1
|
Matsubara S, Shoji S, Tamiaki H. Biomimetic light-harvesting antennas via the self-assembly of chemically programmed chlorophylls. Chem Commun (Camb) 2024; 60:12513-12524. [PMID: 39376203 DOI: 10.1039/d4cc04363d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The photosynthetic pigment "chlorophyll" possesses attractive photophysical properties, including efficient sunlight absorption, photoexcited energy transfer, and charge separation, which are advantageous for applications for photo- and electro-functional materials such as artificial photosynthesis and solar cells. However, these functions cannot be realized by individual chlorophyll molecules alone; rather, they are achieved by the formation of sophisticated supramolecules through the self-assembly of the pigments. Here, we present strategies for constructing and developing artificial light-harvesting systems by mimicking photosynthetic antenna complexes through the highly ordered supramolecular self-assembly of synthetic dyes, particularly chlorophyll derivatives.
Collapse
Affiliation(s)
- Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan
| | - Sunao Shoji
- Faculty of Engineering, Nara Women's University, Nara 630-8506, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
2
|
Valzelli A, Boschetti A, Mattiotti F, Kargol A, Green C, Borgonovi F, Celardo GL. Large Scale Simulations of Photosynthetic Antenna Systems: Interplay of Cooperativity and Disorder. J Phys Chem B 2024; 128:9643-9655. [PMID: 39351757 DOI: 10.1021/acs.jpcb.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Large-scale simulations of light-matter interaction in natural photosynthetic antenna complexes containing more than one hundred thousands of chlorophyll molecules, comparable with natural size, have been performed. Photosynthetic antenna complexes present in Green sulfur bacteria and Purple bacteria have been analyzed using a radiative non-Hermitian Hamiltonian, well-known in the field of quantum optics, instead of the widely used dipole-dipole Frenkel Hamiltonian. This approach allows us to study ensembles of emitters beyond the small volume limit (system size much smaller than the absorbed wavelength), where the Frenkel Hamiltonian fails. When analyzed on a large scale, such structures display superradiant states much brighter than their single components. An analysis of the robustness to static disorder and dynamical (thermal) noise shows that exciton coherence in the whole photosynthetic complex is larger than the coherence found in its parts. This provides evidence that the photosynthetic complex as a whole plays a predominant role in sustaining coherences in the system even at room temperature. Our results allow a better understanding of natural photosynthetic antennae and could drive experiments to verify how the response to electromagnetic radiation depends on the size of the photosynthetic antenna.
Collapse
Affiliation(s)
- Alessia Valzelli
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Firenze, 50139 Firenze, Italy
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze e CSDC, 50019 Sesto Fiorentino,Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50019 Sesto Fiorentino,Italy
| | - Alice Boschetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Università degli Studi di Firenze, 50019 Sesto Fiorentino,Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Torino, Italy
| | - Francesco Mattiotti
- CESQ and ISIS (UMR 7006), aQCess, University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - Armin Kargol
- Department of Physics, Loyola University New Orleans, New Orleans, Louisiana 70118, United States
| | - Coleman Green
- Department of Physics, Loyola University New Orleans, New Orleans, Louisiana 70118, United States
| | - Fausto Borgonovi
- Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, 25133 Brescia,Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano,Italy
| | - G Luca Celardo
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze e CSDC, 50019 Sesto Fiorentino,Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50019 Sesto Fiorentino,Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Università degli Studi di Firenze, 50019 Sesto Fiorentino,Italy
| |
Collapse
|
3
|
Kushkevych I, Procházka V, Vítězová M, Dordević D, Abd El-Salam M, Rittmann SKMR. Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments. Front Microbiol 2024; 15:1417714. [PMID: 39056005 PMCID: PMC11269200 DOI: 10.3389/fmicb.2024.1417714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
The bacterial light-dependent energy metabolism can be divided into two types: oxygenic and anoxygenic photosynthesis. Bacterial oxygenic photosynthesis is similar to plants and is characteristic for cyanobacteria. Bacterial anoxygenic photosynthesis is performed by anoxygenic phototrophs, especially green sulfur bacteria (GSB; family Chlorobiaceae) and purple sulfur bacteria (PSB; family Chromatiaceae). In anoxygenic photosynthesis, hydrogen sulfide (H2S) is used as the main electron donor, which differs from plants or cyanobacteria where water is the main source of electrons. This review mainly focuses on the microbiology of GSB, which may be found in water or soil ecosystems where H2S is abundant. GSB oxidize H2S to elemental sulfur. GSB possess special structures-chlorosomes-wherein photosynthetic pigments are located. Chlorosomes are vesicles that are surrounded by a lipid monolayer that serve as light-collecting antennas. The carbon source of GSB is carbon dioxide, which is assimilated through the reverse tricarboxylic acid cycle. Our review provides a thorough introduction to the comparative eco-physiology of GSB and discusses selected application possibilities of anoxygenic phototrophs in the fields of environmental management, bioremediation, and biotechnology.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vít Procházka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czechia
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| |
Collapse
|
4
|
Malina T, Bína D, Collins AM, Alster J, Pšenčík J. Efficient two-step excitation energy transfer in artificial light-harvesting antenna based on bacteriochlorophyll aggregates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 254:112891. [PMID: 38555841 DOI: 10.1016/j.jphotobiol.2024.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
Chlorosomes of green photosynthetic bacteria are large light-harvesting complexes enabling these organisms to survive at extremely low-light conditions. Bacteriochlorophylls found in chlorosomes self-organize and are ideal candidates for use in biomimetic light-harvesting in artificial photosynthesis and other applications for solar energy utilization. Here we report on the construction and characterization of an artificial antenna consisting of bacteriochlorophyll c co-aggregated with β-carotene, which is used to extend the light-harvesting spectral range, and bacteriochlorophyll a, which acts as a final acceptor for excitation energy. Efficient energy transfer between all three components was observed by means of fluorescence spectroscopy. The efficiency varies with the β-carotene content, which increases the average distance between the donor and acceptor in both energy transfer steps. The efficiency ranges from 89 to 37% for the transfer from β-carotene to bacteriochlorophyll c, and from 93 to 69% for the bacteriochlorophyll c to bacteriochlorophyll a step. A significant part of this study was dedicated to a development of methods for determination of energy transfer efficiency. These methods may be applied also for study of chlorosomes and other pigment complexes.
Collapse
Affiliation(s)
- Tomáš Malina
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic & Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Aaron M Collins
- Department of Environmental and Physical Sciences, Southern New Hampshire University, Manchester, NH, USA
| | - Jan Alster
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Yakovlev AG, Taisova AS, Fetisova ZG. Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2084-2093. [PMID: 38462452 DOI: 10.1134/s0006297923120118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024]
Abstract
In green photosynthetic bacteria, light is absorbed by bacteriochlorophyll (BChl) c/d/e oligomers, which are located in chlorosomes - unique structures created by Nature to collect the energy of very weak light fluxes. Using coherent femtosecond spectroscopy at cryogenic temperature, we detected and studied low-frequency vibrational motions of BChl c oligomers in chlorosomes of the green bacteria Chloroflexus (Cfx.) aurantiacus. The objects of the study were chlorosomes isolated from the bacterial cultures grown under different light intensity. It was found that the Fourier spectrum of low-frequency coherent oscillations in the Qy band of BChl c oligomers depends on the light intensity used for the growth of bacteria. It turned out that the number of low-frequency vibrational modes of chlorosomes increases as illumination under which they were cultivated decreases. Also, the frequency range within which these modes are observed expands, and frequencies of the most modes change. Theoretical modeling of the obtained data and analysis of the literature led to conclusion that the structural basis of Cfx. aurantiacus chlorosomes are short linear chains of BChl c combined into more complex structures. Increase in the length of these chains in chlorosomes grown under weaker light leads to the observed changes in the spectrum of vibrations of BChl c oligomers. This increase is an effective mechanism for bacteria adaptation to changing external conditions.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
6
|
Yakovlev AG, Taisova AS, Fetisova ZG. Femtosecond Exciton Relaxation in Chlorosomes of the Photosynthetic Green Bacterium Chloroflexus aurantiacus. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:704-715. [PMID: 37331716 DOI: 10.1134/s0006297923050139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 06/20/2023]
Abstract
Process of photosynthesis in the green bacteria Chloroflexus (Cfx.) aurantiacus starts from absorption of light by chlorosomes, peripheral antennas consisting of thousands of bacteriochlorophyll c (BChl c) molecules combined into oligomeric structures. In this case, the excited states are formed in BChl c, energy of which migrates along the chlorosome towards the baseplate and further to the reaction center, where the primary charge separation occurs. Energy migration is accompanied by non-radiative electronic transitions between the numerous exciton states, that is, exciton relaxation. In this work, we studied dynamics of the exciton relaxation in Cfx. aurantiacus chlorosomes using differential femtosecond spectroscopy at cryogenic temperature (80 K). Chlorosomes were excited by 20-fs light pulses at wavelengths in the range from 660 to 750 nm, and differential (light-dark) absorption kinetics were measured at a wavelength of 755 nm. Mathematical analysis of the obtained data revealed kinetic components with characteristic times of 140, 220, and 320 fs, which are responsible for exciton relaxation. As the excitation wavelength decreased, the number and relative contribution of these components increased. Theoretical modelling of the obtained data was carried out based of the cylindrical model of BChl c. Nonradiative transitions between the groups of exciton bands were described by a system of kinetic equations. The model that takes into account energy and structural disorder of chlorosomes turned out to be the most adequate.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
7
|
Erić V, Li X, Dsouza L, Frehan SK, Huijser A, Holzwarth AR, Buda F, Sevink GJA, de Groot HJM, Jansen TLC. Manifestation of Hydrogen Bonding and Exciton Delocalization on the Absorption and Two-Dimensional Electronic Spectra of Chlorosomes. J Phys Chem B 2023; 127:1097-1109. [PMID: 36696537 PMCID: PMC9923760 DOI: 10.1021/acs.jpcb.2c07143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chlorosomes are supramolecular aggregates that contain thousands of bacteriochlorophyll molecules. They perform the most efficient ultrafast excitation energy transfer of all natural light-harvesting complexes. Their broad absorption band optimizes light capture. In this study, we identify the microscopic sources of the disorder causing the spectral width and reveal how it affects the excited state properties and the optical response of the system. We combine molecular dynamics, quantum chemical calculations, and response function calculations to achieve this goal. The predicted linear and two-dimensional electronic spectra are found to compare well with experimental data reproducing all key spectral features. Our analysis of the microscopic model reveals the interplay of static and dynamic disorder from the molecular perspective. We find that hydrogen bonding motifs are essential for a correct description of the spectral line shape. Furthermore, we find that exciton delocalization over tens to hundreds of molecules is consistent with the two-dimensional electronic spectra.
Collapse
Affiliation(s)
- Vesna Erić
- University
of Groningen, Zernike Institute
for Advanced Materials, 9747
AG Groningen, The Netherlands
| | - Xinmeng Li
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
| | - Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Sean K. Frehan
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Alfred R. Holzwarth
- Department
of Biophysical Chemistry, Max Planck Institute
for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas L. C. Jansen
- University
of Groningen, Zernike Institute
for Advanced Materials, 9747
AG Groningen, The Netherlands,
| |
Collapse
|
8
|
Yakovlev AG, Taisova AS, Fetisova ZG. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2022; 154:291-302. [PMID: 36115930 DOI: 10.1007/s11120-022-00942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chlorosomes of green bacteria can be considered as a prototype of future artificial light-harvesting devices due to their unique property of self-assembly of a large number of bacteriochlorophyll (BChl) c/d/e molecules into compact aggregates. The presence of carotenoids (Cars) in chlorosomes is very important for photoprotection, light harvesting and structure stabilization. In this work, we studied for the first time the electrochromic band shift (Stark effect) in Cars of the phototrophic filamentous green bacterium Chloroflexus (Cfx.) aurantiacus induced by fs light excitation of the main pigment, BChl c. The high accuracy of the spectral measurements permitted us to extract a small wavy spectral feature, which, obviously, can be associated with the dynamic shift of the Car absorption band. A global analysis of spectroscopy data and theoretical modeling of absorption spectra showed that near 60% of Cars exhibited a red Stark shift of ~ 25 cm-1 and the remaining 40% exhibited a blue shift. We interpreted this finding as evidence of various orientations of Car in chlorosomes. We estimated the average value of the light-induced electric field strength in the place of Car molecules as ~ 106 V/cm and the average distance between Car and the neighboring BChl c as ~ 10 Å. We concluded that the dynamics of the Car electrochromic band shift mainly reflected the dynamics of exciton migration through the chlorosome toward the baseplate within ~ 1 ps. Our work has unambiguously shown that Cars are sensitive indicators of light-induced internal electric fields in chlorosomes.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| |
Collapse
|
9
|
Quenzel T, Timmer D, Gittinger M, Zablocki J, Zheng F, Schiek M, Lützen A, Frauenheim T, Tretiak S, Silies M, Zhong JH, De Sio A, Lienau C. Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates. ACS NANO 2022; 16:4693-4704. [PMID: 35188735 DOI: 10.1021/acsnano.1c11398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.
Collapse
Affiliation(s)
- Thomas Quenzel
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Daniel Timmer
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Moritz Gittinger
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Jennifer Zablocki
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn 53121, Germany
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Manuela Schiek
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg 26111, Germany
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn 53121, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
- Beijing Computational Science Research Center (CSRC), Beijing 100193, China
- Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen 518110, China
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Martin Silies
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Institute for Lasers and Optics, University of Applied Sciences, Emden 26723, Germany
| | - Jin-Hui Zhong
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Antonietta De Sio
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Christoph Lienau
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg 26111, Germany
| |
Collapse
|
10
|
Kunsel T, Günther LM, Köhler J, Jansen TLC, Knoester J. Probing size variations of molecular aggregates inside chlorosomes using single-object spectroscopy. J Chem Phys 2021; 155:124310. [PMID: 34598584 DOI: 10.1063/5.0061529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigate the possibility to use single-object spectroscopy to probe size variations of the bacteriochlorophyll aggregates inside chlorosomes. Chlorosomes are the light-harvesting organelles of green sulfur and non-sulfur bacteria. They are known to be the most efficient light-harvesting systems in nature. Key to this efficiency is the organization of bacteriochlorophyll molecules in large self-assembled aggregates that define the secondary structure inside the chlorosomes. Many studies have been reported to elucidate the morphology of these aggregates and the molecular packing inside them. It is widely believed that tubular aggregates play an important role. Because the size (radius and length) of these aggregates affects the optical and excitation energy transport properties, it is of interest to be able to probe these quantities inside chlorosomes. We show that a combination of single-chlorosome linear polarization resolved spectroscopy and single-chlorosome circular dichroism spectroscopy may be used to access the typical size of the tubular aggregates within a chlorosome and, thus, probe possible variations between individual chlorosomes that may result, for instance, from different stages in growth or different growth conditions.
Collapse
Affiliation(s)
- T Kunsel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - L M Günther
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany
| | - J Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany
| | - T L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Yakovlev AG, Taisova AS, Fetisova ZG. Femtosecond excited-state dynamics in chlorosomal carotenoids of the photosynthetic bacterium Chloroflexus aurantiacus revealed by near infrared pump-probe spectroscopy. Phys Chem Chem Phys 2021; 23:12761-12770. [PMID: 34042141 DOI: 10.1039/d1cp00927c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In photosynthetic green bacteria, chlorosomes provide light harvesting with high efficiency. Chlorosomal carotenoids (Cars) participate in light harvesting together with the main pigment, bacteriochlorophyll (BChl) c/d/e. In the present work, we studied the excited-state dynamics in Cars from Chloroflexus (Cfx.) aurantiacus chlorosomes by near infrared pump-probe spectroscopy with 25 fs temporal resolution at room temperature. The S2 state of Cars was excited at a wavelength of ∼520 nm, and the absorption changes were probed at 860-1000 nm where the excited state absorption (ESA) of the Cars S2 state occurred. Global analysis of the spectroscopy data revealed an ultrafast (∼15 fs) and large (>130 nm) red shift of the S2 ESA spectrum together with the well-known S2 → S1 IC (∼190 fs) and Cars → BChl c EET (∼120 fs). The S2 lifetime was found to be ∼74 fs. Our findings are in line with earlier results on the excited-state dynamics in Cars in vitro. To explain the extremely fast S2 dynamics, we have tentatively proposed two alternative schemes. The first scheme assumed the formation of a vibrational wavepacket in the S2 state, the motion of which caused a dynamical red shift of the S2 ESA spectrum. The second scheme assumed the presence of two potential minima in the S2 state and incoherent energy transfer between them.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Alexandra S Taisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Zoya G Fetisova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation.
| |
Collapse
|
12
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
13
|
Malina T, Koehorst R, Bína D, Pšenčík J, van Amerongen H. Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photosynthetic bacteria. Sci Rep 2021; 11:8354. [PMID: 33863954 PMCID: PMC8052352 DOI: 10.1038/s41598-021-87664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Chlorosomes are the main light-harvesting complexes of green photosynthetic bacteria that are adapted to a phototrophic life at low-light conditions. They contain a large number of bacteriochlorophyll c, d, or e molecules organized in self-assembling aggregates. Tight packing of the pigments results in strong excitonic interactions between the monomers, which leads to a redshift of the absorption spectra and excitation delocalization. Due to the large amount of disorder present in chlorosomes, the extent of delocalization is limited and further decreases in time after excitation. In this work we address the question whether the excitonic interactions between the bacteriochlorophyll c molecules are strong enough to maintain some extent of delocalization even after exciton relaxation. That would manifest itself by collective spontaneous emission, so-called superradiance. We show that despite a very low fluorescence quantum yield and short excited state lifetime, both caused by the aggregation, chlorosomes indeed exhibit superradiance. The emission occurs from states delocalized over at least two molecules. In other words, the dipole strength of the emissive states is larger than for a bacteriochlorophyll c monomer. This represents an important functional mechanism increasing the probability of excitation energy transfer that is vital at low-light conditions. Similar behaviour was observed also in one type of artificial aggregates, and this may be beneficial for their potential use in artificial photosynthesis.
Collapse
Affiliation(s)
- Tomáš Malina
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Rob Koehorst
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands.,MicroSpectroscopy Research Facility, Wageningen University, Wageningen, The Netherlands
| | - David Bína
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands.,MicroSpectroscopy Research Facility, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
14
|
Wang Z, Suo B, Yin S, Zou W. Quantum Chemical Simulation of the Qy Absorption Spectrum of Zn Chlorin Aggregates for Artificial Photosynthesis. Molecules 2021; 26:1086. [PMID: 33669551 PMCID: PMC7922025 DOI: 10.3390/molecules26041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Zn chlorin (Znchl) is easy to synthesize and has similar optical properties to those of bacteriochlorophyll c in the nature, which is expected to be used as a light-harvesting antenna system in artificial photosynthesis. In order to further explore the optical characteristics of Znchl, various sizes of a parallel layered Znchl-aggregate model and the THF-Znchl explicit solvent monomer model were constructed in this study, and their Qy excited state properties were simulated by using time-dependent density functional theory (TDDFT) and exciton theory. For the Znchl monomer, with a combination of the explicit solvent model and the implicit solvation model based on density (SMD), the calculated Qy excitation energy agreed very well with the experimental one. The Znchl aggregates may be simplified to a Zn36 model to reproduce the experimental Qy absorption spectrum by the Förster coupling theory. The proposed Znchl aggregate model provides a good foundation for the future exploration of other properties of Znchl and simulations of artificial light-harvesting antennas. The results also indicate that J-aggregrates along z-direction, due to intermolecular coordination bonds, are the dominant factor in extending the Qy band of Znchl into the near infrared region.
Collapse
Affiliation(s)
- Zhimo Wang
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China;
| | - Bingbing Suo
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China;
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China;
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China;
| |
Collapse
|
15
|
Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148396. [PMID: 33581107 DOI: 10.1016/j.bbabio.2021.148396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/14/2023]
Abstract
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104-105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400-900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100-270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.
Collapse
|
16
|
Günther LM, Knoester J, Köhler J. Limitations of Linear Dichroism Spectroscopy for Elucidating Structural Issues of Light-Harvesting Aggregates in Chlorosomes. Molecules 2021; 26:899. [PMID: 33572047 PMCID: PMC7914687 DOI: 10.3390/molecules26040899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Linear dichroism (LD) spectroscopy is a widely used technique for studying the mutual orientation of the transition-dipole moments of the electronically excited states of molecular aggregates. Often the method is applied to aggregates where detailed information about the geometrical arrangement of the monomers is lacking. However, for complex molecular assemblies where the monomers are assembled hierarchically in tiers of supramolecular structural elements, the method cannot extract well-founded information about the monomer arrangement. Here we discuss this difficulty on the example of chlorosomes, which are the light-harvesting aggregates of photosynthetic green-(non) sulfur bacteria. Chlorosomes consist of hundreds of thousands of bacteriochlorophyll molecules that self-assemble into secondary structural elements of curved lamellar or cylindrical morphology. We exploit data from polarization-resolved fluorescence-excitation spectroscopy performed on single chlorosomes for reconstructing the corresponding LD spectra. This reveals that LD spectroscopy is not suited for benchmarking structural models in particular for complex hierarchically organized molecular supramolecular assemblies.
Collapse
Affiliation(s)
- Lisa M. Günther
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany;
| | - Jasper Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany;
- Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
17
|
Yakovlev AG, Taisova AS, Fetisova ZG. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2020; 146:95-108. [PMID: 31939070 DOI: 10.1007/s11120-019-00707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Chlorosomes of green photosynthetic bacteria are the most amazing example of long-range ordered natural light-harvesting antennae. Chlorosomes are the largest among all known photosynthetic light-harvesting structures (~ 104-105 pigments in the aggregated state). The chlorosomal bacteriochlorophyll (BChl) c/d/e molecules are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Despite numerous investigations, a consensus regarding the spatial structure of chlorosomal antennae has not yet been reached. In the present work, we studied hyperchromism/hypochromism in the chlorosomal BChl c Q/B absorption bands of the green photosynthetic bacterium Chloroflexus (Cfx.) aurantiacus. The chlorosomes were isolated from cells grown under different light intensities and therefore, as we discovered earlier, they had different sizes of both BChl c antennae and their unit building blocks. We have shown experimentally that the Q-/B-band hyperchromism/hypochromism is proportional to the size of the chlorosomal antenna. We explained theoretically these findings in terms of excitonic intensity borrowing between the Q and B bands for the J-/H-aggregates of the BChls. The theory developed by Gülen (Photosynth Res 87:205-214, 2006) showed the dependence of the Q-/B-band hyperchromism/hypochromism on the structure of the aggregates. For the model of exciton-coupled BChl c linear chains within a unit building block, the theory predicted an increase in the hyperchromism/hypochromism with the increase in the number of molecules per chain and a decrease in it with the increase in the number of chains. It was previously shown that this model ensured a good fit with spectroscopy experiments and approximated the BChl c low packing density in vivo. The presented experimental and theoretical studies of the Q-/B-band hyperchromism/hypochromism permitted us to conclude that the unit building block of Cfx. aurantiacus chlorosomes comprises of several short BChl c chains.This conclusion is in accordance with previous linear and nonlinear spectroscopy studies on Cfx. aurantiacus chlorosomes.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| |
Collapse
|
18
|
Supramolecular chlorophyll aggregates inspired from specific light-harvesting antenna “chlorosome”: Static nanostructure, dynamic construction process, and versatile application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Silori Y, Chawla S, De AK. Unravelling the Role of Water in Ultrafast Excited-State Relaxation Dynamics within Nano-Architectures of Chlorophyll a. Chemphyschem 2020; 21:1908-1917. [PMID: 32619067 DOI: 10.1002/cphc.202000487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/01/2020] [Indexed: 11/06/2022]
Abstract
Water plays a pivotal role in structural stability of supramolecular pigment assemblies designed for natural light harvesting (for example, chlorosome antenna complex) as well as their artificial analogs. However, the dynamic role of water in the context of excite-state relaxation has not been explored till date, which we report here. Using femtosecond transient absorption spectroscopy, we investigate the excited-state dynamics of two types of nano-scale assemblies of chlorophyll a with different structural motifs, rod-shaped and micellar assemblies, that depend on the water content. We show how water participates in excess energy dissipation by vibrational cooling of the non-thermally populated Qy band at different rates in different types of clusters but exhibits no polar solvation dynamics. For the micelles, we observe a bifurcation of stimulated emission line shape, whereas a positive-to-negative switching of differential absorption is observed for the rods; both these observations are correlated with their specific structural aspects. Density functional theory calculations reveal two possible stable ground state geometries of dimers, accounting for the bifurcation of line shape in micelles. Thus, our study elucidates water-mediated structure-function relationship within these pigment assemblies.
Collapse
Affiliation(s)
- Yogita Silori
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, 140 306, India
| | - Sakshi Chawla
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, 140 306, India
| | - Arijit K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, 140 306, India
| |
Collapse
|
20
|
Matsubara S, Tamiaki H. Growth model of chlorosome antenna by the environment-dependent stepwise assembly of a zinc chlorophyll derivative. PHOTOSYNTHESIS RESEARCH 2020; 145:129-134. [PMID: 32557199 DOI: 10.1007/s11120-020-00766-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
A zinc chlorophyll derivative possessing an oligoethylene glycol ester at the 17-propionate residue was prepared as a model of specific pigments in chlorosomes, such as bacteriochlorophylls-c, d, and e, by chemical modification of naturally occurring chlorophyll-a. The zinc chlorophyll derivative aggregated in aqueous or hexane solutions containing 1% (v/v) ethanol to give red-shifted and broadened Soret/Qy absorption bands with intense circular dichroism signals, indicating the formation of its chlorosome-like J-type self-aggregates. The atomic force microscope images of the self-aggregates prepared in aqueous or hexane solutions showed thin tube-like (ca. 3 nm diameter) or thick rod-like aggregates (> 20 nm diameter), respectively. After standing these solutions for several days, the nanotubes or nanorods further assembled to give ribbon- or bundle-like aggregates, respectively. The latter transformation (tube to ribbon) was triggered by hydrogen bonding between oligoethylene glycol esters located outside of the tubes via water or ethanol molecules. These dynamic supramolecular transformations may also be useful for revealing the growth process of bacteriochlorophyll self-aggregates in a chlorosome.
Collapse
Affiliation(s)
- Shogo Matsubara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
21
|
Su M, Yan X, Guo X, Li Q, Zhang Y, Li C. Two Orthogonal Halogen-Bonding Interactions Directed 2D Crystalline Supramolecular J-Dimer Lamellae. Chemistry 2020; 26:4505-4509. [PMID: 32077546 DOI: 10.1002/chem.202000462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Indexed: 12/16/2022]
Abstract
Dye assemblies exhibit fascinating properties and performances, both of which depend critically on the mutual packing arrangement of dyes and on the supramolecular architecture. Herein, we engineered, for the first time, an intriguing chlorosome-mimetic 2D crystalline J-dimer lamellar structure based on halogenated dyes in aqueous media by employing two distinct orthogonal halogen-bonding (XB) interactions. As the only building motif, antiparallel J-dimer was formed and stabilized by single π-stacking and dual halogen⋅⋅⋅π interactions. With two substituted halogen atoms acting as XB donors and the other two acting as acceptors, the constituent J-dimer units were linked by quadruple highly-directional halogen⋅⋅⋅halogen interactions in a staggered manner, resulting in unique 2D lamellar dye assemblies. This work champions and advances halogen-bonding as a remarkably potent tool for engineering dye aggregates with a controlled molecular packing arrangement and supramolecular architecture.
Collapse
Affiliation(s)
- Meihui Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaosa Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xia Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Quanwen Li
- School of Materials Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Yushi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
22
|
Triplet state quenching of bacteriochlorophyll c aggregates in a protein-free environment of a chlorosome interior. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Strong optical response and light emission from a monolayer molecular crystal. Nat Commun 2019; 10:5589. [PMID: 31811122 PMCID: PMC6897925 DOI: 10.1038/s41467-019-13581-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
Excitons in two-dimensional (2D) materials are tightly bound and exhibit rich physics. So far, the optical excitations in 2D semiconductors are dominated by Wannier-Mott excitons, but molecular systems can host Frenkel excitons (FE) with unique properties. Here, we report a strong optical response in a class of monolayer molecular J-aggregates. The exciton exhibits giant oscillator strength and absorption (over 30% for monolayer) at resonance, as well as photoluminescence quantum yield in the range of 60–100%. We observe evidence of superradiance (including increased oscillator strength, bathochromic shift, reduced linewidth and lifetime) at room-temperature and more progressively towards low temperature. These unique properties only exist in monolayer owing to the large unscreened dipole interactions and suppression of charge-transfer processes. Finally, we demonstrate light-emitting devices with the monolayer J-aggregate. The intrinsic device speed could be beyond 30 GHz, which is promising for next-generation ultrafast on-chip optical communications. The optical response of inorganic two-dimensional semiconductors is dominated by Wannier-Mott excitons, but molecular systems can host localised Frenkel excitons. Here, the authors report strong optical response in a class of monolayer molecular J-aggregates due to the coherent Coulomb interaction between localised Frenkel excitons.
Collapse
|
24
|
Jassas M, Goodson C, Blankenship RE, Jankowiak R, Kell A. On Excitation Energy Transfer within the Baseplate BChl a-CsmA Complex of Chloroflexus aurantiacus. J Phys Chem B 2019; 123:9786-9791. [PMID: 31660744 DOI: 10.1021/acs.jpcb.9b08043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, a hybrid approach combining solid-state NMR spectroscopy and cryo-electron microscopy showed that the baseplate in green sulfur bacterium Chlorobaculum tepidum is a 2D lattice of BChl a-CsmA dimers [Nielsen, J. T.; et al., Nat. Commun. 2016, 7, 12454-12465]. While the existence of the BChl a-CsmA subunit was previously known, the proposed orientations of the BChl a pigments had only been elucidated from spectral data up to this point. Regarding the electronic structure of the baseplate, two models have been proposed. 2D electronic spectroscopy data were interpreted as revealing that at least four excitonically coupled BChl a might be in close contact. Conversely, spectral hole burning data suggested that the lowest energy state was localized, yet additional states are sometimes observed because of the presence of the Fenna-Matthews-Olson (FMO) antenna protein. To solve this conundrum, this work studies the chlorosome-baseplate complex from Chloroflexus aurantiacus, which does not contain the FMO protein. The results confirm that in both C. tepidum and C. aurantiacus, excitation energy is transferred to a localized low-energy trap state near 818 nm with similar rates, most likely via exciton hopping.
Collapse
Affiliation(s)
| | - Carrie Goodson
- Departments of Biology and Chemistry , Washington University in Saint Louis , Saint Louis , Missouri 63130 , United States
| | - Robert E Blankenship
- Departments of Biology and Chemistry , Washington University in Saint Louis , Saint Louis , Missouri 63130 , United States
| | | | | |
Collapse
|
25
|
Ha MY, Ryu JH, Cho EN, Choi J, Kim Y, Lee WB. Phase behavior of disk-coil block copolymers under cylindrical confinement: Curvature-induced structural frustrations. Phys Rev E 2019; 100:052502. [PMID: 31869916 DOI: 10.1103/physreve.100.052502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we explore the self-assembly behavior of disk-coil block copolymers (BCPs) confined within a cylinder using molecular dynamics simulations. As functions of the diameter of the confining cylinder and the number of coil beads, concentric lamellar structures are obtained with a different number of alternating disk-rich and coil-rich bilayers. Our paper focuses on the curvature-induced structural behavior in the disk-rich domain of a self-assembled structure, which is investigated by calculating the local density distribution P(r) and the orientational distribution G(r,θ). In the inner layers of cylinder-confined disk-coil BCPs, both P(r) and G(r,θ) show characteristic asymmetry within a bilayer which is directly contrasted with the bulk and slab-confined disk-coil BCPs. We successfully explain the structural frustration of disks arising from the curved structure due to packing frustration of disks and asymmetric stretching of coils to the regions with different curvatures in a bilayer. Our results are important to understand the self-assembly behavior of BCPs containing a rigid motif in a confined structure, such as a self-assembled structure of bacteriochlorophyll molecules confined by a lipid layer to form a chlorosome, the photosynthetic antennae complex found in nature.
Collapse
Affiliation(s)
- Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Ho Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene N Cho
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junwon Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Bio-Med Division, KIST-School UST, Seoul 02792, Republic of Korea
| | - YongJoo Kim
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
Sun Z, Diebolder CA, Renault L, de Groot H. A Semisynthetic Peptide−Metalloporphyrin Responsive Matrix for Artificial Photosynthesis. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhongwu Sun
- Leiden University Leiden Institute of Chemistry 2333 AL Leiden The Netherlands
| | - Christoph A. Diebolder
- Leiden University The Netherlands Centre for Electron Nanoscopy (NeCEN) 2333 AL Leiden The Netherlands
| | - Ludovic Renault
- Leiden University The Netherlands Centre for Electron Nanoscopy (NeCEN) 2333 AL Leiden The Netherlands
| | - Huub de Groot
- Leiden University Leiden Institute of Chemistry 2333 AL Leiden The Netherlands
| |
Collapse
|
27
|
Morisue M, Ueno I, Muraoka K, Omagari S, Nakanishi T, Hasegawa Y, Hikima T, Sasaki S. Perfluorophenyl‐Directed Giant Porphyrin J‐Aggregates. Chemistry 2019; 25:7322-7329. [DOI: 10.1002/chem.201901017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Mitsuhiko Morisue
- Faculty of Molecular Chemistry and EngineeringKyoto Institute of Technology Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| | - Ikuya Ueno
- Faculty of Molecular Chemistry and EngineeringKyoto Institute of Technology Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| | - Kunihiko Muraoka
- Faculty of Molecular Chemistry and EngineeringKyoto Institute of Technology Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| | - Shun Omagari
- Graduate School of EngineeringHokkaido University North 13 West 8 Kita-ku, Sapporo 060-8628 Japan
- Present address: School of Materials and Chemical TechnologyTokyo Institute of Technology, Ookayama 2–12-1-S8 Meguro-ku Tokyo 152-8552 Japan
| | - Takayuki Nakanishi
- Graduate School of EngineeringHokkaido University North 13 West 8 Kita-ku, Sapporo 060-8628 Japan
- Present address: Department of Materials Science and TechnologyTokyo University of Science 6-3-1 Niijuku Katsushika-ku Tokyo 125-8585 Japan
| | - Yasuchika Hasegawa
- Graduate School of EngineeringHokkaido University North 13 West 8 Kita-ku, Sapporo 060-8628 Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center 1-1-1, Kouto Sayo-cho Sayo-gun, Hyogo 679-5148 Japan
| | - Sono Sasaki
- Faculty of Fiber Science and EngineeringKyoto Institute of Technology Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| |
Collapse
|
28
|
Matsubara S, Tamiaki H. Phototriggered Dynamic and Biomimetic Growth of Chlorosomal Self-Aggregates. J Am Chem Soc 2019; 141:1207-1211. [PMID: 30624058 DOI: 10.1021/jacs.8b13056] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supramolecular polymerizations mimicking native systems, which are step-by-step constructions to form self-aggregates, were recently developed. However, a general system to successively and spontaneously form self-aggregates from monomeric species remains challenging. Here, we report a photoinduced supramolecular polymerization system as a biomimetic formation of chlorophyll aggregates which are the main light-harvesting antennas in photosynthetic green bacteria, called "chlorosomes". In this system, inert chlorophyll derivatives were UV-irradiated to gradually produce active species through deprotection. Such active monomers spontaneously assembled to form fiberlike chlorosomal self-aggregates in a similar manner as a dynamic growth of natural chlorosomal self-aggregates. The study would be useful for elucidation of the formation process of the chlorosomal aggregates and construction of other supramolecular structures in nature.
Collapse
Affiliation(s)
- Shogo Matsubara
- Graduate School of Life Sciences , Ritsumeikan University , Kusatsu , Shiga 525-8577 , Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences , Ritsumeikan University , Kusatsu , Shiga 525-8577 , Japan
| |
Collapse
|
29
|
Shah VB, Ferris C, S. Orf G, Kavadiya S, Ray JR, Jun YS, Lee B, Blankenship RE, Biswas P. Supramolecular self-assembly of bacteriochlorophyll c molecules in aerosolized droplets to synthesize biomimetic chlorosomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:161-168. [DOI: 10.1016/j.jphotobiol.2018.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
30
|
Günther LM, Löhner A, Reiher C, Kunsel T, Jansen TLC, Tank M, Bryant DA, Knoester J, Köhler J. Structural Variations in Chlorosomes from Wild-Type and a bchQR Mutant of Chlorobaculum tepidum Revealed by Single-Molecule Spectroscopy. J Phys Chem B 2018; 122:6712-6723. [PMID: 29863357 DOI: 10.1021/acs.jpcb.8b02875] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Green sulfur bacteria can grow photosynthetically by absorbing only a few photons per bacteriochlorophyll molecule per day. They contain chlorosomes, perhaps the most efficient light-harvesting antenna system found in photosynthetic organisms. Chlorosomes contain supramolecular structures comprising hundreds of thousands of bacteriochlorophyll molecules, which are properly positioned with respect to one another solely by self-assembly and not by using a protein scaffold as a template for directing the mutual arrangement of the monomers. These two features-high efficiency and self-assembly-have attracted considerable attention for developing light-harvesting systems for artificial photosynthesis. However, reflecting the heterogeneity of the natural system, detailed structural information at atomic resolution of the molecular aggregates is not yet available. Here, we compare the results for chlorosomes from the wild type and two mutants of Chlorobaculum tepidum obtained by polarization-resolved, single-particle fluorescence-excitation spectroscopy and theoretical modeling with results previously obtained from nuclear-magnetic resonance spectroscopy and cryo-electron microscopy. Only the combination of information obtained from all of these techniques allows for an unambiguous description of the molecular packing of bacteriochlorophylls within chlorosomes. In contrast to some suggestions in the literature, we find that, for the chlorosomes from the wild type as well as for those from mutants, the dominant secondary structural element features tubular symmetry following a very similar construction principle. Moreover, the results suggest that the various options for methylation of the bacteriochlorophyll molecules, which are a primary source of the structural (and spectral) heterogeneity of wild-type chlorosome samples, are exploited by nature to achieve improved spectral coverage at the level of individual chlorosomes.
Collapse
Affiliation(s)
| | | | | | - Tenzin Kunsel
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , State College , Pennsylvania 16802 , United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , State College , Pennsylvania 16802 , United States.,Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Jasper Knoester
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | | |
Collapse
|
31
|
Shoji S, Ogawa T, Hashishin T, Tamiaki H. Self-Assemblies of Zinc Bacteriochlorophyll-d Analogues Having Amide, Ester, and Urea Groups as Substituents at 17-Position and Observation of Lamellar Supramolecular Nanostructures. Chemphyschem 2018; 19:913-920. [PMID: 29231276 DOI: 10.1002/cphc.201701044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Indexed: 11/05/2022]
Abstract
Chlorosomes are unique light-harvesting apparatuses in photosynthetic green bacteria. Single chlorosomes contain a large number of bacteriochlorophyll (BChl)-c, -d, -e, and -f molecules, which self-assemble without protein assistance. These BChl self-assemblies involving specific intermolecular interactions (Mg⋅⋅⋅O32 -H⋅⋅⋅O=C131 and π-π stacks of chlorin skeletons) in a chlorosome have been reported to be round-shaped rods (or tubes) with diameters of 5 or 10 nm, or lamellae with a layer spacing of approximately 2 nm. Herein, the self-assembly of synthetic zinc BChl-d analogues having ester, amide, and urea groups in the 17-substituent is reported. Spectroscopic analyses indicate that the zinc BChl-d analogues self-assemble in a nonpolar organic solvent in a similar manner to natural chlorosomal BChls with additional assistance by hydrogen-bonding of secondary amide (or urea) groups (CON-H⋅⋅⋅O=CNH). Microscopic analyses of the supramolecules of a zinc BChl-d analogue bearing amide and urea groups show round- or square-shaped rods with widths of about 65 nm. Cryogenic TEM shows a lamellar arrangement of the zinc chlorin with a layer spacing of 1.5 nm inside the rod. Similar thick rods are also visible in the micrographs of self-assemblies of zinc BChl-d analogues with one or two secondary amide moieties in the 17-substituent.
Collapse
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takeshi Hashishin
- Faculty of Engineering, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
32
|
Ogi S, Grzeszkiewicz C, Würthner F. Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochlorophyll J-aggregates. Chem Sci 2018; 9:2768-2773. [PMID: 29732062 PMCID: PMC5914135 DOI: 10.1039/c7sc03725b] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Self-assembly studies of a model compound of bacteriochlorophyll revealed the formation of nanoparticles as off-pathway and nanofibers as on-pathway products.
Whilst bacteriochlorophyll c, d, and e dyes self-assemble into the most efficient light harvesting J-aggregate systems found in nature, their supramolecular packing arrangements are still a matter of debate and a significant number of models have been suggested for their local and long-range ordering. Here we reveal for a synthetic model system based on a zinc chlorin (ZnChl) dye an intriguing interplay of two competing aggregation pathways by kinetic and thermodynamic studies in MeOH/water solvent mixtures: the formation of kinetically controlled off-pathway nanoparticles consisting of excitonically coupled J-dimers versus the formation of thermodynamically more stable one-dimensional helical fibers consisting of J-coupled extended aggregates. The higher order of the latter is evidenced by atomic force microscopy and a more narrow absorption spectrum of the J-aggregates. Based on a recently developed thermodynamic model that combines the cooperative K2–K growth model with a competing dimerization model, an energy landscape could be derived that describes the pathway complexity of this biomimetic system. Our studies reveal that the kinetic stability of the off-pathway nanoparticles increases with increasing concentration of ZnChl or water content in a MeOH/water solvent mixture. For a water content >90% deeply trapped off-pathway nanoparticle products are formed that do not transform anymore to the more ordered thermodynamic product within reasonable time scales. Based on these observations, we hypothesize that out-of-equilibrium aggregate structures of natural BChl dyes may also exist in the natural chlorosomes of green bacteria.
Collapse
Affiliation(s)
- Soichiro Ogi
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Universität Würzburg , Center for Nanosystems Chemistry (CNC) , Bavarian Polymer Institute (BPI) , Theodor-Boveri-Weg , 97074 Würzurg , Germany
| | - Charlotte Grzeszkiewicz
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany . .,Universität Würzburg , Center for Nanosystems Chemistry (CNC) , Bavarian Polymer Institute (BPI) , Theodor-Boveri-Weg , 97074 Würzurg , Germany
| |
Collapse
|
33
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
34
|
Yakovlev A, Taisova A, Arutyunyan A, Shuvalov V, Fetisova Z. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2017; 133:343-356. [PMID: 28361448 DOI: 10.1007/s11120-017-0374-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
The stationary ground state and femtosecond time-resolved absorption spectra as well as spectra of circular dichroism were measured at room temperature using freshly prepared samples of chlorosomes isolated from fresh cultures of the green bacterium Chloroflexus aurantiacus. Cultures were grown by using as inoculum the same seed culture but under different light conditions. All measured spectra clearly showed the red shift of BChl c Qy bands (up to 5 nm) for low-light chlorosomes as compared to high-light ones, together with concomitant narrowing of these bands and increasing of their amplitudes. The sizes of the unit BChl c aggregates of the high-light-chlorosomes and the low-light ones were estimated. The fit of all experimental spectra was obtained within the framework of our model proposed before (Fetisova et al., Biophys J 71:995-101, 1996). The model assumes that a unit building block of the BChl c antenna has a form of a tubular aggregate of L = 6 linear single or double exciton-coupled pigment chains within a rod element, with the pigment packing density, approximating that in vivo. The simultaneous fit of all experimental spectra gave the number of pigments in each individual linear pigment chain N = 4 and N = 6 for the high-light and the low-light BChl c unit building blocks, respectively. The size of a unit building block in the BChl c antenna was found to vary from L × N = 24 to L × N = 36 exciton-coupled BChl c molecules being governed by the growth-light intensity. All sets of findings for Chloroflexus aurantiacus chlorosomes demonstrated the biologically expedient light-controlled variability, predicted by us, of the extent of BChl c aggregation within a unit building block in this antenna.
Collapse
Affiliation(s)
- Andrei Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| | - Alexandra Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Alexander Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Vladimir Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation, 142290
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991
| | - Zoya Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russian Federation, 119991.
| |
Collapse
|
35
|
Saga Y, Yamashita H. Effects of exogenous isoprenoid diphosphates on in vivo attachment to bacteriochlorophyllide c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum. J Biosci Bioeng 2017; 124:408-413. [PMID: 28579086 DOI: 10.1016/j.jbiosc.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/22/2017] [Accepted: 05/08/2017] [Indexed: 11/18/2022]
Abstract
Metabolic substitution of the esterifying chain in bacteriochlorophyll (BChl) c in green photosynthetic bacteria grown by supplementation of exogenous alcohols has attracted attentions to study supramolecular structures and biogenesis of major antenna complexes chlorosomes in these bacteria as well as BChl pigment biosynthesis. Actual substrates in the enzymatic attachment of the esterifying moieties to the precursor of BChl c, namely bacteriochlorophyllide (BChlide) c, in these bacteria are believed to be diphosphate esters of alcoholic substrates, although only intact alcohols have so far been supplemented in the bacterial cultures. We report herein BChl c compositions in the green sulfur photosynthetic bacterium Chlorobaculum tepidum by supplementation with geranyl and geranylgeranyl diphosphates. The supplementation of these diphosphates hardly produced BChl c derivatives esterified with geraniol and geranylgeraniol in Cba. tepidum, whereas these BChl c derivatives were accumulated by supplementation of intact geraniol and geranylgeraniol. The sharp contrast of the incorporation efficiency of the supplemental isoprenoid moieties in BChl c using the isoprenoid diphosphates to that by the isoprenoid alcohols was mainly ascribable to less penetration abilities of the diphosphate substrates into Cba. tepidum cells because of their anionic and polar diphosphate moiety.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Hayato Yamashita
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
36
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
37
|
Shoji S, Mizoguchi T, Tamiaki H. In vitro self-assemblies of bacteriochlorophylls-c from Chlorobaculum tepidum and their supramolecular nanostructures. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Saga Y, Yamashita H, Hirota K. Introduction of perfluoroalkyl chain into the esterifying moiety of bacteriochlorophyll c in the green sulfur photosynthetic bacterium Chlorobaculum tepidum by pigment biosynthesis. Bioorg Med Chem 2016; 24:4165-4170. [PMID: 27427396 DOI: 10.1016/j.bmc.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 11/27/2022]
Abstract
The green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum was grown in liquid cultures containing perfluoro-1-decanol, 1H,1H,2H,2H-heptadecafluoro-1-decanol [CF3(CF2)7(CH2)2OH] or 1H,1H-nonadecafluoro-1-decanol [CF3(CF2)8CH2OH], to introduce rigid and fluorophilic chains into the esterifying moiety of light-harvesting bacteriochlorophyll (BChl) c. Exogenous 1H,1H,2H,2H-heptadecafluoro-1-decanol was successfully attached to the 17(2)-carboxy group of bacteriochlorophyllide (BChlide) c in vivo: the relative ratio of the unnatural BChl c esterified with this perfluoroalcohol over the total BChl c was 10.3%. Heat treatment of the liquid medium containing 1H,1H,2H,2H-heptadecafluoro-1-decanol with β-cyclodextrin before inoculation increased the relative ratio of the BChl c derivative esterified with this alcohol in the total BChl c in Cba. tepidum. In a while, 1H,1H-nonadecafluoro-1-decanol was not attached to BChlide c in Cba. tepidum, which was grown by its supplementation. These results suggest that the rigidity close to the hydroxy group of the esterifying alcohol is not suitable for the recognition by the BChl c synthase called BchK in Cba. tepidum. The unnatural BChl c esterified with 1H,1H,2H,2H-heptadecafluoro-1-decanol participated in BChl c self-aggregates in chlorosomes.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Hayato Yamashita
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Keiya Hirota
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
39
|
Senge MO, MacGowan SA, O'Brien JM. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. Chem Commun (Camb) 2016; 51:17031-63. [PMID: 26482230 DOI: 10.1039/c5cc06254c] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tetrapyrrole-containing proteins are one of the most fundamental classes of enzymes in nature and it remains an open question to give a chemical rationale for the multitude of biological reactions that can be catalyzed by these pigment-protein complexes. There are many fundamental processes where the same (i.e., chemically identical) porphyrin cofactor is involved in chemically quite distinct reactions. For example, heme is the active cofactor for oxygen transport and storage (hemoglobin, myoglobin) and for the incorporation of molecular oxygen in organic substrates (cytochrome P450). It is involved in the terminal oxidation (cytochrome c oxidase) and the metabolism of H2O2 (catalases and peroxidases) and catalyzes various electron transfer reactions in cytochromes. Likewise, in photosynthesis the same chlorophyll cofactor may function as a reaction center pigment (charge separation) or as an accessory pigment (exciton transfer) in light harvesting complexes (e.g., chlorophyll a). Whilst differences in the apoprotein sequences alone cannot explain the often drastic differences in physicochemical properties encountered for the same cofactor in diverse protein complexes, a critical factor for all biological functions must be the close structural interplay between bound cofactors and the respective apoprotein in addition to factors such as hydrogen bonding or electronic effects. Here, we explore how nature can use the same chemical molecule as a cofactor for chemically distinct reactions using the concept of conformational flexibility of tetrapyrroles. The multifaceted roles of tetrapyrroles are discussed in the context of the current knowledge on distorted porphyrins. Contemporary analytical methods now allow a more quantitative look at cofactors in protein complexes and the development of the field is illustrated by case studies on hemeproteins and photosynthetic complexes. Specific tetrapyrrole conformations are now used to prepare bioengineered designer proteins with specific catalytic or photochemical properties.
Collapse
Affiliation(s)
- Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Stuart A MacGowan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jessica M O'Brien
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
40
|
Günther LM, Jendrny M, Bloemsma EA, Tank M, Oostergetel GT, Bryant DA, Knoester J, Köhler J. Structure of Light-Harvesting Aggregates in Individual Chlorosomes. J Phys Chem B 2016; 120:5367-76. [PMID: 27240572 DOI: 10.1021/acs.jpcb.6b03718] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among all photosynthetic organisms, green bacteria have evolved one of the most efficient light-harvesting antenna, the chlorosome, that contains hundreds of thousands of bacteriochlorophyll molecules, allowing these bacteria to grow photosynthetically by absorbing only a few photons per bacteriochlorophyll molecule per day. In contrast to other photosynthetic light-harvesting antenna systems, for which a protein scaffold imposes the proper positioning of the chromophores with respect to each other, in chlorosomes, this is accomplished solely by self-assembly. This has aroused enormous interest in the structure-function relations of these assemblies, as they can serve as blueprints for artificial light harvesting systems. In spite of these efforts, conclusive structural information is not available yet, reflecting the sample heterogeneity inherent to the natural system. Here we combine mutagenesis, polarization-resolved single-particle fluorescence-excitation spectroscopy, cryo-electron microscopy, and theoretical modeling to study the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. We demonstrate that only the combination of these techniques yields unambiguous information on the structure of the bacteriochlorophyll aggregates within the chlorosomes. Moreover, we provide a quantitative estimate of the curvature variation of these aggregates that explains ongoing debates concerning the chlorosome structure.
Collapse
Affiliation(s)
- Lisa M Günther
- Experimental Physics IV, University of Bayreuth , D-95440 Bayreuth, Germany
| | - Marc Jendrny
- Experimental Physics IV, University of Bayreuth , D-95440 Bayreuth, Germany
| | - Erik A Bloemsma
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Gert T Oostergetel
- Groningen Biomolecular Sciences and Biotechnology Institute , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jürgen Köhler
- Experimental Physics IV, University of Bayreuth , D-95440 Bayreuth, Germany
| |
Collapse
|
41
|
In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat Chem 2016; 8:705-10. [PMID: 27325098 DOI: 10.1038/nchem.2525] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Absorption of sunlight is the first step in photosynthesis, which provides energy for the vast majority of organisms on Earth. The primary processes of photosynthesis have been studied extensively in isolated light-harvesting complexes and reaction centres, however, to understand fully the way in which organisms capture light it is crucial to also reveal the functional relationships between the individual complexes. Here we report the use of two-dimensional electronic spectroscopy to track directly the excitation-energy flow through the entire photosynthetic system of green sulfur bacteria. We unravel the functional organization of individual complexes in the photosynthetic unit and show that, whereas energy is transferred within subunits on a timescale of subpicoseconds to a few picoseconds, across the complexes the energy flows at a timescale of tens of picoseconds. Thus, we demonstrate that the bottleneck of energy transfer is between the constituents.
Collapse
|
42
|
Ng KK, Takada M, Harmatys K, Chen J, Zheng G. Chlorosome-Inspired Synthesis of Templated Metallochlorin-Lipid Nanoassemblies for Biomedical Applications. ACS NANO 2016; 10:4092-4101. [PMID: 27015124 DOI: 10.1021/acsnano.5b07151] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chlorosomes are vesicular light-harvesting organelles found in photosynthetic green sulfur bacteria. These organisms thrive in low photon flux environments due to the most efficient light-to-chemical energy conversion, promoted by a protein-less assembly of chlorin pigments. These assemblies possess collective absorption properties and can be adapted for contrast-enhanced bioimaging applications, where maximized light absorption in the near-infrared optical window is desired. Here, we report a strategy for tuning light absorption toward the near-infrared region by engineering a chlorosome-inspired assembly of synthetic metallochlorins in a biocompatible lipid scaffold. In a series of synthesized chlorin analogues, we discovered that lipid conjugation, central coordination of a zinc metal into the chlorin ring, and a 3(1)-methoxy substitution were critical for the formation of dye assemblies in lipid nanovesicles. The substitutions result in a specific optical shift, characterized by a bathochromically shifted (72 nm) Qy absorption band, along with an increase in absorbance and circular dichroism as the ratio of dye-conjugated lipid was increased. These alterations in optical spectra are indicative of the formation of delocalized excitons states across each molecular assembly. This strategy of tuning absorption by mimicking the structures found in photosynthetic organisms may spur new opportunities in the development of biophotonic contrast agents for medical applications.
Collapse
Affiliation(s)
- Kenneth K Ng
- Institute of Biomaterials and Biomedical Engineering and Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Misa Takada
- Princess Margaret Cancer Centre, University Health Network , Toronto, Ontario M5G 1L7, Canada
- Department of Chemistry, Osaka University , Osaka 560-0043, Japan
| | - Kara Harmatys
- Princess Margaret Cancer Centre, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Institute of Biomaterials and Biomedical Engineering and Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network , Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
43
|
Somoza Márquez A, Chen L, Sun K, Zhao Y. Probing ultrafast excitation energy transfer of the chlorosome with exciton–phonon variational dynamics. Phys Chem Chem Phys 2016; 18:20298-311. [DOI: 10.1039/c5cp06491k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excitation energy transfer of the chlorosome is investigated using exciton–phonon variational dynamics revealing ultrafast energy relaxation and exciton delocalization on a 100 fs scale.
Collapse
Affiliation(s)
| | - Lipeng Chen
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Kewei Sun
- School of Science
- Hangzhou Dianzi University
- Hangzhou 310018
- China
| | - Yang Zhao
- Division of Materials Science
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
44
|
Saga Y, Hayashi K, Hirota K, Harada J, Tamiaki H. Modification of the esterifying farnesyl chain in light-harvesting bacteriochlorophylls in green sulfur photosynthetic bacteria by supplementation of 9-decyn-1-ol, 9-decen-1-ol, and decan-1-ol. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Chen L, Shenai P, Zheng F, Somoza A, Zhao Y. Optimal Energy Transfer in Light-Harvesting Systems. Molecules 2015; 20:15224-72. [PMID: 26307957 PMCID: PMC6332264 DOI: 10.3390/molecules200815224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 01/25/2023] Open
Abstract
Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.
Collapse
Affiliation(s)
- Lipeng Chen
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Prathamesh Shenai
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Fulu Zheng
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Alejandro Somoza
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue,Singapore 639798, Singapore.
| |
Collapse
|
46
|
Yakovlev A, Novoderezhkin V, Taisova A, Shuvalov V, Fetisova Z. Orientation of B798 BChl a Q y transition dipoles in Chloroflexus aurantiacus chlorosomes: polarized transient absorption spectroscopy studies. PHOTOSYNTHESIS RESEARCH 2015; 125:31-42. [PMID: 25515768 DOI: 10.1007/s11120-014-0060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Isotropic and anisotropic pump-probe spectra of Cfx. aurantiacus chlorosomes were measured on the fs-through ps-time scales for the B798 BChl a Q y band upon direct excitation of the B798 band at T = 293 K and T = 90 K. Upon direct excitation of the B798 band, the anisotropy parameter value r(λ) was constant within the whole BChl a Q y band at any delay time at both temperatures. The value of the anisotropy parameter r decayed from r = 0.4 at both temperatures (at 200 fs delay time after excitation) to the steady-state values r = 0.1 at T = 293 K and to r = 0.09 at T = 90 K (at 30 ÷ 100 ps delay time after excitation). The results were considered within the framework of the model of uniaxial orientation distribution of BChl-a transition dipoles within a single Cfx. aurantiacus chlorosome. This implies that the B798 BChl a Q y transition dipoles, randomly distributed around the normal to the baseplate plane, form the angle θ with the plane. For this model, the theoretical dependence of the steady-state anisotropy parameter r on the angle θ was derived. According to the theoretical dependence r(θ), the angle θ corresponding to the experimental steady-state value r = 0.1 at T = 293 K was found to equal 55°. As the temperature drops to 90 K, the angle θ decreases to 54°.
Collapse
Affiliation(s)
- Andrei Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
47
|
Matěnová M, Lorelei Horhoiu V, Dang FX, Pospíšil P, Alster J, Burda JV, Balaban TS, Pšenčík J. Energy transfer in aggregates of bacteriochlorophyll c self-assembled with azulene derivatives. Phys Chem Chem Phys 2015; 16:16755-64. [PMID: 24999619 DOI: 10.1039/c4cp01311e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteriochlorophyll (BChl) c is the main light-harvesting pigment of certain photosynthetic bacteria. It is found in the form of self-assembled aggregates in the so-called chlorosomes. Here we report the results of co-aggregation experiments of BChl c with azulene and its tailored derivatives. We have performed spectroscopic and quantum chemical characterization of the azulenes, followed by self-assembly experiments. The results show that only azulenes with sufficient hydrophobicity are able to induce aggregation of BChl c. Interestingly, only azulene derivatives possessing a conjugated phenyl ring were capable of efficient (∼50%) excitation energy transfer to BChl molecules. These aggregates represent an artificial light-harvesting complex with enhanced absorption between 220 and 350 nm compared to aggregates of pure BChl c. The results provide insight into the principles of self-assembly of BChl aggregates and suggest an important role of the π-π interactions in efficient energy transfer.
Collapse
Affiliation(s)
- Martina Matěnová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sawaya NPD, Huh J, Fujita T, Saikin SK, Aspuru-Guzik A. Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. NANO LETTERS 2015; 15:1722-1729. [PMID: 25694170 DOI: 10.1021/nl504399d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorosomes are efficient light-harvesting antennas containing up to hundreds of thousands of bacteriochlorophyll molecules. With massively parallel computer hardware, we use a nonperturbative stochastic Schrödinger equation, while including an atomistically derived spectral density, to study excitonic energy transfer in a realistically sized chlorosome model. We find that fast short-range delocalization leads to robust long-range transfer due to the antennae's concentric-roll structure. Additionally, we discover anomalous behavior arising from different initial conditions, and outline general considerations for simulating excitonic systems on the nanometer to micrometer scale.
Collapse
Affiliation(s)
- Nicolas P D Sawaya
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | | | | |
Collapse
|
49
|
Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F. Vegetable-based dye-sensitized solar cells. Chem Soc Rev 2015; 44:3244-94. [DOI: 10.1039/c4cs00309h] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review we provide an overview of vegetable pigments in dye-sensitized solar cells, starting from main limitations of cell performance to cost analysis and scaling-up prospects.
Collapse
Affiliation(s)
| | | | - Gaetano Di Marco
- CNR-IPCF
- Istituto per i Processi Chimico-Fisici
- 98158 Messina
- Italy
| | - Aldo Di Carlo
- CHOSE – Centre for Hybrid and Organic Solar Energy – University of Rome “Tor Vergata”
- 00133 Roma
- Italy
| | | |
Collapse
|
50
|
Taisova AS, Yakovlev AG, Fetisova ZG. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity. BIOCHEMISTRY (MOSCOW) 2014; 79:251-9. [PMID: 24821452 DOI: 10.1134/s0006297914030110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.
Collapse
Affiliation(s)
- A S Taisova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | |
Collapse
|