1
|
Anwised P, Moorawong R, Samruan W, Somredngan S, Srisutush J, Laowtammathron C, Aksoy I, Parnpai R, Savatier P. An expedition in the jungle of pluripotent stem cells of non-human primates. Stem Cell Reports 2023; 18:2016-2037. [PMID: 37863046 PMCID: PMC10679654 DOI: 10.1016/j.stemcr.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
For nearly three decades, more than 80 embryonic stem cell lines and more than 100 induced pluripotent stem cell lines have been derived from New World monkeys, Old World monkeys, and great apes. In this comprehensive review, we examine these cell lines originating from marmoset, cynomolgus macaque, rhesus macaque, pig-tailed macaque, Japanese macaque, African green monkey, baboon, chimpanzee, bonobo, gorilla, and orangutan. We outline the methodologies implemented for their establishment, the culture protocols for their long-term maintenance, and their basic molecular characterization. Further, we spotlight any cell lines that express fluorescent reporters. Additionally, we compare these cell lines with human pluripotent stem cell lines, and we discuss cell lines reprogrammed into a pluripotent naive state, detailing the processes used to attain this. Last, we present the findings from the application of these cell lines in two emerging fields: intra- and interspecies embryonic chimeras and blastoids.
Collapse
Affiliation(s)
- Preeyanan Anwised
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratree Moorawong
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Worawalan Samruan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jittanun Srisutush
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Irene Aksoy
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Pierre Savatier
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
2
|
Yoshimatsu S, Okahara J, Yoshie J, Igarashi Y, Nakajima R, Sanosaka T, Qian E, Sato T, Kobayashi H, Morimoto S, Kishi N, Pillis DM, Malik P, Noce T, Okano H. Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing. CELL REPORTS METHODS 2023; 3:100590. [PMID: 37714158 PMCID: PMC10545943 DOI: 10.1016/j.crmeth.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Central Institute for Experimental Animals, Kawasaki City, Kanagawa 210-0821, Japan.
| | - Junko Yoshie
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yoko Igarashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Ryusuke Nakajima
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emi Qian
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hiroya Kobayashi
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Devin M Pillis
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; Division of Hematology, CBDI, CCHMC, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Bayurova E, Zhitkevich A, Avdoshina D, Kupriyanova N, Kolyako Y, Kostyushev D, Gordeychuk I. Common Marmoset Cell Lines and Their Applications in Biomedical Research. Cells 2023; 12:2020. [PMID: 37626830 PMCID: PMC10453182 DOI: 10.3390/cells12162020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used in biomedical research. Early stages of such research often include in vitro experiments which require standardized and well-characterized CM cell cultures derived from different tissues. Despite the long history of laboratory work with CMs and high translational potential of such studies, the number of available standardized, well-defined, stable, and validated CM cell lines is still small. While primary cells and immortalized cell lines are mostly used for the studies of infectious diseases, biochemical research, and targeted gene therapy, the main current applications of CM embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research, generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology, and neurodegenerative diseases. In this review we summarize the data on the main advantages, drawbacks and research applications of CM cell lines published to date including primary cells, immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Daria Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Natalya Kupriyanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Yuliya Kolyako
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moscow, Russia;
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| |
Collapse
|
4
|
Shono M, Kishimoto K, Hikabe O, Hayashi M, Semi K, Takashima Y, Sasaki E, Kato K, Hayashi K. Induction of primordial germ cell-like cells from common marmoset embryonic stem cells by inhibition of WNT and retinoic acid signaling. Sci Rep 2023; 13:3186. [PMID: 36823310 PMCID: PMC9950483 DOI: 10.1038/s41598-023-29850-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
Reconstitution of the germ cell lineage using pluripotent stem cells provides a unique platform to deepen our understanding of the mechanisms underlying germ cell development and to produce functional gametes for reproduction. This study aimed to establish a culture system that induces a robust number of primordial germ cell-like cells (PGCLCs) from common marmoset (Callithrix jacchus) embryonic stem cells. The robust induction was achieved by not only activation of the conserved PGC-inducing signals, WNT and BMP4, but also temporal inhibitions of WNT and retinoic acid signals, which prevent mesodermal and neural differentiation, respectively, during PGCLC differentiation. Many of the gene expression and differentiation properties of common marmoset PGCLCs were similar to those of human PGCLCs, making this culture system a reliable and useful primate model. Finally, we identified PDPN and KIT as surface marker proteins by which PGCLCs can be isolated from embryonic stem cells without genetic manipulation. This study will expand the opportunities for research on germ cell development and production of functional gametes to the common marmoset.
Collapse
Affiliation(s)
- Mayumi Shono
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Keiko Kishimoto
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Orie Hikabe
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masafumi Hayashi
- grid.136593.b0000 0004 0373 3971Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Katsunori Semi
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Yasuhiro Takashima
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Erika Sasaki
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Kiyoko Kato
- grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Yoshimatsu S, Nakajima M, Sonn I, Natsume R, Sakimura K, Nakatsukasa E, Sasaoka T, Nakamura M, Serizawa T, Sato T, Sasaki E, Deng H, Okano H. Attempts for deriving extended pluripotent stem cells from common marmoset embryonic stem cells. Genes Cells 2023; 28:156-169. [PMID: 36530170 DOI: 10.1111/gtc.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayutaka Nakajima
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ena Nakatsukasa
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshikuni Sasaoka
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Serizawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.,Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Hongkui Deng
- Stem Cell Research Center, Peking University, Beijing, China
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
6
|
Munger C, Kohler TN, Slatery E, Ellermann AL, Bergmann S, Penfold C, Ampartzidis I, Chen Y, Hollfelder F, Boroviak TE. Microgel culture and spatial identity mapping elucidate the signalling requirements for primate epiblast and amnion formation. Development 2022; 149:276630. [PMID: 36125063 PMCID: PMC7614365 DOI: 10.1242/dev.200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
The early specification and rapid growth of extraembryonic membranes are distinctive hallmarks of primate embryogenesis. These complex tasks are resolved through an intricate combination of signals controlling the induction of extraembryonic lineages and, at the same time, safeguarding the pluripotent epiblast. Here, we delineate the signals orchestrating primate epiblast and amnion identity. We encapsulated marmoset pluripotent stem cells into agarose microgels and identified culture conditions for the development of epiblast- and amnion-spheroids. Spatial identity mapping authenticated spheroids generated in vitro by comparison with marmoset embryos in vivo. We leveraged the microgel system to functionally interrogate the signalling environment of the post-implantation primate embryo. Single-cell profiling of the resulting spheroids demonstrated that activin/nodal signalling is required for embryonic lineage identity. BMP4 promoted amnion formation and maturation, which was counteracted by FGF signalling. Our combination of microgel culture, single-cell profiling and spatial identity mapping provides a powerful approach to decipher the essential cues for embryonic and extraembryonic lineage formation in primate embryogenesis.
Collapse
Affiliation(s)
- Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Timo N. Kohler
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Erin Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Anna L. Ellermann
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Ioakeim Ampartzidis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Yutong Chen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
- Correspondence: T.E.B. (), F.H. ()
| | - Thorsten E. Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, United Kingdom
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
- Correspondence: T.E.B. (), F.H. ()
| |
Collapse
|
7
|
Performance of Marmoset Monkeys as Embryo Donors Is Reflected by Different Stress-Related Parameters. Animals (Basel) 2022; 12:ani12182414. [PMID: 36139275 PMCID: PMC9494952 DOI: 10.3390/ani12182414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Non-human primates (NHPs) serve as embryo donors for embryo collection in order to mimic genetic diseases in humans by genetic modification. Reproductive health of the embryo donors is crucial, and chronic distress needs to be avoided. Embryo retrieval rates (ERR), anti-Müllerian hormone (AMH) concentrations, cortisol levels, and body weight fluctuations were assessed as markers for fertility and distress. With regard to successful embryo retrievals (total n = 667), the animals were either used for extended periods (long-term group; LTG) or only for short periods (short-term group; STG). Retrospective evaluation expectedly showed that animals in the LTG had a higher ERR than animals in the STG (p < 0.0001). Importantly, ERR in the LTG remained stable throughout the experimental period, and high embryo rates were already encountered during the first year of experimental use (p = 0.0002). High ERR were associated with high AMH and low cortisol levels, and minimal body weight fluctuations following anesthesia, indicating a superior ability of the LTG animals to handle distress. We conclude that the long-term experimental use of marmosets does not impair their fertility or health status per se, supporting the view that animal reuse can be in accordance with the 3R-principle, implying reduction, replacement, and refinement in animal experimentation.
Collapse
|
8
|
Yoshimatsu S, Seki F, Okahara J, Watanabe H, Sasaguri H, Haga Y, Hata JI, Sanosaka T, Inoue T, Mineshige T, Lee CY, Shinohara H, Kurotaki Y, Komaki Y, Kishi N, Murayama AY, Nagai Y, Minamimoto T, Yamamoto M, Nakajima M, Zhou Z, Nemoto A, Sato T, Ikeuchi T, Sahara N, Morimoto S, Shiozawa S, Saido TC, Sasaki E, Okano H. Multimodal analyses of a non-human primate model harboring mutant amyloid precursor protein transgenes driven by the human EF1α promoter. Neurosci Res 2022; 185:49-61. [PMID: 36075457 DOI: 10.1016/j.neures.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia which afflicts tens of millions of people worldwide. Despite many scientific progresses to dissect the AD's molecular basis from studies on various mouse models, it has been suffered from evolutionary species differences. Here, we report generation of a non-human primate (NHP), common marmoset model ubiquitously expressing Amyloid-beta precursor protein (APP) transgenes with the Swedish (KM670/671NL) and Indiana (V717F) mutations. The transgene integration of generated two transgenic marmosets (TG1&TG2) was thoroughly investigated by genomic PCR, whole-genome sequencing, and fluorescence in situ hybridization. By reprogramming, we confirmed the validity of transgene expression in induced neurons in vitro. Moreover, we discovered structural changes in specific brain regions of transgenic marmosets by magnetic resonance imaging analysis, including in the entorhinal cortex and hippocampus. In immunohistochemistry, we detected increased Aβ plaque-like structures in TG1 brain at 7 years old, although evident neuronal loss or glial inflammation was not observed. Thus, this study summarizes our attempt to establish an NHP AD model. Although the transgenesis approach alone seemed not sufficient to fully recapitulate AD in NHPs, it may be beneficial for drug development and further disease modeling by combination with other genetically engineered models and disease-inducing approaches.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Fumiko Seki
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hirotaka Watanabe
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yawara Haga
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo 116-8551, Japan
| | - Jun-Ichi Hata
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo 116-8551, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Takayuki Mineshige
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Chia-Ying Lee
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Haruka Shinohara
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Yoko Kurotaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Yuji Komaki
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Noriyuki Kishi
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Ayaka Y Murayama
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba City, Chiba 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba City, Chiba 263-8555, Japan
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, Kanagawa 210-0821, Japan
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Zhi Zhou
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akisa Nemoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8122, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba City, Chiba 263-8555, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan.
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
9
|
Yoshimatsu S, Nakajima M, Qian E, Sanosaka T, Sato T, Okano H. Homologous Recombination-Enhancing Factors Identified by Comparative Transcriptomic Analyses of Pluripotent Stem Cell of Human and Common Marmoset. Cells 2022; 11:cells11030360. [PMID: 35159172 PMCID: PMC8834151 DOI: 10.3390/cells11030360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
A previous study assessing the efficiency of the genome editing technology CRISPR-Cas9 for knock-in gene targeting in common marmoset (marmoset; Callithrix jacchus) embryonic stem cells (ESCs) unexpectedly identified innately enhanced homologous recombination activity in marmoset ESCs. Here, we compared gene expression in marmoset and human pluripotent stem cells using transcriptomic and quantitative PCR analyses and found that five HR-related genes (BRCA1, BRCA2, RAD51C, RAD51D, and RAD51) were upregulated in marmoset cells. A total of four of these upregulated genes enhanced HR efficiency with CRISPR-Cas9 in human pluripotent stem cells. Thus, the present study provides a novel insight into species-specific mechanisms for the choice of DNA repair pathways.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Mayutaka Nakajima
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Emi Qian
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Correspondence:
| |
Collapse
|
10
|
Rodriguez-Polo I, Behr R. Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies. Neural Regen Res 2022; 17:1867-1874. [PMID: 35142660 PMCID: PMC8848615 DOI: 10.4103/1673-5374.335689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-human primates play a key role in the preclinical validation of pluripotent stem cell-based cell replacement therapies. Pluripotent stem cells used as advanced therapy medical products boost the possibility to regenerate tissues and organs affected by degenerative diseases. Therefore, the methods to derive human induced pluripotent stem cell and embryonic stem cell lines following clinical standards have quickly developed in the last 15 years. For the preclinical validation of cell replacement therapies in non-human primates, it is necessary to generate non-human primate pluripotent stem cell with a homologous quality to their human counterparts. However, pluripotent stem cell technologies have developed at a slower pace in non-human primates in comparison with human cell systems. In recent years, however, relevant progress has also been made with non-human primate pluripotent stem cells. This review provides a systematic overview of the progress and remaining challenges for the generation of non-human primate induced pluripotent stem cells/embryonic stem cells for the preclinical testing and validation of cell replacement therapies. We focus on the critical domains of (1) reprogramming and embryonic stem cell line derivation, (2) cell line maintenance and characterization and, (3) application of non-human primate pluripotent stem cells in the context of selected preclinical studies to treat cardiovascular and neurodegenerative disorders performed in non-human primates.
Collapse
|
11
|
Abe Y, Nakao H, Goto M, Tamano M, Koebis M, Nakao K, Aiba A. Efficient marmoset genome engineering by autologous embryo transfer and CRISPR/Cas9 technology. Sci Rep 2021; 11:20234. [PMID: 34642413 PMCID: PMC8511084 DOI: 10.1038/s41598-021-99656-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Genetic engineering of non-human primates, which are most closely related to humans, has been expected to generate ideal animal models for human genetic diseases. The common marmoset (Callithrix jacchus) is a non-human primate species adequate for the production of genetically modified animals because of their small body size and high reproductive capacity. Autologous embryo transfer (AET) is routinely utilized in assisted reproductive technologies for humans but not for experimental animals. This study has developed a novel method for efficiently producing mutant marmosets using AET and CRISPR/Cas9 systems. The embryos were recovered from oviducts of naturally mated females, injected with Cas9/guide RNA, and transferred into the oviducts of the donors. This AET method can reduce the time for in vitro culture of embryos to less than 30 min. This method uses an embryo donor as the recipient, thus reducing the number of animals and allowing for "Reduction" in the 3R principles of humane experimental technique. Furthermore, this method can utilize nulliparous females as well as parous females. We applied our novel method and generated the 6 marmosets carrying mutations in the fragile X mental retardation 1 (FMR1) gene using only 18 females including 14 nulliparous females.
Collapse
Affiliation(s)
- Yukiko Abe
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harumi Nakao
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motoki Goto
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Moe Tamano
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Michinori Koebis
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuki Nakao
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Atsu Aiba
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Yoshimatsu S, Nakajima M, Iguchi A, Sanosaka T, Sato T, Nakamura M, Nakajima R, Arai E, Ishikawa M, Imaizumi K, Watanabe H, Okahara J, Noce T, Takeda Y, Sasaki E, Behr R, Edamura K, Shiozawa S, Okano H. Non-viral Induction of Transgene-free iPSCs from Somatic Fibroblasts of Multiple Mammalian Species. Stem Cell Reports 2021; 16:754-770. [PMID: 33798453 PMCID: PMC8072067 DOI: 10.1016/j.stemcr.2021.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers and germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem cell-based therapy, gene-modified animal production, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrate the iPSC derivation from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the fibroblasts temporarily acquired a neural stem cell-like state during the reprogramming. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem cell-based research using various animals in Mammalia.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Aozora Iguchi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Mari Nakamura
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Ryusuke Nakajima
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Eri Arai
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kent Imaizumi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuta Takeda
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
13
|
Yoshimatsu S, Murakami R, Sato T, Saeki T, Yamamoto M, Sasaki E, Noce T, Okano H. Generation of a common marmoset embryonic stem cell line CMES40-OC harboring a POU5F1 (OCT4)-2A-mCerulean3 knock-in reporter allele. Stem Cell Res 2021; 53:102308. [PMID: 33799281 DOI: 10.1016/j.scr.2021.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
POU class 5 homeobox 1 (POU5F1, also known as OCT4) is critical for maintenance of pluripotency, germ cell fate, reprogramming into a pluripotent state, and early embryogenesis. We generated an embryonic stem cell (ESC) line of the common marmoset (Callithrix jacchus) harboring a heterozygous knock-in allele of OCT4-P2A-mCerulean-T2A-pac. The ESC line (CMES40-OC) will be valuable for investigation of primed/naïve pluripotency and germ cell fate. Homozygous OCT4 knock-in clones were generated but could not be sustained in an undifferentiated state in long-term culture. The OCT4 knock-in system facilitated simultaneous knock-in of a reporter construct at another locus, DDX4 (VASA).
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Rei Murakami
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Tsubasa Saeki
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
14
|
Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR J 2021; 61:286-303. [PMID: 33693670 PMCID: PMC8918153 DOI: 10.1093/ilar/ilab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, School of Medicine in Pittsburgh, Pennsylvania, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals in Kawasaki, Kanagawa, Japan
| |
Collapse
|
15
|
Establishment of novel common marmoset embryonic stem cell lines under various conditions. Stem Cell Res 2021; 53:102252. [PMID: 33711687 DOI: 10.1016/j.scr.2021.102252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
Pluripotent stem cells (PSCs), embryonic stem cells (ESCs), and induced PSCs (iPSCs) are excellent tools for studying embryonic development in organisms and classified into naïve and primed states. ESC-derived germline chimera individuals can be produced by injecting naïve ESCs/iPSCs into preimplantation embryos, and conversion of primed human ESCs/iPSCs into a naïve state provides insights into epiblast cell features. Non-human ESCs/iPSCs are alternatives to human naïve ESCs/iPSCs, which elicit ethical issues. In this study, we used the common marmoset (Callithrix jacchus) as an animal model. Since 1996, 16 marmoset ESC lines have been established. Because most of these ESC lines are female and were derived >10 years ago, new ESCs, particularly male marmoset ESC lines, are needed. Here, we successfully established 17 novel marmoset ESC lines, including six male ESC lines from in vitro-fertilized (IVF) embryos and 12 ESC lines under feeder-free conditions. This report is the first to establish ESC lines using feeder-free conditions and IVF preimplantation blastocysts in marmosets, and these novel ESC lines could potentially facilitate future non-human primate ESC studies.
Collapse
|
16
|
Yoshimatsu S, Ohtsu K, Sato T, Yamamoto M, Sasaki E, Shiozawa S, Okano H. Generation and validation of a common marmoset embryonic stem cell line ActiCre-B1 that ubiquitously expresses a tamoxifen-inducible Cre-driver. Stem Cell Res 2021; 51:102164. [PMID: 33453576 DOI: 10.1016/j.scr.2021.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022] Open
Abstract
We previously reported the efficient targeted introduction of transgenes into the genomic DNA of the common marmoset (Callithrix jacchus) using CRISPR-Cas9. In this study, we generated a marmoset embryonic stem cell (ESC) line that ubiquitously expresses the tamoxifen-inducible Cre-driver ERT2CreERT2. We validated the pluripotency of the ESC line and also successfully demonstrated the temporal control of the Cre-driver in a tamoxifen-dependent manner in the ESCs. This ESC line, named ActiCre-B1, will be a valuable resource for in vitro investigation of phenotypes related to embryonic lethality by targeted knockout of functionally important genes.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Kanae Ohtsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Seiji Shiozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
17
|
Abstract
The common marmoset (Callithrix jacchus), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. In this review, I outline the progress of marmoset neuroscience research and summarize both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; .,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Tsuji H, Otsuka R, Wada H, Murata T, Sasaki A, Itoh M, Baghdadi M, Sasaki E, Seino KI. Induction of macrophage-like immunosuppressive cells from common marmoset ES cells by stepwise differentiation with DZNep. Sci Rep 2020; 10:12625. [PMID: 32724084 PMCID: PMC7387549 DOI: 10.1038/s41598-020-69690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Recent progress in regenerative medicine has enabled the utilization of pluripotent stem cells (PSCs) as the resource of therapeutic cells/tissue. However, immune suppression is still needed when the donor-recipient combination is allogeneic. We have reported previously that mouse PSCs-derived immunosuppressive cells contribute to prolonged survival of grafts derived from the same mouse PSCs in allogeneic recipients. For its clinical application, a preclinical study using non-human primates such as common marmoset must be performed. In this study, we established the induction protocol of immunosuppressive cells from common marmoset ES cells. Although similar immunosuppressive macrophages could not be induced by same protocol as that for mouse PSCs, we employed an inhibitor for histone methyltransferase, DZNep, and succeeded to induce them. The DZNep-treated macrophage-like cells expressed several immunosuppressive molecules and significantly inhibited allogeneic mixed lymphocyte reaction. The immunosuppressive cells from non-human primate ESCs will help to establish an immunoregulating strategy in regenerative medicine using PSCs.
Collapse
Affiliation(s)
- Hyuma Tsuji
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Tomoki Murata
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Airi Sasaki
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Mizuho Itoh
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa, 21-0821, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, 060-0815, Japan.
| |
Collapse
|
19
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
20
|
Shiozawa S, Nakajima M, Okahara J, Kuortaki Y, Kisa F, Yoshimatsu S, Nakamura M, Koya I, Yoshimura M, Sasagawa Y, Nikaido I, Sasaki E, Okano H. Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells. Stem Cells Dev 2020; 29:761-773. [DOI: 10.1089/scd.2019.0259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yoko Kuortaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Fumihiko Kisa
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
- Discovery Research Laboratories I, Minase Research Institute, Ono Pharmaceutical Co., Ltd., Mishima, Japan
| | - Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Nakamura
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Ikuko Koya
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
- Bioinformatics Course, Master's/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Wako, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
21
|
Jayakumar V, Ishii H, Seki M, Kumita W, Inoue T, Hase S, Sato K, Okano H, Sasaki E, Sakakibara Y. An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data. BMC Genomics 2020; 21:243. [PMID: 32241258 PMCID: PMC7114785 DOI: 10.1186/s12864-020-6657-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The common marmoset (Callithrix jacchus) is one of the most studied primate model organisms. However, the marmoset genomes available in the public databases are highly fragmented and filled with sequence gaps, hindering research advances related to marmoset genomics and transcriptomics. RESULTS Here we utilize single-molecule, long-read sequence data to improve and update the existing genome assembly and report a near-complete genome of the common marmoset. The assembly is of 2.79 Gb size, with a contig N50 length of 6.37 Mb and a chromosomal scaffold N50 length of 143.91 Mb, representing the most contiguous and high-quality marmoset genome up to date. Approximately 90% of the assembled genome was represented in contigs longer than 1 Mb, with approximately 104-fold improvement in contiguity over the previously published marmoset genome. More than 98% of the gaps from the previously published genomes were filled successfully, which improved the mapping rates of genomic and transcriptomic data on to the assembled genome. CONCLUSIONS Altogether the updated, high-quality common marmoset genome assembly provide improvements at various levels over the previous versions of the marmoset genome assemblies. This will allow researchers working on primate genomics to apply the genome more efficiently for their genomic and transcriptomic sequence data.
Collapse
Affiliation(s)
- Vasanthan Jayakumar
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Hiromi Ishii
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Misato Seki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Wakako Kumita
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821 Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821 Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582 Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198 Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821 Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522 Japan
| |
Collapse
|
22
|
Aravalli RN, Collins DP, Hapke JH, Crane AT, Steer CJ. Hepatic Differentiation of Marmoset Embryonic Stem Cells and Functional Characterization of ESC-Derived Hepatocyte-Like Cells. Hepat Med 2020; 12:15-27. [PMID: 32104112 PMCID: PMC7026140 DOI: 10.2147/hmer.s243277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Primary human hepatocytes (PHHs) are the ideal candidates for studying critical liver functions such as drug metabolism and toxicity. However, as they are isolated from discarded livers that are unsuitable for transplantation, they possess limited expansion ability in vitro and their enzymatic functions deteriorate rapidly because they are often of poor quality. Therefore, there is a compelling reason to find reliable alternative sources of hepatocytes. Methods In this study, we report on efficient and robust differentiation of embryonic stem cells (ESC) from the common marmoset Callithrix jacchus into functional hepatocyte-like cells (HLC) using a simple, and reproducible three-step procedure. ESC-derived HLCs were examined by morphological analysis and tested for their expression of hepatocyte-specific markers using a combination of immunohistochemistry, RT-PCR, and biochemical assays. Primary human hepatocytes were used as controls. Results ESC-derived HLCs expressed each of the hepatocyte-specific markers tested, including albumin; α-fetoprotein; asialoglycoprotein receptor 1; α-1 antitrypsin; hepatocyte nuclear factors 1α and 4; cytokeratin 18; hepatocyte growth factor receptor; transferrin; tyrosine aminotransferase; alkaline phosphatase; c-reactive protein; cytochrome P450 enzymes CYP1A2, CYP2E1 and CYP3A4; and coagulation factors FVII and FIX. They were functionally competent as demonstrated by biochemical assays in addition to producing urea. Conclusion Our data strongly suggest that marmoset HLCs possess characteristics similar to those of PHHs. They could, therefore, be invaluable for studies on drug metabolism and cell transplantation therapy for a variety of liver disorders. Because of the similarities in the anatomical and physiological features of the common marmoset to that of humans, Callithrix jacchus is an appropriate animal model to study human disease conditions and cellular functions.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Joel H Hapke
- Cytomedical Design Group LLC, St. Paul, MN 55127, USA
| | - Andrew T Crane
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Evaluating the efficacy of small molecules for neural differentiation of common marmoset ESCs and iPSCs. Neurosci Res 2019; 155:1-11. [PMID: 31586586 DOI: 10.1016/j.neures.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
The common marmoset (marmoset; Callithrix jacchus) harbors various desired features as a non-human primate (NHP) model for neuroscience research. Recently, efforts have been made to induce neural cells in vitro from marmoset pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are characterized by their capacity to differentiate into all cell types from the three germ layers. Successful generation of marmoset neural cells is not only invaluable for understanding neural development and for modeling neurodegenerative and psychiatric disorders, but is also necessary for the phenotypic screening of genetically-modified marmosets. However, differences in the differentiation propensity among PSC lines hamper the applicability and the reproducibility of differentiation methods. To overcome this limitation, we evaluated the efficacy of small molecules for neural differentiation of marmoset ESCs (cjESCs) and iPSCs using multiple differentiation methods. By immunochemical and transcriptomic analyses, we confirmed that our methods using the small molecules are efficient for various differentiation protocols by either enhancing the yield of a mixture of neural cells including both neurons and glial cells, or a pure population of neurons. Collectively, our findings optimized in vitro neural differentiation methods for marmoset PSCs, which would ultimately help enhance the utility of the animal model in neuroscience.
Collapse
|
24
|
Kumita W, Sato K, Suzuki Y, Kurotaki Y, Harada T, Zhou Y, Kishi N, Sato K, Aiba A, Sakakibara Y, Feng G, Okano H, Sasaki E. Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Sci Rep 2019; 9:12719. [PMID: 31481684 PMCID: PMC6722079 DOI: 10.1038/s41598-019-49110-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Genetically modified nonhuman primates (NHP) are useful models for biomedical research. Gene editing technologies have enabled production of target-gene knock-out (KO) NHP models. Target-gene-KO/knock-in (KI) efficiency of CRISPR/Cas9 has not been extensively investigated in marmosets. In this study, optimum conditions for target gene modification efficacies of CRISPR/mRNA and CRISPR/nuclease in marmoset embryos were examined. CRISPR/nuclease was more effective than CRISPR/mRNA in avoiding mosaic genetic alteration. Furthermore, optimal conditions to generate KI marmoset embryos were investigated using CRISPR/Cas9 and 2 different lengths (36 nt and 100 nt) each of a sense or anti-sense single-strand oligonucleotide (ssODN). KIs were observed when CRISPR/nuclease and 36 nt sense or anti-sense ssODNs were injected into embryos. All embryos exhibited mosaic mutations with KI and KO, or imprecise KI, of c-kit. Although further improvement of KI strategies is required, these results indicated that CRISPR/Cas9 may be utilized to produce KO/KI marmosets via gene editing.
Collapse
Affiliation(s)
- Wakako Kumita
- Central Institute for Experimental Animals, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Kenya Sato
- Central Institute for Experimental Animals, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Yasuhiro Suzuki
- Central Institute for Experimental Animals, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Yoko Kurotaki
- Central Institute for Experimental Animals, Kawasaki-shi, Kanagawa, 210-0821, Japan
| | - Takeshi Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, 565-0871, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yang Zhou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, 223-8522, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, 223-8522, Japan
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki-shi, Kanagawa, 210-0821, Japan. .,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan. .,Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
25
|
A versatile toolbox for knock-in gene targeting based on the Multisite Gateway technology. PLoS One 2019; 14:e0221164. [PMID: 31454364 PMCID: PMC6711506 DOI: 10.1371/journal.pone.0221164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Knock-in (KI) gene targeting can be employed for a wide range of applications in stem cell research. However, vectors for KI require multiple complicated processes for construction, including multiple times of digestion/ligation steps and extensive restriction mapping, which has imposed limitations for the robust applicability of KI gene targeting. To circumvent this issue, here we introduce versatile and systematic methods for generating KI vectors by molecular cloning. In this approach, we employed the Multisite Gateway technology, an efficient in vitro DNA recombination system using proprietary sequences and enzymes. KI vector construction exploiting these methods requires only efficient steps, such as PCR and recombination, enabling robust KI gene targeting. We show that combinatorial usage of the KI vectors generated using this method and site-specific nucleases enabled the precise integration of fluorescent protein genes in multiple loci of human and common marmoset (marmoset; Callithrix jacchus) pluripotent stem cells. The methods described here will facilitate the usage of KI technology and ultimately help to accelerate stem cell research.
Collapse
|
26
|
Nakajima M, Yoshimatsu S, Sato T, Nakamura M, Okahara J, Sasaki E, Shiozawa S, Okano H. Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based reprogramming. Biochem Biophys Res Commun 2019; 515:593-599. [DOI: 10.1016/j.bbrc.2019.05.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
|
27
|
Watanabe T, Yamazaki S, Yoneda N, Shinohara H, Tomioka I, Higuchi Y, Yagoto M, Ema M, Suemizu H, Kawai K, Sasaki E. Highly efficient induction of primate iPS cells by combining RNA transfection and chemical compounds. Genes Cells 2019; 24:473-484. [PMID: 31099158 PMCID: PMC6852476 DOI: 10.1111/gtc.12702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
Induced pluripotent stem (iPS) cells hold great promise for regenerative medicine and the treatment of various diseases. Before proceeding to clinical trials, it is important to test the efficacy and safety of iPS cell‐based treatments using experimental animals. The common marmoset is a new world monkey widely used in biomedical studies. However, efficient methods that could generate iPS cells from a variety of cells have not been established. Here, we report that marmoset cells are efficiently reprogrammed into iPS cells by combining RNA transfection and chemical compounds. Using this novel combination, we generate transgene integration‐free marmoset iPS cells from a variety of cells that are difficult to reprogram using conventional RNA transfection method. Furthermore, we show this is similarly effective for human and cynomolgus monkey iPS cell generation. Thus, the addition of chemical compounds during RNA transfection greatly facilitates reprogramming and efficient generation of completely integration‐free safe iPS cells in primates, particularly from difficult‐to‐reprogram cells.
Collapse
Affiliation(s)
| | - Shun Yamazaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | - Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Matsumoto, Japan
| | | | - Mika Yagoto
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto, Japan
| | | | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| |
Collapse
|
28
|
Chansel‐Debordeaux L, Bezard E. Local transgene expression and whole-body transgenesis to model brain diseases in nonhuman primate. Animal Model Exp Med 2019; 2:9-17. [PMID: 31016282 PMCID: PMC6431118 DOI: 10.1002/ame2.12055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Animal model is an essential tool in the life sciences research, notably in understanding the pathogenesis of the diseases and for further therapeutic intervention success. Rodents have been the most frequently used animals to model human disease since the establishment of gene manipulation technique. However, they remain inadequate to fully mimic the pathophysiology of human brain disease, partially due to huge differences between rodents and humans in terms of anatomy, brain function, and social behaviors. Nonhuman primates are more suitable in translational perspective. Thus, genetically modified animals have been generated to investigate neurologic and psychiatric disorders. The classical transgenesis technique is not efficient in that model; so, viral vector-mediated transgene delivery and the new genome-editing technologies have been promoted. In this review, we summarize some of the technical progress in the generation of an ad hoc animal model of brain diseases by gene delivery and real transgenic nonhuman primate.
Collapse
Affiliation(s)
- Lucie Chansel‐Debordeaux
- Institut des Maladies NeurodégénérativesUniversity of BordeauxUMR 5293BordeauxFrance
- CNRSInstitut des Maladies NeurodégénérativesUMR 5293BordeauxFrance
- CHU BordeauxService de Biologie de la reproduction‐CECOSBordeauxFrance
| | - Erwan Bezard
- Institut des Maladies NeurodégénérativesUniversity of BordeauxUMR 5293BordeauxFrance
- CNRSInstitut des Maladies NeurodégénérativesUMR 5293BordeauxFrance
| |
Collapse
|
29
|
Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system. Sci Rep 2019; 9:1528. [PMID: 30728412 PMCID: PMC6365532 DOI: 10.1038/s41598-018-37990-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Genome editing technology greatly facilitates the genetic modification of various cells and animals. The common marmoset (Callithrix jacchus), a small non-human primate which exhibits high reproductive efficiency, is a widely used animal model in biomedical research. Developing genome editing techniques in the common marmoset will further enhance its utility. Here, we report the successful establishment of a knock-in (KI) method for marmoset embryonic stem cells (ESCs), which is based on the CRISPR-Cas9 system. The use of CRISPR-Cas9, mediated by homologous recombination (HR), enhanced the KI efficiency in marmoset ESCs. Furthermore, we succeeded in performing KI in early-stage marmoset embryos. In the course of the experiments, we found that HR in the marmoset ESCs is innately highly efficient. This suggested that the marmoset possesses a repair mechanism for DNA double-strand breaks. The current study will facilitate the generation of genetically modified marmosets and gene function analysis in the marmoset.
Collapse
|
30
|
Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage. Int J Mol Sci 2018; 19:ijms19092788. [PMID: 30227600 PMCID: PMC6164693 DOI: 10.3390/ijms19092788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/09/2023] Open
Abstract
Humans and nonhuman primates (NHP) are similar in behavior and in physiology, specifically the structure, function, and complexity of the immune system. Thus, NHP models are desirable for pathophysiology and pharmacology/toxicology studies. Furthermore, NHP-derived induced pluripotent stem cells (iPSCs) may enable transformative developmental, translational, or evolutionary studies in a field of inquiry currently hampered by the limited availability of research specimens. NHP-iPSCs may address specific questions that can be studied back and forth between in vitro cellular assays and in vivo experimentations, an investigational process that in most cases cannot be performed on humans because of safety and ethical issues. The use of NHP model systems and cell specific in vitro models is evolving with iPSC-based three-dimensional (3D) cell culture systems and organoids, which may offer reliable in vitro models and reduce the number of animals used in experimental research. IPSCs have the potential to give rise to defined cell types of any organ of the body. However, standards for deriving defined and validated NHP iPSCs are missing. Standards for deriving high-quality iPSC cell lines promote rigorous and replicable scientific research and likewise, validated cell lines reduce variability and discrepancies in results between laboratories. We have derived and validated NHP iPSC lines by confirming their pluripotency and propensity to differentiate into all three germ layers (ectoderm, mesoderm, and endoderm) according to standards and measurable limits for a set of marker genes. The iPSC lines were characterized for their potential to generate neural stem cells and to differentiate into dopaminergic neurons. These iPSC lines are available to the scientific community. NHP-iPSCs fulfill a unique niche in comparative genomics to understand gene regulatory principles underlying emergence of human traits, in infectious disease pathogenesis, in vaccine development, and in immunological barriers in regenerative medicine.
Collapse
|
31
|
Kropp J, Di Marzo A, Golos T. Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseases. Biol Reprod 2018; 96:277-287. [PMID: 28203717 DOI: 10.1095/biolreprod.116.146514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Generation of nonhuman primate models of human disease conditions will foster the development of novel therapeutic strategies. Callithrix jacchus, or the common marmoset, is a New World, nonhuman primate species that exhibits great reproductive fitness in captivity with an ovarian cycle that can be easily managed with pharmacological agents. This characteristic, among others, provides an opportunity to employ assisted reproductive technologies to generate embryos that can be genetically manipulated to create a variety of nonhuman primate models for human disease. Here, we review methods to synchronize the marmoset ovarian cycle and stimulate oocyte donors, and compare various protocols for in vitro production of embryos. In light of advances in genomic editing, recent approaches used to generate transgenic or genetically edited embryos in the marmoset and also future perspective are reviewed.
Collapse
Affiliation(s)
- Jenna Kropp
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea Di Marzo
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thaddeus Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Ke M, He Q, Hong D, Li O, Zhu M, Ou WB, He Y, Wu Y. Leukemia inhibitory factor regulates marmoset induced pluripotent stem cell proliferation via a PI3K/Akt‑dependent Tbx‑3 activation pathway. Int J Mol Med 2018; 42:131-140. [PMID: 29620145 PMCID: PMC5979829 DOI: 10.3892/ijmm.2018.3610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic cytokine of the interleukin-6 family, and is widely used to establish and maintain pluripotent stem cells, particularly mouse pluripotent stem cells. However, no reports have fully elucidated the application of LIF in marmoset induced pluripotent stem cell (iPSC) culture, particularly the underlying mechanisms. To demonstrate the feasibility of the application of LIF to marmoset iPSCs, the present study assessed these cells in the presence of LIF. Cell proliferation was measured using MTT assay, cell apoptosis was determined by flow cytometric analysis of fluorescein isothiocyanate Annexin V staining and the differentially expressed genes were analysed using Digital Gene Expression (DGE) analysis. The altered expression of pluripotency-associated genes was confirmed by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, following treatment with LY294002, cell proliferation was measured by MTT assay and protein levels were confirmed by western blot analysis. The results showed that LIF significantly promoted the number of proliferating cells, but had no effect on apoptosis. Digital Gene Expression analysis was used to examine the differentially expressed genes of marmoset iPSCs in the presence of LIF. The results showed that the pluripotency-associated transcription factor-encoding gene T-box 3 (Tbx-3) was activated by LIF. Notably, LIF increased the levels of phosphorylated (p-)AKT and Tbx-3 in the marmoset iPSCs. Furthermore, pretreatment with LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), significantly impaired the LIF-induced upregulation of p-AKT and Tbx-3 in the marmoset iPSCs, suggesting that the PI3K/Akt signaling pathway is involved in this regulation. Taken together, the results suggested that LIF is effective in maintaining marmoset iPSCs in cultures, which is associated with the activation of Tbx-3 through regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Minxia Ke
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Quan He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Danping Hong
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Ouyang Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Mengyi Zhu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yulong He
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
33
|
Kametani Y, Shiina T, Suzuki R, Sasaki E, Habu S. Comparative immunity of antigen recognition, differentiation, and other functional molecules: similarities and differences among common marmosets, humans, and mice. Exp Anim 2018; 67:301-312. [PMID: 29415910 PMCID: PMC6083031 DOI: 10.1538/expanim.17-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The common marmoset (CM; Callithrix jacchus) is a small New World monkey
with a high rate of pregnancy and is maintained in closed colonies as an experimental
animal species. Although CMs are used for immunological research, such as studies of
autoimmune disease and infectious disease, their immunological characteristics are less
defined than those of other nonhuman primates. We and others have analyzed antigen
recognition-related molecules, the development of hematopoietic stem cells (HSCs), and the
molecules involved in the immune response. CMs systemically express Caja-G, a major
histocompatibility complex class I molecule, and the ortholog of HLA-G, a suppressive
nonclassical HLA class I molecule. HSCs express CD117, while CD34 is not essential for
multipotency. CD117+ cells developed into all hematopoietic cell lineages, but compared
with human HSCs, B cells did not extensively develop when HSCs were transplanted into an
immunodeficient mouse. Although autoimmune models have been successfully established,
sensitization of CMs with some bacteria induced a low protective immunity. In CMs, B cells
were observed in the periphery, but IgG levels were very low compared with those in humans
and mice. This evidence suggests that CM immunity is partially suppressed systemically.
Such immune regulation might benefit pregnancy in CMs, which normally deliver dizygotic
twins, the placentae of which are fused and the immune cells of which are mixed. In this
review, we describe the CM immune system and discuss the possibility of using CMs as a
model of human immunity.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara-shi, Kanagawa 252-0392, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals,3-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
34
|
Kurihara S, Fujioka M, Yoshida T, Koizumi M, Ogawa K, Kojima H, Okano HJ. A Surgical Procedure for the Administration of Drugs to the Inner Ear in a Non-Human Primate Common Marmoset (Callithrix jacchus). J Vis Exp 2018. [PMID: 29553522 DOI: 10.3791/56574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hearing research has long been facilitated by rodent models, although in some diseases, human symptoms cannot be recapitulated. The common marmoset (Callithrix jacchus) is a small, easy-to-handle New World monkey which has a similar anatomy of the temporal bone, including the middle ear ossicular chains and inner ear to humans, than in comparison with that of rodents. Here, we report a reproducible, safe, and rational surgical approach to the cochlear round window niche for the drug delivery to the inner ear of the common marmoset. We adopted posterior tympanotomy, a procedure used clinically in human surgery, to avoid manipulation of the tympanic membrane that may cause conductive hearing loss. This surgical procedure did not lead to any significant hearing loss. This approach was possible due to the large bulla structure of the common marmoset, although the lateral semicircular canal and vertical portion of the facial nerve should be carefully considered. This surgical method allows us to perform the safe and accurate administration of drugs without hearing loss, which is of great importance in obtaining pre-clinical proof of concept for translational research.
Collapse
Affiliation(s)
- Sho Kurihara
- Division of Regenerative Medicine, Jikei University School of Medicine; Department of Otorhinolaryngology, Jikei University School of Medicine
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine;
| | - Tomohiko Yoshida
- Division of Regenerative Medicine, Jikei University School of Medicine; Department of Otorhinolaryngology, Jikei University School of Medicine
| | - Makoto Koizumi
- Laboratory Animal Facilities, Jikei University School of Medicine
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine
| | | |
Collapse
|
35
|
Genetic engineering in nonhuman primates for human disease modeling. J Hum Genet 2017; 63:125-131. [PMID: 29203824 PMCID: PMC8075926 DOI: 10.1038/s10038-017-0351-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/29/2023]
Abstract
Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.
Collapse
|
36
|
Okano H, Kishi N. Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates. Curr Opin Neurobiol 2017; 50:1-6. [PMID: 29125958 DOI: 10.1016/j.conb.2017.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/08/2023]
Abstract
Although mice have been the most frequently used experimental animals in many research fields due to well-established gene manipulation techniques, recent evidence has revealed that rodent models do not always recapitulate pathophysiology of human neurological and psychiatric diseases due to the differences between humans and rodents. The recent developments in gene manipulation of non-human primate have been attracting much attention in the biomedical research field, because non-human primates have more applicable brain structure and function than rodents. In this review, we summarize recent progress on genetically-modified non-human primates including transgenic and knockout animals using genome editing technology.
Collapse
Affiliation(s)
- Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
37
|
Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 2017; 144:175-186. [PMID: 28096211 PMCID: PMC5430762 DOI: 10.1242/dev.145177] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Naïve pluripotent mouse embryonic stem cells (ESCs) resemble the preimplantation epiblast and efficiently contribute to chimaeras. Primate ESCs correspond to the postimplantation embryo and fail to resume development in chimaeric assays. Recent data suggest that human ESCs can be ‘reset’ to an earlier developmental stage, but their functional capacity remains ill defined. Here, we discuss how the naïve state is inherently linked to preimplantation epiblast identity in the embryo. We hypothesise that distinctive features of primate development provide stringent criteria to evaluate naïve pluripotency in human and other primate cells. Based on our hypothesis, we define 12 key hallmarks of naïve pluripotency, five of which are specific to primates. These hallmarks may serve as a functional framework to assess human naïve ESCs. Summary: This Hypothesis article highlights several fundamental differences between rodent and primate early development and exploits these to predict key hallmarks of naïve pluripotency in primates.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 4BG, UK
| |
Collapse
|
38
|
Niu Y, Li T, Ji W. Paving the road for biomedicine: genome editing and stem cells in primates. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
39
|
|
40
|
Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms. eNeuro 2017; 4:eN-NWR-0250-16. [PMID: 28374014 PMCID: PMC5368386 DOI: 10.1523/eneuro.0250-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/11/2023] Open
Abstract
Age-associated neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and the polyglutamine (polyQ) diseases, are becoming prevalent as a consequence of elongation of the human lifespan. Although various rodent models have been developed to study and overcome these diseases, they have limitations in their translational research utility owing to differences from humans in brain structure and function and in drug metabolism. Here, we generated a transgenic marmoset model of the polyQ diseases, showing progressive neurological symptoms including motor impairment. Seven transgenic marmosets were produced by lentiviral introduction of the human ataxin 3 gene with 120 CAG repeats encoding an expanded polyQ stretch. Although all offspring showed no neurological symptoms at birth, three marmosets with higher transgene expression developed neurological symptoms of varying degrees at 3-4 months after birth, followed by gradual decreases in body weight gain, spontaneous activity, and grip strength, indicating time-dependent disease progression. Pathological examinations revealed neurodegeneration and intranuclear polyQ protein inclusions accompanied by gliosis, which recapitulate the neuropathological features of polyQ disease patients. Consistent with neuronal loss in the cerebellum, brain MRI analyses in one living symptomatic marmoset detected enlargement of the fourth ventricle, which suggests cerebellar atrophy. Notably, successful germline transgene transmission was confirmed in the second-generation offspring derived from the symptomatic transgenic marmoset gamete. Because the accumulation of abnormal proteins is a shared pathomechanism among various neurodegenerative diseases, we suggest that this new marmoset model will contribute toward elucidating the pathomechanisms of and developing clinically applicable therapies for neurodegenerative diseases.
Collapse
|
41
|
Abstract
Chimaeras are both monsters of the ancient imagination and a long-established research tool. Recent advances, particularly those dealing with the identification and generation of various kinds of stem cells, have broadened the repertoire and utility of mammalian interspecies chimaeras and carved out new paths towards understanding fundamental biology as well as potential clinical applications.
Collapse
|
42
|
Debowski K, Drummer C, Lentes J, Cors M, Dressel R, Lingner T, Salinas-Riester G, Fuchs S, Sasaki E, Behr R. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic features. Sci Rep 2016; 6:29122. [PMID: 27385131 PMCID: PMC4935898 DOI: 10.1038/srep29122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP.
Collapse
Affiliation(s)
- Katharina Debowski
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jana Lentes
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Maren Cors
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen (UMG), Humboldtallee 34, 37073 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Gabriela Salinas-Riester
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen (UMG), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Sigrid Fuchs
- Department of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi Kawasaki-ku, Kawasaki, 210-0821 Japan.,Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| |
Collapse
|
43
|
Sato K, Oiwa R, Kumita W, Henry R, Sakuma T, Ito R, Nozu R, Inoue T, Katano I, Sato K, Okahara N, Okahara J, Shimizu Y, Yamamoto M, Hanazawa K, Kawakami T, Kametani Y, Suzuki R, Takahashi T, Weinstein E, Yamamoto T, Sakakibara Y, Habu S, Hata JI, Okano H, Sasaki E. Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. Cell Stem Cell 2016; 19:127-38. [DOI: 10.1016/j.stem.2016.06.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 05/17/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
|
44
|
Garg V, Morgani S, Hadjantonakis AK. Capturing Identity and Fate Ex Vivo: Stem Cells from the Mouse Blastocyst. Curr Top Dev Biol 2016; 120:361-400. [PMID: 27475857 DOI: 10.1016/bs.ctdb.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mouse preimplantation development, three molecularly, morphologically, and spatially distinct lineages are formed, the embryonic epiblast, the extraembryonic primitive endoderm, and the trophectoderm. Stem cell lines representing each of these lineages have now been derived and can be indefinitely maintained and expanded in culture, providing an unlimited source of material to study the interplay of tissue-specific transcription factors and signaling pathways involved in these fundamental cell fate decisions. Here we outline our current understanding of the derivation, maintenance, and properties of these in vitro stem cell models representing the preimplantation embryonic lineages.
Collapse
Affiliation(s)
- V Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - S Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.
| |
Collapse
|
45
|
Wianny F, Blachère T, Godet M, Guillermas R, Cortay V, Bourillot PY, Lefèvre A, Savatier P, Dehay C. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates. Stem Cell Res 2016; 16:557-67. [DOI: 10.1016/j.scr.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
|
46
|
Pogozhykh O, Pogozhykh D, Neehus AL, Hoffmann A, Blasczyk R, Müller T. Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Res Ther 2015; 6:150. [PMID: 26297012 PMCID: PMC4546288 DOI: 10.1186/s13287-015-0146-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 02/24/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Multipotent stromal cells (MSCs) are among the key candidates in regenerative medicine. However variety of MSC sources and general heterogeneity lead to controversial data in functional characterization. Furthermore, despite intensive usage as preclinical animal model, little is known about MSCs of the common marmoset monkey. Methods MSCs derived from placental amnion and bone marrow samples from human and common marmoset were characterized in parallel over 12 passages to monitor similarities and significant differences (p ≤ 0.05, Student’s t-test) in MSC markers and major histocompatibility complex (MHC) class I expression by immunohistochemistry, flow cytometry, real-time PCR, metabolic activity test, with special focus on pluripotency associated genes. Results Human and non-human primate MSCs were characterized for expression of MSC markers and capability of differentiation into mesenchymal lineages. MSCs could be cultured more than 100 days (26 passages), but metabolic activity was significantly enhanced in amnion vs. bone marrow MSCs. Interestingly, MHC class I expression is significantly reduced in amnion MSCs until passage 6 in human and marmoset, but not in bone marrow cells. For MSC markers, CD73 and CD105 levels remain unchanged in amnion MSCs and slightly decline in bone marrow at late passages; CD166 is significantly higher expressed in human MSCs, CD106 significantly lower vs. marmoset. All cultured MSCs showed pluripotency marker expression like Oct-4A at passage 3 significantly decreasing over time (passages 6–12) while Nanog expression was highest in human bone marrow MSCs. Furthermore, human MSCs demonstrated the highest Sox2 levels vs. marmoset, whereas the marmoset exhibited significantly higher Lin28A values. Bisulfite sequencing of the Oct-4 promoter region displayed fewer methylations of CpG islands in the marmoset vs. human. Conclusions Little is known about MSC characteristics from the preclinical animal model common marmoset vs. human during long term culture. Studied human and common marmoset samples share many similar features such as most MSC markers and reduced MHC class I expression in amnion cells vs. bone marrow. Furthermore, pluripotency markers indicate in both species a subpopulation of MSCs with true ‘stemness’, which could explain their high proliferation capacity, though possessing differences between human and marmoset in Lin28A and Sox2 expression.
Collapse
Affiliation(s)
- Olena Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Anna-Lena Neehus
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Andrea Hoffmann
- Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany.
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Thomas Müller
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
47
|
Izpisua Belmonte JC, Callaway EM, Caddick SJ, Churchland P, Feng G, Homanics GE, Lee KF, Leopold DA, Miller CT, Mitchell JF, Mitalipov S, Moutri AR, Movshon JA, Okano H, Reynolds JH, Ringach D, Sejnowski TJ, Silva AC, Strick PL, Wu J, Zhang F. Brains, genes, and primates. Neuron 2015; 86:617-31. [PMID: 25950631 DOI: 10.1016/j.neuron.2015.03.021] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward.
Collapse
Affiliation(s)
- Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sarah J Caddick
- The Gatsby Charitable Foundation, The Peak, 5 Wilton Road, London SW1V 1AP, UK
| | - Patricia Churchland
- Department of Philosophy, University of California, San Diego, 1500 Gilman Drive, La Jolla, CA 92093, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Gregg E Homanics
- Department of Anesthesiology and Pharmacology and Department of Chemical Biology, University of Pittsburgh, 6060 Biomedical Science Tower 3, Pittsburgh, PA 15261, USA
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20192, USA
| | - Cory T Miller
- Department of Psychology and Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jude F Mitchell
- Brain and Cognitive Sciences, Meliora Hall, Box 270268, University of Rochester, Rochester, NY 14627-0268, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, 3303 S.W. Bond Avenue, Portland, OR 97239, USA; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 N.W. 185th Avenue, Beaverton, OR 97006, USA
| | - Alysson R Moutri
- School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, and Department of Cellular and Molecular Medicine, Stem Cell Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - John H Reynolds
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Dario Ringach
- Department of Neurobiology and Department of Psychology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 92093, USA
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Afonso C Silva
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, MSC 1065, Building 49, Room 3A72, Bethesda, MD 20892-1065, USA
| | - Peter L Strick
- Brain Institute and Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Research Service, Department of Veterans Affairs Medical Center, Pittsburgh, PA 15261, USA
| | - Jun Wu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Feng Zhang
- Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, 43 Vassar Street, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 7 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 7 Massachusetts Avenue, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Nii T, Marumoto T, Kohara H, Yamaguchi S, Kawano H, Sasaki E, Kametani Y, Tani K. Improved hematopoietic differentiation of primate embryonic stem cells by inhibition of the PI3K-AKT pathway under defined conditions. Exp Hematol 2015; 43:901-911.e4. [PMID: 26073521 DOI: 10.1016/j.exphem.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/18/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have potential therapeutic applications in humans. To assess the safety and efficacy of ESC/iPSC-based therapies, reliable animal models are required prior to their clinical application. The common marmoset (CM) was recently found to be a useful nonhuman primate animal model for drug development and safety assessment. However, a method for the efficient hematopoietic differentiation of CM ESCs has not been established. In this study, we developed a novel and efficient method for differentiating CM ESCs into hematopoietic cells by transiently inhibiting the phosphoinositide 3-kinase (PI3K)-Protein kinase B (AKT) pathway, a critical pathway that maintains the undifferentiated state of CM ESCs during embryoid body (EB) formation. Compared with controls, transient inhibition of the P13K-AKT pathway resulted in a threefold increase in the proportion of enriched CD34⁺ cells (p < 0.001) and an increase in the number of hematopoietic colonies on day 8 of CM EB cultures. Moreover, number of blast colonies, number of hematopoietic progenitor cell populations of CD34⁺CD117⁺, CD34⁺CD45⁺, and CD43⁺CD45⁺ cells, and expression of hematopoietic genes were increased by transient inhibition of the PI3K-AKT pathway. We also demonstrated that the hematopoietic progenitor cell population was increased by inhibition of PI3K in a human system. Our novel and efficient ESC differentiation method might be useful for preclinical research on human hematopoietic disorders and may be efficiently translated to human ESC/iPSC-based regenerative medicine.
Collapse
Affiliation(s)
- Takenobu Nii
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomotoshi Marumoto
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kohara
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Project Division of ALA Advanced Medical Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saori Yamaguchi
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirotaka Kawano
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Project Division of ALA Advanced Medical Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
49
|
Iwai H, Shimada H, Nishimura S, Kobayashi Y, Itakura G, Hori K, Hikishima K, Ebise H, Negishi N, Shibata S, Habu S, Toyama Y, Nakamura M, Okano H. Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates. Stem Cells Transl Med 2015; 4:708-19. [PMID: 26019226 DOI: 10.5966/sctm.2014-0215] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED : Previous studies have demonstrated that neural stem/progenitor cells (NS/PCs) promote functional recovery in rodent animal models of spinal cord injury (SCI). Because distinct differences exist in the neuroanatomy and immunological responses between rodents and primates, it is critical to determine the effectiveness and safety of allografted embryonic stem cell (ESC)-derived NS/PCs (ESC-NS/PCs) in a nonhuman primate SCI model. In the present study, common marmoset ESC-NS/PCs were grafted into the lesion epicenter 14 days after contusive SCI in adult marmosets (transplantation group). In the control group, phosphate-buffered saline was injected instead of cells. In the presence of a low-dose of tacrolimus, several grafted cells survived without tumorigenicity and differentiated into neurons, astrocytes, or oligodendrocytes. Significant differences were found in the transverse areas of luxol fast blue-positive myelin sheaths, neurofilament-positive axons, corticospinal tract fibers, and platelet endothelial cell adhesion molecule-1-positive vessels at the lesion epicenter between the transplantation and control groups. Immunoelectron microscopic examination demonstrated that the grafted ESC-NS/PC-derived oligodendrocytes contributed to the remyelination of demyelinated axons. In addition, some grafted neurons formed synaptic connections with host cells, and some transplanted neurons were myelinated by host cells. Eventually, motor functional recovery significantly improved in the transplantation group compared with the control group. In addition, a mixed lymphocyte reaction assay indicated that ESC-NS/PCs modulated the allogeneic immune rejection. Taken together, our results indicate that allogeneic transplantation of ESC-NS/PCs from a nonhuman primate promoted functional recovery after SCI without tumorigenicity. SIGNIFICANCE This study demonstrates that allogeneic embryonic stem cell (ESC)-derived neural stem/progenitor cells (NS/PCs) promoted functional recovery after transplantation into the injured spinal cord in nonhuman primates. ESC-NS/PCs were chosen because ESC-NS/PCs are one of the controls for induced pluripotent stem cell-derived NS/PCs and because ESC derivatives are possible candidates for clinical use. This translational research using an allograft model of a nonhuman primate is critical for clinical application of grafting NS/PCs derived from various allogeneic pluripotent stem cells, especially induced pluripotent stem cells, into injured spinal cord at the subacute phase.
Collapse
Affiliation(s)
- Hiroki Iwai
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hiroko Shimada
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Soraya Nishimura
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Yoshiomi Kobayashi
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Go Itakura
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Keiko Hori
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Keigo Hikishima
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hayao Ebise
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Naoko Negishi
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Shinsuke Shibata
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Sonoko Habu
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Yoshiaki Toyama
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Masaya Nakamura
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hideyuki Okano
- Departments of Orthopaedic Surgery and Physiology, Keio University School of Medicine, Tokyo, Japan; Central Institute for Experimental Animals, Kawasaki, Japan; Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan; Department of Immunology, Juntendo University, Tokyo, Japan
| |
Collapse
|
50
|
Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Substrate Selectivities and Catalytic Activities of Marmoset Liver Cytochrome P450 2A6 Differed from Those of Human P450 2A6. Drug Metab Dispos 2015; 43:969-76. [DOI: 10.1124/dmd.115.063909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
|