1
|
de Tomás C, Vicient CM. The Genomic Shock Hypothesis: Genetic and Epigenetic Alterations of Transposable Elements after Interspecific Hybridization in Plants. EPIGENOMES 2023; 8:2. [PMID: 38247729 PMCID: PMC10801548 DOI: 10.3390/epigenomes8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes with the ability to change their position in the genome or to create new copies of themselves in other positions in the genome. These can cause gene disruption and large-scale genomic alterations, including inversions, deletions, and duplications. Host organisms have evolved a set of mechanisms to suppress TE activity and counter the threat that they pose to genome integrity. These includes the epigenetic silencing of TEs mediated by a process of RNA-directed DNA methylation (RdDM). In most cases, the silencing machinery is very efficient for the vast majority of TEs. However, there are specific circumstances in which TEs can evade such silencing mechanisms, for example, a variety of biotic and abiotic stresses or in vitro culture. Hybridization is also proposed as an inductor of TE proliferation. In fact, the discoverer of the transposons, Barbara McClintock, first hypothesized that interspecific hybridization provides a "genomic shock" that inhibits the TE control mechanisms leading to the mobilization of TEs. However, the studies carried out on this topic have yielded diverse results, showing in some cases a total absence of mobilization or being limited to only some TE families. Here, we review the current knowledge about the impact of interspecific hybridization on TEs in plants and the possible implications of changes in the epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Carlos M. Vicient
- Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Papon N, Lasserre-Zuber P, Rimbert H, De Oliveira R, Paux E, Choulet F. All families of transposable elements were active in the recent wheat genome evolution and polyploidy had no impact on their activity. THE PLANT GENOME 2023; 16:e20347. [PMID: 37243411 DOI: 10.1002/tpg2.20347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop and its genome is one of the largest ever assembled at reference-quality level. It is 15 Gb, hexaploid, with 85% of transposable elements (TEs). Wheat genetic diversity was mainly focused on genes and little is known about the extent of genomic variability affecting TEs, transposition rate, and the impact of polyploidy. Multiple chromosome-scale assemblies are now available for bread wheat and for its tetraploid and diploid wild relatives. In this study, we computed base pair-resolved, gene-anchored, whole genome alignments of A, B, and D lineages at different ploidy levels in order to estimate the variability that affects the TE space. We used assembled genomes of 13 T. aestivum cultivars (6x = AABBDD) and a single genome for Triticum durum (4x = AABB), Triticum dicoccoides (4x = AABB), Triticum urartu (2x = AA), and Aegilops tauschii (2x = DD). We show that 5%-34% of the TE fraction is variable, depending on the species divergence. Between 400 and 13,000 novel TE insertions per subgenome were detected. We found lineage-specific insertions for nearly all TE families in di-, tetra-, and hexaploids. No burst of transposition was observed and polyploidization did not trigger any boost of transposition. This study challenges the prevailing idea of wheat TE dynamics and is more in agreement with an equilibrium model of evolution.
Collapse
Affiliation(s)
- Nathan Papon
- INRAE, GDEC, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Hélène Rimbert
- INRAE, GDEC, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Etienne Paux
- INRAE, GDEC, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Choulet
- INRAE, GDEC, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
3
|
Kong C, Zhao G, Gao L, Kong X, Wang D, Liu X, Jia J. Epigenetic Landscape Is Largely Shaped by Diversiform Transposons in Aegilops tauschii. Int J Mol Sci 2023; 24:9349. [PMID: 37298301 PMCID: PMC10253722 DOI: 10.3390/ijms24119349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Transposons (TEs) account for more than 80% of the wheat genome, the highest among all known crop species. They play an important role in shaping the elaborate genomic landscape, which is the key to the speciation of wheat. In this study, we analyzed the association between TEs, chromatin states, and chromatin accessibility in Aegilops tauschii, the D genome donor of bread wheat. We found that TEs contributed to the complex but orderly epigenetic landscape as chromatin states showed diverse distributions on TEs of different orders or superfamilies. TEs also contributed to the chromatin state and openness of potential regulatory elements, affecting the expression of TE-related genes. Some TE superfamilies, such as hAT-Ac, carry active/open chromatin regions. In addition, the histone mark H3K9ac was found to be associated with the accessibility shaped by TEs. These results suggest the role of diversiform TEs in shaping the epigenetic landscape and in gene expression regulation in Aegilops tauschii. This has positive implications for understanding the transposon roles in Aegilops tauschii or the wheat D genome.
Collapse
Affiliation(s)
- Chuizheng Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Guangyao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Lifeng Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| |
Collapse
|
4
|
Banouh M, Armisen D, Bouguennec A, Huneau C, Sow MD, Pont C, Salse J, Civáň P. Low impact of polyploidization on the transcriptome of synthetic allohexaploid wheat. BMC Genomics 2023; 24:255. [PMID: 37170217 PMCID: PMC10173476 DOI: 10.1186/s12864-023-09324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Bread wheat is a recent allohexaploid (genomic constitution AABBDD) that emerged through a hybridization between tetraploid Triticum turgidum (AABB) and diploid Aegilops tauschii (DD) less than 10,000 years ago. The hexaploidization can be re-created artificially, producing synthetic wheat that has been used to study immediate genomic responses to polyploidization. The scale of the consequences of polyploidization, and their mechanism of establishment, remain uncertain. RESULTS Here we sampled several synthetic wheats from alternative parental genotypes and reciprocal crosses, and examined transcriptomes from two different tissues and successive generations. We did not detect any massive reprogramming in gene expression, with only around 1% of expressed genes showing significant differences compared to their lower-ploidy parents. Most of this differential expression is located on the D subgenome, without consistency in the direction of the expression change. Homoeolog expression bias in synthetic wheat is similar to the pattern observed in the parents. Both differential expression and homoeolog bias are tissue-specific. While up to three families of transposable elements became upregulated in wheat synthetics, their position and distance are not significantly associated with expression changes in proximal genes. DISCUSSION While only a few genes change their expression pattern after polyploidization, they can be involved in agronomically important pathways. Alternative parental combinations can lead to opposite changes on the same subset of D-located genes, which is relevant for harnessing new diversity in wheat breeding. Tissue specificity of the polyploidization-triggered expression changes indicates the remodelling of transcriptomes in synthetic wheat is plastic and likely caused by regulome interactions rather than permanent changes. We discuss the pitfalls of transcriptomic comparisons across ploidy levels that can inflate the de-regulation signal. CONCLUSIONS Transcriptomic response to polyploidization in synthetic AABBDD wheat is modest and much lower than some previous estimates. Homoeolog expression bias in wheat allohexaploids is mostly attributed to parental legacy, with polyploidy having a mild balancing effect.
Collapse
Grants
- PolyBléD Fonds de Soutien à l'Obtention Végétale
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- SeedEX, SeedENCODE, MethylWheat Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
Collapse
Affiliation(s)
- Meriem Banouh
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - David Armisen
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, 46 allée d'Italie, Lyon, 69364, France
| | - Annaig Bouguennec
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Cécile Huneau
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Mamadou Dia Sow
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Caroline Pont
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Jérôme Salse
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Peter Civáň
- INRAE/UCA UMR 1095, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France.
| |
Collapse
|
5
|
Divashuk MG, Nikitina EA, Sokolova VM, Yurkina AI, Kocheshkova AA, Razumova OV, Karlov GI, Kroupin PY. qPCR as a Selective Tool for Cytogenetics. PLANTS (BASEL, SWITZERLAND) 2022; 12:80. [PMID: 36616209 PMCID: PMC9824742 DOI: 10.3390/plants12010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
qPCR is widely used in quantitative studies of plant genomes and transcriptomes. In this article, this method is considered as an auxiliary step in the preparation and selection of markers for FISH analysis. Several cases from the authors' research on populations of the same species were reviewed, and a comparison of the closely related species, as well as the adaptation of the markers, based on satellite tandem repeats (TRs) using quantitative qPCR data was conducted. In the selected cases, TRs with contrast abundance were identified in the cases of the Dasypyrum, Thinopyrum and Aegilops species, and the transfer of TRs between the wheat and related species was demonstrated. TRs with intraspecific copy number variation were revealed in Thinopyrum ponticum and wheat-wheatgrass partial amphidiploids, and the TR showing predominant hybridization to the sea buckthorn Y chromosome was identified. Additionally, problems such as the absence of a reference gene for qPCR, and low-efficiency and self-complementary primers, were illustrated. In the cases considered here, the qPCR results clearly show high correlation with the subsequent results of the FISH analysis, which confirms the value of this method for cytogenetic studies.
Collapse
|
6
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
7
|
Shahzad K, Zhang X, Zhang M, Guo L, Qi T, Tang H, Wang H, Mubeen I, Qiao X, Peng R, Wu J, Xing C. Homoeolog gene expression analysis reveals novel expression biases in upland hybrid cotton under intraspecific hybridization. Funct Integr Genomics 2022; 22:757-768. [PMID: 35771309 DOI: 10.1007/s10142-022-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hybridization is useful to enhance the yield potential of agronomic crops in the world. Cotton has genome doubling due to the allotetraploid process and hybridization in coordination with duplicated genome can produce more yield and adaptability. Therefore, the expression of homoeologous gene pairs between hybrids and inbred parents is vital to characterize the genetic source of heterosis in cotton. Investigation results of homoeolog gene pairs between two contrasting hybrids and their respective inbred parents identified 36853 homoeolog genes in hybrids. It was observed both high and low hybrids had similar trends in homoeolog gene expression patterns in each tissue under study. An average of 96% of homoeolog genes had no biased expression and their expressions were derived from the equal contribution of both parents. Besides, very few homoeolog genes (an average of 1%) showed no biased or novel expression in both hybrids. The functional analysis described secondary metabolic pathways had a majority of novel biased homoeolog genes in hybrids. These results contribute preliminary knowledge about how hybridization affects expression patterns of homoeolog gene pairs in upland cotton hybrids. Our study also highlights the functional genomics of metabolic genes to explore the genetic mechanism of heterosis in cotton.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Renhai Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China. .,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China. .,Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
8
|
Leigh FJ, Wright TIC, Horsnell RA, Dyer S, Bentley AR. Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement. Heredity (Edinb) 2022; 128:291-303. [PMID: 35383318 PMCID: PMC9076643 DOI: 10.1038/s41437-022-00527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change will have numerous impacts on crop production worldwide necessitating a broadening of the germplasm base required to source and incorporate novel traits. Major variation exists in crop progenitor species for seasonal adaptation, photosynthetic characteristics, and root system architecture. Wheat is crucial for securing future food and nutrition security and its evolutionary history and progenitor diversity offer opportunities to mine favourable functional variation in the primary gene pool. Here we provide a review of the status of characterisation of wheat progenitor variation and the potential to use this knowledge to inform the use of variation in other cereal crops. Although significant knowledge of progenitor variation has been generated, we make recommendations for further work required to systematically characterise underlying genetics and physiological mechanisms and propose steps for effective use in breeding. This will enable targeted exploitation of useful variation, supported by the growing portfolio of genomics and accelerated breeding approaches. The knowledge and approaches generated are also likely to be useful across wider crop improvement.
Collapse
Affiliation(s)
- Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Richard A Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Sarah Dyer
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
9
|
Xiao L, Lu L, Zeng W, Shang X, Cao S, Yan H. DNA Methylome and LncRNAome Analysis Provide Insights Into Mechanisms of Genome-Dosage Effects in Autotetraploid Cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:915056. [PMID: 35860527 PMCID: PMC9289687 DOI: 10.3389/fpls.2022.915056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 05/16/2023]
Abstract
Whole genome duplication (WGD) increases the dosage of all coding and non-coding genes, yet the molecular implications of genome-dosage effects remain elusive. In this study, we generated integrated maps of the methylomes and lncRNAomes for diploid and artificially generated autotetraploid cassava (Manihot esculenta Crantz). We found that transposable elements (TEs) suppressed adjacent protein coding gene (PCG)-expression levels, while TEs activated the expression of nearby long non-coding RNAs (lncRNAs) in the cassava genome. The hypermethylation of DNA transposons in mCG and mCHH sites may be an effective way to suppress the expression of nearby PCGs in autotetraploid cassava, resulting in similar expression levels for most of PCGs between autotetraploid and diploid cassava. In the autotetraploid, decreased methylation levels of retrotransposons at mCHG and mCHH sites contributed to reduced methylation of Gypsy-neighboring long intergenic non-coding RNAs, potentially preserving diploid-like expression patterns in the major of lncRNAs. Collectively, our study highlighted that WGD-induced DNA methylation variation in DNA transposons and retrotransposons may be as direct adaptive responses to dosage of all coding-genes and lncRNAs, respectively.
Collapse
Affiliation(s)
- Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huabing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- *Correspondence: Huabing Yan,
| |
Collapse
|
10
|
Liu Y, Yuan J, Jia G, Ye W, Jeffrey Chen Z, Song Q. Histone H3K27 dimethylation landscapes contribute to genome stability and genetic recombination during wheat polyploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:678-690. [PMID: 33131144 DOI: 10.1111/tpj.15063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 05/02/2023]
Abstract
Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to 'genomic shock' and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.
Collapse
Affiliation(s)
- Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Guanghong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol 2021; 5:1367-1381. [PMID: 34413506 PMCID: PMC8484011 DOI: 10.1038/s41559-021-01525-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
Collapse
Affiliation(s)
- Robin Burns
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Terezie Mandáková
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Joanna Gunis
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Luz Mayela Soto-Jiménez
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- grid.9464.f0000 0001 2290 1502Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Martin A. Lysak
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Polina Yu. Novikova
- grid.511033.5VIB-UGent Center for Plant Systems Biology, Ghent, Belgium ,grid.419498.90000 0001 0660 6765Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Magnus Nordborg
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
12
|
Zagorski D, Hartmann M, Bertrand YJK, Paštová L, Slavíková R, Josefiová J, Fehrer J. Characterization and Dynamics of Repeatomes in Closely Related Species of Hieracium (Asteraceae) and Their Synthetic and Apomictic Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:591053. [PMID: 33224172 PMCID: PMC7667050 DOI: 10.3389/fpls.2020.591053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.
Collapse
|
13
|
Shams I, Raskina O. Supernumerary B Chromosomes and Plant Genome Changes: A Snapshot of Wild Populations of Aegilops speltoides Tausch ( Poaceae, Triticeae). Int J Mol Sci 2020; 21:ijms21113768. [PMID: 32466617 PMCID: PMC7312783 DOI: 10.3390/ijms21113768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023] Open
Abstract
In various eukaryotes, supernumerary B chromosomes (Bs) are an optional genomic component that affect their integrity and functioning. In the present study, the impact of Bs on the current changes in the genome of goatgrass, Aegilops speltoides, was addressed. Individual plants from contrasting populations with and without Bs were explored using fluorescence in situ hybridization. In parallel, abundances of the Ty1-copia, Ty3-gypsy, and LINE retrotransposons (TEs), and the species-specific Spelt1 tandem repeat (TR) in vegetative and generative spike tissues were estimated by real-time quantitative PCR. The results revealed: (i) ectopic associations between Bs and the regular A chromosomes, and (ii) cell-specific rearrangements of Bs in both mitosis and microgametogenesis. Further, the copy numbers of TEs and TR varied significantly between (iii) genotypes and (iv) different spike tissues in the same plant(s). Finally, (v) in plants with and without Bs from different populations, genomic abundances and/or copy number dynamics of TEs and TR were similar. These findings indicate that fluctuations in TE and TR copy numbers are associated with DNA damage and repair processes during cell proliferation and differentiation, and ectopic recombination is one of the mechanisms by which Bs play a role in genome changes.
Collapse
|
14
|
Ourari M, Coriton O, Martin G, Huteau V, Keller J, Ainouche ML, Amirouche R, Ainouche A. Screening diversity and distribution of Copia retrotransposons reveals a specific amplification of BARE1 elements in genomes of the polyploid Hordeum murinum complex. Genetica 2020; 148:109-123. [PMID: 32361835 DOI: 10.1007/s10709-020-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
We explored diversity, distribution and evolutionary dynamics of Ty1-Copia retrotransposons in the genomes of the Hordeum murinum polyploid complex and related taxa. Phylogenetic and fluorescent in situ hybridization (FISH) analyses of reverse transcriptase sequences identified four Copia families in these genomes: the predominant BARE1 (including three groups or subfamilies, A, B and C), and the less represented RIRE1, IKYA and TAR-1. Within the BARE1 family, BARE1-A elements and a subgroup of BARE1-B elements (named B1) have proliferated in the allopolyploid members of the H. murinum complex (H. murinum and H. leporinum), and in their extant diploid progenitor, subsp. glaucum. Moreover, we found a specific amplification of BARE1-B elements within each Hordeum species surveyed. The low occurrence of RIRE1, IKYA and TAR-1 elements in the allopolyploid cytotypes suggests that they are either weakly represented or highly degenerated in their diploid progenitors. The results demonstrate that BARE1-A and BARE1-B1 Copia elements are particularly well represented in the genomes of the H. murinum complex and constitute its genomic hallmark. No BARE1-A and -B1 homologs were detected in the reference barley genome. The similar distribution of RT-Copia probes across chromosomes of diploid, tetraploid and hexaploid taxa of the murinum complex shows no evidence of proliferation following polyploidization.
Collapse
Affiliation(s)
- Malika Ourari
- Laboratory of Ecology and Environment, Department of Environment Biological Sciences, Faculty of Nature and Life Sciences, Université de Bejaia, Targa Ouzemmour, 06000, Bejaia, Algeria
| | - Olivier Coriton
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, 34398, Montpellier, France.,Université de Montpellier, AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Virginie Huteau
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Jean Keller
- Université de Toulouse, LRSV, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Auzeville-Tolosane, France
| | - Malika-Lily Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| | - Rachid Amirouche
- Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Lab. LBPO, USTHB, BP 32 El-Alia, Bab-Ezzouar, 16111, Alger, Algerie.
| | - Abdelkader Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| |
Collapse
|
15
|
Bariah I, Keidar-Friedman D, Kashkush K. Identification and characterization of large-scale genomic rearrangements during wheat evolution. PLoS One 2020; 15:e0231323. [PMID: 32287287 PMCID: PMC7156093 DOI: 10.1371/journal.pone.0231323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
Following allopolyploidization, nascent polyploid wheat species react with massive genomic rearrangements, including deletion of transposable element-containing sequences. While such massive rearrangements are considered to be a prominent process in wheat genome evolution and speciation, their structure, extent, and underlying mechanisms remain poorly understood. In this study, we retrieved ~3500 insertions of a specific variant of Fatima, one of the most dynamic gypsy long-terminal repeat retrotransposons in wheat from the recently available high-quality genome drafts of Triticum aestivum (bread wheat) and Triticum turgidum ssp. dicoccoides or wild emmer, the allotetraploid mother of all modern wheats. The dynamic nature of Fatima facilitated the identification of large (i.e., up to ~ 1 million bases) Fatima-containing insertions/deletions (indels) upon comparison of bread wheat and wild emmer genomes. We characterized 11 such indels using computer-assisted analysis followed by PCR validation, and found that they might have occurred via unequal intra-strand recombination or double-strand break (DSB) events. Additionally, we observed one case of introgression of novel DNA fragments from an unknown source into the wheat genome. Our data thus indicate that massive large-scale DNA rearrangements might play a prominent role in wheat speciation.
Collapse
Affiliation(s)
- Inbar Bariah
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
16
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
17
|
Bariah I, Keidar-Friedman D, Kashkush K. Where the Wild Things Are: Transposable Elements as Drivers of Structural and Functional Variations in the Wheat Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:585515. [PMID: 33072155 PMCID: PMC7530836 DOI: 10.3389/fpls.2020.585515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are major contributors to genome plasticity and thus are likely to have a dramatic impact on genetic diversity and speciation. Recent technological developments facilitated the sequencing and assembly of the wheat genome, opening the gate for whole genome analysis of TEs in wheat, which occupy over 80% of the genome. Questions that have been long unanswered regarding TE dynamics throughout the evolution of wheat, are now being addressed more easily, while new questions are rising. In this review, we discuss recent advances in the field of TE dynamics in wheat and possible future directions.
Collapse
|
18
|
Keidar-Friedman D, Bariah I, Domb K, Kashkush K. The Evolutionary Dynamics of a Novel Miniature Transposable Element in the Wheat Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:1173. [PMID: 32903772 PMCID: PMC7438880 DOI: 10.3389/fpls.2020.01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 05/02/2023]
Abstract
The discovery of Mariam, a wheat-unique miniature transposable element family, was reported in our previous study. We have also shown the possible impact of Mariam insertions on the expression of wheat genes. However, the evolutionary dynamics of Mariam was not studied in detail. In this study, we have assessed the insertion sites of Mariam family in different wheat species. In-silico analysis of Mariam insertions has allowed the discovery of two different sequence versions of Mariam, and that Mariam might have been recently active in wild emmer wheat genome (T. turgidum ssp diccocoides). In addition, the analysis of Mariam insertional polymorphism has facilitated the discovery of large genomic rearrangement events, such as deletions and introgressions in the wheat genome. The dynamics of Mariam family sheds light on the evolution of wheat.
Collapse
|
19
|
Divashuk MG, Karlov GI, Kroupin PY. Copy Number Variation of Transposable Elements in Thinopyrum intermedium and Its Diploid Relative Species. PLANTS (BASEL, SWITZERLAND) 2019; 9:E15. [PMID: 31877707 PMCID: PMC7020174 DOI: 10.3390/plants9010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Diploid and polyploid wild species of Triticeae have complex relationships, and the understanding of their evolution and speciation could help to increase the usability of them in wheat breeding as a source of genetic diversity. The diploid species Pseudoroegneria spicata (St), Thinopyrum bessarabicum (Jb), Dasypyrum villosum (V) derived from a hypothetical common ancestor are considered to be possible subgenome donors in hexaploid species Th. intermedium (JrJvsSt, where indices r, v, and s stand for the partial relation to the genomes of Secale, Dasypyrum, and Pseudoroegneria, respectively). We quantified 10 families of transposable elements (TEs) in P. spicata, Th. bessarabicum, D. villosum (per one genome), and Th. intermedium (per one average subgenome) using the quantitative real time PCR assay and compared their abundance within the studied genomes as well as between them. Sabrina was the most abundant among all studied elements in P. spicata, D. villosum, and Th. intermedium, and among Ty3/Gypsy elements in all studied species. Among Ty1/Copia elements, Angela-A and WIS-A showed the highest and close abundance with the exception of D. villosum, and comprised the majority of all studied elements in Th. bessarabicum. Sabrina, BAGY2, and Angela-A showed similar abundance among diploids and in Th. intermedium hexaploid; Latidu and Barbara demonstrated sharp differences between diploid genomes. The relationships between genomes of Triticeae species based on the studied TE abundance and the role of TEs in speciation and polyploidization in the light of the current phylogenetic models is discussed.
Collapse
Affiliation(s)
- Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Pavel Yu. Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| |
Collapse
|
20
|
Haploid Induction and Genome Instability. Trends Genet 2019; 35:791-803. [DOI: 10.1016/j.tig.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022]
|
21
|
Zhang Z, Fu T, Liu Z, Wang X, Xun H, Li G, Ding B, Dong Y, Lin X, Sanguinet KA, Liu B, Wu Y, Gong L. Extensive changes in gene expression and alternative splicing due to homoeologous exchange in rice segmental allopolyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2295-2308. [PMID: 31098756 DOI: 10.1007/s00122-019-03355-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
We report rampant homoeologous exchanges in progenies of a newly synthesized rice segmental allotetraploid and demonstrate their consequences to changes of gene expression and alternative splicing. Allopolyploidization is recurrent across the tree of angiosperms and known as a driving evolutionary force in both plants and animals. A salient feature of allopolyploidization is the induction of homoeologous exchange (HE) events between the constituent subgenomes, which may in turn cause changes in gene expression, transcript alternative splicing, and phenotypic novelty. However, this issue has been poorly studied, largely because lack of a system in which the exact parentage donating the subgenomes is known and the HE events are occurring in real time. Here, we employed whole-genome re-sequencing and RNA-seq-based transcriptome profiling in four randomly chosen progeny individuals (at the 10th-selfed generation) of segmental allotetraploids that were constructed by colchicine-mediated whole-genome doubling of F1 hybrids between the two subspecies (japonica and indica) of Asian cultivated Oryza sativa. We show that rampant HE events occurred in these tetraploid individuals, which converted most of the otherwise heterozygous genomic regions into a homogenized state of one parental subgenome. We demonstrate that genes within these homogenized genomic regions in the tetraploids showed high frequencies of altered expression and enhanced alternative splicing relative to their counterparts in the corresponding diploid parents in the embryo tissue. Intriguingly, limited overlaps between the differentially expressed genes and the differential alternative spliced genes were identified, which were partitioned to distinctly enriched gene ontology terms. Together, our results indicate that HE is a major mechanism to rapidly generate novelty in gene expression and transcriptome diversity, which may facilitate phenotypic innovation in nascent allopolyploids and relevant to allopolyploid crop breeding.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tiansi Fu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhijian Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences (JAAS), Changchun, 136100, China
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
22
|
Wang GX, He QY, Zhao H, Cai ZX, Guo N, Zong M, Han S, Liu F, Jin WW. ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids. Chromosoma 2019; 128:119-131. [PMID: 30993455 DOI: 10.1007/s00412-019-00701-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023]
Abstract
Centromeres are indispensable functional units of chromosomes. The evolutionary mechanisms underlying the rapid evolution of centromeric repeats, especially those following polyploidy, remain unknown. In this study, we isolated centromeric sequences of Brassica nigra, a model diploid progenitor (B genome) of the allopolyploid species B. juncea (AB genome) and B. carinata (BC genome) by chromatin immunoprecipitation of nucleosomes containing the centromere-specific histone CENH3. Sequence analysis detected no centromeric satellite DNAs, and most B. nigra centromeric repeats were found to originate from Tyl/copia-class retrotransposons. In cytological analyses, six of the seven analyzed repeat clusters had no FISH signals in A or C genomes of the related diploid species B. rapa and B. oleracea. Notably, five repeat clusters had FISH signals in both A and B subgenomes in the tetraploid B. juncea. In the tetraploid B. carinata, only CL23 displayed three pairs of signals in terminal or interstitial regions of the C-derived chromosome, and no evidence of colonization of CLs onto C-subgenome centromeres was found in B. carinata. This observation suggests that centromeric repeats spread and proliferated between genomes after polyploidization. CL3 and CRB are likely ancient centromeric sequences arising prior to the divergence of diploid Brassica which have detected signals across the genus. And in allotetraploids B. juncea and B. carinata, the FISH signal intensity of CL3 and CRB differed among subgenomes. We discussed possible mechanisms for centromeric repeat divergence during Brassica speciation and polyploid evolution, thus providing insights into centromeric repeat establishment and targeting.
Collapse
Affiliation(s)
- Gui-Xiang Wang
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qun-Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hong Zhao
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ze-Xi Cai
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ning Guo
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mei Zong
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuo Han
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fan Liu
- Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei-Wei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Mhiri C, Parisod C, Daniel J, Petit M, Lim KY, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien MA. Parental transposable element loads influence their dynamics in young Nicotiana hybrids and allotetraploids. THE NEW PHYTOLOGIST 2019; 221:1619-1633. [PMID: 30220091 DOI: 10.1111/nph.15484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 05/29/2023]
Abstract
The genomic shock hypothesis suggests that allopolyploidy is associated with genome changes driven by transposable elements, as a response to imbalances between parental insertion loads. To explore this hypothesis, we compared three allotetraploids, Nicotiana arentsii, N. rustica and N. tabacum, which arose over comparable time frames from hybridisation between increasingly divergent diploid species. We used sequence-specific amplification polymorphism (SSAP) to compare the dynamics of six transposable elements in these allopolyploids, their diploid progenitors and in corresponding synthetic hybrids. We show that element-specific dynamics in young Nicotiana allopolyploids reflect their dynamics in diploid progenitors. Transposable element mobilisation is not concomitant with immediate genome merger, but occurs within the first generations of allopolyploid formation. In natural allopolyploids, such mobilisations correlate with imbalances in the repeat profile of the parental species, which increases with their genetic divergence. Other restructuring leading to locus loss is immediate, nonrandom and targeted at specific subgenomes, independently of cross orientation. The correlation between transposable element mobilisation in allopolyploids and quantitative imbalances in parental transposable element loads supports the genome shock hypothesis proposed by McClintock.
Collapse
Affiliation(s)
- Corinne Mhiri
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Christian Parisod
- Ecological Genomics, Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Julien Daniel
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Maud Petit
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - K Yoong Lim
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Marie-Angèle Grandbastien
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
24
|
Zhang H, Ali A, Hou F, Wu T, Guo D, Zeng X, Wang F, Zhao H, Chen X, Xu P, Wu X. Effects of ploidy variation on promoter DNA methylation and gene expression in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2018; 18:314. [PMID: 30497392 PMCID: PMC6267922 DOI: 10.1186/s12870-018-1553-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polyploidy, or whole-genome duplication (WGD) promotes genetic diversification in plants. However, whether WGD is accompanied by epigenetic regulation especially DNA methylation remains yet elusive. Methylation of different region in genomic DNA play discrete role in gene regulation and developmental processes in plants. RESULTS In our study, we used an apomictic rice line (SARII-628) that produces twin seedlings of different ploidy for methylated DNA immunoprecipitation sequencing (MeDIP-seq). We compared the level of methylation and mRNA expression in three different (CG, CHG, and CHH) sequence contexts of promoter region among haploid (1X), diploid (2X), and triploid (3X) seedling. We used MeDIP-Seq analysis of 14 genes to investigate whole genome DNA methylation and found that relative level of DNA methylation across different ploidy was in following order e.g. diploid > triploid > haploid. GO functional classification of differentially methylated genes into 9 comparisons group of promoter, intergenic and intragenic region discovered, these genes were mostly enriched for cellular component, molecular function, and biological process. By the comparison of methylome data, digital gene expression (DGE), mRNA expression profile, and Q-PCR findings LOC_ Os07g31450 and LOC_ Os01g59320 were analyzed for BS-Seq (Bisulphite sequencing). CONCLUSIONS We found that (1) The level of the promoter DNA methylation is negatively correlated with gene expression within each ploidy level. (2) Among all ploidy levels, CG sequence context had highest methylation frequency, and demonstrated that the high CG methylation did reduce gene expression change suggesting that DNA methylation exert repressive function and ensure genome stability during WGD. (3) Alteration in ploidy (from diploid to haploid, or diploid to triploid) reveals supreme changes in methylation frequency of CHH sequence context. Our finding will contribute an understanding towards lower stability of CHH sequence context and educate the effect of promoter region methylation during change in ploidy state in rice.
Collapse
Affiliation(s)
- Hongyu Zhang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Asif Ali
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Feixue Hou
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Tingkai Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Daiming Guo
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiufeng Zeng
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Fangfang Wang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Huixia Zhao
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiaoqiong Chen
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Peizhou Xu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xianjun Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| |
Collapse
|
25
|
Ryan PR, Dong D, Teuber F, Wendler N, Mühling KH, Liu J, Xu M, Salvador Moreno N, You J, Maurer HP, Horst WJ, Delhaize E. Assessing How the Aluminum-Resistance Traits in Wheat and Rye Transfer to Hexaploid and Octoploid Triticale. FRONTIERS IN PLANT SCIENCE 2018; 9:1334. [PMID: 30374359 PMCID: PMC6196275 DOI: 10.3389/fpls.2018.01334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
The mechanisms of aluminum (Al) resistance in wheat and rye involve the release of citrate and malate anions from the root apices. Many of the genes controlling these processes have been identified and their responses to Al treatment described in detail. This study investigated how the major Al resistance traits of wheat and rye are transferred to triticale (x Tritosecale Wittmack) which is a hybrid between wheat and rye. We generated octoploid and hexaploid triticale lines and compared them with the parental lines for their relative resistance to Al, organic anion efflux and expression of some of the genes encoding the transporters involved. We report that the strong Al resistance of rye was incompletely transferred to octoploid and hexaploid triticale. The wheat and rye parents contributed to the Al-resistance of octoploid triticale but the phenotypes were not additive. The Al resistance genes of hexaploid wheat, TaALMT1, and TaMATE1B, were more successfully expressed in octoploid triticale than the Al resistance genes in rye tested, ScALMT1 and ScFRDL2. This study demonstrates that an important stress-tolerance trait derived from hexaploid wheat was expressed in octoploid triticale. Since most commercial triticale lines are largely hexaploid types it would be beneficial to develop techniques to generate genetically-stable octoploid triticale material. This would enable other useful traits that are present in hexaploid but not tetraploid wheat, to be transferred to triticale.
Collapse
Affiliation(s)
- Peter R. Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dengfeng Dong
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- College of Agriculture, Guangxi University, Nanning, China
| | - Felix Teuber
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Neele Wendler
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Jie Liu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Muyun Xu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Naike Salvador Moreno
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Department of Genetics, Faculty of Biology, Universidad Complutense, Madrid, Spain
| | - Jiangfeng You
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University, Changchun, China
| | - Hans-Peter Maurer
- State Plant Breeding Institute, Universitaet Hohenheim, Stuttgart, Germany
| | - Walter J. Horst
- Institute for Plant Nutrition, Leibniz University Hanover, Hanover, Germany
| | | |
Collapse
|
26
|
Wang D, Ling L, Zhang W, Bai Y, Shu Y, Guo C. Uncovering key small RNAs associated with gametocidal action in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4739-4756. [PMID: 29757397 DOI: 10.1093/jxb/ery175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Gametocidal (Gc) chromosomes can kill gametes that lack them by causing chromosomal breakage to ensure their preferential transmission, and they have been exploited in genetic breeding. The present study investigated the possible roles of small RNAs (sRNAs) in Gc action. By sequencing two small RNA libraries from the anthers of Triticum aestivum cv. Chinese Spring (CS) and the Chinese Spring-Gc 3C chromosome monosomic addition line (CS-3C), we identified 239 conserved and 72 putative novel miRNAs, including 135 differentially expressed miRNAs. These miRNAs were predicted to target multiple genes with various molecular functions relevant to the features of Gc action, including sterility and genome instability. The transgenic overexpression of miRNA, which was up-regulated in CS-3C, reduced rice fertility. The CS-3C line exhibited a genome-wide reduction in 24 nt siRNAs compared with that of the CS line, particularly in transposable element (TE) and repetitive DNA sequences. Corresponding to this reduction, the bisulfite sequencing analysis of four retro-TE sequences showed a decrease in CHH methylation, typical of RNA-directed DNA methylation (RdDM). These results demonstrate that both miRNA-directed regulation of gene expression and siRNA-directed DNA methylation of target TE loci could play a role in Gc action.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Wenrui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
27
|
Shaping Plant Adaptability, Genome Structure and Gene Expression through Transposable Element Epigenetic Control: Focus on Methylation. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In plants, transposable elements (TEs) represent a large fraction of the genome, with potential to alter gene expression and produce genomic rearrangements. Epigenetic control of TEs is often used to stop unrestricted movement of TEs that would result in detrimental effects due to insertion in essential genes. The current review focuses on the effects of methylation on TEs and their genomic context, and how this type of epigenetic control affects plant adaptability when plants are faced with different stresses and changes. TEs mobilize in response to stress elicitors, including biotic and abiotic cues, but also developmental transitions and ‘genome shock’ events like polyploidization. These events transitionally lift TE repression, allowing TEs to move to new genomic locations. When TEs fall close to genes, silencing through methylation can spread to nearby genes, resulting in lower gene expression. The presence of TEs in gene promoter regions can also confer stress inducibility modulated through alternative methylation and demethylation of the TE. Bursts of transposition triggered by events of genomic shock can increase genome size and account for differences seen during polyploidization or species divergence. Finally, TEs have evolved several mechanisms to suppress their own repression, including the use of microRNAs to control genes that promote methylation. The interplay between silencing, transient TE activation, and purifying selection allows the genome to use TEs as a reservoir of potential beneficial modifications but also keeps TEs under control to stop uncontrolled detrimental transposition.
Collapse
|
28
|
Li W, Liu J, Tan H, Luo L, Cui J, Hu J, Wang S, Liu Q, Hu F, Tang C, Ren L, Yang C, Zhao R, Tao M, Zhang C, Qin Q, Liu S. Asymmetric expression patterns reveal a strong maternal effect and dosage compensation in polyploid hybrid fish. BMC Genomics 2018; 19:517. [PMID: 29969984 PMCID: PMC6030793 DOI: 10.1186/s12864-018-4883-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/19/2018] [Indexed: 03/05/2023] Open
Abstract
Background Hybridization and polyploidization are regarded as the major driving forces in plant speciation, diversification, and ecological adaptation. Our knowledge regarding the mechanisms of duplicated-gene regulation following genomic merging or doubling is primarily derived from plants and is sparse for vertebrates. Results We successfully obtained an F1 generation (including allodiploid hybrids and triploid hybrids) from female Megalobrama amblycephala Yih (BSB, 2n = 48) × male Xenocypri davidi Bleeker (YB, 2n = 48). The duplicated-gene expression patterns of the two types of hybrids were explored using RNA-Seq data. In total, 5.44 × 108 (69.32 GB) clean reads and 499,631 assembled unigenes were obtained from the testis transcriptomes. The sequence similarity analysis of 4265 orthologs revealed that the merged genomes were dominantly expressed in different ploidy hybrids. The differentially expressed genes in the two types of hybrids were asymmetric compared with those in both parents. Furthermore, the genome-wide expression level dominance (ELD) was biased toward the maternal BSB genome in both the allodiploid and triploid hybrids. In addition, the dosage-compensation mechanisms that reduced the triploid expression levels to the diploid state were determined in the triploid hybrids. Conclusions Our results indicate that divergent genomes undergo strong interactions and domination in allopolyploid offspring. Genomic merger has a greater effect on the gene-expression patterns than genomic doubling. The various expression mechanisms (including maternal effect and dosage compensation) in different ploidy hybrids suggest that the initial genomic merger and doubling play important roles in polyploidy adaptation and evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-4883-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Junmei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Lingling Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal university, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
29
|
Shams I, Raskina O. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides Tausch (Poaceae, Triticeae). PROTOPLASMA 2018; 255:1023-1038. [PMID: 29374788 DOI: 10.1007/s00709-018-1212-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
Transposable elements (TE) and tandem repeats (TR) compose the largest fraction of the plant genome. The abundance and repatterning of repetitive DNA underlie intrapopulation polymorphisms and intraspecific diversification; however, the dynamics of repetitive elements in ontogenesis is not fully understood. Here, we addressed the genotype-specific and tissue-specific abundances and dynamics of the Ty1-copia, Ty3-gypsy, and LINE retrotransposons and species-specific Spelt1 tandem repeat in wild diploid goatgrass, Aegilops speltoides Tausch. Copy numbers of TEs and TR were estimated by real-time quantitative PCR in vegetative and generative tissues in original plants from contrasting allopatric populations and artificial intraspecific hybrids. The results showed that between leaves and somatic spike tissues as well as in progressive microsporogenesis of individual genotypes, the copy numbers of three TEs correlatively oscillated between 2- to 4-fold and the TR copy numbers fluctuated by 18- to 440-fold. Inter-individual and intraorganismal TEs and TR copy number dynamics demonstrate large-scale parallelism with extensive chromosomal rearrangements that were detected using fluorescent in situ hybridization in parental and hybrid genotypes. The data obtained indicate that tissue-specific differences in the abundance and pattern of repetitive sequences emerge during cell proliferation and differentiation in ontogenesis and reflect the reorganization of individual genomes in changing environments, especially in small peripheral population(s) under the influence of rapid climatic changes.
Collapse
Affiliation(s)
- Imad Shams
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Aba-Hushi Avenue 199, 3498838, Haifa, Mount Carmel, Israel
| | - Olga Raskina
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Aba-Hushi Avenue 199, 3498838, Haifa, Mount Carmel, Israel.
| |
Collapse
|
30
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Yao Y, Kovalchuk I. Exposure to zebularine and 5-azaC triggers microsatellite instability in the exposed Arabidopsis thaliana plants and their progeny. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Domb K, Keidar D, Yaakov B, Khasdan V, Kashkush K. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides). BMC PLANT BIOLOGY 2017; 17:175. [PMID: 29078757 PMCID: PMC5659041 DOI: 10.1186/s12870-017-1134-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 10/17/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Natural populations of the tetraploid wild emmer wheat (genome AABB) were previously shown to demonstrate eco-geographically structured genetic and epigenetic diversity. Transposable elements (TEs) might make up a significant part of the genetic and epigenetic variation between individuals and populations because they comprise over 80% of the wild emmer wheat genome. In this study, we performed detailed analyses to assess the dynamics of transposable elements in 50 accessions of wild emmer wheat collected from 5 geographically isolated sites. The analyses included: the copy number variation of TEs among accessions in the five populations, population-unique insertional patterns, and the impact of population-unique/specific TE insertions on structure and expression of genes. RESULTS We assessed the copy numbers of 12 TE families using real-time quantitative PCR, and found significant copy number variation (CNV) in the 50 wild emmer wheat accessions, in a population-specific manner. In some cases, the CNV difference reached up to 6-fold. However, the CNV was TE-specific, namely some TE families showed higher copy numbers in one or more populations, and other TE families showed lower copy numbers in the same population(s). Furthermore, we assessed the insertional patterns of 6 TE families using transposon display (TD), and observed significant population-specific insertional patterns. The polymorphism levels of TE-insertional patterns reached 92% among all wild emmer wheat accessions, in some cases. In addition, we observed population-specific/unique TE insertions, some of which were located within or close to protein-coding genes, creating allelic variations in a population-specific manner. We also showed that those genes are differentially expressed in wild emmer wheat. CONCLUSIONS For the first time, this study shows that TEs proliferate in wild emmer wheat in a population-specific manner, creating new alleles of genes, which contribute to the divergent evolution of homeologous genes from the A and B subgenomes.
Collapse
Affiliation(s)
- Katherine Domb
- Department of Life Sciences, Ben-Gurion University, 84105 Beer-Sheva, Israel
| | - Danielle Keidar
- Department of Life Sciences, Ben-Gurion University, 84105 Beer-Sheva, Israel
| | - Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, 84105 Beer-Sheva, Israel
| | - Vadim Khasdan
- Department of Life Sciences, Ben-Gurion University, 84105 Beer-Sheva, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, 84105 Beer-Sheva, Israel
| |
Collapse
|
33
|
Development of CACTA transposon derived SCAR markers and their use in population structure analysis in Zea mays. Genetica 2017; 146:1-12. [PMID: 28916874 DOI: 10.1007/s10709-017-9985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon's information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.
Collapse
|
34
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
35
|
Abstract
LTR retrotransposons are the most abundant group of transposable elements (TEs) in plants. These elements can fall inside or close to genes, and therefore influence their expression and evolution. This review aims to examine how LTR retrotransposons, especially Ty1-copia elements, mediate gene regulation and evolution. Various stimuli, including polyploidization and biotic and abiotic elicitors, result in the transcription and movement of these retrotransposons, and can facilitate adaptation. The presence of cis-regulatory motifs in the LTRs are central to their stress-mediated responses and are shared with host stress-responsive genes, showing a complex evolutionary history in which TEs provide new regulatory units to genes. The presence of retrotransposon remnants in genes that are necessary for normal gene function, demonstrates the importance of exaptation and co-option, and is also a consequence of the abundance of these elements in plant genomes. Furthermore, insertions of LTR retrotransposons in and around genes provide potential for alternative splicing, epigenetic control, transduction, duplication and recombination. These characteristics can become an active part of the evolution of gene families as in the case of resistance genes (R-genes). The character of TEs as exclusively selfish is now being re-evaluated. Since genome-wide reprogramming via TEs is a long evolutionary process, the changes we can examine are case-specific and their fitness advantage may not be evident until TE-derived motifs and domains have been completely co-opted and fixed. Nevertheless, the presence of LTR retrotransposons inside genes and as part of gene promoter regions is consistent with their roles as engines of plant genome evolution.
Collapse
|
36
|
Han J, Masonbrink RE, Shan W, Song F, Zhang J, Yu W, Wang K, Wu Y, Tang H, Wendel JF, Wang K. Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:992-1005. [PMID: 27539015 DOI: 10.1111/tpj.13309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 05/27/2023]
Abstract
Centromeric chromatin in most eukaryotes is composed of highly repetitive centromeric retrotransposons and satellite repeats that are highly variable even among closely related species. The evolutionary mechanisms that underlie the rapid evolution of centromeric repeats remain unknown. To obtain insight into the evolution of centromeric repeats following polyploidy, we studied a model diploid progenitor (Gossypium raimondii, D-genome) of the allopolyploid (AD-genome) cottons, G. hirsutum and G. barbadense. Sequence analysis of chromatin-immunoprecipitated DNA showed that the G. raimondii centromeric repeats originated from retrotransposon-related sequences. Comparative analysis showed that nine of the 10 analyzed centromeric repeats were absent from the centromeres in the A-genome and related diploid species (B-, F- and G-genomes), indicating that they colonized the centromeres of D-genome lineage after the divergence of the A- and D- ancestral species or that they were ancestrally retained prior to the origin of Gossypium. Notably, six of the nine repeats were present in both the A- and D-subgenomes in tetraploid G. hirsutum, and increased in abundance in both subgenomes. This finding suggests that centromeric repeats may spread and proliferate between genomes subsequent to polyploidization. Two repeats, Gr334 and Gr359 occurred in both the centromeres and nucleolar organizer regions (NORs) in D- and AD-genome species, yet localized to just the NORs in A-, B-, F-, and G-genome species. Contained within is a story of an established centromeric repeat that is eliminated and allopolyploidization provides an opportunity for reinvasion and reestablishment, which broadens our evolutionary understanding behind the cycles of centromeric repeat establishment and targeting.
Collapse
Affiliation(s)
- Jinlei Han
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Rick E Masonbrink
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Wenbo Shan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fengqin Song
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weichang Yu
- College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kai Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
37
|
Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L. Sci Rep 2016; 6:33785. [PMID: 27650318 PMCID: PMC5030654 DOI: 10.1038/srep33785] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022] Open
Abstract
The mating system transition in polyploid Brassica napus (AACC) from out-crossing to selfing is a typical trait to differentiate it from their diploid progenitors. Elucidating the mechanism of mating system transition has profound consequences for understanding the speciation and evolution in B. napus. Functional complementation experiment has shown that the insertion of 3.6 kb into the promoter of self-incompatibility male determining gene, BnSP11-1 leads to its loss of function in B. napus. The inserted fragment was found to be a non-autonomous Helitron transposon. Further analysis showed that the inserted 3.6 kb non-autonomous Helitron transposon was widely distributed in B. napus accessions which contain the S haplotype BnS-1. Through promoter deletion analysis, an enhancer and a putative cis-regulatory element (TTCTA) that were required for spatio-temporal specific expression of BnSP11-1 were identified, and both might be disrupted by the insertion of Helitron transposon. We suggested that the insertion of Helitron transposons in the promoter of BnSP11-1 gene had altered the mating system and might facilitated the speciation of B. napus. Our findings have profound consequences for understanding the self-compatibility in B. napus as well as for the trait variations during evolutionary process of plant polyploidization.
Collapse
|
38
|
Wang GX, Lv J, Zhang J, Han S, Zong M, Guo N, Zeng XY, Zhang YY, Wang YP, Liu F. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1258. [PMID: 27625659 PMCID: PMC5003894 DOI: 10.3389/fpls.2016.01258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 05/30/2023]
Abstract
Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.
Collapse
Affiliation(s)
- Gui-xiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Jing Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
- Yangzhou UniversityYangzhou, China
- Zhalute No.1 High SchoolTongliao, China
| | - Jie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Shuo Han
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Mei Zong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Ning Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Xing-ying Zeng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Yue-yun Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | | | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| |
Collapse
|
39
|
Ågren JA, Huang HR, Wright SI. Transposable element evolution in the allotetraploid Capsella bursa-pastoris. AMERICAN JOURNAL OF BOTANY 2016; 103:1197-1202. [PMID: 27440791 DOI: 10.3732/ajb.1600103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Shifts in ploidy affect the evolutionary dynamics of genomes in a myriad of ways. Population genetic theory predicts that transposable element (TE) proliferation may follow because the genomewide efficacy of selection should be reduced and the increase in gene copies may mask the deleterious effects of TE insertions. Moreover, in allopolyploids, TEs may further accumulate because of hybrid breakdown of TE silencing. However, to date the evidence of TE proliferation following an increase in ploidy is mixed, and the relative importance of relaxed selection vs. silencing breakdown remains unclear. METHODS We used high-coverage whole-genome sequence data to evaluate the abundance, genomic distribution, and population frequencies of TEs in the self-fertilizing recent allotetraploid Capsella bursa-pastoris (Brassicaceae). We then compared the C. bursa-pastoris TE profile with that of its two parental diploid species, outcrossing C. grandiflora and self-fertilizing C. orientalis. KEY RESULTS We found no evidence that C. bursa-pastoris has experienced a large genomewide proliferation of TEs relative to its parental species. However, when centromeric regions are excluded, we found evidence of significantly higher abundance of retrotransposons in C. bursa-pastoris along the gene-rich chromosome arms compared with C. grandiflora and C. orientalis. CONCLUSIONS The lack of a genomewide effect of allopolyploidy on TE abundance, combined with the increases TE abundance in gene-rich regions, suggests that relaxed selection rather than hybrid breakdown of host silencing explains the TE accumulation in C. bursa-pastoris.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Hui-Run Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, China
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Variation in Copy Number of Ty3/Gypsy Centromeric Retrotransposons in the Genomes of Thinopyrum intermedium and Its Diploid Progenitors. PLoS One 2016; 11:e0154241. [PMID: 27119343 PMCID: PMC4847875 DOI: 10.1371/journal.pone.0154241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Speciation and allopolyploidization in cereals may be accompanied by dramatic changes in abundance of centromeric repeated transposable elements. Here we demonstrate that the reverse transcriptase part of Ty3/gypsy centromeric retrotransposon (RT-CR) is highly conservative in the segmental hexaploid Thinopyrum intermedium (JrJvsSt) and its possible diploid progenitors Th. bessarabicum (Jb), Pseudoroegneria spicata (St) and Dasypyrum villosum (V) but the abundance of the repeats varied to a large extent. Fluorescence in situ hybridization (FISH) showed hybridization signals in centromeric region of all chromosomes in the studied species, although the intensity of the signals drastically differed. In Th. intermedium, the strongest signal of RT-CR probe was detected on the chromosomes of Jv, intermediate on Jr and faint on Js and St subgenome suggesting different abundance of RT-CR on the individual chromosomes rather than the sequence specificity of RT-CRs of the subgenomes. RT-CR quantification using real-time PCR revealed that its content per genome in Th. bessarabicum is ~ 2 times and P. spicata is ~ 1,5 times higher than in genome of D. villosum. The possible burst of Ty3/gypsy centromeric retrotransposon in Th. intermedium during allopolyploidization and its role in proper mitotic and meiotic chromosome behavior in a nascent allopolyploid is discussed.
Collapse
|
41
|
Fu D, Mason AS, Xiao M, Yan H. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:37-46. [PMID: 26566823 DOI: 10.1016/j.plantsci.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Compared to diploid species, allopolyploid crop species possess more complex genomes, higher productivity, and greater adaptability to changing environments. Next generation sequencing techniques have produced high-density genetic maps, whole genome sequences, transcriptomes and epigenomes for important polyploid crops. However, several problems interfere with the full application of next generation sequencing techniques to these crops. Firstly, different types of genomic variation affect sequence assembly and QTL mapping. Secondly, duplicated or homoeologous genes can diverge in function and then lead to emergence of many minor QTL, which increases difficulties in fine mapping, cloning and marker assisted selection. Thirdly, repetitive DNA sequences arising in polyploid crop genomes also impact sequence assembly, and are increasingly being shown to produce small RNAs to regulate gene expression and hence phenotypic traits. We propose that these three key features should be considered together when analyzing polyploid crop genomes. It is apparent that dissection of genomic structural variation, elucidation of the function and mechanism of interaction of homoeologous genes, and investigation of the de novo roles of repeat sequences in agronomic traits are necessary for genomics-based crop breeding in polyploids.
Collapse
Affiliation(s)
- Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Yan
- Key Laboratory of Poyang Lake Basin Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
42
|
Gao L, Diarso M, Zhang A, Zhang H, Dong Y, Liu L, Lv Z, Liu B. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat. THE NEW PHYTOLOGIST 2016; 209:364-75. [PMID: 26295562 DOI: 10.1111/nph.13595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 05/05/2023]
Abstract
Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution.
Collapse
Affiliation(s)
- Lihong Gao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Moussa Diarso
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yuzhu Dong
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Lixia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhenling Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
43
|
Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci U S A 2015; 112:E7022-9. [PMID: 26621743 DOI: 10.1073/pnas.1515170112] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a "genome shock" response factor to help neoautopolyploids adapt to genome-dosage effects.
Collapse
|
44
|
Venetsky A, Levy-Zamir A, Khasdan V, Domb K, Kashkush K. Structure and extent of DNA methylation-based epigenetic variation in wild emmer wheat (T. turgidum ssp. dicoccoides) populations. BMC PLANT BIOLOGY 2015; 15:200. [PMID: 26272589 PMCID: PMC4536863 DOI: 10.1186/s12870-015-0544-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/10/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The genetic structure and differentiation of wild emmer wheat suggests that genetic diversity is eco-geographically structured. However, very little is known about the structure and extent of the heritable epigenetic variation and its influence on local adaptation in natural populations. RESULTS The structure and extent of the heritable methylation-based epigenetic variation were assessed within and among natural populations of Triticum turgidum ssp. dicoccoides. We used methylation sensitive amplified polymorphism (MSAP) and transposon methylation display (TMD) techniques, to assess the methylation status of random genomic CCGG sites and CCGG sites flanking transposable elements (TEs), respectively. Both techniques were applied to the DNA of 50 emmer accessions which were collected from five different geographically isolated regions. In order to ensure the assessment of heritable epigenetic variation, all accessions were grown under common garden conditions for two generations. In all accessions, the difference in methylation levels of CCGG sites, including CCGG sites that flanked TEs, were not statistically significant and relatively high, ranging between 46 and 76 %. The pattern of methylation was significantly different among accessions, such that clear and statistically significant population-specific methylation patterns were observed. CONCLUSION In this study, we have observed population-unique heritable methylation patterns in emmer wheat accessions originating from five geographically isolated regions. Our data indicate that methylation-based epigenetic diversity might be eco-geographically structured and might be partly determined by climatic and edaphic factors.
Collapse
Affiliation(s)
- Anna Venetsky
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Adva Levy-Zamir
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Vadim Khasdan
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Katherine Domb
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.
| |
Collapse
|
45
|
Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, Fontes MRDM, Marino CL. Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC PLANT BIOLOGY 2015; 15:198. [PMID: 26268941 PMCID: PMC4535378 DOI: 10.1186/s12870-015-0550-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/12/2015] [Indexed: 06/01/2023]
Abstract
BACKGROUND In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. RESULTS We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring <3 million years, except one Copia family, RLC_egBianca_1. Protein theoretical models suggest different properties between Copia and Gypsy domains. IRAP and REMAP markers suggested genomic polymorphisms among Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. CONCLUSION Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.
Collapse
Affiliation(s)
- Helena Sanches Marcon
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, Brazil.
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Estadual Paulista - UNESP, Botucatu, Brazil.
| | - Douglas Silva Domingues
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Estadual Paulista - UNESP, Botucatu, Brazil.
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil.
| | - Juliana Costa Silva
- Plant Biotechnology Laboratory, Instituto Agronômico do Paraná - IAPAR, Londrina, Brazil.
| | - Rafael Junqueira Borges
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Estadual Paulista - UNESP, Botucatu, Brazil.
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, Brazil and INCTTOX-CNPq, Brazil.
| | - Fábio Filippi Matioli
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, Brazil and INCTTOX-CNPq, Brazil.
| | - Marcos Roberto de Mattos Fontes
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Estadual Paulista - UNESP, Botucatu, Brazil.
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, Brazil and INCTTOX-CNPq, Brazil.
| | - Celso Luis Marino
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Botucatu, Brazil.
- Programa de Pós-graduação em Ciências Biológicas (Genética), Universidade Estadual Paulista - UNESP, Botucatu, Brazil.
- Instituto de Biotecnologia da UNESP - IBTEC, Botucatu, Brazil.
| |
Collapse
|
46
|
Immediate Genetic and Epigenetic Changes in F1 Hybrids Parented by Species with Divergent Genomes in the Rice Genus (Oryza). PLoS One 2015. [PMID: 26208215 PMCID: PMC4514751 DOI: 10.1371/journal.pone.0132911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Inter-specific hybridization occurs frequently in higher plants, and represents a driving force of evolution and speciation. Inter-specific hybridization often induces genetic and epigenetic instabilities in the resultant homoploid hybrids or allopolyploids, a phenomenon known as genome shock. Although genetic and epigenetic consequences of hybridizations between rice subspecies (e.g., japonica and indica) and closely related species sharing the same AA genome have been extensively investigated, those of inter-specific hybridizations between more remote species with different genomes in the rice genus, Oryza, remain largely unknown. Methodology/Principal Findings We investigated the immediate chromosomal and molecular genetic/epigenetic instability of three triploid F1 hybrids produced by inter-specific crossing between species with divergent genomes of Oryza by genomic in situ hybridization (GISH) and molecular marker analysis. Transcriptional and transpositional activity of several transposable elements (TEs) and methylation stability of their flanking regions were also assessed. We made the following principle findings: (i) all three triploid hybrids are stable in both chromosome number and gross structure; (ii) stochastic changes in both DNA sequence and methylation occurred in individual plants of all three triploid hybrids, but in general methylation changes occurred at lower frequencies than genetic changes; (iii) alteration in DNA methylation occurred to a greater extent in genomic loci flanking potentially active TEs than in randomly sampled loci; (iv) transcriptional activation of several TEs commonly occurred in all three hybrids but transpositional events were detected in a genetic context-dependent manner. Conclusions/Significance Artificially constructed inter-specific hybrids of remotely related species with divergent genomes in genus Oryza are chromosomally stable but show immediate and highly stochastic genetic and epigenetic instabilities at the molecular level. These novel hybrids might provide a rich resource of genetic and epigenetic diversities for potential utilization in rice genetic improvements.
Collapse
|
47
|
Abstract
Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525; , ,
| | | | | | | | | |
Collapse
|
48
|
Paz RC, Rendina González AP, Ferrer MS, Masuelli RW. Short-term hybridisation activates Tnt1 and Tto1 Copia retrotransposons in wild tuber-bearing Solanum species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:860-869. [PMID: 25556397 DOI: 10.1111/plb.12301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Interspecific hybridisation in tuber-bearing species of Solanum is a common phenomenon and represents an important source of variability, crucial for adaptation and speciation of potato species. In this regard, the effects of interspecific hybridisation on retrotransposon families present in the genomes, and their consequent effects on generation of genetic variability in wild tuber-bearing Solanum species, are poorly characterised. The aim of this study was to analyse the activity of retrotransposons in inter- and intraspecific hybrids between S. kurtzianum and S. microdontum, obtained by controlled crosses, and the effects on morphological, genetic and epigenetic variability. For genetic and epigenetic analysis, S-SAP (sequence-specific amplification polymorphism) and TMD (transposon methylation display) techniques were used, respectively, with specific primers for Tnt1 and Tto1 retrotransposon families (Order LTR, Superfamily Copia). The results indicate that at morphological level, interspecific hybrid genotypes differ from their parental species, whereas derived intraspecific hybrids do not. In both cases, we observed significant reductions in pollen grain viability, and a negative correlation with Tnt1 mobility. Both retrotransposons, Tto1 and Tnt1, were mobilised in the genotypes analysed, with mobility ranging from 0 to 7.8%. Furthermore, at the epigenetic level, demethylation was detected in the vicinity of Tnt1 and Tto1 in the hybrids compared with the parental genotypes. These patterns were positively correlated with the activity of the retrotransposons. The results suggest a possible mechanism through which hybridisation events generate genetic variability in tuber-bearing species of Solanum through retrotranposon activation.
Collapse
Affiliation(s)
- R C Paz
- Dpto. de Biología, Grupo INTERBIODES (Biological Interactions of Desert), CIGEOBIO (FCEFyN, UNSJ/CONICET), Rivadavia, San Juan, Argentina
| | - A P Rendina González
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - M S Ferrer
- Laboratorio de Biología Molecular, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - R W Masuelli
- Laboratorio de Biología Molecular, Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), La Consulta, San Carlos, Mendoza, Argentina
| |
Collapse
|
49
|
Li AL, Geng SF, Zhang LQ, Liu DC, Mao L. Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat. MOLECULAR PLANT 2015; 8:847-59. [PMID: 25747845 DOI: 10.1016/j.molp.2015.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/13/2015] [Accepted: 02/25/2015] [Indexed: 05/27/2023]
Abstract
Bread wheat (or common wheat, Triticum aestivum) is an allohexaploid (AABBDD, 2n = 6x = 42) that arose by hybridization between a cultivated tetraploid wheat T. turgidum (AABB, 2n = 4x = 28) and the wild goatgrass Aegilops tauschii (DD, 2n = 2x = 14). Polyploidization provided niches for rigorous genome modification at cytogenetic, genetic, and epigenetic levels, rendering a broader spread than its progenitors. This review summarizes the latest advances in understanding gene regulation mechanisms in newly synthesized allohexaploid wheat and possible correlation with polyploid growth vigor and adaptation. Cytogenetic studies reveal persistent association of whole-chromosome aneuploidy with nascent allopolyploids, in contrast to the genetic stability in common wheat. Transcriptome analysis of the euploid wheat shows that small RNAs are driving forces for homoeo-allele expression regulation via genetic and epigenetic mechanisms. The ensuing non-additively expressed genes and those with expression level dominance to the respective progenitor may play distinct functions in growth vigor and adaptation in nascent allohexaploid wheat. Further genetic diploidization of allohexaploid wheat is not random. Regional asymmetrical gene distribution, rather than subgenome dominance, is observed in both synthetic and natural allohexaploid wheats. The combinatorial effects of diverged genomes, subsequent selection of specific gene categories, and subgenome-specific traits are essential for the successful establishment of common wheat.
Collapse
Affiliation(s)
- Ai-li Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai-Feng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lian-quan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deng-cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
50
|
Liu C, Yang X, Zhang H, Wang X, Zhang Z, Bian Y, Zhu B, Dong Y, Liu B. Genetic and epigenetic modifications to the BBAA component of common wheat during its evolutionary history at the hexaploid level. PLANT MOLECULAR BIOLOGY 2015; 88:53-64. [PMID: 25809554 DOI: 10.1007/s11103-015-0307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/12/2015] [Indexed: 05/11/2023]
Abstract
The formation and evolution of common wheat (Triticum aestivum L., genome BBAADD) involves allopolyploidization events at two ploidy levels. Whether the two ploidy levels (tetraploidy and hexaploidy) have impacted the BBAA subgenomes differentially remains largely unknown. We have reported recently that extensive and distinct modifications of transcriptome expression occurred to the BBAA component of common wheat relative to the evolution of gene expression at the tetraploid level in Triticum turgidum. As a step further, here we analyzed the genetic and cytosine DNA methylation differences between an extracted tetraploid wheat (ETW) harboring genome BBAA that is highly similar to the BBAA subgenomes of common wheat, and a set of diverse T. turgidum collections, including both wild and cultivated genotypes. We found that while ETW had no significantly altered karyotype from T. turgidum, it diverged substantially from the later at both the nucleotide sequence level and in DNA methylation based on molecular marker assay of randomly sampled loci across the genome. In particular, ETW is globally less cytosine-methylated than T. turgidum, consistent with earlier observations of a generally higher transcriptome expression level in ETW than in T. turgidum. Together, our results suggest that genome evolution at the allohexaploid level has caused extensive genetic and DNA methylation modifications to the BBAA subgenomes of common wheat, which are distinctive from those accumulated at the tetraploid level in both wild and cultivated T. turgidum genotypes.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|