs go: applicable organs for siRNA drugs. Exp Mol Med 2023; 55:1283-1292. [PMID: 37430086 PMCID: PMC10393947 DOI: 10.1038/s12276-023-00998-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/02/2023] [Indexed: 07/12/2023] Open
Abstract
RNA interference mediated by small interfering RNAs (siRNAs) has been exploited for the development of therapeutics. siRNAs can be a powerful therapeutic tool because the working mechanisms of siRNAs are straightforward. siRNAs determine targets based on their sequence and specifically regulate the gene expression of the target gene. However, efficient delivery of siRNAs to the target organ has long been an issue that needs to be solved. Tremendous efforts regarding siRNA delivery have led to significant progress in siRNA drug development, and from 2018 to 2022, a total of five siRNA drugs were approved for the treatment of patients. Although all FDA-approved siRNA drugs target the hepatocytes of the liver, siRNA-based drugs targeting different organs are in clinical trials. In this review, we introduce siRNA drugs in the market and siRNA drug candidates in clinical trials that target cells in multiple organs. The liver, eye, and skin are the preferred organs targeted by siRNAs. Three or more siRNA drug candidates are in phase 2 or 3 clinical trials to suppress gene expression in these preferred organs. On the other hand, the lungs, kidneys, and brain are challenging organs with relatively few clinical trials. We discuss the characteristics of each organ related to the advantages and disadvantages of siRNA drug targeting and strategies to overcome the barriers in delivering siRNAs based on organ-specific siRNA drugs that have progressed to clinical trials.
Collapse
Affiliation(s)
- Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea.
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Stainthorp AK, Lin CC, Wang D, Medhi R, Ahmed Z, Suen KM, Miska EA, Whitehouse A, Ladbury JE. Regulation of microRNA expression by the adaptor protein GRB2. Sci Rep 2023; 13:9784. [PMID: 37328606 PMCID: PMC10276003 DOI: 10.1038/s41598-023-36996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
Protein interactions with the microRNA (miRNA)-mediated gene silencing protein Argonaute 2 (AGO2) control miRNA expression. miRNA biogenesis starts with the production of precursor transcripts and culminates with the loading of mature miRNA onto AGO2 by DICER1. Here we reveal an additional component to the regulatory mechanism for miRNA biogenesis involving the adaptor protein, growth factor receptor-bound protein 2 (GRB2). The N-terminal SH3 domain of GRB2 is recruited to the PAZ domain of AGO2 forming a ternary complex containing GRB2, AGO2 and DICER1. Using small-RNA sequencing we identified two groups of miRNAs which are regulated by the binding of GRB2. First, mature and precursor transcripts of mir-17~92 and mir-221 miRNAs are enhanced. Second, mature, but not precursor, let-7 family miRNAs are diminished suggesting that GRB2 directly affects loading of these miRNAs. Notably, the resulting loss of let-7 augments expression of oncogenic targets such as RAS. Thus, a new role for GRB2 is established with implications for cancer pathogenesis through regulation of miRNA biogenesis and oncogene expression.
Collapse
Affiliation(s)
- Amy K Stainthorp
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chi-Chuan Lin
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ragini Medhi
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kin Man Suen
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric A Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
6
|
Shibata A, Shirohzu H, Iwakami Y, Abe T, Emura C, Aoki E, Ohgi T. Terminal bridging of siRNA duplex at the ribose 2' position controls strand bias and target sequence preference. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:468-477. [PMID: 37168798 PMCID: PMC10165404 DOI: 10.1016/j.omtn.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Small interfering RNA (siRNA) and short hairpin RNA (shRNA) are widely used as RNA interference (RNAi) reagents. Recently, truncated shRNAs that trigger RNAi in a Dicer-independent manner have been developed. We generated a novel class of RNAi reagent, designated enforced strand bias (ESB) RNA, in which an siRNA duplex was chemically bridged between the 3' terminal overhang region of the guide strand and the 5' terminal nucleotide of the passenger strand. ESB RNA, which is chemically bridged at the 2' positions of ribose (2'-2' ESB RNA), functions in a Dicer-independent manner and was highly effective at triggering RNAi without the passenger strand-derived off-target effect. In addition, the 2'-2' ESB RNA exhibited a unique target sequence preference that differs from siRNA and silenced target sequences that could not be effectively suppressed by siRNA. Our results indicate that ESB RNA has the potential to be an effective RNAi reagent even when the target sequence is not suitable for siRNA.
Collapse
Affiliation(s)
- Atsushi Shibata
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Corresponding author Atsushi Shibata, Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan.
| | - Hisao Shirohzu
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Fukuoka Center for Disease Control and Prevention, Kurume, Fukuoka, Japan
| | - Yusuke Iwakami
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tomoaki Abe
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Chisato Emura
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Eriko Aoki
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tadaaki Ohgi
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| |
Collapse
|
7
|
MicroRNA as a Diagnostic Tool, Therapeutic Target and Potential Biomarker in Cutaneous Malignant Melanoma Detection—Narrative Review. Int J Mol Sci 2023; 24:ijms24065386. [PMID: 36982460 PMCID: PMC10048937 DOI: 10.3390/ijms24065386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most serious type of skin cancer, causing a large majority of deaths but accounting for only ~1% of all skin cancer cases. The worldwide incidence of malignant melanoma is increasing, causing a serious socio-economic problem. Melanoma is diagnosed mainly in young and middle-aged people, which distinguishes it from other solid tumors detected mainly in mature people. The early detection of cutaneous malignant melanoma (CMM) remains a priority and it is a key factor limiting mortality. Doctors and scientists around the world want to improve the quality of diagnosis and treatment, and are constantly looking for new, promising opportunities, including the use of microRNAs (miRNAs), to fight melanoma cancer. This article reviews miRNA as a potential biomarker and diagnostics tool as a therapeutic drugs in CMM treatment. We also present a review of the current clinical trials being carried out worldwide, in which miRNAs are a target for melanoma treatment.
Collapse
|
8
|
Orbán TI. One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs. Biol Futur 2023:10.1007/s42977-023-00154-7. [PMID: 36847925 DOI: 10.1007/s42977-023-00154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
With the development of modern molecular genetics, the original "one gene-one enzyme" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited "RNA world", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.
Collapse
Affiliation(s)
- Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
9
|
Anker SC, Szczeponik MG, Dessila J, Dittus K, Engeland CE, Jäger D, Ungerechts G, Leber MF. Oncolytic Measles Virus Encoding MicroRNA for Targeted RNA Interference. Viruses 2023; 15:v15020308. [PMID: 36851522 PMCID: PMC9964028 DOI: 10.3390/v15020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Virotherapy is a promising, novel form of cancer immunotherapy currently being investigated in pre-clinical and clinical settings. While generally well-tolerated, the anti-tumor potency of oncolytic virus-based monotherapies needs to be improved further. One of the major factors limiting the replication efficiency of oncolytic viruses are the antiviral defense pathways activated by tumor cells. In this study, we have designed and validated a universal expression cassette for artificial microRNAs that can now be adapted to suppress genes of interest, including potential resistance factors. Transcripts are encoded as a primary microRNA for processing via the predominantly nuclear RNase III Drosha. We have engineered an oncolytic measles virus encoding this universal expression cassette for artificial microRNAs. Virally encoded microRNA was expressed in the range of endogenous microRNA transcripts and successfully mediated target protein suppression. However, absolute expression levels of mature microRNAs were limited when delivered by an oncolytic measles virus. We demonstrate that measles virus, in contrast to other cytosolic viruses, does not induce translocation of Drosha from the nucleus into the cytoplasm, potentially resulting in a limited processing efficiency of virus-derived, cytosolically delivered artificial microRNAs. To our knowledge, this is the first report demonstrating functional expression of microRNA from oncolytic measles viruses potentially enabling future targeted knockdown, for instance of antiviral factors specifically in tumor cells.
Collapse
Affiliation(s)
- Sophie C. Anker
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Im Neuenheimer Feld 671, 69120 Heidelberg, Germany
| | - Marie G. Szczeponik
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Medical School, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Jan Dessila
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Katia Dittus
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christine E. Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Stockumer Straße 10, 58453 Witten, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Mathias F. Leber
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
10
|
Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol Cell 2022; 82:4064-4079.e13. [DOI: 10.1016/j.molcel.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
11
|
Kuo Y, Falk BW. Artificial microRNA guide strand selection from duplexes with no mismatches shows a purine-rich preference for virus- and non-virus-based expression vectors in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1069-1084. [PMID: 35113475 PMCID: PMC9129084 DOI: 10.1111/pbi.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Artificial microRNA (amiRNA) technology has allowed researchers to direct efficient silencing of specific transcripts using as few as 21 nucleotides (nt). However, not all the artificially designed amiRNA constructs result in selection of the intended ~21-nt guide strand amiRNA. Selection of the miRNA guide strand from the mature miRNA duplex has been studied in detail in human and insect systems, but not so much for plants. Here, we compared a nuclear-replicating DNA viral vector (tomato mottle virus, ToMoV, based), a cytoplasmic-replicating RNA viral vector (tobacco mosaic virus, TMV, based), and a non-viral binary vector to express amiRNAs in plants. We then used deep sequencing and mutational analysis and show that when the structural factors caused by base mismatches in the mature amiRNA duplex were excluded, the nucleotide composition of the mature amiRNA region determined the guide strand selection. We found that the strand with excess purines was preferentially selected as the guide strand and the artificial miRNAs that had no mismatches in the amiRNA duplex were predominantly loaded into AGO2 instead of loading into AGO1 like the majority of the plant endogenous miRNAs. By performing assays for target effects, we also showed that only when the intended strand was selected as the guide strand and showed AGO loading, the amiRNA could provide the expected RNAi effects. Thus, by removing mismatches in the mature amiRNA duplex and designing the intended guide strand to contain excess purines provide better control of the guide strand selection of amiRNAs for functional RNAi effects.
Collapse
Affiliation(s)
- Yen‐Wen Kuo
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
12
|
Dogan AE, Hamid SM, Yildirim AD, Yildirim Z, Sen G, Riera CE, Gottlieb RA, Erbay E. PACT establishes a posttranscriptional brake on mitochondrial biogenesis by promoting the maturation of miR-181c. J Biol Chem 2022; 298:102050. [PMID: 35598827 PMCID: PMC9218515 DOI: 10.1016/j.jbc.2022.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase activating protein (PACT), an RNA-binding protein that is part of the RNA-induced silencing complex, plays a key role in miR-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RNA-induced silencing complex, and determines proper miR length. Apart from PACT's role in mediating the antiviral response in immune cells, what PACT does in other cell types is unknown. Strikingly, it has also been shown that cold exposure leads to marked downregulation of PACT protein in mouse brown adipose tissue (BAT), where mitochondrial biogenesis and metabolism play a central role. Here, we show that PACT establishes a posttranscriptional brake on mitochondrial biogenesis (mitobiogenesis) by promoting the maturation of miR-181c, a key suppressor of mitobiogenesis that has been shown to target mitochondrial complex IV subunit I (Mtco1) and sirtuin 1 (Sirt1). Consistently, we found that a partial reduction in PACT expression is sufficient to enhance mitobiogenesis in brown adipocytes in culture as well as during BAT activation in mice. In conclusion, we demonstrate an unexpected role for PACT in the regulation of mitochondrial biogenesis and energetics in cells and BAT.
Collapse
Affiliation(s)
- Asli E Dogan
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Asli D Yildirim
- Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Zehra Yildirim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ganes Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Celine E Riera
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Neurology, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ebru Erbay
- David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
13
|
Hammill ML, Tsubaki K, Salim L, Varley AJ, Giorgees I, Kitamura M, Okauchi T, Desaulniers JP. SiRNAs with Neutral Phosphate Triester Hydrocarbon Tails Exhibit Carrier-Free Gene-Silencing Activity. ACS Med Chem Lett 2022; 13:695-700. [PMID: 35450364 PMCID: PMC9014433 DOI: 10.1021/acsmedchemlett.2c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Short interfering RNAs (siRNAs) show promise as gene-silencing therapeutics, but their cellular uptake remains a challenge. We have recently shown the synthesis of siRNAs bearing a single neutral phenylethyl phosphotriester linkage within the sense strand. Here, we report the synthesis of siRNAs bearing three different hydrophobic phosphate triester linkages at key positions within the sense strand and assess their gene silencing in the absence of a transfection carrier. The best siRNAs bearing hydrophobic phosphate triester tails were not aromatic and exhibited effective gene silencing (IC50 ≈ 56-141 nM), whereas the aromatic derivative with three hydrophobic tails did not exhibit carrier-free gene silencing.
Collapse
Affiliation(s)
- Matthew L. Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Kouta Tsubaki
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Lidya Salim
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Andrew J. Varley
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Ifrodet Giorgees
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
14
|
Shiohama Y, Fujita R, Sonokawa M, Hisano M, Kotake Y, Krstic-Demonacos M, Demonacos C, Kashiwazaki G, Kitayama T, Fujii M. Elimination of Off-Target Effect by Chemical Modification of 5′-End of Small Interfering RNA. Nucleic Acid Ther 2022; 32:438-447. [DOI: 10.1089/nat.2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yasuo Shiohama
- Environmental and Biological Information Group, Tropical Biosphere Research Centre, University of the Ryukyus, Nishihara, Japan
| | - Ryosuke Fujita
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Maika Sonokawa
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Masaaki Hisano
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Yojiro Kotake
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Marija Krstic-Demonacos
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Constantinos Demonacos
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| | - Gengo Kashiwazaki
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Takashi Kitayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Masayuki Fujii
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| |
Collapse
|
15
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
16
|
Paithankar H, Tarang GS, Parvez F, Marathe A, Joshi M, Chugh J. Inherent conformational plasticity in dsRBDs enables interaction with topologically distinct RNAs. Biophys J 2022; 121:1038-1055. [PMID: 35134335 PMCID: PMC8943759 DOI: 10.1016/j.bpj.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/25/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022] Open
Abstract
Many double-stranded RNA-binding domains (dsRBDs) interact with topologically distinct dsRNAs in biological pathways pivotal to viral replication, cancer causation, neurodegeneration, and so on. We hypothesized that the adaptability of dsRBDs is essential to target different dsRNA substrates. A model dsRBD and a few dsRNAs, slightly different in shape from each other, were used to test the systematic shape dependence of RNA on the dsRBD-binding using nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. NMR-based titrations showed a distinct binding pattern for the dsRBD with the topologically distinct dsRNAs. The line broadening upon RNA binding was observed to cluster in the residues lying in close proximity, thereby suggesting an RNA-induced conformational exchange in the dsRBD. Further, while the intrinsic microsecond dynamics observed in the apo-dsRBD were found to quench upon binding with the dsRNA, the microsecond dynamics got induced at residues spatially proximal to quench sites upon binding with the dsRNA. This apparent relay of conformational exchange suggests the significance of intrinsic dynamics to help adapt the dsRBD to target various dsRNA-shapes. The conformational pool visualized in MD simulations for the apo-dsRBD reported here has also been observed to sample the conformations seen previously for various dsRBDs in apo- and in dsRNA-bound state structures, further suggesting the conformational adaptability of the dsRBDs. These investigations provide a dynamic basis for the substrate promiscuity for dsRBD proteins.
Collapse
Affiliation(s)
- Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Guneet Singh Tarang
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Aniket Marathe
- Bioinformatics Center, Savitrabai Phule Pune University, Pune, Maharashtra, India
| | - Manali Joshi
- Bioinformatics Center, Savitrabai Phule Pune University, Pune, Maharashtra, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India; Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India.
| |
Collapse
|
17
|
The siRNA Off-Target Effect Is Determined by Base-Pairing Stabilities of Two Different Regions with Opposite Effects. Genes (Basel) 2022; 13:genes13020319. [PMID: 35205363 PMCID: PMC8872465 DOI: 10.3390/genes13020319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
In RNA interference (RNAi), small interfering RNA (siRNA) suppresses the expression of its target mRNA with a perfect complementary sequence. In addition, siRNA also suppresses the expression of unintended mRNAs with partially complementary sequences mainly within the siRNA seed region (nucleotides 2–8). This mechanism is highly similar to microRNA (miRNA)-mediated RNA silencing, and known as the siRNA-mediated off-target effect. Previously, we revealed that the off-target effect is induced through stable base-pairing between the siRNA seed region and off-target mRNAs, but not induced through unstable base-pairing. However, in our recent study, we found that the siRNA seed region consists of two functionally different domains: nucleotides 2–5, essential for off-target effects, and nucleotides 6–8, involved in both RNAi and off-target effects. In this study, we investigated the most responsible region for the off-target effect by conducting a comprehensive analysis of the thermodynamic properties of all possible siRNA subregions that involved a machine learning technique using a random sampling procedure. As a result, the thermodynamic stability of nucleotides 2–5 showed the highest positive correlation with the off-target effect, and nucleotides 8–14 showed the most negative correlation. Thus, it is revealed that the siRNA off-target effect is determined by the base-pairing stabilities of two different subregions with opposite effects.
Collapse
|
18
|
Wang Y, Shi S, Wang Y, Zhang X, Liu X, Li J, Li P, Du L, Wang C. miR-223-3p targets FBXW7 to promote epithelial-mesenchymal transition and metastasis in breast cancer. Thorac Cancer 2022; 13:474-482. [PMID: 34953047 PMCID: PMC8807253 DOI: 10.1111/1759-7714.14284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumor diagnosed in women. It is the second leading cause of cancer-related death among women in the world. Aberrant expression of microRNAs (miRNAs) have been identified to be involved in the development and progression of breast cancer. The aim of this study was to investigate the function of miR-223-3p in breast cancer progression and metastasis. METHODS qRT-PCR was used to analyze the expression levels of miR-223-3p in breast cancer tissues and cell lines. Wound healing and Matrigel assays were used to examine cell motility and invasiveness. FBXW7 3'-UTR construct and luciferase reporter assays were performed for the target gene. RESULTS miR-223-3p was overexpressed in breast cancer tissue and cell lines. A high level of miR-223-3p was associated with poor prognosis in breast cancer patients. In addition, overexpressed miR-223-3p promoted the migration and invasion of breast cancer cells in vitro and in vivo. Mechanistically, we found that tumor suppressor gene FBXW7 is a target of miR-223-3p. Luciferase activity reporter assay indicated miR-223-3p could directly bind with the 3'-UTR of FBXW7. miR-223-3p exhibited its oncogenic role partly by decreasing FBXW7 expression, and consequently promoted the invasion and metastasis of breast cancer cells. CONCLUSIONS Our study revealed a physical and functional relationship among miR-223-3p and FBXW7. By negatively regulating FBXW7 expression, miR-223-3p exerts a tumor promotion role promoting cell invasion and metastasis in breast cancer.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Shuang Shi
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Yunshan Wang
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xuhua Zhang
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xiaoyan Liu
- Shandong Engineering and Technology Research Center for Tumor Marker DetectionJinanChina
| | - Juan Li
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Peilong Li
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Lutao Du
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| |
Collapse
|
19
|
Kobayashi Y, Fukuhara D, Akase D, Aida M, Ui-Tei K. siRNA Seed Region Is Divided into Two Functionally Different Domains in RNA Interference in Response to 2'-OMe Modifications. ACS OMEGA 2022; 7:2398-2410. [PMID: 35071927 PMCID: PMC8771963 DOI: 10.1021/acsomega.1c06455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 05/04/2023]
Abstract
In RNA interference (RNAi), small interfering RNA (siRNA) functions to suppress the expression of its target mRNA with perfect sequence complementarity. In a mechanism different from above, siRNA also suppresses unintended mRNAs with partial sequence complementarities, mainly to the siRNA seed region (nucleotides 2-8). This mechanism is largely utilized by microRNAs (miRNAs) and results in siRNA-mediated off-target effects. Thus, the siRNA seed region is considered to be involved in both RNAi and off-target effects. In this study, we revealed that the impact of 2'-O-methyl (2'-OMe) modification is different according to the nucleotide positions. The 2'-OMe modifications of nucleotides 2-5 inhibited off-target effects without affecting on-target RNAi activities. In contrast, 2'-OMe modifications of nucleotides 6-8 increased both RNAi and off-target activities. The computational simulation revealed that the structural change induced by 2'-OMe modifications interrupts base pairing between siRNA and target/off-target mRNAs at nucleotides 2-5 but enhances at nucleotides 6-8. Thus, our results suggest that siRNA seed region consists of two functionally different domains in response to 2'-OMe modifications: nucleotides 2-5 are essential for avoiding off-target effects, and nucleotides 6-8 are involved in the enhancement of both RNAi and off-target activities.
Collapse
Affiliation(s)
- Yoshiaki Kobayashi
- Department
of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daiki Fukuhara
- Center
for Quantum Life Sciences and Department of Chemistry, Graduate School
of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dai Akase
- Center
for Quantum Life Sciences and Department of Chemistry, Graduate School
of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Aida
- Center
for Quantum Life Sciences and Department of Chemistry, Graduate School
of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kumiko Ui-Tei
- Department
of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department
of Computational Biology and Medical Sciences, Graduate School of
Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
- . Phone: +81-3-5841-3044. Fax: +81-3-5841-3044
| |
Collapse
|
20
|
MicroRNAs Patterns as Potential Tools for Diagnostic and Prognostic Follow-Up in Cancer Survivorship. Cells 2021; 10:cells10082069. [PMID: 34440837 PMCID: PMC8394126 DOI: 10.3390/cells10082069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Advances in screening methods and pharmacological treatments are increasing the life expectancy of cancer patients. During recent decades, the community of long-term disease-free cancer survivors (LCS) has grown exponentially, raising the issues related to cancer follow-up. Cancer relapse and other cancer-related diseases, as well as lifestyle, influence cancer survival. Recently, the regulatory role of microRNAs (miRNAs) in gene expression and their involvement in human diseases, including cancer, has been identified. Extracellular circulating miRNAs (ECmiRNAs) have been found in biological fluids and specific ECmiRNAs have been associated with cancer development and progression or with a therapy response. Here, we focus on the pivotal role of ECmiRNAs as biomarkers in cancer diagnosis and prognosis. Then, we discuss the relevance of ECmiRNAs expression in cancer survivors for the identification of specific ECmiRNAs profiles as potential tools to assess cancer outcome and to control LCS follow-up.
Collapse
|
21
|
Hammill ML, Salim L, Tsubaki K, Varley AJ, Kitamura M, Okauchi T, Desaulniers JP. Building siRNAs with Cubes: Synthesis and Evaluation of Cubane-Modified siRNAs. Chembiochem 2021; 22:2981-2985. [PMID: 34319643 DOI: 10.1002/cbic.202100334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Indexed: 11/10/2022]
Abstract
Cubane molecules hold great potential for medicinal chemistry applications due to their inherent stability and low toxicity. In this study, we report the synthesis of a cubane derivative phosphoramidite for the incorporation of cubane into small interfering RNAs (siRNAs). Synthetic siRNAs rely on chemical modifications to improve their pharmacokinetic profiles. However, they are still able to mediate sequence-specific gene silencing via the endogenous RNA interference pathway. We designed a library of siRNAs bearing cubane at different positions within the sense and antisense strands. All siRNAs showed excellent gene-silencing activity, with IC50 values ranging from 45.4 to 305 pM. Incorporating the cubane modification in both the sense and antisense strand led to viable duplexes with good biological activity. To the best of our knowledge, this is the first report of siRNAs bearing a cubane derivative within the backbone.
Collapse
Affiliation(s)
- Matthew L Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada
| | - Lidya Salim
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada
| | - Kouta Tsubaki
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan
| | - Andrew J Varley
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, 804-8550, Japan
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada
| |
Collapse
|
22
|
Paturi S, Deshmukh MV. A Glimpse of "Dicer Biology" Through the Structural and Functional Perspective. Front Mol Biosci 2021; 8:643657. [PMID: 34026825 PMCID: PMC8138440 DOI: 10.3389/fmolb.2021.643657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
The RNA interference pathway (RNAi) is executed by two core enzymes, Dicer and Argonaute, for accomplishing a tailored transcriptional and post-transcriptional gene regulation. Dicer, an RNase III enzyme, initiates the RNAi pathway, plays a pivotal role in fighting infection against pathogens, and acts as a housekeeping enzyme for cellular homeostasis. Here, we review structure-based functional insights of Dicer and its domains present in a diverse group of organisms. Although Dicer and its domains are evolutionarily conserved from microsporidian parasites to humans, recent cryo-electron microscopy structures of Homo sapiens Dicer and Drosophila melanogaster Dicer-2 suggest characteristic variations in the mechanism of the dsRNA substrate recognition. Interestingly, the necessity for more than one functionally distinct Dicer paralogs in insects and plants compared with a single Dicer in other eukaryotic life forms implies Dicer’s role in the interplay of RNAi and other defense mechanisms. Based on the structural and mechanistic information obtained during the last decade, we aim to highlight the significance of key Dicer domains that are crucial to Dicer specific recognition and precise cleavage of dsRNA substrates. Further, the role of Dicer in the formation of Argonaute-based RNA-induced silencing complex (RISC) assembly formation, Dicer’s ability to regulate a complex protein interaction network, and its role in other cellular processes, as well as its therapeutic potentials, are emphasized.
Collapse
Affiliation(s)
- Sneha Paturi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Mandar V Deshmukh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| |
Collapse
|
23
|
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11:43. [PMID: 33632341 PMCID: PMC7905430 DOI: 10.1186/s13578-021-00552-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called "competing endogenous RNA" (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future.
Collapse
Affiliation(s)
- Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farokh Karimi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021; 698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/21/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion injury (IRI) initiates from oxidative stress caused by lack of blood supply and subsequent reperfusion. It is often associated with sterile inflammation, cell death and microvascular dysfunction, which ultimately results in myocardial, cerebral and hepatic IRIs. Reportedly, deregulation of Nrf2 pathway plays a significant role in the oxidative stress-induced IRIs. Further, microRNAs (miRNAs/miRs) are proved to regulate the expression and activation of Nrf2 by targeting either the 3'-UTR or the upstream regulators of Nrf2. Additionally, compounds (crocin, ZnSO4 and ginsenoside Rg1) that modulate the levels of the Nrf2-regulating miRNAs were found to exhibit a protective effect against IRIs of different organs. Therefore, the current review briefs the impact of ischemia reperfusion (I/R) pathogenesis in various organs, role of miRNAs in the regulation of Nrf2 and the I/R protective effect of compounds that alter their expression.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
25
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Varley AJ, Desaulniers JP. Chemical strategies for strand selection in short-interfering RNAs. RSC Adv 2021; 11:2415-2426. [PMID: 35424193 PMCID: PMC8693850 DOI: 10.1039/d0ra07747j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Therapeutic small interfering RNAs (siRNAs) are double stranded RNAs capable of potent and specific gene silencing through activation of the RNA interference (RNAi) pathway. The potential of siRNA drugs has recently been highlighted by the approval of multiple siRNA therapeutics. These successes relied heavily on chemically modified nucleic acids and their impact on stability, delivery, potency, and off-target effects. Despite remarkable progress, clinical trials still face failure due to off-target effects such as off-target gene dysregulation. Each siRNA strand can downregulate numerous gene targets while also contributing towards saturation of the RNAi machinery, leading to the upregulation of miRNA-repressed genes. Eliminating sense strand uptake effectively reduces off-target gene silencing and helps limit the disruption to endogenous regulatory mechanisms. Therefore, our understanding of strand selection has a direct impact on the success of future siRNA therapeutics. In this review, the approaches used to improve strand uptake are discussed and effective methods are summarized.
Collapse
Affiliation(s)
- Andrew J Varley
- Faculty of Science, University of Ontario Institute of Technology Oshawa Ontario L1G 0C5 Canada +1 905 721 3304 +1 905 721 8668 (ext. 3621)
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology Oshawa Ontario L1G 0C5 Canada +1 905 721 3304 +1 905 721 8668 (ext. 3621)
| |
Collapse
|
27
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
28
|
Pokornowska M, Milewski MC, Ciechanowska K, Szczepańska A, Wojnicka M, Radogostowicz Z, Figlerowicz M, Kurzynska-Kokorniak A. The RNA-RNA base pairing potential of human Dicer and Ago2 proteins. Cell Mol Life Sci 2020; 77:3231-3244. [PMID: 31655860 PMCID: PMC7391396 DOI: 10.1007/s00018-019-03344-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022]
Abstract
The ribonuclease Dicer produces microRNAs (miRNAs) and small interfering RNAs that are handed over to Ago proteins to control gene expression by targeting complementary sequences within transcripts. Interestingly, a growing number of reports have demonstrated that the activity of Dicer may extend beyond the biogenesis of small regulatory RNAs. Among them, a report from our latest studies revealed that human Dicer facilitates base pairing of complementary sequences present in two nucleic acids, thus acting as a nucleic acid annealer. Accordingly, in this manuscript, we address how RNA structure influences the annealing activity of human Dicer. We show that Dicer supports hybridization between a small RNA and a complementary sequence of a longer RNA in vitro, even when both complementary sequences are trapped within secondary structures. Moreover, we show that under applied conditions, human Ago2, a core component of RNA-induced silencing complex, displays very limited annealing activity. Based on the available data from new-generation sequencing experiments regarding the RNA pool bound to Dicer in vivo, we show that multiple Dicer-binding sites within mRNAs also contain miRNA targets. Subsequently, we demonstrate in vitro that Dicer but not Ago2 can anneal miRNA to its target present within mRNA. We hypothesize that not all miRNA duplexes are handed over to Ago proteins. Instead, miRNA-Dicer complexes could target specific sequences within transcripts and either compete or cooperate for binding sites with miRNA-Ago complexes. Thus, not only Ago but also Dicer might be directly involved in the posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- Maria Pokornowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek C Milewski
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Kinga Ciechanowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Agnieszka Szczepańska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marta Wojnicka
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Ziemowit Radogostowicz
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965, Poznan, Poland
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
29
|
Tsubaki K, Hammill ML, Varley AJ, Kitamura M, Okauchi T, Desaulniers JP. Synthesis and Evaluation of Neutral Phosphate Triester Backbone-Modified siRNAs. ACS Med Chem Lett 2020; 11:1457-1462. [PMID: 32676154 DOI: 10.1021/acsmedchemlett.0c00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022] Open
Abstract
Two unsymmetrical dinucleotide phosphate triesters were synthesized via transesterification from tris(2,2,2-trifluoroethyl) phosphate. The protected triesters were phosphytilated to generate phosphoramidites for solid-phase oligonucleotide synthesis. Neutral phenylethyl phosphate-modified short-interfering RNAs (siRNAs) were synthesized and evaluated for their gene-silencing ability, siRNA strand selection, and resistance to nucleases. These backbone-modified phosphate triester siRNAs offer many improvements compared to natural unmodified siRNAs.
Collapse
Affiliation(s)
- Kouta Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Matthew L. Hammill
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Andrew J. Varley
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|
30
|
Wu J, Yang J, Cho WC, Zheng Y. Argonaute proteins: Structural features, functions and emerging roles. J Adv Res 2020; 24:317-324. [PMID: 32455006 PMCID: PMC7235612 DOI: 10.1016/j.jare.2020.04.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Argonaute proteins are highly conserved in almost all organisms. They not only involve in the biogenesis of small regulatory RNAs, but also regulate gene expression and defend against foreign pathogen invasion via small RNA-mediated gene silencing pathways. As a key player in these pathways, the abnormal expression and/or mis-modifications of Argonaute proteins lead to the disorder of small RNA biogenesis and functions, thus influencing multiply biological processes and disease development, especially cancer. In this review, we focus on the post-translational modifications and novel functions of Argonaute proteins in alternative splicing, host defense and genome editing.
Collapse
Key Words
- AKT3, AKT serine/threonine kinase 3
- Argonaute protein
- CCR4-NOT, carbon catabolite repressor 4-negative on TATA
- CRISPR-Cas9, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (cas9)
- DGCR8, DiGeorge syndrome critical region gene 8
- EGFR, epidermal growth factor receptor
- GW182 protein, glycine/tryptophan repeats-containing protein with molecular weight of 182 kDa
- H3K9, histone H3 lysine 9
- Hsp70/90, heat shock proteins 70/90
- JEV, Japanese encephalitis virus
- KRAS, Kirsten rat sarcoma oncogene
- P4H, prolyl 4-hydroxylase
- PAM, protospacer adjacent motif
- PAZ, PIWI-argonaute-zwille
- PIWI, P-element-induced wimpy testis
- Post-translational modification
- RISCs, small RNA-induced silencing complexes
- Small RNA
- TRBP, the transactivating response (TAR) RNA-binding protein
- TRIM71/LIN41, tripartite motif-containing 71, known as Lin41
- WSSV, white spot syndrome virus
- miRNAs
- piRNAs
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
31
|
Hansen SR, Aderounmu AM, Donelick HM, Bass BL. Dicer's Helicase Domain: A Meeting Place for Regulatory Proteins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:185-193. [PMID: 32179591 PMCID: PMC7384945 DOI: 10.1101/sqb.2019.84.039750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The function of Dicer’s helicase domain has been enigmatic since its discovery. Why do only some Dicers require ATP, despite a high degree of sequence conservation in their helicase domains? We discuss evolutionary considerations based on differences between vertebrate and invertebrate antiviral defense, and how the helicase domain has been co-opted in extant organisms as the binding site for accessory proteins. Many accessory proteins are double-stranded RNA binding proteins, and we propose models for how they modulate Dicer function and catalysis.
Collapse
Affiliation(s)
- Sarah R Hansen
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Adedeji M Aderounmu
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Helen M Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| |
Collapse
|
32
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 690] [Impact Index Per Article: 172.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
33
|
Zheng B, Mai Q, Jiang J, Zhou Q. The Therapeutic Potential of Small Activating RNAs for Colorectal Carcinoma. Curr Gene Ther 2019; 19:140-146. [PMID: 31284860 DOI: 10.2174/1566523219666190708111404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022]
Abstract
Small double-strand RNAs have been recognized as master regulators of gene expression.
In contrast to the evolutionary conserved RNA interference machinery, which degrades or inhibits the
translation of target mRNAs, small activating RNA (saRNA) activates the specific gene in a target dependent
manner through a similar mechanism as RNAi. Recently, saRNA mediated expression regulation
of specific genes has been extensively studied in cancer researches. Of particular interest is the
application of the RNA mediated gene activation within colorectal cancer (CRC) development, due to
the high incidence of the CRC. In this review, we summarize the current knowledge of saRNA mediated
genetic activation and its underlying mechanisms. Furthermore, we highlight the advantages of
the utilization of saRNAs induced gene expression as an investigating tool in colorectal cancer research.
Finally, the possibility and the challenge of the saRNA application as a potential therapy for
colorectal cancer are addressed.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - QingYun Mai
- The Center for Reproductive medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - JinXing Jiang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - QinQin Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
MicroRNA Biogenesis Pathway Genes Are Deregulated in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20184460. [PMID: 31510013 PMCID: PMC6770105 DOI: 10.3390/ijms20184460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Each step of their production and maturation has to be strictly regulated, as any disruption of control mechanisms may lead to cancer. Thus, we have measured the expression of 19 genes involved in miRNAs biogenesis pathway in tumor tissues of 239 colorectal cancer (CRC) patients, 17 CRC patients with liver metastases and 239 adjacent tissues using real-time PCR. Subsequently, the expression of analyzed genes was correlated with the clinical-pathological features as well as with the survival of patients. In total, significant over-expression of all analyzed genes was observed in tumor tissues as well as in liver metastases except for LIN28A/B. Furthermore, it was shown that the deregulated levels of some of the analyzed genes significantly correlate with tumor stage, grade, location, size and lymph node positivity. Finally, high levels of DROSHA and TARBP2 were associated with shorter disease-free survival, while the over-expression of XPO5, TNRC6A and DDX17 was detected in tissues of patients with shorter overall survival and poor prognosis. Our data indicate that changed levels of miRNA biogenesis genes may contribute to origin as well as progression of CRC; thus, these molecules could serve as potential therapeutic targets.
Collapse
|
35
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
36
|
Abstract
Small RNAs govern almost every biological process in eukaryotes associating with the Argonaute (AGO) proteins to form the RNA-induced silencing complex (mRISC). AGO proteins constitute the core of RISCs with different members having variety of protein-binding partners and biochemical properties. This review focuses on the AGO subfamily of the AGOs that are ubiquitously expressed and are associated with small RNAs. The structure, function and role of the AGO proteins in the cell is discussed in detail.
Collapse
Affiliation(s)
- Saife Niaz
- Department of Biotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
37
|
Lisowiec-Wąchnicka J, Bartyś N, Pasternak A. A systematic study on the influence of thermodynamic asymmetry of 5'-ends of siRNA duplexes in relation to their silencing potency. Sci Rep 2019; 9:2477. [PMID: 30792489 PMCID: PMC6385221 DOI: 10.1038/s41598-018-36620-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023] Open
Abstract
siRNA molecules possess high potential as molecular tools and can be used as effective therapeutics in humans. One of the key steps in the action of these molecules is the choice of antisense strand by the RNA-induced silencing complex (RISC). To explain this process, we verified the theory which states that antisense strand selection is based on the thermodynamically less stable 5′ end of siRNA. Based on the studies presented herein, we observed that for the tested siRNA duplexes, the difference in the thermodynamic stability of the terminal, penultimate and pre-penultimate pairs in the duplex siRNA is not the dominant factor in antisense strand selection. We found that both strands in each tested siRNA molecule are used as an antisense strand. The introduction of modified nucleotides, whose impact on the thermodynamic stability of siRNA duplexes was studied, results in changes in antisense strand selection by the RISC complex. The presence of a modified residue often caused predominant selection of only one antisense strand which is at variance with the theory of siRNA strand bias.
Collapse
Affiliation(s)
- Jolanta Lisowiec-Wąchnicka
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Bartyś
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
38
|
Hrdlicka HC, Lee SK, Delany AM. MicroRNAs are Critical Regulators of Osteoclast Differentiation. CURRENT MOLECULAR BIOLOGY REPORTS 2019; 5:65-74. [PMID: 30800633 PMCID: PMC6380495 DOI: 10.1007/s40610-019-0116-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Our goal is to comprehensively review the most recent reports of microRNA (miRNA) regulation of osteoclastogenesis. We highlight validated miRNA-target interactions and their place in the signaling networks controlling osteoclast differentiation and function. RECENT FINDINGS Using unbiased approaches to identify miRNAs of interest and reporter-3'UTR assays to validate interactions, recent studies have elucidated the impact of specific miRNA-mRNA interactions during in vitro osteoclastogenesis. There has been a focus on signaling mediators downstream of the RANK and CSF1R signaling, and genes essential for differentiation and function. For example, several miRNAs directly and indirectly target the master osteoclast transcription factor, Nfatc1 (e.g. miR-124 and miR-214) and Rho-GTPases, Cdc42 and Rac1 (e.g. miR-29 family). SUMMARY Validating miRNA expression patterns, targets, and impact in osteoclasts and other skeletal cells is critical for understanding basic bone biology and for fulfilling the therapeutic potential of miRNA-based strategies in the treatment bone diseases.
Collapse
Affiliation(s)
| | | | - Anne M. Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT 03030
| |
Collapse
|
39
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
40
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
41
|
miRNA arm switching identifies novel tumour biomarkers. EBioMedicine 2018; 38:37-46. [PMID: 30425004 PMCID: PMC6306400 DOI: 10.1016/j.ebiom.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background microRNAs have been reported to play critical roles in cancer and to have potential as diagnostic biomarkers. During miRNA biogenesis, one strand of the miRNA hairpin precursor is preferentially selected as a functionally mature miRNA, while the other strand is typically degraded. Arm switching occurs when the strand preference is changed. This preference can be different and can change dynamically depending upon the species, tissue types, or development stages. Due to recent advances in next-generation sequencing methods, arm switching has been observed in a variety of cancers. Methods A tumour miRNA-Seq dataset was collected from The Cancer Genome Atlas (TCGA). The support vector machine (SVM) method combined with 5-fold cross validation was applied to select the best combination of arm-switched miRNA tumour markers. Survival analysis was also applied to identify patient survival associated miRNA markers. Findings We observed 51 arm-switched miRNAs and of these, 7 were associated with patient survival. Twenty-three 1-combination arm switching miRNAs with excellent diagnostic value were identified. Interestingly, ovarian cancer showed a significant difference in arm switching pattern compared with 32 other cancers. Interpretation These results suggest that arm switching miRNAs could be used as potential biomarkers for various cancers. Fund This work was partially supported by the National Natural Science Foundation of China (no. 61472158, 61572227), and University of Macau Faculty of Health Sciences (MYRG2016-00101-FHS).
Collapse
|
42
|
Ding Z, Fang L, Yuan S, Zhao L, Wang X, Long S, Wang M, Wang D, Foda MF, Xiao S. The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/ MDA5 activation. Oncotarget 2018; 8:49655-49670. [PMID: 28591694 PMCID: PMC5564796 DOI: 10.18632/oncotarget.17912] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a huge threat to both humans and animals and have evolved elaborate mechanisms to antagonize interferons (IFNs). Nucleocapsid (N) protein is the most abundant viral protein in CoV-infected cells, and has been identified as an innate immunity antagonist in several CoVs, including mouse hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV. However, the underlying molecular mechanism(s) remain unclear. In this study, we found that MHV N protein inhibited Sendai virus and poly(I:C)-induced IFN-β production by targeting a molecule upstream of retinoic acid-induced gene I (RIG-I) and melanoma differentiation gene 5 (MDA5). Further studies showed that both MHV and SARS-CoV N proteins directly interacted with protein activator of protein kinase R (PACT), a cellular dsRNA-binding protein that can bind to RIG-I and MDA5 to activate IFN production. The N–PACT interaction sequestered the association of PACT and RIG-I/MDA5, which in turn inhibited IFN-β production. However, the N proteins from porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV), which are also classified in the order Nidovirales, did not interact and counteract with PACT. Taken together, our present study confirms that both MHV and SARS-CoV N proteins can perturb the function of cellular PACT to circumvent the innate antiviral response. However, this strategy does not appear to be used by all CoVs N proteins.
Collapse
Affiliation(s)
- Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
43
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
44
|
Masliah G, Maris C, König SL, Yulikov M, Aeschimann F, Malinowska AL, Mabille J, Weiler J, Holla A, Hunziker J, Meisner-Kober N, Schuler B, Jeschke G, Allain FHT. Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains. EMBO J 2018; 37:embj.201797089. [PMID: 29449323 PMCID: PMC5852647 DOI: 10.15252/embj.201797089] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/23/2022] Open
Abstract
The accurate cleavage of pre‐micro(mi)RNAs by Dicer and mi/siRNA guide strand selection are important steps in forming the RNA‐induced silencing complex (RISC). The role of Dicer binding partner TRBP in these processes remains poorly understood. Here, we solved the solution structure of the two N‐terminal dsRNA binding domains (dsRBDs) of TRBP in complex with a functionally asymmetric siRNA using NMR, EPR, and single‐molecule spectroscopy. We find that siRNA recognition by the dsRBDs is not sequence‐specific but rather depends on the RNA shape. The two dsRBDs can swap their binding sites, giving rise to two equally populated, pseudo‐symmetrical complexes, showing that TRBP is not a primary sensor of siRNA asymmetry. Using our structure to model a Dicer‐TRBP‐siRNA ternary complex, we show that TRBP's dsRBDs and Dicer's RNase III domains bind a canonical 19 base pair siRNA on opposite sides, supporting a mechanism whereby TRBP influences Dicer‐mediated cleavage accuracy by binding the dsRNA region of the pre‐miRNA during Dicer cleavage.
Collapse
Affiliation(s)
- Gregoire Masliah
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Christophe Maris
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | | | - Anna L Malinowska
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Julie Mabille
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jan Weiler
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andrea Holla
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Juerg Hunziker
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Benjamin Schuler
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
45
|
Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference. Proc Natl Acad Sci U S A 2018; 115:E2696-E2705. [PMID: 29432194 DOI: 10.1073/pnas.1719565115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Small interfering RNA (siRNA) represents a promising class of inhibitors in both fundamental research and the clinic. Numerous delivery vehicles have been developed to facilitate siRNA delivery. Nevertheless, achieving highly potent RNA interference (RNAi) toward clinical translation requires efficient formation of RNA-induced gene-silencing complex (RISC) in the cytoplasm. Here we coencapsulate siRNA and the central RNAi effector protein Argonaute 2 (Ago2) via different delivery carriers as a platform to augment RNAi. The physical clustering between siRNA and Ago2 is found to be indispensable for enhanced RNAi. Moreover, by utilizing polyamines bearing the same backbone but distinct cationic side-group arrangements of ethylene diamine repeats as the delivery vehicles, we find that the molecular structure of these polyamines modulates the degree of siRNA/Ago2-mediated improvement of RNAi. We apply this strategy to silence the oncogene STAT3 and significantly prolong survival in mice challenged with melanoma. Our findings suggest a paradigm for RNAi via the synergistic coassembly of RNA with helper proteins.
Collapse
|
46
|
Kai K, Dittmar RL, Sen S. Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 2017; 78:22-36. [PMID: 29258963 DOI: 10.1016/j.semcdb.2017.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression predominantly by inhibiting transcription and/or promoting degradation of target mRNAs also in addition to being involved in non-canonical mechanisms regulating transcription, translation and cell signaling processes. Extracellular secretory miRNAs, either in complex with specific proteins or encapsulated in microvesicles called exosomes, are transported between cells as means of intercellular communication. Secretory miRNAs in circulation remain functional after delivery to recipient cells, regulating target genes and their corresponding signaling pathways. Cancer cell secreted miRNA-mediated intercellular communication affects physiological processes associated with the disease, such as, angiogenesis, metabolic reprogramming, immune modulation, metastasis, and chemo-resistance. Given the stability of miRNAs in body fluids and their well-documented roles in deregulating cancer-relevant genetic pathways, there is considerable interest in developing secretory miRNAs as liquid biopsy biomarkers for detection, diagnosis and prognostication of cancer. In this review, we discuss salient features of miRNA biogenesis, secretion and function in cancer as well as the current state of secretory miRNA isolation and profiling methods. Furthermore, we discuss the challenges and opportunities of secretory miRNA biomarker assay development, which need to be addressed for clinical applications.
Collapse
Affiliation(s)
- Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Rachel L Dittmar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States.
| |
Collapse
|
47
|
Tants JN, Fesser S, Kern T, Stehle R, Geerlof A, Wunderlich C, Juen M, Hartlmüller C, Böttcher R, Kunzelmann S, Lange O, Kreutz C, Förstemann K, Sattler M. Molecular basis for asymmetry sensing of siRNAs by the Drosophila Loqs-PD/Dcr-2 complex in RNA interference. Nucleic Acids Res 2017; 45:12536-12550. [PMID: 29040648 PMCID: PMC5716069 DOI: 10.1093/nar/gkx886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
RNA interference defends against RNA viruses and retro-elements within an organism's genome. It is triggered by duplex siRNAs, of which one strand is selected to confer sequence-specificity to the RNA induced silencing complex (RISC). In Drosophila, Dicer-2 (Dcr-2) and the double-stranded RNA binding domain (dsRBD) protein R2D2 form the RISC loading complex (RLC) and select one strand of exogenous siRNAs according to the relative thermodynamic stability of base-pairing at either end. Through genome editing we demonstrate that Loqs-PD, the Drosophila homolog of human TAR RNA binding protein (TRBP) and a paralog of R2D2, forms an alternative RLC with Dcr-2 that is required for strand choice of endogenous siRNAs in S2 cells. Two canonical dsRBDs in Loqs-PD bind to siRNAs with enhanced affinity compared to miRNA/miRNA* duplexes. Structural analysis, NMR and biophysical experiments indicate that the Loqs-PD dsRBDs can slide along the RNA duplex to the ends of the siRNA. A moderate but notable binding preference for the thermodynamically more stable siRNA end by Loqs-PD alone is greatly amplified in complex with Dcr-2 to initiate strand discrimination by asymmetry sensing in the RLC.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Stephanie Fesser
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Thomas Kern
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Ralf Stehle
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Wunderlich
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Michael Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Hartlmüller
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Romy Böttcher
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Stefan Kunzelmann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Oliver Lange
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Förstemann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
48
|
Saraiva C, Esteves M, Bernardino L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol 2017; 141:118-131. [DOI: 10.1016/j.bcp.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
|
49
|
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference - a review. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2017; 164:155-175. [PMID: 29200471 PMCID: PMC5697603 DOI: 10.1111/eea.12575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
Collapse
Affiliation(s)
- Michael Darrington
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | | | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| |
Collapse
|
50
|
Structural Foundations of RNA Silencing by Argonaute. J Mol Biol 2017; 429:2619-2639. [PMID: 28757069 DOI: 10.1016/j.jmb.2017.07.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Nearly every cell in the human body contains a set of programmable gene-silencing proteins named Argonaute. Argonaute proteins mediate gene regulation by small RNAs and thereby contribute to cellular homeostasis during diverse physiological process, such as stem cell maintenance, fertilization, and heart development. Over the last decade, remarkable progress has been made toward understanding Argonaute proteins, small RNAs, and their roles in eukaryotic biology. Here, we review current understanding of Argonaute proteins from a structural prospective and discuss unanswered questions surrounding this fascinating class of enzymes.
Collapse
|