1
|
Anz AW, Cook JJ, Branch EA, Rahming CA, Ostrander RV, Jordan SE. Cells Remain Viable When Collected With an In-Line-Suction Tissue Collector From Byproducts of Anterior Cruciate Ligament Reconstruction Surgery. Arthrosc Sports Med Rehabil 2024; 6:100860. [PMID: 38293244 PMCID: PMC10827406 DOI: 10.1016/j.asmr.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Purpose To investigate the viability of cells collected with an in-line-suction autologous tissue collector from the tissue byproducts of arthroscopic anterior cruciate ligament (ACL) reconstruction, to characterize cells from different tissue types, and to identify mesenchymal stem cells. Methods Patients aged 14 to 50 years with ACL injuries requiring arthroscopic reconstruction surgery were offered enrollment and screened for participation. In total, 12 patients were enrolled in the descriptive laboratory study. Arthroscopic byproduct tissue was collected with an in-line-suction autologous tissue collector from 4 intraoperative collection sites for each patient: ACL stump, ACL fat pad, notchplasty debris, and tunnel drilling debris. All tissue samples were digested using collagenase, and the derived cellular populations were analyzed in vitro, characterizing cellular viability, proliferative potential, qualitative multipotent differentiation capacity, and cell-surface marker presence. Results An equivalent mass of arthroscopic byproduct tissue was taken from each of the 4 intraoperative collection sites (1.12-1.61 g, P = .433), which all showed an average viability of at least 99.95% and high average total nucleated cells (≥1.37 × 107 cells/mL). No significant differences in collected mass (P = .433), cellular viability (P = .880), or total nucleated cells (P = .692) were observed between the 4 byproduct tissues. The byproduct tissues did exhibit significant differences in monocyte (P = .037) and red blood cell (P = .038) concentrations, specifically with greater values present in the ACL stump tissue. Cells from all byproduct tissues adhered to plastic cell culture flasks. Significant differences were found between colony-forming unit fibroblast counts of the 4 byproduct tissues when plated at 106 (P = .003) and 103 (P = .016) cells as the initial seeding density. There was a significant relationship found between both the starting concentration (χ2 = 32.7, P < .001) and the byproduct tissue type (χ2 = 30.4, P < .001) to the presence of ≥80% confluency status at 10 days. Cells obtained from all 4 byproduct tissues qualitatively showed positive tri-lineage (adipocyte, osteoblast, chondroblast) differentiation potential compared with negative controls under standardized in vitro differentiation conditions. Cells derived from all 4 byproduct tissues expressed cell-surface antigens CD105+, CD73+, CD90+, CD45-, CD14-, and CD19- (>75%), and did not express CD45 (<10%). There were no statistically significant differences in cell-surface antigens between the four byproduct tissues. Conclusions This descriptive laboratory study demonstrated that cells derived from arthroscopic byproduct tissues of ACL reconstruction remain viable when collected with an in-line-suction autologous tissue collector and these cells meet the ISCT criteria to qualify as mesenchymal stem cells. Clinical Relevance It is known that viable mesenchymal stem cells reside in byproduct tissue of anterior cruciate ligament reconstruction surgery (ACLR). Practical methods to harvest these cells at the point of care require further development. This study validates the use of an in-line-suction autologous tissue collector for the harvest of viable mesenchymal stem cells after ACLR.
Collapse
Affiliation(s)
- Adam W. Anz
- Andrews Institute Center for Regenerative Medicine, Department of Research, Andrews Research & Education Foundation (AREF), Gulf Breeze, Florida, U.S.A
| | - Joshua J. Cook
- Andrews Institute Center for Regenerative Medicine, Department of Research, Andrews Research & Education Foundation (AREF), Gulf Breeze, Florida, U.S.A
| | - Eric A. Branch
- Andrews Institute Center for Regenerative Medicine, Department of Research, Andrews Research & Education Foundation (AREF), Gulf Breeze, Florida, U.S.A
| | - Charlkesha A. Rahming
- Andrews Institute Center for Regenerative Medicine, Department of Research, Andrews Research & Education Foundation (AREF), Gulf Breeze, Florida, U.S.A
| | - Roger V. Ostrander
- Andrews Institute Center for Regenerative Medicine, Department of Research, Andrews Research & Education Foundation (AREF), Gulf Breeze, Florida, U.S.A
| | - Steve E. Jordan
- Andrews Institute Center for Regenerative Medicine, Department of Research, Andrews Research & Education Foundation (AREF), Gulf Breeze, Florida, U.S.A
| |
Collapse
|
2
|
Nelson PA, George T, Bowen E, Sheean AJ, Bedi A. An Update on Orthobiologics: Cautious Optimism. Am J Sports Med 2024; 52:242-257. [PMID: 38164688 DOI: 10.1177/03635465231192473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Orthobiologics are rapidly growing in use given their potential to augment healing for multiple musculoskeletal conditions. Orthobiologics consist of a variety of treatments including platelet-rich plasma and stem cells that provide conceptual appeal in providing local delivery of growth factors and inflammation modulation. The lack of standardization in nomenclature and applications within the literature has led to a paucity of high-quality evidence to support their frequent use. The purpose of this review was to describe the current landscape of orthobiologics and the most recent evidence regarding their use.
Collapse
Affiliation(s)
- Patrick A Nelson
- University of Chicago Department of Orthopedic Surgery, Chicago, Illinois, USA
| | - Tom George
- Northshore University Healthcare System, Evanston, Illinois, USA
| | - Edward Bowen
- Weill Cornell Medicine, New York City, New York, USA
| | - Andrew J Sheean
- San Antonio Military Medical Center, Department of Orthopedic Surgery, San Antonio, Texas, USA
| | - Asheesh Bedi
- Northshore University Healthcare System, Evanston, Illinois, USA
| |
Collapse
|
3
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Goshima A, Etani Y, Hirao M, Yamakawa S, Okamura G, Miyama A, Takami K, Miura T, Fukuda Y, Kurihara T, Ochiai N, Oyama S, Otani S, Tamaki M, Ishibashi T, Tomita T, Kanamoto T, Nakata K, Okada S, Ebina K. Basic fibroblast growth factor promotes meniscus regeneration through the cultivation of synovial mesenchymal stem cells via the CXCL6-CXCR2 pathway. Osteoarthritis Cartilage 2023; 31:1581-1593. [PMID: 37562758 DOI: 10.1016/j.joca.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To investigate the efficacy of basic fibroblast growth factor (bFGF) in promoting meniscus regeneration by cultivating synovial mesenchymal stem cells (SMSCs) and to validate the underlying mechanisms. METHODS Human SMSCs were collected from patients with osteoarthritis. Eight-week-old nude rats underwent hemi-meniscectomy, and SMSCs in pellet form, either with or without bFGF (1.0 × 106 cells per pellet), were implanted at the site of meniscus defects. Rats were divided into the control (no transplantation), FGF (-) (pellet without bFGF), and FGF (+) (pellet with bFGF) groups. Different examinations, including assessment of the regenerated meniscus area, histological scoring of the regenerated meniscus and cartilage, meniscus indentation test, and immunohistochemistry analysis, were performed at 4 and 8 weeks after surgery. RESULTS Transplanted SMSCs adhered to the regenerative meniscus. Compared with the control group, the FGF (+) group had larger regenerated meniscus areas, superior histological scores of the meniscus and cartilage, and better meniscus mechanical properties. RNA sequencing of SMSCs revealed that the gene expression of chemokines that bind to CXCR2 was upregulated by bFGF. Furthermore, conditioned medium derived from SMSCs cultivated with bFGF exhibited enhanced cell migration, proliferation, and chondrogenic differentiation, which were specifically inhibited by CXCR2 or CXCL6 inhibitors. CONCLUSION SMSCs cultured with bFGF promoted the expression of CXCL6. This mechanism may enhance cell migration, proliferation, and chondrogenic differentiation, thereby resulting in superior meniscus regeneration and cartilage preservation.
Collapse
Affiliation(s)
- Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Etani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization, Osaka Minami Medical Center, 2-1 Kidohigashi-machi, Kawachinagano, Osaka 586-8521, Japan
| | - Satoshi Yamakawa
- Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Gensuke Okamura
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-cho, Kita-ku, Sakai 591-8025, Japan
| | - Akira Miyama
- Department of Orthopaedic Surgery, Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552, Japan
| | - Kenji Takami
- Department of Orthopedic Surgery, Nippon Life Hospital, 2-1-54 Enokojima, Nishi-ku, Osaka 550-0006, Japan
| | - Taihei Miura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuji Fukuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takuya Kurihara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nagahiro Ochiai
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shohei Oyama
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shunya Otani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masashi Tamaki
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Teruya Ishibashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Tomita
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16, Nankou-kita, Suminoe, Osaka, Japan
| | - Takashi Kanamoto
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Huang L, Zhang S, Wu J, Guo B, Gao T, Shah SZA, Huang B, Li Y, Zhu B, Fan J, Wang L, Xiao Y, Liu W, Tian Y, Fang Z, Lv Y, Xie L, Yao S, Ke G, Huang X, Huang Y, Li Y, Jia Y, Li Z, Feng G, Huo Y, Li W, Zhou Q, Hao J, Hu B, Chen H. Immunity-and-matrix-regulatory cells enhance cartilage regeneration for meniscus injuries: a phase I dose-escalation trial. Signal Transduct Target Ther 2023; 8:417. [PMID: 37907503 PMCID: PMC10618459 DOI: 10.1038/s41392-023-01670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Immunity-and-matrix-regulatory cells (IMRCs) derived from human embryonic stem cells have unique abilities in modulating immunity and regulating the extracellular matrix, which could be mass-produced with stable biological properties. Despite resemblance to mesenchymal stem cells (MSCs) in terms of self-renew and tri-lineage differentiation, the ability of IMRCs to repair the meniscus and the underlying mechanism remains undetermined. Here, we showed that IMRCs demonstrated stronger immunomodulatory and pro-regenerative potential than umbilical cord MSCs when stimulated by synovial fluid from patients with meniscus injury. Following injection into the knees of rabbits with meniscal injury, IMRCs enhanced endogenous fibrocartilage regeneration. In the dose-escalating phase I clinical trial (NCT03839238) with eighteen patients recruited, we found that intra-articular IMRCs injection in patients was safe over 12 months post-grafting. Furthermore, the effective results of magnetic resonance imaging (MRI) of meniscus repair and knee functional scores suggested that 5 × 107 cells are optimal for meniscus injury treatment. In summary, we present the first report of a phase I clinical trial using IMRCs to treat meniscus injury. Our results demonstrated that intra-articular injection of IMRCs is a safe and effective therapy by providing a permissive niche for cartilage regeneration.
Collapse
Affiliation(s)
- Liangjiang Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Baojie Guo
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tingting Gao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Fan
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yani Xiao
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wenjing Liu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yao Tian
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhengyu Fang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Lv
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfeng Xie
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaotan Ke
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Yujuan Li
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Yi Jia
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Zhongwen Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guihai Feng
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Huo
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wei Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Baoyang Hu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Tarafder S, Ghataure J, Langford D, Brooke R, Kim R, Eyen SL, Bensadoun J, Felix JT, Cook JL, Lee CH. Advanced bioactive glue tethering Lubricin/PRG4 to promote integrated healing of avascular meniscus tears. Bioact Mater 2023; 28:61-73. [PMID: 37214259 PMCID: PMC10199165 DOI: 10.1016/j.bioactmat.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone, but no regenerative therapy exist. Previously, we showed that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) via fibrin-based bio-glue facilitate meniscus healing by inducing recruitment and stepwise differentiation of synovial mesenchymal stem/progenitor cells. Here, we first explored the potential of genipin, a natural crosslinker, to enhance fibrin-based glue's mechanical and degradation properties. In parallel, we identified the harmful effects of lubricin on meniscus healing and investigated the mechanism of lubricin deposition on the injured meniscus surface. We found that the pre-deposition of hyaluronic acid (HA) on the torn meniscus surface mediates lubricin deposition. Then we implemented chemical modifications with heparin conjugation and CD44 on our bioactive glue to achieve strong initial bonding and integration of lubricin pre-coated meniscal tissues. Our data suggested that heparin conjugation significantly enhances lubricin-coated meniscal tissues. Similarly, CD44, exhibiting a strong binding affinity to lubricin and hyaluronic acid (HA), further improved the integrated healing of HA/lubricin pre-coated meniscus injuries. These findings may represent an important foundation for developing a translational bio-active glue guiding the regenerative healing of meniscus injuries.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jaskirti Ghataure
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - David Langford
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Rachel Brooke
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Ryunhyung Kim
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Samantha Lewis Eyen
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Julian Bensadoun
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Jeffrey T. Felix
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia, MO, 65212, USA
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Columbia University Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
7
|
Bone Marrow-Derived Fibrin Clots Stimulate Healing of a Meniscal Defect in a Rabbit Model. Arthroscopy 2022:S0749-8063(22)00838-6. [PMID: 36574822 DOI: 10.1016/j.arthro.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine the in vivo effectiveness of bone marrow aspirate-derived (BMA) fibrin clots for avascular meniscal defect healing in a rabbit model. METHODS In 42 Japanese white rabbits, a 2.0-mm cylindrical defect was introduced into the avascular zone of the anterior part of the medial meniscus in the bilateral knees. The rabbits were grouped according to implantation of a BMA fibrin clot (BMA group) or a peripheral blood (PB)-derived clot (PB group) into the defect and nonimplantation (control group). Macroscopic and histological assessments were performed using a scoring system at 4 and 12 weeks after surgery. At 12 weeks after surgery, compressive stress was analyzed biomechanically. RESULTS The meniscal score in the BMA group (12.1) was greater than that in the PB group (5.5; P = .031) and control group (4.4; P = .013) at 4 weeks. The meniscal score in the BMA group (13.1) was greater than that in the control group (6.4; BMA = 13.1; P = .0046) at 12 weeks. In the biomechanical analysis, the BMA group demonstrated significantly higher compressive strength than the PB group (6.6 MPa) (BMA = 15.4 MPa; P = .0201) and control group (3.6 MPa; BMA = 15.4 MPa; P = .007). CONCLUSIONS Implantation of BMA fibrin clots into the meniscal defect of the avascular zone in a rabbit model improved the meniscal score at 4 weeks and strengthened the reparative meniscal tissue at 12 weeks compared with the implantation of PB fibrin clots. CLINICAL RELEVANCE Healing in the avascular zone of the meniscus can be problematic. Approaches to improving this healing response have had variable results. This study provides additional information that may help improve the outcomes in patients with these injuries.
Collapse
|
8
|
Li H, Zhao T, Cao F, Deng H, He S, Li J, Liu S, Yang Z, Yuan Z, Guo Q. Integrated bioactive scaffold with aptamer-targeted stem cell recruitment and growth factor-induced pro-differentiation effects for anisotropic meniscal regeneration. Bioeng Transl Med 2022; 7:e10302. [PMID: 36176622 PMCID: PMC9472018 DOI: 10.1002/btm2.10302] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of the knee meniscus remains a significant clinical challenge owing to its complex anisotropic tissue organization, complex functions, and limited healing capacity in the inner region. The development of in situ tissue-engineered meniscal scaffolds, which provide biochemical signaling to direct endogenous stem/progenitor cell (ESPC) behavior, has the potential to revolutionize meniscal tissue engineering. In this study, a fiber-reinforced porous scaffold was developed based on aptamer Apt19S-mediated mesenchymal stem cell (MSC)-specific recruitment and dual growth factor (GF)-enhanced meniscal differentiation. The aptamer, which can specifically recognize and recruit MSCs, was first chemically conjugated to the decellularized meniscus extracellular matrix (MECM) and then mixed with gelatin methacrylate (GelMA) to form a photocrosslinkable hydrogel. Second, connective tissue growth factor (CTGF)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and transforming growth factor-β3 (TGF-β3)-loaded PLGA microparticles (MPs) were mixed with aptamer-conjugated MECM to simulate anisotropic meniscal regeneration. These three bioactive molecules were delivered sequentially. Apt19S, which exhibited high binding affinity to synovium-derived MSCs (SMSCs), was quickly released to facilitate the mobilization of ESPCs. CTGF incorporated within PLGA NPs was released rapidly, inducing profibrogenic differentiation, while sustained release of TGF-β3 in PLGA MPs remodeled the fibrous matrix into fibrocartilaginous matrix. The in vitro results showed that the sequential release of Apt19S/GFs promoted cell migration, proliferation, and fibrocartilaginous differentiation. The in vivo results demonstrated that the sequential release system of Apt/GF-scaffolds increased neomeniscal formation in rabbit critical-sized meniscectomies. Thus, the novel delivery system shows potential for guiding meniscal regeneration in situ.
Collapse
Affiliation(s)
- Hao Li
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Tianyuan Zhao
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Fuyang Cao
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- Department of Orthopedicsthe First Affiliated Hospital of Zhengzhou UniversityEqi DistrictZhengzhouChina
| | - Haoyuan Deng
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Songlin He
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Jianwei Li
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Shuyun Liu
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Zhen Yang
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Arthritis Clinic & Research Center, Peking University People's HospitalPeking UniversityBeijingChina
| | - Zhiguo Yuan
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- Department of Bone and Joint Surgery, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Quanyi Guo
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLAHaidian DistrictBeijingChina
- School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
9
|
Mahmoud EE, Mawas AS, Mohamed AA, Noby MA, Abdel-Hady ANA, Zayed M. Treatment strategies for meniscal lesions: from past to prospective therapeutics. Regen Med 2022; 17:547-560. [PMID: 35638397 DOI: 10.2217/rme-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Menisci play an important role in the biomechanics of knee joint function, including loading transmission, joint lubrication, prevention of soft tissue impingement during motion and joint stability. Meniscal repair presents a challenge due to a lack of vascularization that limits the healing capacity of meniscal tissue. In this review, the authors aimed to untangle the available treatment options for repairing meniscal tears. Various surgical procedures have been developed to treat meniscal tears; however, clinical outcomes are limited. Consequently, numerous researchers have focused on different treatments such as the application of exogenous and/or autologous growth factors, scaffolds including tissue-derived matrix, cell-based therapy and miRNA-210. The authors present current and prospective treatment strategies for meniscal lesions.
Collapse
Affiliation(s)
- Elhussein E Mahmoud
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Amany S Mawas
- Department of Pathology & Clinical Pathology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Alsayed A Mohamed
- Department of Anatomy & Embryology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohammed A Noby
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Mohammed Zayed
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
10
|
Miura Y, Endo K, Komori K, Sekiya I. Clearance of senescent cells with ABT-263 improves biological functions of synovial mesenchymal stem cells from osteoarthritis patients. Stem Cell Res Ther 2022; 13:222. [PMID: 35658936 PMCID: PMC9166575 DOI: 10.1186/s13287-022-02901-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/14/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is an age-related joint disease characterized by progressive cartilage loss. Synovial mesenchymal stem cells (MSCs) are anticipated as a cell source for OA treatment; however, synovial MSC preparations isolated from OA patients contain many senescent cells that inhibit cartilage regeneration through their senescence-associated secretory phenotype (SASP) and poor chondrogenic capacity. The aim of this study was to improve the biological function of OA synovial MSCs by removing senescent cells using the senolytic drug ABT-263. METHODS We pretreated synovial MSCs derived from 5 OA patients with ABT-263 for 24 h and then evaluated senescence-associated beta-galactosidase (SA-β-gal) activity, B cell lymphoma 2 (BCL-2) activity, apoptosis, surface antigen expression, colony formation ability, and multipotency. RESULTS The ABT-263 pretreatment significantly decreased the percentage of SA-β-gal-positive cells and BCL-2 expression and induced early- and late-stage apoptosis. Cleaved caspase-3 was expressed in SA-β-gal-positive cells. The pretreated MSCs formed greater numbers of colonies with larger diameters. The expression rate of CD34 was decreased in the pretreated cells. Differentiation assays revealed that ABT-263 pretreatment enhanced the adipogenic and chondrogenic capabilities of OA synovial MSCs. In chondrogenesis, the pretreated cells produced greater amounts of glycosaminoglycan and type II collagen and showed lower expression of senescence markers (p16 and p21) and SASP factors (MMP-13 and IL-6) and smaller amounts of type I collagen. CONCLUSION Pretreatment of synovial MSCs from OA patients with ABT-263 can improve the function of the cells by selectively eliminating senescent cells. These findings indicate that ABT-263 could hold promise for the development of effective cell-based OA therapy.
Collapse
Affiliation(s)
- Yugo Miura
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Keiichiro Komori
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
11
|
Biological augmentation of meniscal repair: a systematic review. Knee Surg Sports Traumatol Arthrosc 2022; 30:1915-1926. [PMID: 35258647 DOI: 10.1007/s00167-021-06849-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Orthopedic literature remains divided on the utility of biologic augmentation to optimize outcomes after isolated meniscal repair. The aim of this systematic review is to analyze the clinical outcomes and re-operation rates of biologically augmented meniscal repairs. METHODS PubMed, CINAHL, Cochrane, and EMBASE databases were queried in October 2020 for published literature on isolated meniscal repair with biological augmentation. Studies were assessed for quality and risk of bias by two appraisal tools. Patient demographics, meniscal tear characteristics, surgical procedure, augmentation type, post-operative rehabilitation, patient reported outcome measures, and length of follow-up were recorded, reviewed, and analyzed by two independent reviewers. RESULTS Of 3794 articles, 18 met inclusion criteria and yielded 537 patients who underwent biologic augmentation of meniscal repair. The biologically augmented repair rates were 5.8-27.0% with PRP augmentation, 0.0-28.5% with fibrin clot augmentation, 0.0-12.9% with marrow stimulation, and 0.0% with stem cell augmentation. One of seven studies showed lower revision rates with augmented meniscal repair compared to standard repair techniques, whereas five of seven found no benefit. Three of ten studies found significant functional improvement of biologically augmented repair versus standard repair techniques and six of ten studies found no difference. There was significant heterogeneity in methods for biologic preparation, delivery, and post-operative rehabilitation protocols. CONCLUSION Patients reported significant improvements in functional outcomes scores after repair with biological augmentation, though the benefit over standard repair controls is questionable. Revision rates after biologically augmented meniscal repair also appear similar to standard repair techniques. Clinicians should bear this in mind when considering biologic augmentation in the setting of meniscal repair. LEVEL OF EVIDENCE IV.
Collapse
|
12
|
Bian Y, Wang H, Zhao X, Weng X. Meniscus repair: up-to-date advances in stem cell-based therapy. Stem Cell Res Ther 2022; 13:207. [PMID: 35578310 PMCID: PMC9109379 DOI: 10.1186/s13287-022-02863-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
The meniscus is a semilunar fibrocartilage between the tibia and femur that is essential for the structural and functional integrity of the keen joint. In addition to pain and knee joint dysfunction, meniscus injuries can also lead to degenerative changes of the knee joint such as osteoarthritis, which further affect patient productivity and quality of life. However, with intrinsic avascular property, the tearing meniscus tends to be nonunion and the augmentation of post-injury meniscus repair has long time been a challenge. Stem cell-based therapy with potent regenerative properties has recently attracted much attention in repairing meniscus injuries, among which mesenchymal stem cells were most explored for their easy availability, trilineage differentiation potential, and immunomodulatory properties. Here, we summarize the advances and achievements in stem cell-based therapy for meniscus repair in the last 5 years. We also highlight the obstacles before their successful clinical translation and propose some perspectives for stem cell-based therapy in meniscus repair.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Zhou YF, Zhang D, Yan WT, Lian K, Zhang ZZ. Meniscus Regeneration With Multipotent Stromal Cell Therapies. Front Bioeng Biotechnol 2022; 10:796408. [PMID: 35237572 PMCID: PMC8883323 DOI: 10.3389/fbioe.2022.796408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Meniscus is a semilunar wedge-shaped structure with fibrocartilaginous tissue, which plays an essential role in preventing the deterioration and degeneration of articular cartilage. Lesions or degenerations of it can lead to the change of biomechanical properties in the joints, which ultimately accelerate the degeneration of articular cartilage. Even with the manual intervention, lesions in the avascular region are difficult to be healed. Recent development in regenerative medicine of multipotent stromal cells (MSCs) has been investigated for the significant therapeutic potential in the repair of meniscal injuries. In this review, we provide a summary of the sources of MSCs involved in repairing and regenerative techniques, as well as the discussion of the avenues to utilizing these cells in MSC therapies. Finally, current progress on biomaterial implants was reviewed.
Collapse
Affiliation(s)
- Yun-Feng Zhou
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Obstetrics-Gynecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Wan-Ting Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| | - Zheng-Zheng Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| |
Collapse
|
14
|
Zamudio-Cuevas Y, Plata-Rodríguez R, Fernández-Torres J, Flores KM, Cárdenas-Soria VH, Olivos-Meza A, Hernández-Rangel A, Landa-Solís C. Synovial membrane mesenchymal stem cells for cartilaginous tissues repair. Mol Biol Rep 2022; 49:2503-2517. [PMID: 35013859 DOI: 10.1007/s11033-021-07051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The present review is focused on general aspects of the synovial membrane as well as specialized aspects of its cellular constituents, particularly the composition and location of synovial membrane mesenchymal stem cells (S-MSCs). S-MSC multipotency properties are currently at the center of translational medicine for the repair of multiple joint tissues, such as articular cartilage and meniscus lesions. METHODS AND RESULTS We reviewed the results of in vitro and in vivo research on the current clinical applications of S-MSCs, surface markers, cell culture techniques, regenerative properties, and immunomodulatory mechanisms of S-MSCs as well as the practical limitations of the last twenty-five years (1996 to 2021). CONCLUSIONS Despite the poor interest in the development of new clinical trials for the application of S-MSCs in joint tissue repair, we found evidence to support the clinical use of S-MSCs for cartilage repair. S-MSCs can be considered a valuable therapy for the treatment of repairing joint lesions.
Collapse
Affiliation(s)
- Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Ricardo Plata-Rodríguez
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Karina Martínez Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Víctor Hugo Cárdenas-Soria
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Anell Olivos-Meza
- Ortopedia del Deporte y Artroscopía, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289 Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico
| | - Adriana Hernández-Rangel
- Instituto Politécnico Nacional-ESIQIE, Av. Luis Enrique Erro S/N, Nueva Industrial Vallejo, Gustavo A. Madero, 07738, Mexico City, CDMX, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco #289. Col. Arenal de Guadalupe, Delegación Tlalpan, 14389, Mexico City, Mexico.
| |
Collapse
|
15
|
Dai TY, Pan ZY, Yin F. In Vivo Studies of Mesenchymal Stem Cells in the Treatment of Meniscus Injury. Orthop Surg 2021; 13:2185-2195. [PMID: 34747566 PMCID: PMC8654668 DOI: 10.1111/os.13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
This review summarizes the literature of preclinical studies and clinical trials on the use of mesenchymal stem cells (MSCs) to treat meniscus injury and promote its repair and regeneration and provide guidance for future clinical research. Due to the special anatomical features of the meniscus, conservative or surgical treatment can hardly achieve complete physiological and histological repair. As a new method, stem cells promote meniscus regeneration in preclinical research and human preliminary research. We expect that, in the near future, in vivo injection of stem cells to promote meniscus repair can be used as a new treatment model in clinical treatment. The treatment of animal meniscus injury, and the clinical trial of human meniscus injury has begun preliminary exploration. As for the animal experiments, most models of meniscus injury are too simple, which can hardly simulate the complexity of actual meniscal tears, and since the follow-up often lasts for only 4-12 weeks, long-term results could not be observed. Lastly, animal models failed to simulate the actual stress environment faced by the meniscus, so it needs to be further studied if regenerated meniscus has similar anti-stress or anti-twist features. Despite these limitations, repair of the meniscus by MSCs has great potential in clinics. MSCs can differentiate into fibrous chondrocytes, which can possibly repair the meniscus and provide a new strategy for repairing meniscus injury.
Collapse
Affiliation(s)
- Tian-Yu Dai
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhang-Yi Pan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Rhim HC, Jeon OH, Han SB, Bae JH, Suh DW, Jang KM. Mesenchymal stem cells for enhancing biological healing after meniscal injuries. World J Stem Cells 2021; 13:1005-1029. [PMID: 34567422 PMCID: PMC8422933 DOI: 10.4252/wjsc.v13.i8.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The meniscus is a semilunar fibrocartilage structure that plays important roles in maintaining normal knee biomechanics and function. The roles of the meniscus, including load distribution, force transmission, shock absorption, joint stability, lubrication, and proprioception, have been well established. Injury to the meniscus can disrupt overall joint stability and cause various symptoms including pain, swelling, giving-way, and locking. Unless treated properly, it can lead to early degeneration of the knee joint. Because meniscal injuries remain a significant challenge due to its low intrinsic healing potential, most notably in avascular and aneural inner two-thirds of the area, more efficient repair methods are needed. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in vitro and in vivo. Thus far, the application of MSCs, including bone marrow-derived, synovium-derived, and adipose-derived MSCs, has shown promising results in preclinical studies in different animal models. These preclinical studies could be categorized into intra-articular injection and tissue-engineered construct application according to delivery method. Despite promising results in preclinical studies, there is still a lack of clinical evidence. This review describes the basic knowledge, current treatment, and recent studies regarding the application of MSCs in treating meniscal injuries. Future directions for MSC-based approaches to enhance meniscal healing are suggested.
Collapse
Affiliation(s)
- Hye Chang Rhim
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine, Seoul 08308, Seoul, South Korea
| | - Dong Won Suh
- Department of Orthopaedic Surgery, Barunsesang Hospital, Seongnam 13497, South Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| |
Collapse
|
17
|
Bansal S, Floyd ER, Kowalski MA, Aikman E, Elrod P, Burkey K, Chahla J, LaPrade RF, Maher SA, Robinson JL, Patel JM. Meniscal repair: The current state and recent advances in augmentation. J Orthop Res 2021; 39:1368-1382. [PMID: 33751642 PMCID: PMC8249336 DOI: 10.1002/jor.25021] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Meniscal injuries represent one of the most common orthopedic injuries. The most frequent treatment is partial resection of the meniscus, or meniscectomy, which can affect joint mechanics and health. For this reason, the field has shifted gradually towards suture repair, with the intent of preservation of the tissue. "Save the Meniscus" is now a prolific theme in the field; however, meniscal repair can be challenging and ineffective in many scenarios. The objectives of this review are to present the current state of surgical management of meniscal injuries and to explore current approaches being developed to enhance meniscal repair. Through a systematic literature review, we identified meniscal tear classifications and prevalence, approaches being used to improve meniscal repair, and biological- and material-based systems being developed to promote meniscal healing. We found that biologic augmentation typically aims to improve cellular incorporation to the wound site, vascularization in the inner zones, matrix deposition, and inflammatory relief. Furthermore, materials can be used, both with and without contained biologics, to further support matrix deposition and tear integration, and novel tissue adhesives may provide the mechanical integrity that the meniscus requires. Altogether, evaluation of these approaches in relevant in vitro and in vivo models provides new insights into the mechanisms needed to salvage meniscal tissue, and along with regulatory considerations, may justify translation to the clinic. With the need to restore long-term function to injured menisci, biologists, engineers, and clinicians are developing novel approaches to enhance the future of robust and consistent meniscal reparative techniques.
Collapse
Affiliation(s)
- Sonia Bansal
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Kyley Burkey
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Jay M. Patel
- Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
18
|
Kim JA, An YH, Yim HG, Han WJ, Park YB, Park HJ, Kim MY, Jang J, Koh RH, Kim SH, Hwang NS, Ha CW. Injectable Fibrin/Polyethylene Oxide Semi-IPN Hydrogel for a Segmental Meniscal Defect Regeneration. Am J Sports Med 2021; 49:1538-1550. [PMID: 33764798 DOI: 10.1177/0363546521998021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal deficiency from meniscectomy is a common situation in clinical practices. Regeneration of the deficient meniscal portion, however, is still not feasible. PURPOSE To develop an injectable hydrogel system consisting of fibrin (Fb) and polyethylene oxide (PEO) and to estimate its clinical potential for treating a segmental defect of the meniscus in a rabbit meniscal defect model. STUDY DESIGN Controlled laboratory study. METHODS The Fb/PEO hydrogel was fabricated by extruding 100 mg·mL-1 of fibrinogen solution and 2,500 U·mL-1 of thrombin solution containing 100 mg·mL-1 of PEO through a dual-syringe system. The hydrogels were characterized by rheological analysis and biodegradation tests. The meniscal defects of New Zealand White male rabbits were generated by removing 60% of the medial meniscus from the anterior side. The removed portion included the central portion. The Fb/PEO hydrogel was injected into the meniscal defect of the experimental knee through the joint space between the femoral condyle and tibial plateau at the anterior knee without a skin incision. The entire medial menisci from both knees of each rabbit were collected and photographed before placement in formalin for histological processing. Hematoxylin and eosin, safranin O, and immunohistochemical staining for type II collagen was performed. The biomechanical property of the regenerated meniscus was evaluated using a universal tensile machine. RESULTS The Fb/PEO hydrogel was fabricated by an in situ gelation process, and the hydrogel displayed a semi-interpenetrating polymer network structure. We demonstrated that the mechanical properties of Fb-based hydrogels increased in a PEO-dependent manner. Furthermore, the addition of PEO delayed the biodegradation of the hydrogel. Our in vivo data demonstrated that, as compared with Fb hydrogel, Fb/PEO hydrogel injection into the meniscectomy model showed improved tissue regeneration. The regenerated meniscal tissue by Fb/PEO hydrogel showed enhanced tissue quality, which was supported by the histological and biomechanical properties. CONCLUSION The Fb/PEO hydrogel had an effective tissue-regenerative ability through injection into the in vivo rabbit meniscal defect model. CLINICAL RELEVANCE This injectable hydrogel system can promote meniscal repair and be readily utilized in clinical application.
Collapse
Affiliation(s)
- Jin-A Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.,Bio-MAX/NBio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Gu Yim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jung Han
- Stem Cell and Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Orthopedic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jin Park
- Stem Cell and Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Orthopedic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Man Young Kim
- Department of Orthopedic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jaewon Jang
- Department of Orthopedic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Racheal H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Su-Hwan Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan, Republic of Korea
| | - Nathaniel S Hwang
- Bio-MAX/NBio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Chul-Won Ha
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell and Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Orthopedic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Branch EA, Matuska AM, Plummer HA, Harrison RM, Anz AW. Platelet-Rich Plasma Devices Can Be Used to Isolate Stem Cells From Synovial Fluid at the Point of Care. Arthroscopy 2021; 37:893-900. [PMID: 33010328 DOI: 10.1016/j.arthro.2020.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/12/2020] [Accepted: 09/19/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess whether point-of-care devices designed for collecting cellular components from blood or bone marrow could be used to isolate viable stem cells from synovial fluid. METHODS Male and female patients older than 18 years old with either an acute, anterior cruciate ligament (ACL) injury or knee osteoarthritis (OA) with a minimum estimated 20 mL of knee effusion volunteered. Ten patients with an ACL injury and 10 patients with OA were enrolled. Two milliliters of collected synovial effusion were analyzed and cultured for cellular content. The remaining fluid was combined with whole blood and processed using a buffy-coat based platelet-rich plasma (PRP) processing system. Specimens were analyzed for cell counts, colony-forming unit (CFU) assays, differentiation assays, and flow cytometry. RESULTS ACL effusion fluid contained 42.1 ± 20.7 CFU/mL and OA effusion fluid contained 65.4 ± 42.1 CFU/mL. After PRP processing, the counts in ACL-PRP were 101.6 ± 66.1 CFU/mL and 114.8 ± 73.4 CFU/mL in the OA-PRP. Cells showed tri-lineage differentiation potential when cultured under appropriate parameters. When analyzed with flow cytometry, >95% of cells produced with culturing expressed cell surface markers typically expressed by known stem cell populations, specifically CD45-, CD73+, CD29+, CD44+, CD105+, and CD90+. CONCLUSIONS Multipotent viable stem cells can be harvested from knee synovial fluid, associated with an ACL injury or OA, and concentrated with a buffy coat-based PRP-processing device. CLINICAL RELEVANCE PRP devices can be used to harvest stem cells from effusion fluids. Methods to use effusion fluid associated with an ACL injury and OA should be investigated further.
Collapse
Affiliation(s)
- Eric A Branch
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| | | | - Hillary A Plummer
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A
| | | | - Adam W Anz
- Andrews Research & Education Foundation, Gulf Breeze, Florida, U.S.A..
| |
Collapse
|
20
|
Okuno N, Otsuki S, Aoyama J, Nakagawa K, Murakami T, Ikeda K, Hirose Y, Wakama H, Okayoshi T, Okamoto Y, Hirano Y, Neo M. Feasibility of a self-assembling peptide hydrogel scaffold for meniscal defect: An in vivo study in a rabbit model. J Orthop Res 2021; 39:165-176. [PMID: 32852842 DOI: 10.1002/jor.24841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The inner avascular zone of the meniscus has limited healing capacity as the area is poorly vascularized. Although peptide hydrogels have been reported to regenerate bone and cartilage, their effect on meniscus regeneration remains unknown. We tested whether the self-assembling peptide hydrogel scaffold KI24RGDS stays in the meniscal lesion and facilitates meniscal repair and regeneration in an induced rabbit meniscal defect model. Full-thickness (2.0 mm diameter) cylindrical defects were introduced into the inner avascular zones of the anterior portions of the medial menisci of rabbit knees (n = 40). Right knee defects were left empty (control group) while the left knee defects were transplanted with peptide hydrogel (KI24RGDS group). Macroscopic meniscus scores were significantly higher in the KI24RGDS group than in the control group at 2, 4, and 8 weeks after surgery. Histological examinations including quantitative and qualitative scores indicated that compared with the control group, the reparative tissue in the meniscus was significantly enhanced in the KI24RGDS group at 2, 4, 8, and 12 weeks after surgery. Immunohistochemical staining showed that the reparative tissue induced by KI24RGDS at 12 weeks postimplantation was positive for Type I and II collagen. KI24RGDS is highly biocompatible and biodegradable, with strong stiffness, and a three dimensional structure mimicking native extracellular matrix and RGDS sequences that enhance cell adhesion and proliferation. This in vivo study demonstrated that KI24RGDS remained in the meniscal lesion and facilitated the repair and regeneration in a rabbit meniscal defect model.
Collapse
Affiliation(s)
- Nobuhiro Okuno
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Jo Aoyama
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Kosuke Nakagawa
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiko Murakami
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Kuniaki Ikeda
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | | | - Hitoshi Wakama
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiro Okayoshi
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshinori Okamoto
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshiaki Hirano
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| |
Collapse
|
21
|
An YH, Kim JA, Yim HG, Han WJ, Park YB, Jin Park H, Young Kim M, Jang J, Koh RH, Kim SH, Hwang NS, Ha CW. Meniscus regeneration with injectable Pluronic/PMMA-reinforced fibrin hydrogels in a rabbit segmental meniscectomy model. J Tissue Eng 2021; 12:20417314211050141. [PMID: 34721832 PMCID: PMC8552387 DOI: 10.1177/20417314211050141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Injectable hydrogel systems are a facile approach to apply to the damaged meniscus in a minimally invasive way. We herein developed a clinically applicable and injectable semi-interpenetrated network (semi-IPN) hydrogel system based on fibrin (Fb), reinforced with Pluronic F127 (F127) and polymethyl methacrylate (PMMA), to improve the intrinsic weak mechanical properties. Through the dual-syringe device system, the hydrogel could form a gel state within about 50 s, and the increment of compressive modulus of Fb hydrogels was achieved by adding F127 from 3.0% (72.0 ± 4.3 kPa) to 10.0% (156.0 ± 9.8 kPa). The shear modulus was enhanced by adding PMMA microbeads (26.0 ± 1.1 kPa), which was higher than Fb (13.5 ± 0.5 kPa) and Fb/F127 (21.7 ± 0.8 kPa). Moreover, the addition of F127 and PMMA also delayed the rate of enzymatic biodegradation of Fb hydrogel. Finally, we confirmed that both Fb/F127 and Fb/F127/PMMA hydrogels showed accelerated tissue repair in the in vivo segmental defect of the rabbit meniscus model. In addition, the histological analysis showed that the quality of the regenerated tissues healed by Fb/F127 was particularly comparable to that of healthy tissue. The biomechanical strength of the regenerated tissues of Fb/F127 (3.50 ± 0.35 MPa) and Fb/F127/PMMA (3.59 ± 0.89 MPa) was much higher than that of Fb (0.82 ± 0.05 MPa) but inferior to that of healthy tissue (6.63 ± 1.12 MPa). These results suggest that the reinforcement of Fb hydrogel using FDA-approved synthetic biomaterials has great potential to be used clinically.
Collapse
Affiliation(s)
- Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Jin-A Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun-Gu Yim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jung Han
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Park
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Man Young Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaewon Jang
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Racheal H. Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Su-Hwan Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan, Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Chul-Won Ha
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Bami M, Sarlikiotis T, Milonaki M, Vikentiou M, Konsta E, Kapsimali V, Pappa V, Koulalis D, Johnson EO, Soucacos PN. Superiority of synovial membrane mesenchymal stem cells in chondrogenesis, osteogenesis, myogenesis and tenogenesis in a rabbit model. Injury 2020; 51:2855-2865. [PMID: 32201117 DOI: 10.1016/j.injury.2020.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 02/02/2023]
Abstract
Engineering complex tissues is perhaps the most ambitious goal of all tissue engineers. Despite significant advances in tissue engineering, which have resulted in successful engineering of simple tissues such as skin and cartilage, there are a number of challenges that remain in engineering of complex, hybrid tissue structures, such as osteochondral tissue. Mesenchymal stem cells (MSCs) have the capacity to highly proliferate in an undifferentiated state and the potential to differentiate into a variety of different lineages, providing a promising single cell source to produce multiple cell types. MSC obtained from adult human contribute to the regeneration of mesenchymal tissues such as bone, cartilage, fat, muscle, tendon and marrow stroma. In the present study, the regeneration capacity of multipotent MSCs derived from different tissues in the rabbit were compared. Specifically the aim of this study was to isolate and characterize rabbit adult stem cell populations from bone marrow, adipose, synovial membrane, rotator cuff, ligament and tendon and assess their cell morphology, growth rate, cell surface markers and differentiation capacity. MSCs derived from synovial membrane showed superiority in terms of chondrogenesis, osteogenesis, myogenesis and tenogenesis, suggesting that synovial membrane-derived MSCs would be a good candidate for efforts to regenerate musculoskeletal tissues.
Collapse
Affiliation(s)
- Myrto Bami
- Panayotis N. Soucacos", Orthopaedic Research & Education Center (OREC), 1 Rimini Street, Attikon University Hospital, Haidari 124 62 Athens, Greece.
| | - Thomas Sarlikiotis
- Panayotis N. Soucacos", Orthopaedic Research & Education Center (OREC), 1 Rimini Street, Attikon University Hospital, Haidari 124 62 Athens, Greece
| | - Mandy Milonaki
- Panayotis N. Soucacos", Orthopaedic Research & Education Center (OREC), 1 Rimini Street, Attikon University Hospital, Haidari 124 62 Athens, Greece
| | - Myrofora Vikentiou
- Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, 1Rimini Str, Haidari, Athens, Greece
| | - Evgenia Konsta
- Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, 1Rimini Str, Haidari, Athens, Greece
| | - Violetta Kapsimali
- Microbiology Laboratory, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, 1Rimini Str, Haidari, Athens, Greece
| | - Dimitrios Koulalis
- Panayotis N. Soucacos", Orthopaedic Research & Education Center (OREC), 1 Rimini Street, Attikon University Hospital, Haidari 124 62 Athens, Greece
| | | | - Panayotis N Soucacos
- Panayotis N. Soucacos", Orthopaedic Research & Education Center (OREC), 1 Rimini Street, Attikon University Hospital, Haidari 124 62 Athens, Greece
| |
Collapse
|
23
|
Takata Y, Nakase J, Shimozaki K, Asai K, Tsuchiya H. Autologous Adipose-Derived Stem Cell Sheet Has Meniscus Regeneration-Promoting Effects in a Rabbit Model. Arthroscopy 2020; 36:2698-2707. [PMID: 32554078 DOI: 10.1016/j.arthro.2020.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE This study investigated meniscal regeneration-promoting effects of adipose-derived stem cell (ADSC) sheets in a rabbit meniscal defect models. METHODS ADSCs were extracted from the interscapular fat pad adipose tissue of 42 mature female Japanese white rabbits. Once cells reached confluence at the third passage, the culture medium was supplemented with ascorbic acid. Within a week, the cells in culture formed removable sheets, which were used as ADSC sheets. Cell death (CD) sheets were created by killing ADSCs by freezing to investigate the need for viable ADSCs in ADSC sheets. The anterior half of the medial meniscus from the anterior root to the posterior edge of the medial collateral ligament was removed from both limbs. An autologous ADSC or CD sheet was transplanted to one knee (ADSC sheet or CD sheet group). The contralateral limb was closed without transplantation following meniscal removal (control group). Rabbits were euthanized 4 and 12 weeks after transplantation to harvest the entire medial menisci. The meniscal tissue area, transverse diameter on the inside of the medial collateral ligament, and histologic score were compared between the 3 groups. RESULTS The area and transverse diameter of regenerated tissues were larger in the ADSC sheet group than in the control group at 4 and 12 weeks. Further, the histologic score in the ADSC sheet group (8) was significantly greater than that in the control group (4.5) at 4 weeks (P = .02) and greater than that in the CD sheet group (9) (ADSC = 12.5, P = .009) and control group (6) (ADSC = 12.5, P = .0003) at 12 weeks. CONCLUSIONS Transplantation of the ADSC sheet into the meniscal defect increased the volume and improved the histologic score of the regenerated meniscal tissue. ADSC sheets may have meniscal regeneration-promoting effects in a rabbit model with meniscal defects. CLINICAL RELEVANCE ADSC sheets do not require a scaffold for implantation in the rabbit model, and this evidence suggests that some tissue regeneration occurs at the site of a surgically created meniscal defect.
Collapse
Affiliation(s)
- Yasushi Takata
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan.
| | - Kengo Shimozaki
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Kazuki Asai
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| |
Collapse
|
24
|
Carlson Strother CR, Saris DBF, Verdonk P, Nakamura N, Krych AJ. Biological augmentation to promote meniscus repair: from basic science to clinic application—state of the art. J ISAKOS 2020. [DOI: 10.1136/jisakos-2019-000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Kim W, Onodera T, Kondo E, Terkawi MA, Homan K, Hishimura R, Iwasaki N. Which Contributes to Meniscal Repair, the Synovium or the Meniscus? An In Vivo Rabbit Model Study With the Freeze-Thaw Method. Am J Sports Med 2020; 48:1406-1415. [PMID: 32105507 DOI: 10.1177/0363546520906140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND During meniscal tissue repair, the origin of the reparative cells of damaged meniscal tissue remains unclear. HYPOTHESIS Comparison of the influence between meniscal and synovial tissues on meniscal repair by the in vivo freeze-thaw method would clarify the origin of meniscal reparative cells. STUDY DESIGN Controlled laboratory study. METHODS A total of 48 mature Japanese white rabbits were divided into 4 groups according to the tissue (meniscal or synovial) that received freeze-thaw treatment. The meniscus of each group had a 2 mm-diameter cylindrical defect filled with alginate gel. Macroscopic and histologic evaluations of the reparative tissues were performed at 1, 3, and 6 weeks postoperatively. Additional postoperative measurements included cell density, which was the number of meniscal cells in the cut area per cut area (mm2) of meniscus; cell density ratio, which was the cell density of the sample from each group per the average cell density of the intact meniscus; and cell death rate, which was the number of cells stained by propidium iodide per the number of cells stained by Hoechst 33342 of the meniscal tissue adjacent to the defect. RESULTS The macroscopic and histologic evaluations of the non-synovium freeze-thaw groups were significantly superior to those of the synovium freeze-thaw groups at 3 and 6 weeks postoperatively. Additionally, the meniscal cell density ratio and cell death rate in the freeze-thaw groups were significantly lower than those in the non-meniscal freeze-thaw groups at 3 and 6 weeks postoperatively. CONCLUSION The freeze-thawed meniscus recovered few cells in its tissue even after 6 weeks. However, the defect was filled with fibrochondrocytes and proteoglycan when the synovium was intact. On the basis of these results, it is concluded that synovial cells are the primary contributors to meniscal injury repair. CLINICAL RELEVANCE In meniscal tissue engineering, there is no consensus on the best cell source for meniscal repair. Based on this study, increasing the synovial activity and contribution should be the main objective of meniscal tissue engineering. This study can establish the foundation for future meniscal tissue engineering.
Collapse
Affiliation(s)
- WooYoung Kim
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Eiji Kondo
- Centre for Sports Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryosuke Hishimura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Twomey-Kozak J, Jayasuriya CT. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clin Sports Med 2020; 39:125-163. [PMID: 31767102 DOI: 10.1016/j.csm.2019.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meniscus injuries are among the most common athletic injuries and result in functional impairment in the knee. Repair is crucial for pain relief and prevention of degenerative joint diseases like osteoarthritis. Current treatments, however, do not produce long-term improvements. Thus, recent research has been investigating new therapeutic options for regenerating injured meniscal tissue. This review comprehensively details the current methodologies being explored in the basic sciences to stimulate better meniscus injury repair. Furthermore, it describes how these preclinical strategies may improve current paradigms of how meniscal injuries are clinically treated through a unique and alternative perspective to traditional clinical methodology.
Collapse
Affiliation(s)
- John Twomey-Kozak
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA.
| |
Collapse
|
27
|
Nasb M, Liangjiang H, Gong C, Hong C. Human adipose-derived Mesenchymal stem cells, low-intensity pulsed ultrasound, or their combination for the treatment of knee osteoarthritis: study protocol for a first-in-man randomized controlled trial. BMC Musculoskelet Disord 2020; 21:33. [PMID: 31941483 PMCID: PMC6964002 DOI: 10.1186/s12891-020-3056-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Human adipose-derived Mesenchymal stem cells (HADMSCs) have proven their efficacy in treating osteoarthritis (OA), in earlier preclinical and clinical studies. As the tissue repairers are under the control of mechanical and biochemical signals, improving regeneration outcomes using such signals has of late been the focus of attention. Among mechanical stimuli, low-intensity pulsed ultrasound (LIPUS) has recently shown promise both in vitro and in vivo. This study will investigate the potential of LIPUS in enhancing the regeneration process of an osteoarthritic knee joint. Methods This study involves a prospective, randomized, placebo-controlled, and single-blind trial based on the SPIRIT guidelines, and aims to recruit 96 patients initially diagnosed with knee osteoarthritis, following American College of Rheumatology criteria. Patients will be randomized in a 1:1:1 ratio to receive Intraarticular HADMSCs injection with LIPUS, Intraarticular HADMSCs injection with shame LIPUS, or Normal saline with LIPUS. The primary outcome is Western Ontario and McMaster Universities Index of OA (WOMAC) score, while the secondary outcomes will be other knee structural changes, and lower limb muscle strength such as the knee cartilage thickness measured by MRI. Blinded assessments will be performed at baseline (1 month prior to treatment), 1 month, 3 months, and 6 months following the interventions. Discussion This trial will be the first clinical study to comprehensively investigate the safety and efficacy of LIPUS on stem cell therapy in OA patients. The results may provide evidence of the effectiveness of LIPUS in improving stem cell therapy and deliver valuable information for the design of subsequent trials. Trial registration This study had been prospectively registered with the Chinese Clinical Trials Registry. registration number: ChiCTR1900025907 at September 14, 2019.
Collapse
Affiliation(s)
- Mohammad Nasb
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Physical Therapy, Health science faculty, Albaath University, Homs, Syria
| | - Huang Liangjiang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chenzi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chen Hong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
28
|
Xu Y, Zhang T, Chen Y, Shi Q, Li M, Qin T, Hu J, Lu H, Liu J, Chen C. Isolation and Characterization of Multipotent Canine Urine-Derived Stem Cells. Stem Cells Int 2020; 2020:8894449. [PMID: 33061993 PMCID: PMC7545436 DOI: 10.1155/2020/8894449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Current cell-based therapies on musculoskeletal tissue regeneration were mostly determined in rodent models. However, a direct translation of those promising cell-based therapies to humans exists a significant hurdle. For solving this problem, canine has been developed as a new large animal model to bridge the gap from rodents to humans. In this study, we reported the isolation and characterization of urine-derived stem cells (USCs) from mature healthy beagle dogs. The isolated cells showed fibroblast-like morphology and had good clonogenicity and proliferation. Meanwhile, these cells positively expressed multiple markers of MSCs (CD29, CD44, CD90, and CD73), but negatively expressed for hematopoietic antigens (CD11b, CD34, and CD45). Additionally, after induction culturing, the isolated cells can be differentiated into osteogenic, adipogenic, chondrogenic, and tenogenic lineages. The successful isolation and verification of USCs from canine were useful for studying cell-based therapies and developing new treatments for musculoskeletal injuries using the preclinical canine model.
Collapse
Affiliation(s)
- Yan Xu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Tao Zhang
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Yang Chen
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Qiang Shi
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Muzhi Li
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Tian Qin
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 5Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Jianzhong Hu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 5Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Hongbin Lu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Jun Liu
- 6Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou No.1 People's Hospital, Southern Medical University, Chenzhou, China 423000
| | - Can Chen
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 7Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China 410008
| |
Collapse
|
29
|
Qu D, Zhu JP, Childs HR, Lu HH. Nanofiber-based transforming growth factor-β3 release induces fibrochondrogenic differentiation of stem cells. Acta Biomater 2019; 93:111-122. [PMID: 30862549 DOI: 10.1016/j.actbio.2019.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
Fibrocartilage is typically found in regions subject to complex, multi-axial loads and plays a critical role in musculoskeletal function. Mesenchymal stem cell (MSC)-mediated fibrocartilage regeneration may be guided by administration of appropriate chemical and/or physical cues, such as by culturing cells on polymer nanofibers in the presence of the chondrogenic growth factor TGF-β3. However, targeted delivery and maintenance of effective local factor concentrations remain challenges for implementation of growth factor-based regeneration strategies in clinical settings. Thus, the objective of this study was to develop and optimize the bioactivity of a biomimetic nanofiber scaffold system that enables localized delivery of TGF-β3. To this end, we fabricated TGF-β3-releasing nanofiber meshes that provide sustained growth factor delivery and demonstrated their potential for guiding synovium-derived stem cell (SDSC)-mediated fibrocartilage regeneration. TGF-β3 delivery enhanced cell proliferation and synthesis of relevant fibrocartilaginous matrix in a dose-dependent manner. By designing a scaffold that eliminates the need for exogenous or systemic growth factor administration and demonstrating that fibrochondrogenesis requires a lower growth factor dose compared to previously reported, this study represents a critical step towards developing a clinical solution for regeneration of fibrocartilaginous tissues. STATEMENT OF SIGNIFICANCE: Fibrocartilage is a tissue that plays a critical role throughout the musculoskeletal system. However, due to its limited self-healing capacity, there is a significant unmet clinical need for more effective approaches for fibrocartilage regeneration. We have developed a nanofiber-based scaffold that provides both the biomimetic physical cues, as well as localized delivery of the chemical factors needed to guide stem cell-mediated fibrocartilage formation. Specifically, methods for fabricating TGF-β3-releasing nanofibers were optimized, and scaffold-mediated TGF-β3 delivery enhanced cell proliferation and synthesis of fibrocartilaginous matrix, demonstrating for the first time, the potential for nanofiber-based TGF-β3 delivery to guide stem cell-mediated fibrocartilage regeneration. This nanoscale delivery platform represents an exciting new strategy for fibrocartilage regeneration.
Collapse
Affiliation(s)
- Dovina Qu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Jennifer P Zhu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Hannah R Childs
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States.
| |
Collapse
|
30
|
Zhang ZZ, Chen YR, Wang SJ, Zhao F, Wang XG, Yang F, Shi JJ, Ge ZG, Ding WY, Yang YC, Zou TQ, Zhang JY, Yu JK, Jiang D. Orchestrated biomechanical, structural, and biochemical stimuli for engineering anisotropic meniscus. Sci Transl Med 2019; 11:11/487/eaao0750. [PMID: 30971451 DOI: 10.1126/scitranslmed.aao0750] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/12/2018] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
Abstract
Reconstruction of the anisotropic structure and proper function of the knee meniscus remains an important challenge to overcome, because the complexity of the zonal tissue organization in the meniscus has important roles in load bearing and shock absorption. Current tissue engineering solutions for meniscus reconstruction have failed to achieve and maintain the proper function in vivo because they have generated homogeneous tissues, leading to long-term joint degeneration. To address this challenge, we applied biomechanical and biochemical stimuli to mesenchymal stem cells seeded into a biomimetic scaffold to induce spatial regulation of fibrochondrocyte differentiation, resulting in physiological anisotropy in the engineered meniscus. Using a customized dynamic tension-compression loading system in conjunction with two growth factors, we induced zonal, layer-specific expression of type I and type II collagens with similar structure and function to those present in the native meniscus tissue. Engineered meniscus demonstrated long-term chondroprotection of the knee joint in a rabbit model. This study simultaneously applied biomechanical, biochemical, and structural cues to achieve anisotropic reconstruction of the meniscus, demonstrating the utility of anisotropic engineered meniscus for long-term knee chondroprotection in vivo.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Shao-Jie Wang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
- Department of Joint Surgery, Zhongshan Hospital of Xiamen University, Xiamen 361004, P.R. China
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Xiao-Gang Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, P.R. China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jin-Jun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zi-Gang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
| | - Wen-Yu Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Yu-Chen Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Tong-Qiang Zou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China.
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China.
| |
Collapse
|
31
|
Zhang ZZ, Zhou YF, Li WP, Jiang C, Chen Z, Luo H, Song B. Local Administration of Magnesium Promotes Meniscal Healing Through Homing of Endogenous Stem Cells: A Proof-of-Concept Study. Am J Sports Med 2019; 47:954-967. [PMID: 30786213 DOI: 10.1177/0363546518820076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although many strategies have been developed to modify the biological and biomechanical environment of the meniscal suture repair to improve the chances of healing, the failure rates remain high. Thus, new methods to promote meniscal regeneration and repair are needed. HYPOTHESIS Administration of magnesium (via a repair using magnesium stitches) might enhance recruitment and adherence of endogenous stem cells to the site of the lesion, thereby promoting in situ meniscal regeneration and chondroprotective functions. STUDY DESIGN Controlled laboratory study. METHODS Synovial fluid-derived mesenchymal stem cells (SMSCs) were identified and isolated from the knees of rabbits with a meniscal injury of 4 weeks' duration. An in vitro analysis of adherence and chemotaxis of SMSCs was performed. For the in vivo assay, rabbits (n = 120) with meniscal lesions were divided into 3 groups: repair with high-purity magnesium stitches (Mg group), repair with absorbable sutures (Control group), and no repair (Blank group). Healing of the regenerated tissue and degeneration of the articular cartilage were evaluated by gross and histological analysis at postoperative weeks 1, 3, 6, and 12. The mechanical properties of the repaired meniscus were also analyzed (tensile testing). RESULTS In vitro, magnesium promoted the adhesion and migration of SMSCs, which were identified and increased in the knee joints with meniscal lesions. Moreover, fibrochondrogenesis of SMSCs was stimulated by magnesium. Compared with the other groups, the Mg group had enhanced tissue regeneration, lower cartilage degeneration, and retained mechanical strength at 12 weeks after meniscal repair. CONCLUSION/CLINICAL RELEVANCE Magnesium could be used for in situ meniscal repair due to the potential capacity of magnesium to recruit endogenous stem cells and promote synthesis of fibrocartilaginous matrix.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun-Feng Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ping Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Jiang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Chen
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan Luo
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Song
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Demirkıran ND, Havıtçıoğlu H, Ziylan A, Cankurt Ü, Hüsemoğlu B. Novel multilayer meniscal scaffold provides biomechanical and histological results comparable to polyurethane scaffolds: An 8 week rabbit study. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2019; 53:120-128. [PMID: 30826138 PMCID: PMC6506817 DOI: 10.1016/j.aott.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/11/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Objective The aim of this study was to evaluate the meniscal regeneration and arthritic changes after partial meniscectomy and application of either polyurethane scaffold or novel multilayer meniscal scaffold in a rabbit model. Methods Sixteen NewZealand rabbits were randomly divided into three groups. A reproducible 1.5-mm cylindrical defect was created in the avascular zone of the anterior horn of the medial meniscus bilaterally. Defects were filled with the polyurethane scaffold in Group 1 (n:6) and with novel multilayer scaffold in Group 2 (n:6). Rabbits in Group 3 (n:4) did not receive any treatment and defects were left empty. All animals were sacrificed after 8 weeks and bilateral knee joints were taken for macroscopic, biomechanical, and histological analysis. After excision of menisci, inked condylar surfaces and tibial plateaus were evaluated for arthritic changes. Digital photographs of excised menisci were also obtained and surface areas were measured by a computer software. Indentation testing of the tibial condyles and compression tests for the relevant meniscal areas was also performed in all groups. Histological analysis was made and all specimens were scored according to Rodeo scoring system. Results No signs of inflammation or infection were observed in any animals. A significant difference was observed between meniscus surface areas of the multilayer scaffold group (20.13 ± 1.91 mm2) and the group with empty meniscus defects (15.62 ± 2.04 mm2) (p = 0.047). The results of biomechanical compression tests revealed a significant difference between the Hayes scores of the second group (1.728) and the empty defect group (0,467) (p = 0.029). Intact meniscal tissue showed higher mechanical properties than all the defected samples. Multilayer scaffold group demonstrated the closest results compared to healthy meniscus tissue. Tibia indentation tests and histological evaluation showed no significant differences between groups (p = 0.401 and p = 0.186 respectively). Conclusions In this study, the initial evaluation of novel multilayer meniscal scaffold prevented the shrinkage that may occur in the meniscus area and demonstrated superior biomechanical results compared to empty defects. No adverse events related to scaffold material was observed. Besides, promising biomechanical and histological results, comparable to polyurethane scaffold, were obtained.
Collapse
|
33
|
Harrison-Brown M, Scholes C, Hafsi K, Marenah M, Li J, Hassan F, Maffulli N, Murrell WD. Efficacy and safety of culture-expanded, mesenchymal stem/stromal cells for the treatment of knee osteoarthritis: a systematic review protocol. J Orthop Surg Res 2019; 14:34. [PMID: 30683159 PMCID: PMC6347797 DOI: 10.1186/s13018-019-1070-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Osteoarthritis is a progressive multifactorial condition of the musculoskeletal system with major symptoms including pain, loss of function, damage of articular cartilage and other tissues in the affected area. Knee osteoarthritis imposes major individual and social burden, especially with the cost and complexity of surgical interventions. Mesenchymal stem/stromal cells have been indicated as a treatment for degenerative musculoskeletal conditions given their capacity to differentiate into tissues of the musculoskeletal system. Methods A systematic search will be conducted in Medline, Embase, Cochrane Library, Scopus and relevant trial databases of English, Japanese, Korean, German, French, Italian, Spanish and Portuguese language papers published or in press to June 2018, with no restrictions on publication year applied. References will be screened and assessed for eligibility by two independent reviewers as per PRISMA guidelines. Cohort, cross-sectional or case controlled studies will be included for the analysis. Data extraction will be conducted using a predefined template and quality of evidence assessed. Statistical summaries and meta-analyses will be performed as necessary. Discussion Results will be published in relevant peer-reviewed scientific journals and presented at national or international conferences by the investigators. Trial registration The protocol was registered on the PROSPERO international prospective register of systematic reviews prior to commencement, CRD42018091763. Electronic supplementary material The online version of this article (10.1186/s13018-019-1070-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Kholoud Hafsi
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Maimuna Marenah
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Jinjie Li
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Fadi Hassan
- Good Hope Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentistry, Salerno, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry Centre for Sports and Exercise Medicine, Mile End Hospital, London, England
| | - William D Murrell
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates.,Emirates Healthcare, Dubai, United Arab Emirates.,Department of Orthopaedic Surgery, Landstuhl Regional Medical Center, Landstuhl, Germany
| |
Collapse
|
34
|
Liang Y, Idrees E, Szojka ARA, Andrews SHJ, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomater 2018; 80:131-143. [PMID: 30267878 DOI: 10.1016/j.actbio.2018.09.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The objective of this study was to investigate whether meniscus-derived decellularized matrix (DCM) has the capacity to induce differentiation of synovial fluid-derived mesenchymal stem cells (SF-MSCs) towards a meniscus fibrochondrocyte (MFC) phenotype. The potential roles of transforming growth factor beta-3 (TGF-β3) and insulin-like growth factor 1 (IGF-1) in the differentiation of SF-MSCs towards an MFC phenotype were also investigated. SF-MSCs were isolated via plastic adherence cell culture from the synovial fluid of five donors (5 male, average age 34 years). Porous DCM was generated by homogenizing and freeze-drying fresh normal human cadaveric meniscus tissue. SF-MSCs were seeded and cultured on the DCM scaffold in a defined serum-free media (SFM) supplemented with or without the combination of TGF-β3 and IGF-1. Cell pellets of SF-MSCs were cultured in SFM with either TGF-β3 or IGF-1 or their combination as controls. The duration of culture was 3 weeks for both experimental configurations. We assessed newly-formed tissues by biochemical assays, scanning electron microscopy (SEM), immunofluorescence and quantitative real-time PCR (qPCR). The combination of TGF-β3 and IGF-1 induced production of the cartilaginous matrix in DCM and upregulated the expression of aggrecan, collagens I and II. Moreover, the SF-MSCs exhibited a round morphology in the DCM scaffolds in the presence of the growth factors. In pellets, combined TGF-β3 and IGF-1 synergistically enhanced cartilaginous matrix production. In contrast to bone marrow mesenchymal stem cells (BM-MSCs), the differentiated SF-MSCs showed little evidence of the expression of the hypertrophic differentiation marker, collagen X. In conclusion, meniscus-derived DCM appears to require exogenous growth factor supplementation to direct differentiation of SF-MSCs. STATEMENT OF SIGNIFICANCE: Meniscus tears are the most common injury of the knee joint. These tears pose a major risk factor for the early development of knee osteoarthritis. Unfortunately, the majority of these tears occur in the inner region of the meniscus and lacks blood supply with no reparative or regenerative capacity. The goal of this study was to determine if the native extracellular matrix (ECM) of human meniscus has the capacity to differentiate human knee synovial fluid resident mesenchymal stem cells (SF-MSCs) towards a meniscus phenotype as a potential strategy to repair avascular meniscal tears. Our findings show that the human meniscus-derived ECM without supplementation with growth factors (TGF-β3 and IGF-1) cannot differentiate SF-MSCs towards a meniscus phenotype. The use of meniscus-derived scaffolds as a material to stimulate endogenous repair of meniscus tears via differentiation of SF-MSCs may require supplementation with TGF-β3 and IGF-1.
Collapse
Affiliation(s)
- Yan Liang
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada; Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Enaam Idrees
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Alexander R A Szojka
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Stephen H J Andrews
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Melanie Kunze
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Nadr M Jomha
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada
| | - Adetola B Adesida
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
35
|
Derwin KA, Galatz LM, Ratcliffe A, Thomopoulos S. Enthesis Repair: Challenges and Opportunities for Effective Tendon-to-Bone Healing. J Bone Joint Surg Am 2018; 100:e109. [PMID: 30106830 PMCID: PMC6133216 DOI: 10.2106/jbjs.18.00200] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
On May 22, 2017, the National Institutes of Health (NIH)/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) hosted a roundtable on "Innovative Treatments for Enthesis Repair." A summary of the roundtable discussion, as well as a list of the extramural participants, can be found at https://www.niams.nih.gov/about/meetings-events/roundtables/roundtable-innovative-treatments-enthesis-repair. This paper reviews the challenges and opportunities for developing effective treatment strategies for enthesis repair that were identified at the roundtable discussion.
Collapse
Affiliation(s)
- Kathleen A. Derwin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio,E-mail address for K.A. Derwin:
| | - Leesa M. Galatz
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, NY
| |
Collapse
|
36
|
Comparative efficacy of stem cells and secretome in articular cartilage regeneration: a systematic review and meta-analysis. Cell Tissue Res 2018; 375:329-344. [PMID: 30084022 DOI: 10.1007/s00441-018-2884-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
Collapse
|
37
|
Macrin D, Joseph JP, Pillai AA, Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep 2018; 13:741-756. [PMID: 28812219 DOI: 10.1007/s12015-017-9759-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the recent times, stem cell biology has garnered the attention of the scientific fraternity and the general public alike due to the immense therapeutic potential that it holds in the field of regenerative medicine. A breakthrough in this direction came with the isolation of stem cells from human embryo and their differentiation into cell types of all three germ layers. However, the isolation of mesenchymal stem cells from adult tissues proved to be advantageous over embryonic stem cells due to the ethical and immunological naivety. Mesenchymal Stem Cells (MSCs) isolated from the bone marrow were found to differentiate into multiple cell lineages with the help of appropriate differentiation factors. Furthermore, other sources of stem cells including adipose tissue, dental pulp, and breast milk have been identified. Newer sources of stem cells have been emerging recently and their clinical applications are also being studied. In this review, we examine the eminent sources of Mesenchymal Stem Cells (MSCs), their immunophenotypes, and therapeutic imminence.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
38
|
Vedicherla S, Romanazzo S, Kelly DJ, Buckley CT, Moran CJ. Chondrocyte-based intraoperative processing strategies for the biological augmentation of a polyurethane meniscus replacement. Connect Tissue Res 2018; 59:381-392. [PMID: 29182439 DOI: 10.1080/03008207.2017.1402892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/aim of study: Menisectomies account for over 1.5 million surgical interventions in Europe annually, and there is a growing interest in regenerative strategies to improve outcomes in meniscal replacement. The overall objective of this study was to evaluate the role of intraoperatively applied fresh chondrocyte (FC) isolates compared to minced cartilage (MC) fragments, used without cell isolation, to improve bioactivity and tissue integration when combined with a polyurethane replacement. MATERIALS AND METHODS First, to optimize the intraoperative cell isolation protocol, caprine articular cartilage biopsies were digested with 750 U/ml or 3000 U/ml collagenase type II (ratio of 10 ml per g of tissue) for 30 min, 1 h or 12 h with constant agitation and compared to culture-expanded chondrocytes in terms of matrix deposition when cultured on polyurethane scaffolds. Finally, FCs and MC-augmented polyurethane scaffolds were evaluated in a caprine meniscal explant model to assess the potential enhancements on tissue integration strength. RESULTS Adequate numbers of FCs were harvested using a 30 min chondrocyte isolation protocol and were found to demonstrate improved matrix deposition compared to standard culture-expanded cells in vitro. Upon evaluation in a meniscus explant defect model, both FCs and MC showed improved matrix deposition at the tissue-scaffold interface and enhanced push-out strength, fourfold and 2.5-fold, respectively, compared with the acellular implant. CONCLUSIONS Herein, we have demonstrated a novel approach that could be applied intraoperatively, using FCs or MC for improved tissue integration with a polyurethane meniscal replacement.
Collapse
Affiliation(s)
- Srujana Vedicherla
- a Orthopaedics and Sports Medicine , School of Medicine, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Sara Romanazzo
- a Orthopaedics and Sports Medicine , School of Medicine, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Daniel J Kelly
- b Department of Mechanical & Manufacturing Engineering , School of Engineering, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland.,d Advanced Materials and Bioengineering Research (AMBER) Centre , Royal College of Surgeons in Ireland & Trinity College , Dublin , Ireland
| | - Conor T Buckley
- b Department of Mechanical & Manufacturing Engineering , School of Engineering, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland.,d Advanced Materials and Bioengineering Research (AMBER) Centre , Royal College of Surgeons in Ireland & Trinity College , Dublin , Ireland
| | - Cathal J Moran
- a Orthopaedics and Sports Medicine , School of Medicine, Trinity College , Dublin , Ireland.,c Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College , Dublin , Ireland.,d Advanced Materials and Bioengineering Research (AMBER) Centre , Royal College of Surgeons in Ireland & Trinity College , Dublin , Ireland.,e Sports Surgery Clinic , Santry , Dublin , Ireland
| |
Collapse
|
39
|
Tarafder S, Gulko J, Sim KH, Yang J, Cook JL, Lee CH. Engineered Healing of Avascular Meniscus Tears by Stem Cell Recruitment. Sci Rep 2018; 8:8150. [PMID: 29802356 PMCID: PMC5970239 DOI: 10.1038/s41598-018-26545-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone. Upon injury, the outer zone of the meniscus can be repaired and expected to functionally heal but tears in the inner avascular region are unlikely to heal. To date, no regenerative therapy has been proven successful for consistently promoting healing in inner-zone meniscus tears. Here, we show that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) can induce seamless healing of avascular meniscus tears by inducing recruitment and step-wise differentiation of synovial mesenchymal stem/progenitor cells (syMSCs). A short-term release of CTGF, a selected chemotactic and profibrogenic cue, successfully recruited syMSCs into the incision site and formed an integrated fibrous matrix. Sustain-released TGFβ3 then led to a remodeling of the intermediate fibrous matrix into fibrocartilaginous matrix, fully integrating incised meniscal tissues with improved functional properties. Our data may represent a novel clinically relevant strategy to improve healing of avascular meniscus tears by recruiting endogenous stem/progenitor cells.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Joseph Gulko
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Kun Hee Sim
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, Pennsylvania, PA, 16802-4400, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics Missouri Orthopaedic institute, University of Missouri, 1100 Virginia Avenue, Columbia, Missouri, 65212, USA
| | - Chang H Lee
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA.
| |
Collapse
|
40
|
Kamimura T, Kimura M. Repair of a Chronic Large Meniscal Defect With Implantation of Autogenous Meniscal Fragments Using a Tubular-Shaped Fibrin Clot. Arthrosc Tech 2018; 7:e257-e263. [PMID: 29881698 PMCID: PMC5989823 DOI: 10.1016/j.eats.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023] Open
Abstract
We present a technique to implant autogenous meniscal fragments using a fibrin clot to repair a large degenerative meniscal defect. A total of 25 mL of the patient's blood is agitated for 10 minutes using a stainless steel swizzle stick in a sterile glass syringe. The elastic fibrin clot subsequently adheres to the stick in a tubular manner. Using arthroscopic debridement, native meniscal tissue is resected. The meniscal fragments are packaged into the tubular-shaped fibrin clot, and the tube is tied at both ends using 4-0 absorbable sutures. A repair suture is prepared using the inside-out meniscal repair device and woven into the margins of the tubular-shaped fibrin clot. The packaged graft with the tubular-shaped fibrin clot is placed with a horizontal suture across both edges of the meniscal defect and secured with a supplemental vertical suture using an all-inside meniscal repair device. Follow-up arthroscopy performed 6 months postoperatively reveals regeneration of meniscus-like tissue. It is ideal to treat large degenerative defects with meniscal preservation, and the present procedure has the advantage of tissue regeneration with native meniscal tissue and growth factors obtained from the fibrin clot using a simple technique. This method could prove helpful in patients with degenerative meniscal defects.
Collapse
Affiliation(s)
- Tamiko Kamimura
- Department of Orthopaedic Surgery, Tokorozawa Chuo Hospital, Tokorozawa, Saitama, Japan,Address correspondence to Tamiko Kamimura, M.D., Department of Orthopaedic Surgery, Tokorozawa Chuo Hospital, 3-18-1 Kusunokidai, Tokorozawa, Saitama, 359-0037 Japan.
| | - Masashi Kimura
- Gunma Sports Medicine Research Center, Zenshukai Hospital, Maebashi, Gunma, Japan
| |
Collapse
|
41
|
Native tissue-based strategies for meniscus repair and regeneration. Cell Tissue Res 2018; 373:337-350. [PMID: 29397425 DOI: 10.1007/s00441-017-2778-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Meniscus injuries appear to be becoming increasingly common and pose a challenge for orthopedic surgeons. However, there is no curative approach for dealing with defects in the inner meniscus region due to its avascular nature. Numerous strategies have been applied to regenerate and repair meniscus defects and native tissue-based strategies have received much attention. Native tissue usually has good biocompatibility, excellent mechanical properties and a suitable microenvironment for cellular growth, adhesion, redifferentiation, extracellular matrix deposition and remodeling. Classically, native tissue-based strategies for meniscus repair and regeneration are divided into autogenous and heterogeneous tissue transplantation. Autogenous tissue transplantation is performed more widely than heterogeneous tissue transplantation because there is no immunological rejection and the success rates are higher. This review first discusses the native meniscus structure and function and then focuses on the use of the autogenous tissue for meniscus repair and regeneration. Finally, it summarizes the advantages and disadvantages of heterogeneous tissue transplantation. We hope that this review provides some suggestions for the future design of meniscus repair and regeneration strategies.
Collapse
|
42
|
Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair. Nat Commun 2017; 8:1780. [PMID: 29176654 PMCID: PMC5701126 DOI: 10.1038/s41467-017-01955-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Dense connective tissue injuries have limited repair, due to the paucity of cells at the wound site. We hypothesize that decreasing the density of the local extracellular matrix (ECM) in conjunction with releasing chemoattractive signals increases cellularity and tissue formation after injury. Using the knee meniscus as a model system, we query interstitial cell migration in the context of migratory barriers using a novel tissue Boyden chamber and show that a gradient of platelet-derived growth factor-AB (PDGF-AB) expedites migration through native tissue. To implement these signals in situ, we develop nanofibrous scaffolds with distinct fiber fractions that sequentially release active collagenase (to increase ECM porosity) and PDGF-AB (to attract endogenous cells) in a localized and coordinated manner. We show that, when placed into a meniscal defect, the controlled release of collagenase and PDGF-AB increases cellularity at the interface and within the scaffold, as well as integration with the surrounding tissue.
Collapse
|
43
|
Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther 2017; 8:218. [PMID: 28974260 PMCID: PMC5627404 DOI: 10.1186/s13287-017-0639-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Background The dog represents an excellent large animal model for translational cell-based studies. Importantly, the properties of canine multipotent stromal cells (cMSCs) and the ideal tissue source for specific translational studies have yet to be established. The aim of this study was to characterize cMSCs derived from synovium, bone marrow, and adipose tissue using a donor-matched study design and a comprehensive series of in-vitro characterization, differentiation, and immunomodulation assays. Methods Canine MSCs were isolated from five dogs with cranial cruciate ligament rupture. All 15 cMSC preparations were evaluated using colony forming unit (CFU) assays, flow cytometry analysis, RT-PCR for pluripotency-associated genes, proliferation assays, trilineage differentiation assays, and immunomodulation assays. Data were reported as mean ± standard deviation and compared using repeated-measures analysis of variance and Tukey post-hoc test. Significance was established at p < 0.05. Results All tissue samples produced plastic adherent, spindle-shaped preparations of cMSCs. Cells were negative for CD34, CD45, and STRO-1 and positive for CD9, CD44, and CD90, whereas the degree to which cells were positive for CD105 was variable depending on tissue of origin. Cells were positive for the pluripotency-associated genes NANOG, OCT4, and SOX2. Accounting for donor and tissue sources, there were significant differences in CFU potential, rate of proliferation, trilineage differentiation, and immunomodulatory response. Synovium and marrow cMSCs exhibited superior early osteogenic activity, but when assessing late-stage osteogenesis no significant differences were detected. Interestingly, bone morphogenic protein-2 (BMP-2) supplementation was necessary for early-stage and late-stage osteogenic differentiation, a finding consistent with other canine studies. Additionally, synovium and adipose cMSCs proliferated more rapidly, displayed higher CFU potential, and formed larger aggregates in chondrogenic assays, although proteoglycan and collagen type II staining were subjectively decreased in adipose pellets as compared to synovial and marrow pellets. Lastly, cMSCs derived from all three tissue sources modulated murine macrophage TNF-α and IL-6 levels in a lipopolysaccharide-stimulated coculture assay. Conclusions While cMSCs from synovium, marrow, and adipose tissue share a number of similarities, important differences in proliferation and trilineage differentiation exist and should be considered when selecting cMSCs for translational studies. These results and associated methods will prove useful for future translational studies involving the canine model. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0639-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shannon S Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kevin J Cummings
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Roger Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - William B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
44
|
Liang Y, Idrees E, Andrews SHJ, Labib K, Szojka A, Kunze M, Burbank AD, Mulet-Sierra A, Jomha NM, Adesida AB. Plasticity of Human Meniscus Fibrochondrocytes: A Study on Effects of Mitotic Divisions and Oxygen Tension. Sci Rep 2017; 7:12148. [PMID: 28939894 PMCID: PMC5610182 DOI: 10.1038/s41598-017-12096-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Meniscus fibrochondrocytes (MFCs) may be the optimal cell source to repair non-healing meniscus injuries using tissue engineering strategies. In this study, we investigated the effects of mitotic divisions and oxygen tension on the plasticity of adult human MFCs. Our assessment techniques included gene expression, biochemical, histological, and immunofluorescence assays. MFCs were expanded in monolayer culture with combined growth factors TGFβ1 and FGF-2 (T1F2) under normoxia (21% O2). Trilineage (adipogenesis, chondrogenesis and osteogenesis) differentiation was performed under both normoxic (21% O2) and hypoxic (3% O2) conditions. The data demonstrated that MFCs with a mean total population doubling of 10 can undergo adipogenesis and chondrogenesis. This capability was enhanced under hypoxic conditions. The MFCs did not undergo osteogenesis. In conclusion, our findings suggest that extensively expanded human MFCs have the capacity to generate tissues with the functional matrix characteristics of avascular meniscus. To this end, expanded MFCs may be an ideal cell source for engineering functional constructs for the replacement or repair of avascular meniscus.
Collapse
Affiliation(s)
- Yan Liang
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
- Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Enaam Idrees
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Stephen H J Andrews
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Kirollos Labib
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Alexander Szojka
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Melanie Kunze
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Andrea D Burbank
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Nadr M Jomha
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Adetola B Adesida
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
45
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications. Stem Cells Int 2017; 2017:2638305. [PMID: 28698718 PMCID: PMC5494105 DOI: 10.1155/2017/2638305] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023] Open
Abstract
Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties.
Collapse
|
47
|
Zhang ZZ, Wang SJ, Zhang JY, Jiang WB, Huang AB, Qi YS, Ding JX, Chen XS, Jiang D, Yu JK. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. Am J Sports Med 2017; 45:1497-1511. [PMID: 28278383 DOI: 10.1177/0363546517691513] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Total meniscectomy leads to knee osteoarthritis in the long term. The poly(ε-caprolactone) (PCL) scaffold is a promising material for meniscal tissue regeneration, but cell-free scaffolds result in relatively poor tissue regeneration and lead to joint degeneration. HYPOTHESIS A novel, 3-dimensional (3D)-printed PCL scaffold augmented with mesenchymal stem cells (MSCs) would offer benefits in meniscal regeneration and cartilage protection. STUDY DESIGN Controlled laboratory study. METHODS PCL meniscal scaffolds were 3D printed and seeded with bone marrow-derived MSCs. Seventy-two New Zealand White rabbits were included and were divided into 4 groups: cell-seeded scaffold, cell-free scaffold, sham operation, and total meniscectomy alone. The regeneration of the implanted tissue and the degeneration of articular cartilage were assessed by gross and microscopic (histological and scanning electron microscope) analysis at 12 and 24 weeks postoperatively. The mechanical properties of implants were also evaluated (tensile and compressive testing). RESULTS Compared with the cell-free group, the cell-seeded scaffold showed notably better gross appearance, with a shiny white color and a smooth surface. Fibrochondrocytes with extracellular collagen type I, II, and III and proteoglycans were found in both seeded and cell-free scaffold implants at 12 and 24 weeks, while the results were significantly better for the cell-seeded group at week 24. Furthermore, the cell-seeded group presented notably lower cartilage degeneration in both femur and tibia compared with the cell-free or meniscectomy group. Both the tensile and compressive properties of the implants in the cell-seeded group were significantly increased compared with those of the cell-free group. CONCLUSION Seeding MSCs in the PCL scaffold increased its fibrocartilaginous tissue regeneration and mechanical strength, providing a functional replacement to protect articular cartilage from damage after total meniscectomy. CLINICAL RELEVANCE The study suggests the potential of the novel 3D PCL scaffold augmented with MSCs as an alternative meniscal substitution, although this approach requires further improvement before being used in clinical practice.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| | - Shao-Jie Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China.,Department of Joint Surgery, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, P.R. China
| | - Ji-Ying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| | - Wen-Bo Jiang
- Clinical Translational R&D Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ai-Bing Huang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| | - Yan-Song Qi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| | - Jian-Xun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Dong Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| | - Jia-Kuo Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| |
Collapse
|
48
|
Koh RH, Jin Y, Kang BJ, Hwang NS. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater 2017; 53:318-328. [PMID: 28161573 DOI: 10.1016/j.actbio.2017.01.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Current meniscus tissue repairing strategies involve partial or total meniscectomy, followed by allograft transplantation or synthetic material implantation. However, allografts and synthetic implants have major drawbacks such as the limited supply of grafts and lack of integration into host tissue, respectively. In this study, we investigated the effects of conditioned medium (CM) from meniscal fibrochondrocytes and TGF-β3 on tonsil-derived mesenchymal stem cells (T-MSCs) for meniscus tissue engineering. CM-expanded T-MSCs were encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogels and cultured in chondrogenic medium containing TGF-β3. In vitro results indicate that CM-expanded cells followed by TGF-β3 exposure stimulated the expression of fibrocartilage-related genes (COL2, SOX9, ACAN, COL1) and production of extracellular matrix components. Histological assessment of in vitro and subcutaneously implanted in vivo constructs demonstrated that CM-expanded cells followed by TGF-β3 exposure resulted in highest cell proliferation, GAG accumulation, and collagen deposition. Furthermore, when implanted into meniscus defect model, CM treatment amplified the potential of TGF-β3 and induced complete regeneration. STATEMENT OF SIGNIFICANCE Conditioned medium derived from chondrocytes have been reported to effectively prime mesenchymal stem cells toward chondrogenic lineage. Type I collagen is the main component of meniscus extracellular matrix and hyaluronic acid is known to promote meniscus regeneration. In this manuscript, we investigated the effects of conditioned medium (CM) and transforming growth factor-β3 (TGF-β3) on tonsil-derived mesenchymal stem cells (T-MSCs) encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogel. We employed a novel source of conditioned medium, derived from meniscal fibrochondrocytes. Our in vitro and in vivo results collectively illustrate that CM-expanded cells followed by TGF-β3 exposure have the best potential for meniscus regeneration. This manuscript highlights a novel stem cell commitment strategy combined with biomaterials designs for meniscus regeneration.
Collapse
|
49
|
Anz AW, Branch EA, Rodriguez J, Chillemi F, Bruce JR, Murphy MB, Suzuki RK, Andrews JR. Viable Stem Cells Are in the Injury Effusion Fluid and Arthroscopic Byproducts From Knee Cruciate Ligament Surgery: An In Vivo Analysis. Arthroscopy 2017; 33:790-797. [PMID: 28043750 DOI: 10.1016/j.arthro.2016.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To examine the number of viable stem cells contained in the postinjury effusion fluid and the waste byproducts of arthroscopic cruciate ligament surgery. METHODS This study included patients older than 18 years of age with acute (<5 weeks old) cruciate ligament injuries requiring arthroscopic surgery. The postinjury effusion fluid (effusion fluid), fat pad and cruciate ligament stump debridement tissue (byproduct tissue), and arthroscopic fluid collected during fat pad and/or stump debridement (byproduct fluid) were collected at the time of surgery from 30 individuals. Specimens were analyzed, investigating cell viability, nucleated cell counts, cell concentrations, colony-forming unit assays, and flow cytometry. Samples from the first 20 individuals were collected in small specimen containers, and samples from the last 10 individuals were collected in larger specimen containers. RESULTS Cells of the injury effusion exhibited the greatest viability (86.4 ± 1.31%) when compared with the small volume harvest byproduct tissue (50.2 ± 2.5%, P = .0001), small volume harvest byproduct fluid (48.8 ± 1.88%, P = .0001), large volume harvest byproduct tissue (70.1 ± 5.6%, P = .0001), and large volume harvest byproduct fluid (60.3 ± 3.41%, P = .0001). The culture analysis of fibroblast colony-forming units found on average 1916 ± 281 progenitor cells in the effusion fluid, 2488 ± 778 progenitor cells in the byproduct tissue, and 2357 ± 339 progenitor cells in the byproduct fluid. Flow cytometry confirmed the presence of immature cells and the presence of cells with markers typically expressed by known stem cell populations. CONCLUSIONS Viable stem cells are mobilized to the postinjury effusion at the time of cruciate ligament injury and can be found in the byproduct waste of cruciate ligament surgery. CLINICAL RELEVANCE The methodology around effusion fluid and byproduct tissue capture during cruciate ligament surgery should be investigated further. Cell amounts available from these tissues with current technologies are not sufficient for immediate evidence-based clinical application.
Collapse
Affiliation(s)
- Adam W Anz
- Andrews Institute for Orthopaedics & Sports Medicine, Gulf Breeze, Florida, U.S.A..
| | - Eric A Branch
- Andrews Institute for Orthopaedics & Sports Medicine, Gulf Breeze, Florida, U.S.A
| | - John Rodriguez
- Andrews Institute for Orthopaedics & Sports Medicine, Gulf Breeze, Florida, U.S.A
| | - Fellipo Chillemi
- Andrews Institute for Orthopaedics & Sports Medicine, Gulf Breeze, Florida, U.S.A
| | - Jeremy R Bruce
- Andrews Institute for Orthopaedics & Sports Medicine, Gulf Breeze, Florida, U.S.A
| | | | | | - James R Andrews
- Andrews Institute for Orthopaedics & Sports Medicine, Gulf Breeze, Florida, U.S.A
| |
Collapse
|
50
|
Kong L, Zheng LZ, Qin L, Ho KK. Role of mesenchymal stem cells in osteoarthritis treatment. J Orthop Translat 2017; 9:89-103. [PMID: 29662803 PMCID: PMC5822967 DOI: 10.1016/j.jot.2017.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
As the most common form of joint disorder, osteoarthritis (OA) imposes a tremendous burden on health care systems worldwide. Without effective cure, OA represents a unique opportunity for innovation in therapeutic development. In contrast to traditional treatments based on drugs, proteins, or antibodies, stem cells are poised to revolutionize medicine as they possess the capacity to replace and repair tissues and organs such as osteoarthritic joints. Among different types of stem cells, mesenchymal stem cells (MSCs) are of mesoderm origin and have been shown to generate cells for tissues of the mesoderm lineage, thus, raising the hope for them being used to treat diseases such as OA. However, given their ability to differentiate into other cell types, MSCs have also been tested in treating a myriad of conditions from diabetes to Parkinson's disease, apparently of the ectoderm and endoderm lineages. There are ongoing debates whether MSCs can differentiate into lineages outside of the mesoderm and consequently their effectiveness in treating conditions from the ectoderm and endoderm lineages. In this review, we discuss the developmental origin of MSCs, their differentiation potential and immunomodulatory effects, as well as their applications in treating OA. We suggest further investigations into new therapies or combination therapies that may provide more effective treatment for bone and joint diseases. Furthermore, cell-based therapy and its associated safety and effectiveness should be carefully evaluated before clinical translation. This review provides updated information on recent approval of clinical trials and related applications of MSCs, and discusses additional efforts on cell-based therapy for treating OA and other joint and bone diseases.
Collapse
Affiliation(s)
- Ling Kong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Zhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kevin K.W. Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|