1
|
Lu S, Fang C. Isosakuranetin inhibits subchondral osteoclastogenesis for attenuating osteoarthritis via suppressing NF-κB/CXCL2 axis. Int Immunopharmacol 2024; 143:113321. [PMID: 39388890 DOI: 10.1016/j.intimp.2024.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
As the most predominant form of arthritis, osteoarthritis (OA) is featured with irreversible progress and involvement of the whole joint. Since OA onset, abnormal mechanical load initiates excessive osteoclastogenesis, evolving a rapid turnover of subchondral bone, cyst creation, synovitis, cartilage degradation, and ultimately resulting in joint failure. Additionally, aberrant vascularization and nociceptive pain are invoked by osteoclast-induced angiogenesis and sensory innervation in the subchondral bone. Rhizoma anemarrhenae (Zhimu) has been extensively demonstrated to show multiple pharmacological effects including anti-inflammation, anti-aging, and immunomodulation. Herein, Broussonin a (BRA), Markogein (MAN), and Isosakuranetin (ISN) derived from Rhizoma anemarrhenae, were initially discovered for their affinity with Bone marrow mononuclear cell (BMMC) membranes using the Cell membrane chromatography/Time of flight mass spectrometry (CMC/TOFMS) method, while only ISN exerted a significant inhibitory effect on RANKL-induced osteoclastogenesis in BMMC in vitro. Intriguingly, we disclosed that ISN blunted the overactivation of Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts in subchondral bone in OA mice, as indicated by enhanced bone volume/total volume (BV/TV), trabecular number (Tb.N), and trabeculae thickness (Tb.Th), as well as diminished trabecular pattern factor (Tb.pf). Treatment with ISN also impaired aberrant angiogenesis and nociceptive reaction in the subchondral bone marrow. Moreover, ISN hindered the loss of articular cartilage proteoglycan and lowered the Osteoarthritis Research Society International (OARSI) grade, boosting the expression amount of Aggrecan (ACAN) and Collagen II (COL II) positive cells while reducing Matrix metalloproteinase 13 (MMP-13) positive cells. For mechanisms, We verified that ISN hampered subchondral osteoclastogenesis by blocking nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 2 (CXCL2) stimulation. Taken together, we reveal that ISN impedes the progression of OA by preventing hyperactivated subchondral osteoclastogenesis via suppressing the NF-κB/CXCL2 axis.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
2
|
Peng M, Shen G, Tu Q, Zhang W, Wang J. Nuciferine ameliorates osteoarthritis: An in vitro and in vivo study. Int Immunopharmacol 2024; 142:113098. [PMID: 39321708 DOI: 10.1016/j.intimp.2024.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease and a leading cause of pain and disability. A key hallmark of OA is cartilage degradation, which occurs due to an imbalance between the synthesis and degradation of the extracellular matrix (ECM). Interleukin-1β(IL-1β) has been reported to regulate ECM metabolism. Nuciferine (Nuc), a natural peptide extracted from the lotus leaf, possesses several significant pharmacological properties. However, the anti-inflammation of Nuc in OA has not been reported. In this study, ELISA and Western blot analyses were used to measure the production of inflammatory mediators in IL-1β-Induced mouse chondrocytes. Additionally, mice with or without surgical destabilization of the medial meniscus (DMM) were treated with intra-articular injection of Nuc. We found that Nuc significantly reduces the level of iNOS, PEG2, and IL-6 in IL-1β-induced chondrocytes. Furthermore, Nuc can ameliorate the development of OA in mice. Mechanistically, we found that the chondrocyte-protective effects of Nuc occur via the PTEN/NF-κB pathway. These findings suggest that Nuc could be a potential therapeutic agent for improving OA development.
Collapse
Affiliation(s)
- Maoxiu Peng
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Guangjie Shen
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Qiming Tu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Weihao Zhang
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Juncheng Wang
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an 325200, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.
| |
Collapse
|
3
|
Ma J, Wang Z, Sun Y, Zheng R, Tan H, Zhang H, Jin Z, Wu Y, Sun Z. Phillyrin: A potential therapeutic agent for osteoarthritis via modulation of NF-κB and Nrf2 signaling pathways. Int Immunopharmacol 2024; 141:112960. [PMID: 39159565 DOI: 10.1016/j.intimp.2024.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Osteoarthritis (OA) is the predominant cause of disability among elderly people worldwide and is characterized by cartilage degeneration and excessive bone formation. Phillyrin, derived from forsythia, is a key extract renowned for its pronounced antibacterial and anti-inflammatory effects. Forsythia, deeply integrated into traditional Oriental medicine, has historically been utilized for its various pharmacological effects, including antibacterial, anti-inflammatory, and hepato-protective properties. Nevertheless, the anti-inflammatory impact of phillyrin on the progression of osteoarthritis remains enigmatic. The objective of this research was to assess the anti-inflammatory and anti-aging properties of phillyrin in mouse chondrocytes induced by IL-1β, as well as to elucidate the fundamental mechanisms underlying the phenomenon at play. Additionally, the investigation extends to observing the impact of phillyrin by establishing a murine osteoarthritic model. The ultimate goal was to identify phillyrin as a potential antiosteoarthritic agent. This investigation employs a multifaceted approach. Initially, key action targets of phillyrin, along with its probable action pathways, were identified by molecular docking and network pharmacological techniques. These findings were subsequently confirmed through both in vivo and in vitro studies. Network pharmacological analysis revealed NFE2L2 (NRF2), NFKB1, TLR4, and SERPING1 as pivotal candidate targets for the treatment of osteoarthritis with phillyrin. Molecular docking revealed hydrogen bond interactions between phillyrin and Arg415, Arg483, Ser508, and Asn387 on the Nrf2 receptor, while electrostatic interactions occurred with residues Arg415 and Arg380. Experiments conducted in vitro indicated that phillyrin preconditioning hindered the IL-1β-induced expression of proinflammatory factors which included TNF-α, COX-2, IL-6, and iNOS. Furthermore, phillyrin counteracts the IL-1β-induced degradation of aggrecan and collagen II within the extracellular matrix (ECM). This protective action is caused by the inhibition of the NF-κB pathway by phillyrin. Additionally, the mitigation of chondrocyte aging by phillyrin was observed. Our investigation revealed that phillyrin mitigates inflammation and counteracts cartilage degeneration in osteoarthritis (OA) patients by suppressing inflammation in chondrocytes and impeding aging through suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Jiawei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ze Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Rukang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Hongye Tan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Hanwen Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zebin Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| | - Zeming Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
4
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
5
|
Neri S, Guidotti S, Panichi V, Minguzzi M, Cattini L, Platano D, Ursini F, Arciola CR, Borzì RM. IKKα affects the susceptibility of primary human osteoarthritis chondrocytes to oxidative stress-induced DNA damage by tuning autophagy. Free Radic Biol Med 2024:S0891-5849(24)01007-4. [PMID: 39461484 DOI: 10.1016/j.freeradbiomed.2024.10.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The functional derangement affecting human chondrocytes during osteoarthritis (OA) onset and progression is sustained by the failure of major homeostatic mechanisms. This makes them more susceptible to oxidative stress (OS), which can induce DNA damage responses and exacerbate stress-induced senescence. The knockdown (KD) of IκB kinase α (IKKα), a dispensable protein in healthy articular cartilage physiology, was shown to increase the survival and replication potential of human primary OA chondrocytes. Our recent findings showed that the DNA Mismatch Repair pathway only partially accounts for the reduced susceptibility to OS of IKKαKD cells. Here we therefore investigated other ROS-mediated DNA damage and repair mechanisms. We exposed IKKαWT and IKKαKD chondrocytes to sub-cytotoxic hydrogen peroxide and evaluated the occurrence of double-strand breaks (DSB), 8-Oxo-2'-deoxyguanosine (8-oxo-dG) and telomere shortening. ROS exposure was able to significantly increase the number of γH2AX foci (directly related to the number of DSB) in both cell types, but IKKα deficient cells undergoing cell division were able to better recover compared to their IKKα proficient counterpart. 8-oxo-dG signal proved to be the highest DNA damage signal among those investigated, located in the mitochondria and with a slightly higher intensity in IKKα proficient cells immediately after OS exposure. Furthermore, ROS significantly reduced telomere length both in IKKαWT and IKKαKD, with the former showing more pervasive effects, especially in dividing cells. Assessment of the HIF-1α>Beclin1>LC3B axis after recovery from OS showed that IKKα deficient cells exhibited a more efficient autophagic machinery that allowed them to better cope with oxidative stress, possibly through the turnover of damaged mitochondria. Higher Beclin1 levels likely helped in rescuing dividing cells (identified by coupled cell cycle analysis) because of Beclin1's involvement in both autophagy and mitotic spindle organization. Therefore, our data further confirm the higher capacity of IKKαKD chondrocytes to cope with oxidative stress-induced DNA damage.
Collapse
Affiliation(s)
- Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Serena Guidotti
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Manuela Minguzzi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Daniela Platano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126 Bologna, Italy; Laboratory of Immunorheumatology and Tissue Regeneration, Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Francesco Ursini
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126 Bologna, Italy.
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration and Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), AlmaMater Studiorum University of Bologna, 40126 Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| |
Collapse
|
6
|
Toegel S, Martelanz L, Alphonsus J, Hirtler L, Gruebl-Barabas R, Cezanne M, Rothbauer M, Heuberer P, Windhager R, Pauzenberger L. The degenerated glenohumeral joint. Bone Joint Res 2024; 13:596-610. [PMID: 39428110 PMCID: PMC11491170 DOI: 10.1302/2046-3758.1310.bjr-2024-0026.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Aims This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Methods Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA). Results Cartilage degeneration of the humeral head was associated with the histological presentation of: 1) pannus overgrowing the cartilage surface; 2) pores in the subchondral bone plate; and 3) chondrocyte clusters in OmA patients. In contrast, hyperplasia of the synovial lining layer was revealed as a significant indicator of inflammatory processes predominantly in CTA. The abundancy of collagen I, collagen II, and the C1,2C neoepitope correlated significantly with the histopathological degeneration of humeral head cartilage. No evidence for differences in MMP levels between OmA and CTA patients was found. Conclusion This study provides a comprehensive histological characterization of humeral cartilage and synovial tissue within the glenohumeral joint, both in normal and diseased states. It highlights synovitis and pannus formation as histopathological hallmarks of OmA and CTA, indicating their roles as drivers of joint inflammation and cartilage degradation, and as targets for therapeutic strategies such as rotator cuff reconstruction and synovectomy.
Collapse
Affiliation(s)
- Stefan Toegel
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Luca Martelanz
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Juergen Alphonsus
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Lena Hirtler
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Ruth Gruebl-Barabas
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Melanie Cezanne
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Mario Rothbauer
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | | | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Leo Pauzenberger
- healthPi, Vienna, Austria
- Orthopaedic Department, Evangelisches Krankenhaus Wien, Vienna, Austria
| |
Collapse
|
7
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
8
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
9
|
Zhang Z, Li B, Wu S, Yang Y, Wu B, Lai Q, Lai F, Mo F, Zhong Y, Wang S, Guo R, Zhang B. Bergenin protects against osteoarthritis by inhibiting STAT3, NF-κB and Jun pathways and suppressing osteoclastogenesis. Sci Rep 2024; 14:20292. [PMID: 39217193 PMCID: PMC11366014 DOI: 10.1038/s41598-024-71259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by articular cartilage destruction and subchondral bone reconstruction in the early stages. Bergenin (Ber) is a cytoprotective polyphenol found in many medicinal plants. It has been proven to have anti-inflammatory, antioxidant, and other biological activities, which may reveal its potential role in the treatment of OA. This study aimed to determine the potential efficacy of Ber in treating OA and explore the possible underlying mechanism through network pharmacology and validation experiments. The potential co-targets and processes of Ber and OA were predicted by using network pharmacology, including a Venn diagram for intersection targets, a protein‒protein interaction (PPI) network to obtain key potential targets, and GO and KEGG pathway enrichment to reveal the probable mechanism of action of Ber on OA. Subsequently, validation experiments were carried out to investigate the effects and mechanisms of Ber in treating OA in vitro and vivo. Ber suppressed IL-1β-induced chondrocyte apoptosis and extracellular matrix catabolism by inhibiting the STAT3, NF-κB and Jun signalling pathway in vitro. Furthermore, Ber suppressed the expression of osteoclast marker genes and RANKL-induced osteoclastogenesis. Ber alleviated the progression of OA in DMM-induced OA mice model. These results demonstrated the protective efficacy and potential mechanisms of Ber against OA, which suggested that Ber could be adopted as a potential therapeutic agent for treating OA.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Bo Li
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Shuqin Wu
- Faculty of Jiangxi Medical College, Donghu District, Nanchang University, No.461 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Yuxin Yang
- Faculty of Jiangxi Medical College, Donghu District, Nanchang University, No.461 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Binkang Wu
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Qi Lai
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Fuchong Lai
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Fengbo Mo
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Yufei Zhong
- Faculty of Jiangxi Medical College, Donghu District, Nanchang University, No.461 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Song Wang
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Runsheng Guo
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Bin Zhang
- Department of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Department of Sports Medicine of Orthopedic Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
10
|
Kang W, Xu Q, Dong H, Wang W, Huang G, Zhang J. Eriodictyol attenuates osteoarthritis progression through inhibiting inflammation via the PI3K/AKT/NF-κB signaling pathway. Sci Rep 2024; 14:18853. [PMID: 39143134 PMCID: PMC11324885 DOI: 10.1038/s41598-024-69028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Eriodictyol, a flavonoid distributed in citrus fruits, has been known to exhibit anti-inflammatory activity. In this study, destabilized medial meniscus (DMM)-induced OA model was used to investigate the protective role of eriodictyol on OA. Meanwhile, we used an IL-1β-stimulated human osteoarthritis chondrocytes model to investigate the anti-inflammatory mechanism of eriodictyol on OA. The production of nitric oxide was detected by Griess reaction. The productions of MMP1, MMP3, and PGE2 were detected by ELISA. The expression of LXRα, ABCA1, PI3K, AKT, and NF-κB were measured by western blot analysis. The results demonstrated that eriodictyol could alleviate DMM-induced OA in mice. In vitro, eriodictyol inhibited IL-1β-induced NO, PGE2, MMP1, and MMP3 production in human osteoarthritis chondrocytes. Eriodictyol also suppressed the phosphorylation of PI3K, AKT, NF-κB p65, and IκBα induced by IL-1β. Meanwhile, eriodictyol significantly increased the expression of LXRα and ABCA1. Furthermore, eriodictyol disrupted lipid rafts formation through reducing the cholesterol content. And cholesterol replenishment experiment showed that adding water-soluble cholesterol could reverse the anti-inflammatory effect of eriodictyol. In conclusion, the results indicated eriodictyol inhibited IL-1β-induced inflammation in human osteoarthritis chondrocytes through suppressing lipid rafts formation, which subsequently inhibiting PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wenbo Kang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, People's Republic of China
| | - Qinli Xu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, People's Republic of China
| | - Hang Dong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, People's Republic of China
| | - Wenjun Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, People's Republic of China
| | - Guanning Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, People's Republic of China
| | - Jingzhe Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, People's Republic of China.
| |
Collapse
|
11
|
Lin CY, Naruphontjirakul P, Huang TY, Wu YC, Cheng WH, Su WT. The Exosomes of Stem Cells from Human Exfoliated Deciduous Teeth Suppress Inflammation in Osteoarthritis. Int J Mol Sci 2024; 25:8560. [PMID: 39201248 PMCID: PMC11354937 DOI: 10.3390/ijms25168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Hyaluronic acid injection is commonly used clinically to slow down the development of osteoarthritis (OA). A newly developed therapeutic method is to implant chondrocytes/stem cells to regenerate cartilage in the body. The curative effect of stem cell therapy has been proven to come from the paracrine of stem cells. In this study, exosomes secreted by stem cells from human exfoliated deciduous teeth (SHED) and hyaluronic acid were used individually to evaluate the therapeutic effect in slowing down OA. SHED was cultured in a serum-free medium for three days, and the supernatant was collected and then centrifuged with a speed difference to obtain exosomes containing CD9 and CD63 markers, with an average particle size of 154.1 nm. SW1353 cells were stimulated with IL-1β to produce the inflammatory characteristics of OA and then treated with 40 μg/mL exosomes and hyaluronic acid individually. The results showed that the exosomes successfully inhibited the pro-inflammatory factors, including TNF-α, IL-6, iNOS, NO, COX-2 and PGE2, induced by IL-1β and the degrading enzyme of the extrachondral matrix (MMP-13). Collagen II and ACAN, the main components of the extrachondral matrix, were also increased by 1.76-fold and 2.98-fold, respectively, after treatment, which were similar to that of the normal joints. The effect can be attributed to the partial mediation of SHED exosomes to the NF-κB pathway, and the ability of exosomes to inhibit OA is found not inferior to that of hyaluronic acid.
Collapse
Affiliation(s)
- Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan;
| | - Yi-Chia Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| | - Wei-Hsuan Cheng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
| |
Collapse
|
12
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
13
|
Kuang S, Liu Z, Liu L, Fu X, Sheng W, Hu Z, Lin C, He Q, Chen J, Gao S. Polygonatum sibiricum polysaccharides protect against knee osteoarthritis by inhibiting the TLR2/NF-κB signaling pathway in vivo and in vitro. Int J Biol Macromol 2024; 274:133137. [PMID: 38901508 DOI: 10.1016/j.ijbiomac.2024.133137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Polygonatum sibiricum polysaccharides (PSP), the primary constituent of Polygonatum sibiricum, have been shown to exhibit a wide range of pharmacological effects, but their impact on osteoarthritis (OA) remains unclear. The objective of this study was to investigate the protective effects of PSP against OA and to elucidate its underlying molecular mechanism. In our in vitro experiments, PSP not only inhibited the IL-1β-induced inflammatory responses and the nuclear factor kappa-B (NF-κB) signaling pathway in chondrocytes but also regulated the cartilage matrix metabolism. In addition, we detected 394 significantly differentially expressed genes through RNA-seq analysis on PSP-intervened chondrocytes, and the toll-like receptor 2 (TLR2) was identified as the most important feature by functional network analysis and qRT-PCR. It was also revealed that PSP treatment significantly reversed the IL-1-induced up-regulation of TLR2 expression in chondrocytes, while TLR2 overexpression partially inhibited the regulatory effects of PSP on inflammation, NF-κB signaling pathway and matrix metabolism. In our in vivo experiments, PSP treatment alleviated the development of destabilization of medial meniscus (DMM)-induced OA in mouse knee joints, inhibited the DMM-induced activation of the TLR2/NF-κB signaling pathway in mouse knee joint cartilage, and reduced the serum levels of inflammatory cytokines. In conclusion, PSP exerts its anti-inflammatory, matrix synthesis-promoting and matrix catabolism-suppressing effects in knee OA by inhibiting the TLR2/NF-κB signaling pathway, suggesting that PSP may be potentially targeted as a novel all-natural, low-toxicity drug for OA prevention and treatment.
Collapse
Affiliation(s)
- Shida Kuang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhewen Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xinying Fu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Zongren Hu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Chengxiong Lin
- Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Medicine, Huaihua, Hunan 418000, China.
| | - Jisong Chen
- Hunan University of Medicine, Huaihua, Hunan 418000, China.
| | - Shuguang Gao
- Department of Orthopaedics, Xiangya Hospital Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
14
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Lu R, Qu Y, Wang Z, He Z, Xu S, Cheng P, Lv Z, You H, Guo F, Chen A, Zhang J, Liang S. TBK1 pharmacological inhibition mitigates osteoarthritis through attenuating inflammation and cellular senescence in chondrocytes. J Orthop Translat 2024; 47:207-222. [PMID: 39040492 PMCID: PMC11260960 DOI: 10.1016/j.jot.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 06/02/2024] [Indexed: 07/24/2024] Open
Abstract
Objectives TANK-binding kinase 1 (TBK1) is pivotal in autoimmune and inflammatory diseases, yet its role in osteoarthritis (OA) remains elusive. This study sought to elucidate the effect of the TBK1 inhibitor BX795 on OA and to delineate the underlying mechanism by which it mitigates OA. Methods Interleukin-1 Beta (IL-1β) was utilized to simulate inflammatory responses and extracellular matrix degradation in vitro. In vivo, OA was induced in 8-week-old mice through destabilization of the medial meniscus surgery. The impact of BX795 on OA was evaluated using histological analysis, X-ray, micro-CT, and the von Frey test. Additionally, Western blot, RT-qPCR, and immunofluorescence assays were conducted to investigate the underlying mechanisms of BX795. Results Phosphorylated TBK1 (P-TBK1) levels were found to be elevated in OA knee cartilage of both human and mice. Furthermore, intra-articular injection of BX795 ameliorated cartilage degeneration and alleviated OA-associated pain. BX795 also counteracted the suppression of anabolic processes and the augmentation of catabolic activity, inflammation, and senescence observed in the OA mice. In vitro studies revealed that BX795 reduced P-TBK1 levels and reversed the effects of anabolism inhibition, catabolism promotion, and senescence induction triggered by IL-1β. Mechanistically, BX795 inhibited the IL-1β-induced activation of the cGAS-STING and TLR3-TRIF signaling pathways in chondrocytes. Conclusions Pharmacological inhibition of TBK1 with BX795 protects articular cartilage by inhibiting the activation of the cGAS-STING and TLR3-TRIF signaling pathways. This action attenuates inflammatory responses and cellular senescence, positioning BX795 as a promising therapeutic candidate for OA treatment. The translational potential of this article This study furnishes experimental evidence and offers a potential mechanistic explanation supporting the efficacy of BX795 as a promising candidate for OA treatment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430030, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengtao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaming Zhang
- Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
16
|
Kalairaj MS, Pradhan R, Saleem W, Smith MM, Gaharwar AK. Intra-Articular Injectable Biomaterials for Cartilage Repair and Regeneration. Adv Healthc Mater 2024; 13:e2303794. [PMID: 38324655 PMCID: PMC11468459 DOI: 10.1002/adhm.202303794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Osteoarthritis is a degenerative joint disease characterized by cartilage deterioration and subsequent inflammatory changes in the underlying bone. Injectable hydrogels have emerged as a promising approach for controlled drug delivery in cartilage therapies. This review focuses on the latest developments in utilizing injectable hydrogels as vehicles for targeted drug delivery to promote cartilage repair and regeneration. The pathogenesis of osteoarthritis is discussed to provide a comprehensive understanding of the disease progression. Subsequently, the various types of injectable hydrogels used for intra-articular delivery are discussed. Specifically, physically and chemically crosslinked injectable hydrogels are critically analyzed, with an emphasis on their fabrication strategies and their capacity to encapsulate and release therapeutic agents in a controlled manner. Furthermore, the potential of incorporating growth factors, anti-inflammatory drugs, and cells within these injectable hydrogels are discussed. Overall, this review offers a comprehensive guide to navigating the landscape of hydrogel-based therapeutics in osteoarthritis.
Collapse
Affiliation(s)
| | - Ridhi Pradhan
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Waqas Saleem
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Morgan M. Smith
- Department of Veterinary Integrative BiosciencesSchool of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Genetics and Genomics Interdisciplinary ProgramTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
17
|
Lee M, Lee H, Chung H, Lee JH, Kim D, Cho S, Kim TJ, Kim HS. Micro-current stimulation could inhibit IL-1β-induced inflammatory responses in chondrocytes and protect knee bone cartilage from osteoarthritis. Biomed Eng Lett 2024; 14:801-812. [PMID: 38946809 PMCID: PMC11208348 DOI: 10.1007/s13534-024-00376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 03/29/2024] [Indexed: 07/02/2024] Open
Abstract
This study aimed to evaluate the inhibitory effects of micro-current stimulation (MCS) on inflammatory responses in chondrocytes and degradation of extracellular matrix (ECM) in osteoarthritis (OA). To determine the efficacy of MCS, IL-1β-treated chondrocytes and monosodium iodoacetate (MIA)-induced OA rat model were used. To evaluate the cytotoxicity and nitric oxide (NO) production in SW1353 cells, the presence or absence of IL-1β treatment or various levels of MCS were applied. Immunoblot analysis was conducted to evaluate whether MCS can modulate IL-1R1/MyD88/NF-κB signaling pathway and various indicators involved in ECM degradation. Additionally, to determine whether MCS alleviates subchondral bone structure destruction caused by OA, micro-CT analysis, immunoblot analysis, and ELISA were conducted using OA rat model. 25 and 50 µA levels of MCS showed effects in cell proliferation and NO production. The MCS group with IL-1β treatment lead to significant inhibition of protein expression levels regarding IL-1R1/MyD88/NF-κB signaling and reduction of the nucleus translocation of NF-κB. In addition, the protein expression levels of MMP-1, MMP-3, MMP-13, and IL-1β decreased, whereas collagen II and aggrecan increased. In animal results, morphological analysis of subchondral bone using micro-CT showed that MCS induced subchondral bone regeneration and improvement, as evidenced by increased thickness and bone mineral density of the subchondral bone. Furthermore, MCS-applied groups showed decreases in the protein expression of MMP-1 and MMP-3, while increases in collagen-II and aggrecan expressions. These findings suggest that MCS has the potential to be used as a non-pharmaceutical method to alleviate OA.
Collapse
Affiliation(s)
- Minjoo Lee
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Halim Chung
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Gangwon, 26493 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | | | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Gangwon, 26493 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| |
Collapse
|
18
|
Zhou H, Zou L, Ren H, Shen Z, Lin Y, Cai H, Zhang J. Cathelicidin-BF regulates the AMPK/SIRT1/NF-κB pathway to ameliorate murine osteoarthritis: In vitro and in vivo studie. Int Immunopharmacol 2024; 134:112201. [PMID: 38718660 DOI: 10.1016/j.intimp.2024.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease with a significant prevalence that causes cartilage damage and can lead to disability. The main factors contributing to the onset and progression of OA include inflammation and degeneration of the extracellular matrix. Cathelicidin-BF (BF-30), a natural peptide derived from Bungarus fasciatus venom, has shown multiple important pharmacological effects. However, the action mechanism of BF-30 in OA treatment remains to be elucidated. In this research, X-ray and Safranin O staining were employed to evaluate the imageology and histomorphology differences in the knee joints of mice in vivo. Techniques such as Western blot analysis, RT-qPCR, ELISA, and immunofluorescence staining were applied to examine gene and protein level changes in in vitro experiments. It was found that BF-30 significantly decreased inflammation and enhanced extracellular matrix metabolism. For the first time, it was demonstrated that the positive effects of BF-30 are mediated through the activation of the AMPK/SIRT1/NF-κB pathway. Moreover, when BF-30 was co-administered with Compound C, an AMPK inhibitor, the therapeutic benefits of BF-30 were reversed in both in vivo and in vitro settings. In conclusion, the findings suggest that BF-30 could be a novel therapeutic agent for OA improvement.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Hui Ren
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhenyu Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Haikang Cai
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
19
|
Peng W, Chen Q, Zheng F, Xu L, Fang X, Wu Z. The emerging role of the semaphorin family in cartilage and osteoarthritis. Histochem Cell Biol 2024:10.1007/s00418-024-02303-y. [PMID: 38849589 DOI: 10.1007/s00418-024-02303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.
Collapse
Affiliation(s)
- Wenjing Peng
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Chen
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Fengjuan Zheng
- The Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Li Xu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Fang
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| | - Zuping Wu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
20
|
Rafraf M, Haghighian MK, Molani-Gol R, Hemmati S, Asghari Jafarabadi M. Effects of Pomegranate (Punica granatum L.) Peel Extract Supplementation on Markers of Inflammation and Serum Matrix Metalloproteinase 1 in Women With Knee Osteoarthritis: A Randomized Double-Blind Placebo-Controlled Study. Nutr Metab Insights 2024; 17:11786388241243266. [PMID: 38827464 PMCID: PMC11143876 DOI: 10.1177/11786388241243266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 06/04/2024] Open
Abstract
Objective Osteoarthritis (OA) as a common musculoskeletal disorder is the main cause of disability in the world. The present study aimed to evaluate the effects of pomegranate peel extract (PPE) on some inflammatory markers and matrix maloproteinase1 (MMP1) in women with knee OA. Methods Sixty obese women with knee OA aged 38 to 60 years were included in this clinical trial. The women were allocated into intervention (n = 30) and placebo (n = 30) groups along with standard drug therapy receiving 500 mg PPE or placebo twice daily for 8 weeks, respectively. Three-day food records, anthropometric measurements, fasting blood samples, and physical activity questionnaires were gathered at the baseline and the end of the study. Results The supplementation of PPE significantly reduced the serum high-sensitivity C-reactive protein (hs-CRP), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), MMP1, and monocyte chemoattractant protein-1 (MCP-1) levels of the patients within the intervened group (all, P < .05) and compared with the placebo (P = .002, .045, .040, and .003, respectively) at the end of the study. The serum NF-ĸB levels significantly increased within the placebo group at the end of the trial (P = .002). Changes in other variables in the placebo group were not significant (P > .05). Conclusions The findings of this clinical trial indicated that PPE supplementation decreased serum inflammatory markers including hs-CRP, NF-ĸB, and MCP-1 and MMP1 levels in women with knee OA. PPE supplementation may be useful as a part of an integrated approach to modulating inflammatory complications in women with knee OA.
Collapse
Affiliation(s)
- Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdiyeh Khadem Haghighian
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Molani-Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari Jafarabadi
- Cabrini Research, Cabrini Health, Malvern, VIC, Australia
- School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Hu B, Du G. OSTF1 knockdown mitigates IL-1β-induced chondrocyte injury via inhibiting the NF-κB signaling pathway. Heliyon 2024; 10:e30110. [PMID: 38699012 PMCID: PMC11064439 DOI: 10.1016/j.heliyon.2024.e30110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease characterized by progressive heterogeneous changes in articular cartilage and subchondral bone. Osteoclast stimulating factor 1 (OSTF1) is a small intracellular protein involved in bone formation and bone resorption. However, to our best knowledge, its role in OA is still unclear. In this study, an OA rat model was established by anterior cruciate ligament transection (ALCT). OSTF1 was increased in the cartilage tissues of OA patients and OA rats. Next, the role of OSTF1 in interleukin-1β (IL-1β)-induced chondrocyte apoptosis, inflammation and extracellular matrix degradation was explored through loss of function assays. Strikingly, OSTF1 knockdown relieved IL-1β-induced chondrocyte apoptosis, with decreased cleaved caspase-3 and cleaved PARP levels. Besides, OSTF1 knockdown restrained IL-1β-induced inflammation and degradation of extracellular matrix of chondrocytes. Subsequently, the molecular mechanism of OSTF1 was explored. Transcriptomic analysis revealed the potential gene network map regulated by OSTF1 knockdown. Some differentially expressed genes (DEGs) were involved in regulating the NF-κB signaling pathway. Furthermore, our results demonstrated that OSTF1 knockdown inhibited IL-1β-activated the NF-κB signaling pathway. Ultimately, we analyzed the potential gene network map regulated by OSTF1 and its downstream NF-κB. Bioinformatics analysis showed that 18 DEGs in OSTF1-silenced chondrocytes overlapped with the NF-κB downstream targets. Collectively, our findings indicate that OSTF1 knockdown mitigates IL-1β-induced chondrocyte injury via inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Hu
- Department of Hand and Foot Surgery, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, China
| | - Gongwen Du
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| |
Collapse
|
22
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
23
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
24
|
Gao W, Liu R, Huang K, Fu W, Wang A, Du G, Tang H, Yin L, Yin ZS. CHMP5 attenuates osteoarthritis via inhibiting chondrocyte apoptosis and extracellular matrix degradation: involvement of NF-κB pathway. Mol Med 2024; 30:55. [PMID: 38664616 PMCID: PMC11046779 DOI: 10.1186/s10020-024-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1β) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1β-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS This study demonstrated that CHMP5 repressed IL-1β-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.
Collapse
Affiliation(s)
- Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Rui Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
- Department of Orthopedics, Wan Bei General Hospital of Wanbei Coal power Group, Suzhou, Anhui, China
| | - Keke Huang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Gongwen Du
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Li Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Zongsheng S Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
25
|
Yao Z, Gan F, Zeng Y, Ren L, Zeng Y. Elucidating Cyathula Officinals' mechanism in osteoarthritis treatment: Network pharmacology and empirical evidence on anti-inflammatory actions. Heliyon 2024; 10:e27999. [PMID: 38524622 PMCID: PMC10958415 DOI: 10.1016/j.heliyon.2024.e27999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, we explored the therapeutic potential of Cyathula Officinals (CNX) in Knee Osteoarthritis (KOA) treatment. Utilizing network pharmacology and in vitro experiments, we identified active ingredients, action targets and pathways in CNX. Our analysis, integrating databases like TCMSP, SwissTarget Prediction, Genecards, CTD, STRING, and DAVID, highlighted 396 action targets and 283 disease targets, pinpointing 64 intersection genes linked to KOA. The significant involvement of the MAPK and NF-κB pathways in CNX's anti-inflammatory action was validated through qPCR, which might underlie CNX's efficacy in inhibiting chondrocyte apoptosis and IL-6 expression. These findings suggest CNX's potential in KOA management, offering insights for its clinical application.
Collapse
Affiliation(s)
- Zhicheng Yao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Fengping Gan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Yuqing Zeng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Litong Ren
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Yirong Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Department of Orthopedics, China
| |
Collapse
|
26
|
Wang M, Gao Z, Zhang Y, Zhao Q, Tan X, Wu S, Ding L, Liu Y, Qin S, Gu J, Xu L. Syringic acid promotes cartilage extracellular matrix generation and attenuates osteoarthritic cartilage degradation by activating TGF-β/Smad and inhibiting NF-κB signaling pathway. Phytother Res 2024; 38:1000-1012. [PMID: 38126609 DOI: 10.1002/ptr.8089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease which is characterized by the disruption of articular cartilage. Syringic acid (SA) is a phenolic compound with anti-inflammatory, antioxidant, and other effects including promoting osteogenesis. However, the effect of SA on OA has not yet been reported. Therefore, the purpose of our study was to investigate the effect and mechanism of SA on OA in a mouse model of medial meniscal destabilization. The expressions of genes were evaluated by qPCR or western blot or immunofluorescence. RNA-seq analysis was performed to examine gene transcription alterations in chondrocytes treated with SA. The effect of SA on OA was evaluated using destabilization of the medial meniscus model of mice. We found that SA had no obvious toxic effect on chondrocytes, while promoting the expressions of chondrogenesis-related marker genes. The results of RNA-seq analysis showed that extracellular matrix-receptor interaction and transforming growth factor-β (TGF-β) signaling pathways were enriched among the up-regulated genes by SA. Mechanistically, we demonstrated that SA transcriptionally activated Smad3. In addition, we found that SA inhibited the overproduction of lipopolysaccharide-induced inflammation-related cytokines including tumor necrosis factor-α and interleukin-1β, as well as matrix metalloproteinase 3 and matrix metalloproteinase 13. The cell apoptosis and nuclear factor-kappa B (NF-κB) signaling were also inhibited by SA treatment. Most importantly, SA attenuated cartilage degradation in a mouse OA model. Taken together, our study demonstrated that SA could alleviate cartilage degradation in OA by activating the TGF-β/Smad and inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiangqiang Zhao
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfang Tan
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- School of Biomedical Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiangyong Gu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Horváth E, Sólyom Á, Székely J, Nagy EE, Popoviciu H. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int J Mol Sci 2023; 24:16468. [PMID: 38003658 PMCID: PMC10671750 DOI: 10.3390/ijms242216468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is a complex disease of whole joints with progressive cartilage matrix degradation and chondrocyte transformation. The inflammatory features of OA are reflected in increased synovial levels of IL-1β, IL-6 and VEGF, higher levels of TLR-4 binding plasma proteins and increased expression of IL-15, IL-18, IL-10 and Cox2, in cartilage. Chondrocytes in OA undergo hypertrophic and senescent transition; in these states, the expression of Sox-9, Acan and Col2a1 is suppressed, whereas the expression of RunX2, HIF-2α and MMP-13 is significantly increased. NF-kB, which triggers many pro-inflammatory cytokines, works with BMP, Wnt and HIF-2α to link hypertrophy and inflammation. Altered carbohydrate metabolism and the upregulation of GLUT-1 contribute to the formation of end-glycation products that trigger inflammation via the RAGE pathway. In addition, a glycolytic shift, increased rates of oxidative phosphorylation and mitochondrial dysfunction generate reactive oxygen species with deleterious effects. An important surveyor mechanism, the YAP/TAZ signaling system, controls chondrocyte differentiation, inhibits ageing by protecting the nuclear envelope and suppressing NF-kB, MMP-13 and aggrecanases. The inflammatory microenvironment and synthesis of key matrix components are also controlled by SIRT1 and mTORc. Senescent chondrocytes represent the functional end stage of hypertrophic differentiation and characteristically upregulate p16 and p21, but also a variety of inflammatory cytokines, chemokines and metalloproteinases, developing the senescence-associated secretory phenotype. Senolysis with dendrobin, miR29b-5p and other agents has been shown to be efficient under experimental conditions, and appears to be a promising tool for the treatment of OA, as it restores COL2A1 and aggrecan synthesis, suppressing NF-kB and destructive metalloproteinases.
Collapse
Affiliation(s)
- Emőke Horváth
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania;
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania
| | - Árpád Sólyom
- Department of Orthopedics-Traumatology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu Street, 540142 Targu Mures, Romania;
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - János Székely
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 6 Bernády György Square, 540394 Targu Mures, Romania
| | - Horațiu Popoviciu
- Department of Rheumatology, Physical and Medical Rehabilitation, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
| |
Collapse
|
28
|
Zhao Z, Ito A, Kuroki H, Aoyama T. Analysis of Molecular Changes and Features in Rat Knee Osteoarthritis Cartilage: Progress From Cellular Changes to Structural Damage. Cartilage 2023:19476035231213174. [PMID: 37978830 DOI: 10.1177/19476035231213174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Although knee osteoarthritis (KOA) is a common disease, there is a lack of specific prevention and early treatment methods. Hence, this study aimed to examine the molecular changes occurring at different stages of KOA to elucidate the dynamic nature of the disease. DESIGN Using a low-force compression model and analyzing RNA sequencing data, we identified molecular changes in the transcriptome of knee joint cartilage, including gene expression and molecular pathways, between the cellular changes and structural damage stages of KOA progression. In addition, we validated hub genes using an external dataset. RESULTS Gene set enrichment analysis (GSEA) identified the following pathways to be associated with KOA: "B-cell receptor signaling pathway," "cytokine-cytokine receptor interaction," and "hematopoietic cell lineage." Expression analysis revealed 585 differentially expressed genes, with 579 downregulated and 6 upregulated genes. Enrichment and clustering analyses revealed that the main molecular clusters were involved in cell cycle regulation and immune responses. Furthermore, the hub genes Csf1r, Cxcr4, Cxcl12, and Ptprc were related to immune responses. CONCLUSIONS Our study provides insights into the dynamic nature of early-stage KOA and offers valuable information to support the development of effective intervention strategies to prevent the irreversible damage associated with KOA, thereby addressing a major clinical challenge.
Collapse
Affiliation(s)
- Zixi Zhao
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Xia W, Xiao J, Tong C, Lu J, Tu Y, Li S, Ni L, Shi Y, Luo P, Zhang X, Wang X. Orientin inhibits inflammation in chondrocytes and attenuates osteoarthritis through Nrf2/NF-κB and SIRT6/NF-κB pathway. J Orthop Res 2023; 41:2405-2417. [PMID: 37186383 DOI: 10.1002/jor.25573] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Effects of Orientin on murine chondrocytes treated with interleukin-1β (IL-1β) were evaluated using qPCR, western blot analysis, ELISA, and immunofluorescent staining in vitro. In vivo, We established a standard OA model by performing the destabilized medial meniscus (DMM) surgery on C57BL/6 mice, and assessed healing effect of Orientin by X-ray imaging, histopathological analysis, immunohistochemical staining. Osteoarthritis (OA) is the most common form of degenerative joint disease in clinic and the chondrocyte inflammation plays the most important role in OA development. The natural flavonoid compound (Orientin) has anti-inflammatory bioactive properties in the treatment of various diseases. But studies have not explored whether Orientin modulates OA progression. In this study, a significant suppression in IL-1β-mediated pro-inflammatory mediators and the degradation of cartilage extracellular matrix (ECM) was observed in vitro through qPCR, western blot analysis, ELISA, and immunofluorescent staining after the treatment with Orientin. In addition, Orientin abrogated DMM surgery induced cartilage degradation in mice, which was assessed by X-ray imaging, histopathological analysis, immunohistochemical staining. Mechanistic studies showed that Orientin suppressed OA development by downregulating activation of NF-κB by activating Nrf2/HO-1 axis and SIRT6 signaling pathway. These results provide evidence that Orientin serves as a potentially viable compound for the treatment of OA.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - ChengLin Tong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiajie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yurong Tu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Libing Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Peng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Wu Y, Ying J, Zhu X, Xu C, Wu L. Pachymic acid suppresses the inflammatory response of chondrocytes and alleviates the progression of osteoarthritis via regulating the Sirtuin 6/NF-κB signal axis. Int Immunopharmacol 2023; 124:110854. [PMID: 37657246 DOI: 10.1016/j.intimp.2023.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Articular cartilage degeneration is a characteristic pathological change of osteoarthritis (OA). Pachymic acid (PA) is an active ingredient found in Poria cocos. Previous studies have shown that PA has anti-inflammatory effects on a variety of diseases. However, the role of PA in OA and its underlying mechanisms has not been clearly elucidated. In this study, we investigated potential protective effect of PA on OA through cell experiments in vitro and animal experiments in vivo. PA inhibited interleukin-1β-induced inflammatory mediator production in chondrocytes, which includes nitric oxide, inducible nitric oxide synthase, prostaglandin E2, cyclooxygenase-2, tumor necrosis factor alpha and interleukin-6. Meanwhile, PA also reversed the up-regulation of matrix metalloproteinase-3 and thrombospondin motifs 5, and the down-regulation of collagen type II and aggrecan in IL-1β-treated chondrocytes. Mechanistically, our findings revealed that PA-mediated overexpression of SIRT6 inhibited the NF-κB signaling pathway. In vivo, PA contributes to improve cartilage damage in the mouse OA model. In summary, PA inhibited IL-1β-induced inflammation and extracellular matrix degeneration by promoting SIRT6 expression and inhibiting the NF-κB signaling pathway, which indicates that PA is beneficial for the treatment of OA.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Jiahao Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Xiaoyan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Chenqin Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang 325000, PR China; The Second School of Medicine, WenZhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
31
|
Li M, Zhu Y, Shao J, Wang C, Dong B, Cui H, Dai D. Chelidonine reduces IL-1β-induced inflammation and matrix catabolism in chondrocytes and attenuates cartilage degeneration and synovial inflammation in rats. Braz J Med Biol Res 2023; 56:e12604. [PMID: 37585914 PMCID: PMC10427162 DOI: 10.1590/1414-431x2023e12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/09/2023] [Indexed: 08/18/2023] Open
Abstract
Chondrocyte inflammation and catabolism are two major features in the progression of osteoarthritis (OA). Chelidonine, a principal alkaloid extracted from Chelidonium majus, is suggested to show anti-inflammation, anti-apoptosis, and anti-oxidation activities in various diseases. However, its potential effects on OA cartilage degeneration remains unclear. To evaluate the effect of chelidonine on OA and its underlying mechanism, we incubated chondrocytes with interleukin (IL)-1β and chelidonine at varying concentrations. Then, we performed the CCK-8 assay, fluorescence immunostaining, reverse transcription PCR, ELISA, and western blotting to evaluate cell viability, catabolic/inflammatory factors, levels of extracellular matrix (ECM)-related proteins, and the involved pathways. H&E and Safranin-O staining and ELISA were performed to measure cartilage degradation and synovial inflammation. Chelidonine suppressed the IL-1β-mediated catabolism and inflammation of chondrocytes. Chelidonine suppressed the NF-κB pathway activation. Similarly, our in vivo experiment showed that chelidonine partially attenuated cartilage degradation while inhibiting synovial inflammation. Chelidonine inhibited inflammation and catabolism through modulation of NF-κB pathways in vitro, thereby avoiding rat cartilage degeneration and synovial inflammation within OA.
Collapse
Affiliation(s)
- Mao Li
- Department of Orthopaedics, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, Anhui, China
| | - Ying Zhu
- Department of Stomatology, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, Anhui, China
| | - Jiajia Shao
- Department of Orthopaedics, Huainan Chaoyang Hospital, Huainan, Anhui, China
| | - Chuanbing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, Anhui, China
| | - Bin Dong
- Department of Orthopaedics, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, Anhui, China
| | - Haiyong Cui
- Department of Orthopaedics, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, Anhui, China
| | - Dongdong Dai
- Department of Orthopedics, Huainan Oriental Hospital Group Affiliated to Anhui University of Science and Technology, Huainan, Anhui, China
| |
Collapse
|
32
|
Zhang Q, Yang J, Hu N, Liu J, Yu H, Pan H, Chen D, Ruan C. Small-molecule amines: a big role in the regulation of bone homeostasis. Bone Res 2023; 11:40. [PMID: 37482549 PMCID: PMC10363555 DOI: 10.1038/s41413-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/25/2023] Open
Abstract
Numerous small-molecule amines (SMAs) play critical roles in maintaining bone homeostasis and promoting bone regeneration regardless of whether they are applied as drugs or biomaterials. On the one hand, SMAs promote bone formation or inhibit bone resorption through the regulation of key molecular signaling pathways in osteoblasts/osteoclasts; on the other hand, owing to their alkaline properties as well as their antioxidant and anti-inflammatory features, most SMAs create a favorable microenvironment for bone homeostasis. However, due to a lack of information on their structure/bioactivity and underlying mechanisms of action, certain SMAs cannot be developed into drugs or biomaterials for bone disease treatment. In this review, we thoroughly summarize the current understanding of SMA effects on bone homeostasis, including descriptions of their classifications, biochemical features, recent research advances in bone biology and related regulatory mechanisms in bone regeneration. In addition, we discuss the challenges and prospects of SMA translational research.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Yang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Juan Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Yu
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, 518102, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Michelacci YM, Baccarin RYA, Rodrigues NNP. Chondrocyte Homeostasis and Differentiation: Transcriptional Control and Signaling in Healthy and Osteoarthritic Conditions. Life (Basel) 2023; 13:1460. [PMID: 37511835 PMCID: PMC10381434 DOI: 10.3390/life13071460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrocytes are the main cell type in articular cartilage. They are embedded in an avascular, abundant, and specialized extracellular matrix (ECM). Chondrocytes are responsible for the synthesis and turnover of the ECM, in which the major macromolecular components are collagen, proteoglycans, and non-collagen proteins. The crosstalk between chondrocytes and the ECM plays several relevant roles in the regulation of cell phenotype. Chondrocytes live in an avascular environment in healthy cartilage with a low oxygen supply. Although chondrocytes are adapted to anaerobic conditions, many of their metabolic functions are oxygen-dependent, and most cartilage oxygen is supplied by the synovial fluid. This review focuses on the transcription control and signaling responsible for chondrocyte differentiation, homeostasis, senescence, and cell death and the changes that occur in osteoarthritis. The effects of chondroitin sulfate and other molecules as anti-inflammatory agents are also approached and analyzed.
Collapse
Affiliation(s)
- Yara M Michelacci
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Raquel Y A Baccarin
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| | - Nubia N P Rodrigues
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| |
Collapse
|
34
|
Zhang Z, Wang S, Liu X, Yang Y, Zhang Y, Li B, Guo F, Liang J, Hong X, Guo R, Zhang B. Secoisolariciresinol diglucoside Ameliorates Osteoarthritis via Nuclear factor-erythroid 2-related factor-2/ nuclear factor kappa B Pathway: In vitro and in vivo experiments. Biomed Pharmacother 2023; 164:114964. [PMID: 37269815 DOI: 10.1016/j.biopha.2023.114964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease in which inflammation and extracellular matrix (ECM) degradation play a crucial role in the destruction of articular cartilage. Secoisolariciresinol diglucoside (SDG), the main lignan in wholegrain flaxseed, which has been reported to remarkably suppress inflammation and oxidative stress, may have potential therapeutic value in OA. In this study, the effect and mechanism of SDG against cartilage degeneration were verified in the destabilization of the medial meniscus (DMM) and collagen-induced (CIA) arthritis models and interleukin-1β (IL-1β)-stimulated osteoarthritis chondrocyte models. From our experiments, SDG treatment downregulated the expression of pro-inflammatory factors induced by IL-1β in vitro, including inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6). Additionally, SDG promoted the expression of collagen II (COL2A1) and SRY-related high-mobility-group-box gene 9(SOX9), while suppressing the expression of a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5) and matrix metalloproteinases 13(MMP13), which leads to catabolism. Consistently, in vivo, SDG has been identified to have chondroprotective effects in DMM-induced and collagen-induced arthritis models. Mechanistically, SDG exerted its anti-inflammation and anti-ECM degradation effects by activating the Nrf2/HO-1 pathway and inhibiting the nuclear factor kappa B (NF-κB) pathway. In conclusion, SDG ameliorates the progression of OA via the Nrf2/NF-κB pathway, which indicates that SDG may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Yuxin Yang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Yiqin Zhang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Bo Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Fengfen Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Jianhui Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Runsheng Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
35
|
Wang X, Wang D, Deng B, Yan L. Syringaresinol attenuates osteoarthritis via regulating the NF-κB pathway. Int Immunopharmacol 2023; 118:109982. [PMID: 36989902 DOI: 10.1016/j.intimp.2023.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
Osteoarthritis (OA) is a now regarded as a worldwide whole joint disease with synovial inflammation, cartilage degeneration, and subchondral sclerosis. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used drugs for OA treatment which only relieve the symptoms and restrain the progression of OA. However, various severe adverse effects often occur in patients with long-term NSAIDs use, which heavily burdens the healthcare system and impacts the quality of life. Therefore, it is much imperative to identify alternative drugs with increased efficacy. Syringaresinol (Syr), a naturally occurring phytochemical which belonging to the lignan group of polyphenols, shows anti-tumor and anti-oxidant activities, which to benefit human health. Studies has shown Syr can regulate the inflammatory response by modulating the secretion and expression level of cytokines IL-6, IL-8, and tumor necrosis factor (TNF)-α. it also shows the inhibitory effect on NF-κB pathway in mouse cells. In the present study, we aimed to demonstrate the anti-inflammatory effects of Syr in OA. In vitro Syr treatment in IL-1β-activated mouse chondrocytes significantly restrained the expression of NO, PGE2, IL-6, TNF-α, INOS, COX-2 and MMP-13. Moreover, it considerably ameliorated the degradation of aggrecan and collagen II. Furthermore, the phosphorylation of the NF-kB signaling pathway was significantly suppressed by Syr. Moreover, in vivo, the cartilage degeneration was attenuated and the increased Osteoarthritis Research Society International (OARSI) scores were reversed in the DMM + Syr group, comprared to those in the DMM group. In sum, our study demonstrated that Syr can attenuate the inflammation in vitro and further verified its effect on OA in vivo. Thus, Syr might be a potent therapeautic alternative for OA treatment.
Collapse
Affiliation(s)
- Xianfeng Wang
- Department of Orthopedic Surgery, Guizhou Provincial Orthopedics Hospital, China
| | - Dangrang Wang
- Department of Gastroenterology, The Second Hospital of Dalian Medical University, China
| | - Biyong Deng
- Department of Orthopedic Surgery, Guizhou Provincial Orthopedics Hospital, China.
| | - Litao Yan
- Department of Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, China.
| |
Collapse
|
36
|
Cui X, Wang M, Li H, Yuwen X, He X, Hao Y, Lu C. Tenacissoside G alleviated osteoarthritis through the NF-κB pathway both in vitro and in vivo. Immunol Lett 2023; 258:24-34. [PMID: 37084895 DOI: 10.1016/j.imlet.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of articular cartilage. Tenacissoside G is a flavonoid isolated from the dry roots of Marsdenia tenacissima (Roxb) and has been shown to have anti-inflammatory effects. However, there is no report on the protective effects of Tenacissoside G on OA. OBJECTIVES To identify the effects and mechanism of Tenacissoside G on OA. METHODS In vitro, primary mouse chondrocytes were induced with IL-1β to establish OA model. mRNA expression of MMP-13, MMP-3, TNF-α, IL-6 and iNOS, was detected by PCR. Protein expression of Collagen-II, MMP-13, p65, p-p65, and IκBα was detected by Western blot. Collagen-II in chondrocytes was also detected by immunofluorescence. In vivo, we established DMM OA mice model. The preventive effect of Tenacissoside G on OA was observed by micro-CT and histological analysis. RESULTS In vitro, Tenacissoside G significantly inhibited the expression of iNOS, TNF-α, IL-6, MMP-3, MMP-13 and the degradation of collagen-II, Tenacissoside G also significantly suppressed NF-κB activation in chondrocytes by IL-1β-stimulated. In vivo, we demonstrated Tenacissoside G can decrease articular cartilage damage and reduce OARSI score. CONCLUSION These results suggest that Tenacissoside G may serve as a potential drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Xu Cui
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Mengfei Wang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Hui Li
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Xing Yuwen
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China
| | - Xiaochan He
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China
| | - Yangquan Hao
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China.
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China.
| |
Collapse
|
37
|
Rahman MM, Watton PN, Neu CP, Pierce DM. A chemo-mechano-biological modeling framework for cartilage evolving in health, disease, injury, and treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107419. [PMID: 36842346 DOI: 10.1016/j.cmpb.2023.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Osteoarthritis (OA) is a pervasive and debilitating disease, wherein degeneration of cartilage features prominently. Despite extensive research, we do not yet understand the cause or progression of OA. Studies show biochemical, mechanical, and biological factors affect cartilage health. Mechanical loads influence synthesis of biochemical constituents which build and/or break down cartilage, and which in turn affect mechanical loads. OA-associated biochemical profiles activate cellular activity that disrupts homeostasis. To understand the complex interplay among mechanical stimuli, biochemical signaling, and cartilage function requires integrating vast research on experimental mechanics and mechanobiology-a task approachable only with computational models. At present, mechanical models of cartilage generally lack chemo-biological effects, and biochemical models lack coupled mechanics, let alone interactions over time. METHODS We establish a first-of-its kind virtual cartilage: a modeling framework that considers time-dependent, chemo-mechano-biologically induced turnover of key constituents resulting from biochemical, mechanical, and/or biological activity. We include the "minimally essential" yet complex chemical and mechanobiological mechanisms. Our 3-D framework integrates a constitutive model for the mechanics of cartilage with a novel model of homeostatic adaptation by chondrocytes to pathological mechanical stimuli, and a new application of anisotropic growth (loss) to simulate degradation clinically observed as cartilage thinning. RESULTS Using a single set of representative parameters, our simulations of immobilizing and overloading successfully captured loss of cartilage quantified experimentally. Simulations of immobilizing, overloading, and injuring cartilage predicted dose-dependent recovery of cartilage when treated with suramin, a proposed therapeutic for OA. The modeling framework prompted us to add growth factors to the suramin treatment, which predicted even better recovery. CONCLUSIONS Our flexible framework is a first step toward computational investigations of how cartilage and chondrocytes mechanically and biochemically evolve in degeneration of OA and respond to pharmacological therapies. Our framework will enable future studies to link physical activity and resulting mechanical stimuli to progression of OA and loss of cartilage function, facilitating new fundamental understanding of the complex progression of OA and elucidating new perspectives on causes, treatments, and possible preventions.
Collapse
Affiliation(s)
| | - Paul N Watton
- Department of Computer Science & Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
38
|
Rongrong C, Xueting Y, Lian L, Qiang W, Guangjun J, Ying L, Chen Y, Yanling M, Qingqiang Y, Yan L, Fuwen W. Study on the mechanism and pharmacokinetics of HB-NC4 based on C5b-9 target in the treatment of osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166699. [PMID: 36965677 DOI: 10.1016/j.bbadis.2023.166699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease that mostly occurs in elderly individuals over 60 years old. The detailed pathogenesis of OA is unclear. Medicines available on the market are nonsteroidal anti-inflammatory drugs. Therefore, in this study, a fusion protein was introduced, and the detailed mechanism that could alleviate OA was discussed. As a targeted protein, HB-NC4 showed better binding ability to chondrocytes, and its half-life period was prolonged compared to NC4 alone. In addition, HB-NC4 can not only affect the levels of C3 and C5, but also inhibit the formation of the membrane-attack complex (MAC, C5b-9), thereby further affecting the expression of MAPK signalling pathway-related proteins to achieve the goal of treating OA. Thus, in this study, we demonstrate the pharmacokinetics of HB-NC4 and its mechanism to alleviate OA by regulating the complement system and MAPK signalling pathway. This study provides a new method for OA therapy based on fusion proteins.
Collapse
Affiliation(s)
- Chai Rongrong
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Yu Xueting
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Li Lian
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wei Qiang
- Department of Physical Education, Tangshan Normal University, Tangshan 063000, Hebei, China
| | - Jiao Guangjun
- Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Li Ying
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Yu Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Mu Yanling
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Yao Qingqiang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Li Yan
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| | - Wang Fuwen
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| |
Collapse
|
39
|
Panichi V, Bissoli I, D'Adamo S, Flamigni F, Cetrullo S, Borzì RM. NOTCH1: A Novel Player in the Molecular Crosstalk Underlying Articular Chondrocyte Protection by Oleuropein and Hydroxytyrosol. Int J Mol Sci 2023; 24:ijms24065830. [PMID: 36982904 PMCID: PMC10058228 DOI: 10.3390/ijms24065830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, but no effective and safe disease-modifying treatment is available. Risk factors such as age, sex, genetics, injuries and obesity can concur to the onset of the disease, variably triggering the loss of maturational arrest of chondrocytes further sustained by oxidative stress, inflammation and catabolism. Different types of nutraceuticals have been studied for their anti-oxidative and anti-inflammatory properties. Olive-derived polyphenols draw particular interest due to their ability to dampen the activation of pivotal signaling pathways in OA. Our study aims to investigate the effects of oleuropein (OE) and hydroxytyrosol (HT) in in vitro OA models and elucidate their possible effects on NOTCH1, a novel therapeutic target for OA. Chondrocytes were cultured and exposed to lipopolysaccharide (LPS). Detailed analysis was carried out about the OE/HT mitigating effects on the release of ROS (DCHF-DA), the increased gene expression of catabolic and inflammatory markers (real time RT-PCR), the release of MMP-13 (ELISA and Western blot) and the activation of underlying signaling pathways (Western blot). Our findings show that HT/OE efficiently attenuates LPS-induced effects by firstly reducing the activation of JNK and of the NOTCH1 pathway downstream. In conclusion, our study provides molecular bases supporting the dietary supplementation of olive-derived polyphenols to revert/delay the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Bissoli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
40
|
Liu S, Pan Y, Li T, Zou M, Liu W, Li Q, Wan H, Peng J, Hao L. The Role of Regulated Programmed Cell Death in Osteoarthritis: From Pathogenesis to Therapy. Int J Mol Sci 2023; 24:ijms24065364. [PMID: 36982438 PMCID: PMC10049357 DOI: 10.3390/ijms24065364] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide chronic disease that can cause severe inflammation to damage the surrounding tissue and cartilage. There are many different factors that can lead to osteoarthritis, but abnormally progressed programmed cell death is one of the most important risk factors that can induce osteoarthritis. Prior studies have demonstrated that programmed cell death, including apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and cuproptosis, has a great connection with osteoarthritis. In this paper, we review the role of different types of programmed cell death in the generation and development of OA and how the different signal pathways modulate the different cell death to regulate the development of OA. Additionally, this review provides new insights into the radical treatment of osteoarthritis rather than conservative treatment, such as anti-inflammation drugs or surgical operation.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Yurong Pan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenji Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Huan Wan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| | - Liang Hao
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| |
Collapse
|
41
|
Protective Effects of Glycine soja Leaf and Stem Extract against Chondrocyte Inflammation and Osteoarthritis. Int J Mol Sci 2023; 24:ijms24054829. [PMID: 36902256 PMCID: PMC10002952 DOI: 10.3390/ijms24054829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Wild soybean, also known as Glycine soja Sieb. et Zucc. (GS), has long been known for its various health benefits. Although various pharmacological effects of G. soja have been studied, the effects of GS leaf and stem (GSLS) on osteoarthritis (OA) have not been evaluated. Here, we examined the anti-inflammatory effects of GSLS in interleukin-1β (IL-1β)-stimulated SW1353 human chondrocytes. GSLS inhibited the expression of inflammatory cytokines and matrix metalloproteinases and ameliorated the degradation of collagen type II in IL-1β-stimulated chondrocytes. Furthermore, GSLS played a protective role in chondrocytes by inhibiting the activation of NF-κB. In addition, our in vivo study demonstrated that GSLS ameliorated pain and reversed cartilage degeneration in joints by inhibiting inflammatory responses in a monosodium iodoacetate (MIA)-induced OA rat model. GSLS remarkably reduced the MIA-induced OA symptoms, such as joint pain, and decreased the serum levels of proinflammatory mediators, cytokines, and matrix metalloproteinases (MMPs). Our findings show that GSLS exerts anti-osteoarthritic effects and reduces pain and cartilage degeneration by downregulating inflammation, suggesting that it is a useful therapeutic candidate for OA.
Collapse
|
42
|
Paesa M, Alejo T, Garcia-Alvarez F, Arruebo M, Mendoza G. New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1844. [PMID: 35965293 DOI: 10.1002/wnan.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
| | - Felicito Garcia-Alvarez
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Department of Orthopedic Surgery & Traumatology, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Gracia Mendoza
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
43
|
Liu F, O'Donnell TJ, Park EJ, Kovacs S, Nakamura K, Dave A, Luo Y, Sun R, Wall M, Wongwiwatthananukit S, Silva DK, Williams PG, Pezzuto JM, Chang LC. Anti-inflammatory Quinoline Alkaloids from the Roots of Waltheria indica. JOURNAL OF NATURAL PRODUCTS 2023; 86:276-289. [PMID: 36746775 DOI: 10.1021/acs.jnatprod.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sixteen new quinoline alkaloids (1a-7, 8a, 9, 10, 13-15, 17, and 21) and 10 known analogs (8b, 11, 12, 16, 18-20, and 22-24), along with three known cyclopeptide alkaloids (25-27), were isolated from the roots of Waltheria indica. The structures of the new compounds were elucidated by detailed NMR and circular dichroism with computational support and mass spectrometry data interpretation. Anti-inflammatory potential of isolates was evaluated based on inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production and tumor necrosis factor-alpha (TNF-α)-induced nuclear factor kappa B (NF-κB) activity with cell culture models. In the absence of cell growth inhibition, compounds 6, 8a, 9-11, 13, 21, and 24 reduced TNF-α-induced NF-κB activity with IC50 values ranging from 7.1 to 12.1 μM, comparable to the positive control (BAY 11-7082, IC50 = 9.7 μM). Compounds 6, 8a, 8b, and 11 showed significant NO-inhibitory activity with IC50 values ranging from 11.0 to 12.8 μM, being more active than the positive control (l-NMMA, IC50 = 22.7 μM). Structure-activity relationships indicated that NO inhibitory activity was significantly affected by C-8 substitution. Inhibition of LPS-induced nitric oxide synthase (iNOS) by 8b [(5S)-waltherione M, IC50 11.7 ± 0.8 μM] correlated with inhibition of iNOS mRNA expression. The biological potential of W. indica metabolites supports the traditional use of this plant for the treatment of inflammatory-related disorders.
Collapse
Affiliation(s)
- Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Timothy J O'Donnell
- Department of Chemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Eun-Jung Park
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Arnold and Marine Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Sasha Kovacs
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Kenzo Nakamura
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Asim Dave
- Arnold and Marine Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Yuheng Luo
- Department of Chemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Marisa Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, Hawaii 96720, United States
| | - Supakit Wongwiwatthananukit
- Department of Pharmacy Practice, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | | | - Philip G Williams
- Department of Chemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - John M Pezzuto
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts 10119, United States
| | - Leng Chee Chang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| |
Collapse
|
44
|
Metabolic Glycoengineering: A Promising Strategy to Remodel Microenvironments for Regenerative Therapy. Stem Cells Int 2023; 2023:1655750. [PMID: 36814525 PMCID: PMC9940976 DOI: 10.1155/2023/1655750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cell-based regenerative therapy utilizes the differentiation potential of stem cells to rejuvenate tissues. But the dynamic fate of stem cells is calling for precise control to optimize their therapeutic efficiency. Stem cell fate is regulated by specific conditions called "microenvironments." Among the various factors in the microenvironment, the cell-surface glycan acts as a mediator of cell-matrix and cell-cell interactions and manipulates the behavior of cells. Herein, metabolic glycoengineering (MGE) is an easy but powerful technology for remodeling the structure of glycan. By presenting unnatural glycans on the surface, MGE provides us an opportunity to reshape the microenvironment and evoke desired cellular responses. In this review, we firstly focused on the determining role of glycans on cellular activity; then, we introduced how MGE influences glycosylation and subsequently affects cell fate; at last, we outlined the application of MGE in regenerative therapy, especially in the musculoskeletal system, and the future direction of MGE is discussed.
Collapse
|
45
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 291] [Impact Index Per Article: 291.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
46
|
Segarra-Queralt M, Piella G, Noailly J. Network-based modelling of mechano-inflammatory chondrocyte regulation in early osteoarthritis. Front Bioeng Biotechnol 2023; 11:1006066. [PMID: 36815875 PMCID: PMC9936426 DOI: 10.3389/fbioe.2023.1006066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by articular cartilage degradation, inflammation and pain. An extensive range of in vivo and in vitro studies evidences that mechanical loads induce changes in chondrocyte gene expression, through a process known as mechanotransduction. It involves cascades of complex molecular interactions that convert physical signals into cellular response(s) that favor either chondroprotection or cartilage destruction. Systematic representations of those interactions can positively inform early strategies for OA management, and dynamic modelling allows semi-quantitative representations of the steady states of complex biological system according to imposed initial conditions. Yet, mechanotransduction is rarely integrated. Hence, a novel mechano-sensitive network-based model is proposed, in the form of a continuous dynamical system: an interactome of a set of 118 nodes, i.e., mechano-sensitive cellular receptors, second messengers, transcription factors and proteins, related among each other through a specific topology of 358 directed edges is developed. Results show that under physio-osmotic initial conditions, an anabolic state is reached, whereas initial perturbations caused by pro-inflammatory and injurious mechanical loads leads to a catabolic profile of node expression. More specifically, healthy chondrocyte markers (Sox9 and CITED2) are fully expressed under physio-osmotic conditions, and reduced under inflammation, or injurious loadings. In contrast, NF-κB and Runx2, characteristic of an osteoarthritic chondrocyte, become activated under inflammation or excessive loading regimes. A literature-based evaluation shows that the model can replicate 94% of the experiments tested. Sensitivity analysis based on a factorial design of a treatment shows that inflammation has the strongest influence on chondrocyte metabolism, along with a significant deleterious effect of static compressive loads. At the same time, anti-inflammatory therapies appear as the most promising ones, though the restoration of structural protein production seems to remain a major challenge even in beneficial mechanical environments. The newly developed mechano-sensitive network model for chondrocyte activity reveals a unique potential to reflect load-induced chondroprotection or articular cartilage degradation in different mechano-chemical-environments.
Collapse
|
47
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
48
|
Yang R, Guo Y, Zong S, Ma Z, Wang Z, Zhao J, Yang J, Li L, Chen C, Wang S. Bardoxolone methyl ameliorates osteoarthritis by inhibiting osteoclastogenesis and protecting the extracellular matrix against degradation. Heliyon 2023; 9:e13080. [PMID: 36798782 PMCID: PMC9925876 DOI: 10.1016/j.heliyon.2023.e13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Inflammation and oxidative damage are closely related to the development of osteoarthritis. Bardoxolone methyl (CDDO-Me), a semisynthetic oleanane triterpenoid, plays a strong anti-inflammatory and antioxidant role. The purpose of our research was to explore fundamental mechanisms of CDDO-Me in orthopaedics development. The results showed that CDDO-Me inhibited nuclear factor-κB ligand (RANKL)-induced osteoclast formation and extracellular matrix (ECM) degradation by activating the Nrf2/HO-1 signaling pathways and inhibiting NF-κB pathway activation and excess ROS production. In vivo, CDDO-Me significantly attenuated articular cartilage proteoglycan loss and the number of TRAP-positive osteoclasts in a destabilized medial meniscus (DMM) mouse model of OA. Taken together, these data demonstrate that CDDO-Me inhibits osteoclastogenesis and ECM degradation, underscoring its potential therapeutic value in treating OA.
Collapse
Affiliation(s)
- Ruijia Yang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Laboratory Medicine, Southern Central Hospital of Yunnan Province (The First People's Hospital of Honghe State), Mengzi, China
| | - Yanjing Guo
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Sujing Zong
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhou Ma
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenyu Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiyu Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinmei Yang
- Department of Pediatrics, Southern Central Hospital of Yunnan Province (The First People's Hospital of Honghe State), Mengzi, China
| | - Liping Li
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Corresponding authors. Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China,Corresponding authors. Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
49
|
Li B, Zheng J. A Bibliometric and Knowledge Map Analysis of Osteoarthritis Signaling Pathways from 2012 to 2022. J Pain Res 2022; 15:3833-3846. [PMID: 36510617 PMCID: PMC9738985 DOI: 10.2147/jpr.s385482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Osteoarthritis(OA) is one of the most common joint diseases, and signaling pathways play an essential role in the occurrence and development of OA, so it is significant to study OA with signaling pathways as an entry point. Purpose This study aims to visualize and map the knowledge of OA-related signaling pathway research between 2012 and 2022, summarise and analyze the current research status and potential development trends in the domain, and provide a reference for future OA-related research. Methods Retrieve relevant literature from the Web of Science database and use VOSviwer and CiteSpace software to visualize authors, institutions, country distribution, references, and keywords. The results are interpreted and analyzed in conjunction with the results obtained. Results According to the search strategy, a total of 4894 articles were published between January 2012 and January 2022; during these ten years, the number of reports increased annually, and the research became further intensive; through this analysis, it was found that China is the most prolific country in this field; The institution with the most articles was Xi'an Jiaotong University from China, and the most prolific author was Tang Chih Hsin; Among the cited references, the reports of Glyn-Jones S and Hunter DJ were ranked first and second respectively. In the keyword analysis, cartilage and expression were the popular keywords; Animal model, akt, and platelet-rich plasma had the highest centrality; Burst analysis revealed pi3k, senescence, Ampk, and exosomes had received more attention in recent years of research. Conclusion This study analyzes and summarizes the current research status and development trend of relevant signaling pathways in OA from the perspective of bibliometric and visual analysis, which can help researchers to keep track of hot topics and conduct more in-depth exploration of research hotspots and frontier knowledge areas.
Collapse
Affiliation(s)
- Baijun Li
- Institution of Acupuncture-moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, People’s Republic of China
| | - Jie Zheng
- Shaanxi Key Laboratory of Acupuncture and Herbal Medicine, Shaanxi, People’s Republic of China,Correspondence: Jie Zheng, Institution of Acupuncture-moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, 712046, People’s Republic of China, Tel +86 138 9298 0566, Email
| |
Collapse
|
50
|
Han S. Osteoarthritis year in review 2022: biology. Osteoarthritis Cartilage 2022; 30:1575-1582. [PMID: 36150676 DOI: 10.1016/j.joca.2022.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023]
Abstract
The field of osteoarthritis (OA) biology is rapidly evolving and brilliant progress has been made this year as well. Landmark studies of OA biology published in 2021 and early 2022 were selected through PubMed search by personal opinion. These papers were classified by their molecular mechanisms, and it was largely divided into the intracellular signaling mechanisms and the inter-compartment interaction in chondrocyte homeostasis and OA progression. The intracellular signaling mechanisms involving OA progression included (1) Piezo1/transient receptor potential channels of the vanilloid subtype (TRPV) 4-mediated calcium signaling, (2) mechanical load-F-box and WD repeat domain containing 7 (FBXW7) in chondrocyte senescence, (3) mechanical loading-primary cilia-hedgehog signaling, (4) low grade inflammation by toll-like receptor (TLR)-CD14-lipopolysaccharide-binding protein (LBP) complex and inhibitor of NF-κB kinase (IKK) β-nuclear factor kappa B (NF-κB) signaling, (5) selenium pathway and reactive oxygen species (ROS) production, (6) G protein-coupled receptor (GPCR) and cyclic adenosine monophosphate (cAMP) signaling, (7) peroxisome proliferator-activated receptor α (PPARα)-acyl-CoA thioesterase 12 (ACOT12)-mediated de novo lipogenesis and (8) hypoxia-disruptor of telomeric silencing 1-like (DOT1L)-H3-lysine 79 (H3K79) methylation pathway. The studies on inter-compartment or intercellular interaction in OA progression included the following subjects; (1) the anabolic role of lubricin, glycoprotein from superficial zone cells, (2) osteoclast-chondrocyte interaction via exosomal miRNA and sphingosine 1-phosphate (S1P), (3) senescent fibroblast-like synoviocyte and chondrocyte interaction, (4) synovial macrophage and chondrocyte interaction through Flightless I, (5) αV integrin-mediated transforming growth factor beta (TGFβ) activation by mechanical loading, and (6) osteocytic TGFβ in subchondral bone thickening. Despite the disastrous Covid-19 pandemic, many outstanding studies have expanded the boundary of OA biology. They provide both critical insight into the pathophysiology as well as clues for the treatment of OA.
Collapse
Affiliation(s)
- S Han
- Laboratory for for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|