1
|
Lüking M, Elf J, Levy Y. Conformational Change of Transcription Factors from Search to Specific Binding: A lac Repressor Case Study. J Phys Chem B 2022; 126:9971-9984. [PMID: 36416228 PMCID: PMC9743208 DOI: 10.1021/acs.jpcb.2c05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a process known as facilitated diffusion, DNA-binding proteins find their target sites by combining three-dimensional diffusion and one-dimensional scanning of the DNA. Following the trade-off between speed and stability, agile exploration of DNA requires loose binding, whereas, at the DNA target site, the searching protein needs to establish tight interactions with the DNA. To enable both efficient search and stable binding, DNA-binding proteins and DNA often switch conformations upon recognition. Here, we study the one-dimensional diffusion and DNA binding of the dimeric lac repressor (LacI), which was reported to adopt two different conformations when binding different conformations of DNA. Using coarse-grained molecular dynamic simulations, we studied the diffusion and the sequence-specific binding of these conformations of LacI, as well as their truncated or monomeric variants, with two DNA conformations: straight and bent. The simulations were compared to experimental observables. This study supports that linear diffusion along DNA combines tight rotation-coupled groove tracking and rotation-decoupled hopping, where the protein briefly dissociates and reassociates just a few base pairs away. Tight groove tracking is crucial for target-site recognition, while hopping speeds up the overall search process. We investigated the diffusion of different LacI conformations on DNA and show how the flexibility of LacI's hinge regions ensures agility on DNA as well as faithful groove tracking. If the hinge regions instead form α-helices at the protein-DNA interface, tight groove tracking is not possible. On the contrary, the helical hinge region is essential for tight binding to bent, specific DNA, for the formation of the specific complex. Based on our study of different encounter complexes, we argue that the conformational change in LacI and DNA bending are somewhat coupled. Our findings underline the importance of two distinct protein conformations for facilitated diffusion and specific binding, respectively.
Collapse
Affiliation(s)
- Malin Lüking
- Department
of Cell- and Molecular Biology-ICM, Uppsala
University, Uppsala, Uppsala County751 24, Sweden
| | - Johan Elf
- Department
of Cell- and Molecular Biology-ICM, Uppsala
University, Uppsala, Uppsala County751 24, Sweden
| | - Yaakov Levy
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, Central District76100, Israel,. Tel.: 972-8-9344587
| |
Collapse
|
2
|
Miyazono KI, Wang D, Ito T, Tanokura M. Crystal structure and DNA cleavage mechanism of the restriction DNA glycosylase R.CcoLI from Campylobacter coli. Sci Rep 2021; 11:859. [PMID: 33441677 PMCID: PMC7806768 DOI: 10.1038/s41598-020-79537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022] Open
Abstract
While most restriction enzymes catalyze the hydrolysis of phosphodiester bonds at specific nucleotide sequences in DNA, restriction enzymes of the HALFPIPE superfamily cleave N-glycosidic bonds, similar to DNA glycosylases. Apurinic/apyrimidinic (AP) sites generated by HALFPIPE superfamily proteins are cleaved by their inherent AP lyase activities, other AP endonuclease activities or heat-promoted β-elimination. Although the HALFPIPE superfamily protein R.PabI, obtained from a hyperthermophilic archaea, Pyrococcus abyssi, shows weak AP lyase activity, HALFPIPE superfamily proteins in mesophiles, such as R.CcoLI from Campylobacter coli and R. HpyAXII from Helicobacter pylori, show significant AP lyase activities. To identify the structural basis for the AP lyase activity of R.CcoLI, we determined the structure of R.CcoLI by X-ray crystallography. The structure of R.CcoLI, obtained at 2.35-Å resolution, shows that a conserved lysine residue (Lys71), which is stabilized by a characteristic β-sheet structure of R.CcoLI, protrudes into the active site. The results of mutational assays indicate that Lys71 is important for the AP lyase activity of R.CcoLI. Our results help to elucidate the mechanism by which HALFPIPE superfamily proteins from mesophiles efficiently introduce double-strand breaks to specific sites on double-stranded DNA.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Delong Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoko Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Kisiala M, Kowalska M, Pastor M, Korza HJ, Czapinska H, Bochtler M. Restriction endonucleases that cleave RNA/DNA heteroduplexes bind dsDNA in A-like conformation. Nucleic Acids Res 2020; 48:6954-6969. [PMID: 32459314 PMCID: PMC7337904 DOI: 10.1093/nar/gkaa403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Restriction endonucleases naturally target DNA duplexes. Systematic screening has identified a small minority of these enzymes that can also cleave RNA/DNA heteroduplexes and that may therefore be useful as tools for RNA biochemistry. We have chosen AvaII (G↓GWCC, where W stands for A or T) as a representative of this group of restriction endonucleases for detailed characterization. Here, we report crystal structures of AvaII alone, in specific complex with partially cleaved dsDNA, and in scanning complex with an RNA/DNA hybrid. The specific complex reveals a novel form of semi-specific dsDNA readout by a hexa-coordinated metal cation, most likely Ca2+ or Mg2+. Substitutions of residues anchoring this non-catalytic metal ion severely impair DNA binding and cleavage. The dsDNA in the AvaII complex is in the A-like form. This creates space for 2′-OH groups to be accommodated without intra-nucleic acid steric conflicts. PD-(D/E)XK restriction endonucleases of known structure that bind their dsDNA targets in the A-like form cluster into structurally similar groups. Most such enzymes, including some not previously studied in this respect, cleave RNA/DNA heteroduplexes. We conclude that A-form dsDNA binding is a good predictor for RNA/DNA cleavage activity.
Collapse
Affiliation(s)
- Marlena Kisiala
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Monika Kowalska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Michal Pastor
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Henryk J Korza
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Miyazono KI, Wang D, Ito T, Tanokura M. Distortion of double-stranded DNA structure by the binding of the restriction DNA glycosylase R.PabI. Nucleic Acids Res 2020; 48:5106-5118. [PMID: 32232412 PMCID: PMC7229829 DOI: 10.1093/nar/gkaa184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
R.PabI is a restriction DNA glycosylase that recognizes the sequence 5′-GTAC-3′ and hydrolyses the N-glycosidic bond of adenine in the recognition sequence. R.PabI drastically bends and unwinds the recognition sequence of double-stranded DNA (dsDNA) and flips the adenine and guanine bases in the recognition sequence into the catalytic and recognition sites on the protein surface. In this study, we determined the crystal structure of the R.PabI-dsDNA complex in which the dsDNA is drastically bent by the binding of R.PabI but the base pairs are not unwound. This structure is predicted to be important for the indirect readout of the recognition sequence by R.PabI. In the complex structure, wedge loops of the R.PabI dimer are inserted into the minor groove of dsDNA to stabilize the deformed dsDNA structure. A base stacking is distorted between the two wedge-inserted regions. R.PabI is predicted to utilize the distorted base stacking for the detection of the recognition sequence.
Collapse
Affiliation(s)
- Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| | - Delong Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoko Ito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Horton JR, Yang J, Zhang X, Petronzio T, Fomenkov A, Wilson GG, Roberts RJ, Cheng X. Structure of HhaI endonuclease with cognate DNA at an atomic resolution of 1.0 Å. Nucleic Acids Res 2020; 48:1466-1478. [PMID: 31879785 PMCID: PMC7026639 DOI: 10.1093/nar/gkz1195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022] Open
Abstract
HhaI, a Type II restriction endonuclease, recognizes the symmetric sequence 5′-GCG↓C-3′ in duplex DNA and cleaves (‘↓’) to produce fragments with 2-base, 3′-overhangs. We determined the structure of HhaI in complex with cognate DNA at an ultra-high atomic resolution of 1.0 Å. Most restriction enzymes act as dimers with two catalytic sites, and cleave the two strands of duplex DNA simultaneously, in a single binding event. HhaI, in contrast, acts as a monomer with only one catalytic site, and cleaves the DNA strands sequentially, one after the other. HhaI comprises three domains, each consisting of a mixed five-stranded β sheet with a defined function. The first domain contains the catalytic-site; the second contains residues for sequence recognition; and the third contributes to non-specific DNA binding. The active-site belongs to the ‘PD-D/EXK’ superfamily of nucleases and contains the motif SD-X11-EAK. The first two domains are similar in structure to two other monomeric restriction enzymes, HinP1I (G↓CGC) and MspI (C↓CGG), which produce fragments with 5′-overhangs. The third domain, present only in HhaI, shifts the positions of the recognition residues relative to the catalytic site enabling this enzyme to cleave the recognition sequence at a different position. The structure of M.HhaI, the biological methyltransferase partner of HhaI, was determined earlier. Together, these two structures represent the first natural pair of restriction-modification enzymes to be characterized in atomic detail.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | - Xiaodong Cheng
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Shen BW, Heiter DF, Lunnen KD, Wilson GG, Stoddard BL. DNA recognition by the SwaI restriction endonuclease involves unusual distortion of an 8 base pair A:T-rich target. Nucleic Acids Res 2017; 45:1516-1528. [PMID: 28180307 PMCID: PMC5415892 DOI: 10.1093/nar/gkw1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
R.SwaI, a Type IIP restriction endonuclease, recognizes a palindromic eight base pair (bp) symmetric sequence, 5΄-ATTTAAAT-3΄, and cleaves that target at its center to generate blunt-ended DNA fragments. Here, we report three crystal structures of SwaI: unbound enzyme, a DNA-bound complex with calcium ions; and a DNA-bound, fully cleaved complex with magnesium ions. We compare these structures to two structurally similar ‘PD-D/ExK’ restriction endonucleases (EcoRV and HincII) that also generate blunt-ended products, and to a structurally distinct enzyme (the HNH endonuclease PacI) that also recognizes an 8-bp target site consisting solely of A:T base pairs. Binding by SwaI induces an extreme bend in the target sequence accompanied by un-pairing and re-ordering of its central A:T base pairs. This result is reminiscent of a more dramatic target deformation previously described for PacI, implying that long A:T-rich target sites might display structural or dynamic behaviors that play a significant role in endonuclease recognition and cleavage.
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA, USA
| | - Daniel F Heiter
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, USA
| | - Keith D Lunnen
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA, USA
| |
Collapse
|
7
|
Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Res 2017; 45:2503-2515. [PMID: 28158710 PMCID: PMC5389525 DOI: 10.1093/nar/gkx057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activator protein 1 (AP-1) is a transcription factor that recognizes two versions of a 7-base pair response element, either 5΄-TGAGTCA-3΄ or 5΄-MGAGTCA-3΄ (where M = 5-methylcytosine). These two elements share the feature that 5-methylcytosine and thymine both have a methyl group in the same position, 5-carbon of the pyrimidine, so each of them has two methyl groups at nucleotide positions 1 and 5 from the 5΄ end, resulting in four methyl groups symmetrically positioned in duplex DNA. Epstein-Barr Virus Zta is a key transcriptional regulator of the viral lytic cycle that is homologous to AP-1. Zta recognizes several methylated Zta-response elements, including meZRE1 (5΄-TGAGMCA-3΄) and meZRE2 (5΄-TGAGMGA-3΄), where a methylated cytosine occupies one of the inner thymine residues corresponding to the AP-1 element, resulting in the four spatially equivalent methyl groups. Here, we study how AP-1 and Zta recognize these methyl groups within their cognate response elements. These methyl groups are in van der Waals contact with a conserved di-alanine in AP-1 dimer (Ala265 and Ala266 in Jun), or with the corresponding Zta residues Ala185 and Ser186 (via its side chain carbon Cβ atom). Furthermore, the two ZRE elements differ at base pair 6 (C:G versus G:C), forming a pseudo-symmetric sequence (meZRE1) or an asymmetric sequence (meZRE2). In vitro DNA binding assays suggest that Zta has high affinity for all four sequences examined, whereas AP-1 has considerably reduced affinity for the asymmetric sequence (meZRE2). We ascribe this difference to Zta Ser186 (a unique residue for Zta) whose side chain hydroxyl oxygen atom interacts with the two half sites differently, whereas the corresponding Ala266 of AP-1 Jun protein lacks such flexibility. Our analyses demonstrate a novel mechanism of 5mC/T recognition in a methylation-dependent, spatial and sequence-specific approach by basic leucine-zipper transcriptional factors.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Molecular and Systems Pharmacology graduate program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel H Speck
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes (Basel) 2017; 8:genes8080192. [PMID: 28763006 PMCID: PMC5575656 DOI: 10.3390/genes8080192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins in the form of transcription factors (TFs) bind to specific DNA sites that regulate cell growth, differentiation, and cell development. The interactions between proteins and DNA are important toward maintaining and expressing genetic information. Without knowing TFs structures and DNA-binding properties, it is difficult to completely understand the mechanisms by which genetic information is transferred between DNA and proteins. The increasing availability of structural data on protein-DNA complexes and recognition mechanisms provides deeper insights into the nature of protein-DNA interactions and therefore, allows their manipulation. TFs utilize different mechanisms to recognize their cognate DNA (direct and indirect readouts). In this review, we focus on these recognition mechanisms as well as on the analysis of the DNA-binding domains of stem cell TFs, discussing the relative role of various amino acids toward facilitating such interactions. Unveiling such mechanisms will improve our understanding of the molecular pathways through which TFs are involved in repressing and activating gene expression.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
9
|
In-depth study of DNA binding of Cys2His2 finger domains in testis zinc-finger protein. PLoS One 2017; 12:e0175051. [PMID: 28384299 PMCID: PMC5383199 DOI: 10.1371/journal.pone.0175051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 11/26/2022] Open
Abstract
Previously, we identified that both fingers 1 and 2 in the three Cys2His2 zinc-finger domains (TZD) of testis zinc-finger protein specifically bind to its cognate DNA; however, finger 3 is non-sequence–specific. To gain insights into the interaction mechanism, here we further investigated the DNA-binding characteristics of TZD bound to non-specific DNAs and its finger segments bound to cognate DNA. TZD in non-specific DNA binding showed smaller chemical shift perturbations, as expected. However, the direction of shift perturbation, change of DNA imino-proton NMR signal, and dynamics on the 15N backbone atom significantly differed between specific and non-specific binding. Using these unique characteristics, we confirmed that the three single-finger segments (TZD1, TZD2 and TZD3) and the two-finger segment (TZD23) non-specifically bind to the cognate DNA. In comparison, the other two-finger segment (TZD12) binding to the cognate DNA features simultaneous non-specific and semi-specific binding, both slowly exchanged in terms of NMR timescale. The process of TZD binding to the cognate DNA is likely stepwise: initially TZD non-specifically binds to DNA, then fingers 1 and 2 insert cooperatively into the major groove of DNA by semi-specific binding, and finally finger 3 non-specifically binds to DNA, which promotes the specific binding on fingers 1 and 2 and stabilizes the formation of a specific TZD–DNA complex.
Collapse
|
10
|
Identification of protein structural elements responsible for the diversity of sequence preferences among Mini-III RNases. Sci Rep 2016; 6:38612. [PMID: 27924926 PMCID: PMC5141509 DOI: 10.1038/srep38612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/10/2016] [Indexed: 01/21/2023] Open
Abstract
Many known endoribonucleases select their substrates based on the presence of one or a few specific nucleotides at or near the cleavage site. In some cases, selectivity is also determined by the structural features of the substrate. We recently described the sequence-specific cleavage of double-stranded RNA by Mini-III RNase from Bacillus subtilis in vitro. Here, we characterized the sequence specificity of eight other members of the Mini-III RNase family from different bacterial species. High-throughput analysis of the cleavage products of Φ6 bacteriophage dsRNA indicated subtle differences in sequence preference between these RNases, which were confirmed and characterized by systematic analysis of the cleavage kinetics of a set of short dsRNA substrates. We also showed that the sequence specificities of Mini-III RNases are not reflected by different binding affinities for cognate and non-cognate sequences, suggesting that target selection occurs predominantly at the cleavage step. We were able to identify two structural elements, the α4 helix and α5b-α6 loop that were involved in target selection. Characterization of the sequence specificity of the eight Mini-III RNases may provide a basis for better understanding RNA substrate recognition by Mini-III RNases and adopting these enzymes and their engineered derivatives as tools for RNA research.
Collapse
|
11
|
Sinha K, Sangani SS, Kehr AD, Rule GS, Jen-Jacobson L. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein-DNA Complex. Biochemistry 2016; 55:6115-6132. [PMID: 27786446 PMCID: PMC5402698 DOI: 10.1021/acs.biochem.6b00919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Metal
ion cofactors can alter the energetics and specificity of
sequence specific protein–DNA interactions, but it is unknown
if the underlying effects on structure and dynamics are local or dispersed
throughout the protein–DNA complex. This work uses EcoRV endonuclease
as a model, and catalytically inactive lanthanide ions, which replace
the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations
indicate that four Lu3+ or two La3+ cations
bind, and two new crystal structures confirm that Lu3+ binding
is confined to the active sites. NMR spectra show that the metal-free
EcoRV complex with cognate (GATATC) DNA is structurally distinct from
the nonspecific complex, and that metal ion binding sites are not
assembled in the nonspecific complex. NMR chemical shift perturbations
were determined for 1H–15N amide resonances,
for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical
shifts throughout the cognate complex are unperturbed, so metal binding
does not induce major conformational changes. However, some large
perturbations of amide and side chain methyl resonances occur as far
as 34 Å from the metal ions. Concerted changes in specific residues
imply that local effects of metal binding are propagated via a β-sheet
and an α-helix. Both amide and methyl resonance perturbations
indicate changes in the interface between subunits of the EcoRV homodimer.
Bound metal ions also affect amide hydrogen exchange rates for distant
residues, including a distant subdomain that contacts DNA phosphates
and promotes DNA bending, showing that metal ions in the active sites,
which relieve electrostatic repulsion between protein and DNA, cause
changes in slow dynamics throughout the complex.
Collapse
Affiliation(s)
- Kaustubh Sinha
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.,Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Sahil S Sangani
- Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Andrew D Kehr
- Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Wang D, Miyazono KI, Tanokura M. Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA. Sci Rep 2016; 6:35197. [PMID: 27731370 PMCID: PMC5059719 DOI: 10.1038/srep35197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023] Open
Abstract
R.PabI is a type II restriction enzyme that recognizes the 5′-GTAC-3′ sequence and belongs to the HALFPIPE superfamily. Although most restriction enzymes cleave phosphodiester bonds at specific sites by hydrolysis, R.PabI flips the guanine and adenine bases of the recognition sequence out of the DNA helix and hydrolyzes the N-glycosidic bond of the flipped adenine in a similar manner to DNA glycosylases. In this study, we determined the structure of R.PabI in complex with double-stranded DNA without the R.PabI recognition sequence by X-ray crystallography. The 1.9 Å resolution structure of the complex showed that R.PabI forms a tetrameric structure to sandwich the double-stranded DNA and the tetrameric structure is stabilized by four salt bridges. DNA binding and DNA glycosylase assays of the R.PabI mutants showed that the residues that form the salt bridges (R70 and D71) are essential for R.PabI to find the recognition sequence from the sea of nonspecific sequences. R.PabI is predicted to utilize the tetrameric structure to bind nonspecific double-stranded DNA weakly and slide along it to find the recognition sequence.
Collapse
Affiliation(s)
- Delong Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken-Ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Patel A, Horton JR, Wilson GG, Zhang X, Cheng X. Structural basis for human PRDM9 action at recombination hot spots. Genes Dev 2016; 30:257-65. [PMID: 26833727 PMCID: PMC4743056 DOI: 10.1101/gad.274928.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The multidomain zinc finger (ZnF) protein PRDM9 (PRD1-BF1-RIZ1 homologous domain-containing 9) is thought to influence the locations of recombination hot spots during meiosis by sequence-specific DNA binding and trimethylation of histone H3 Lys4. The most common variant of human PRDM9, allele A (hPRDM9A), recognizes the consensus sequence 5'-NCCNCCNTNNCCNCN-3'. We cocrystallized ZnF8-12 of hPRDM9A with an oligonucleotide representing a known hot spot sequence and report the structure here. ZnF12 was not visible, but ZnF8-11, like other ZnF arrays, follows the right-handed twist of the DNA, with the α helices occupying the major groove. Each α helix makes hydrogen-bond (H-bond) contacts with up to four adjacent bases, most of which are purines of the complementary DNA strand. The consensus C:G base pairs H-bond with conserved His or Arg residues in ZnF8, ZnF9, and ZnF11, and the consensus T:A base pair H-bonds with an Asn that replaces His in ZnF10. Most of the variable base pairs (N) also engage in H bonds with the protein. These interactions appear to compensate to some extent for changes from the consensus sequence, implying an adaptability of PRDM9 to sequence variations. We investigated the binding of various alleles of hPRDM9 to different hot spot sequences. Allele C was found to bind a C-specific hot spot with higher affinity than allele A bound A-specific hot spots, perhaps explaining why the former is dominant in A/C heterozygotes. Allele L13 displayed higher affinity for several A-specific sequences, allele L9/L24 displayed lower affinity, and allele L20 displayed an altered sequence preference. These differences can be rationalized structurally and might contribute to the variation observed in the locations and activities of meiotic recombination hot spots.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
14
|
Hauser K, Essuman B, He Y, Coutsias E, Garcia-Diaz M, Simmerling C. A human transcription factor in search mode. Nucleic Acids Res 2015; 44:63-74. [PMID: 26673724 PMCID: PMC4705650 DOI: 10.1093/nar/gkv1091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.
Collapse
Affiliation(s)
- Kevin Hauser
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Yiqing He
- Great Neck South High School, Great Neck, NY 11023, USA
| | - Evangelos Coutsias
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
15
|
Abstract
We investigate the electrostatics, energetics, and dynamics of dendrimer-DNA interactions that mimic protein-DNA complexes as a means to design facilitated mechanisms by which dendrimers can slide and search DNA for targets. By using all-atom molecular dynamics simulations, we calculated the free energy profiles of dendrimer-binding around the DNA via umbrella sampling. We also calculated electrostatic interaction maps in comparison to proteins, as well as the dynamical changes induced by DNA-dendrimer interactions via NMR-measurable order parameters. Our results show that for dendrimers to go around DNA, there is a free-energy barrier of 8.5 kcal/mol from the DNA major groove to DNA minor groove, with a minimum in the major groove. This barrier height makes it unlikely for an all-amine dendrimer to slide along DNA longitudinally, but following a helical path may be possible along the major groove. Comparison of the nonbonded interaction energy and the interaction free-energy profiles reveal a considerable entropic cost as the dendrimer binds to DNA. This is also supported by the mobility patterns obtained from NMR-measurable order parameter values, which show a decreased mobility of the dendrimer N-H bond vectors in the DNA-binding mode.
Collapse
Affiliation(s)
- Emel Ficici
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
16
|
Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA. PLoS Comput Biol 2014; 10:e1003804. [PMID: 25188490 PMCID: PMC4154647 DOI: 10.1371/journal.pcbi.1003804] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/10/2014] [Indexed: 12/02/2022] Open
Abstract
Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4) during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates. Protein-DNA recognition is crucial for many key biological processes in cells. Protein often undergoes large-scale conformational change during DNA recognition. However, the physical and global understanding of flexible protein-DNA binding is still challenging. Here, we developed a theoretical approach to investigate binding of a Y-family DNA polymerase to its target DNA during the DNA synthesis process. The results of electrostatic-controlled multi-step DNA binding process accompanied with multi-state conformational transition of protein occurring throughout are in remarkable agreement with experiments. During the process of protein-DNA recognition, the flexibility is found to facilitate both the conformational transition of protein (intra-chain dynamics) and DNA binding (inter-chain dynamics) simultaneously. Therefore, we provided a quantitative description of protein-DNA binding mechanism that flexibility or conformational change regulates DNA recognition dynamically, leading to high efficiency and specificity of function for protein-DNA recognition.
Collapse
|
17
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
18
|
Horton JR, Borgaro JG, Griggs RM, Quimby A, Guan S, Zhang X, Wilson GG, Zheng Y, Zhu Z, Cheng X. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA. Nucleic Acids Res 2014; 42:7947-59. [PMID: 24895434 PMCID: PMC4081097 DOI: 10.1093/nar/gku497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ∼70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ∼22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Janine G Borgaro
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Rose M Griggs
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Aine Quimby
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | | | - Yu Zheng
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Zhenyu Zhu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| |
Collapse
|
19
|
De S, Chan ACK, Coyne HJ, Bhachech N, Hermsdorf U, Okon M, Murphy MEP, Graves BJ, McIntosh LP. Steric mechanism of auto-inhibitory regulation of specific and non-specific DNA binding by the ETS transcriptional repressor ETV6. J Mol Biol 2014; 426:1390-406. [PMID: 24333486 PMCID: PMC4278593 DOI: 10.1016/j.jmb.2013.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 11/29/2022]
Abstract
DNA binding by the ETS transcriptional repressor ETV6 (or TEL) is auto-inhibited ~50-fold due to an α-helix that sterically blocks its ETS domain binding interface. Using NMR spectroscopy, we demonstrate that this marginally stable helix is unfolded, and not displaced to a non-inhibitory position, when ETV6 is bound to DNA containing a consensus (5')GGAA(3') recognition site. Although significantly lower in affinity, binding to non-specific DNA is auto-inhibited ~5-fold and is also accompanied by helix unfolding. Based on NMR chemical shift perturbations, both specific and non-specific DNA are bound via the same canonical ETS domain interface. However, spectral perturbations are smaller for the non-specific complex, suggesting weaker and less well-defined interactions than in the specific complex. In parallel, the crystal structure of ETV6 bound to a specific DNA duplex was determined. The structure of this complex reveals that a non-conserved histidine residue in the ETS domain recognition helix helps establish the specificity of ETV6 for DNA-binding sites containing (5')GGAA(3')versus(5')GGAT(3'). These studies provide a unified steric mechanism for attenuating ETV6 binding to both specific and non-specific DNA and expand the repertoire of characterized auto-inhibitory strategies utilized to regulate ETS factors.
Collapse
Affiliation(s)
- Soumya De
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - H Jerome Coyne
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Niraja Bhachech
- Department of Oncological Sciences, University of Utah School of Medicine, and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Ulrike Hermsdorf
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Barbara J Graves
- Department of Oncological Sciences, University of Utah School of Medicine, and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
20
|
Schneider B, Černý J, Svozil D, Čech P, Gelly JC, de Brevern AG. Bioinformatic analysis of the protein/DNA interface. Nucleic Acids Res 2014; 42:3381-94. [PMID: 24335080 PMCID: PMC3950675 DOI: 10.1093/nar/gkt1273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 01/04/2023] Open
Abstract
To investigate the principles driving recognition between proteins and DNA, we analyzed more than thousand crystal structures of protein/DNA complexes. We classified protein and DNA conformations by structural alphabets, protein blocks [de Brevern, Etchebest and Hazout (2000) (Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet., 41:271-287)] and dinucleotide conformers [Svozil, Kalina, Omelka and Schneider (2008) (DNA conformations and their sequence preferences. Nucleic Acids Res., 36:3690-3706)], respectively. Assembling the mutually interacting protein blocks and dinucleotide conformers into 'interaction matrices' revealed their correlations and conformer preferences at the interface relative to their occurrence outside the interface. The analyzed data demonstrated important differences between complexes of various types of proteins such as transcription factors and nucleases, distinct interaction patterns for the DNA minor groove relative to the major groove and phosphate and importance of water-mediated contacts. Water molecules mediate proportionally the largest number of contacts in the minor groove and form the largest proportion of contacts in complexes of transcription factors. The generally known induction of A-DNA forms by complexation was more accurately attributed to A-like and intermediate A/B conformers rare in naked DNA molecules.
Collapse
Affiliation(s)
- Bohdan Schneider
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Jiří Černý
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Daniel Svozil
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Petr Čech
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Jean-Christophe Gelly
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Alexandre G. de Brevern
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| |
Collapse
|
21
|
Ferrandino R, Sidorova N, Rau D. Using single-turnover kinetics with osmotic stress to characterize the EcoRV cleavage reaction. Biochemistry 2014; 53:235-46. [PMID: 24328115 DOI: 10.1021/bi401089y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type II restriction endonucleases require metal ions to specifically cleave DNA at canonical sites. Despite the wealth of structural and biochemical information, the number of Mg(2+) ions used for cleavage by EcoRV, in particular, at physiological divalent ion concentrations has not been established. In this work, we employ a single-turnover technique that uses osmotic stress to probe reaction kinetics between an initial specific EcoRV-DNA complex formed in the absence of Mg(2+) and the final cleavage step. With osmotic stress, complex dissociation before cleavage is minimized and the reaction rates are slowed to a convenient time scale of minutes to hours. We find that cleavage occurs by a two-step mechanism that can be characterized by two rate constants. The dependence of these rate constants on Mg(2+) concentration and osmotic pressure gives the number of Mg(2+) ions and water molecules coupled to each kinetic step of the EcoRV cleavage reaction. Each kinetic step is coupled to the binding 1.5-2.5 Mg(2+) ions, the uptake of ∼30 water molecules, and the cleavage of a DNA single strand. We suggest that each kinetic step reflects an independent, rate-limiting conformational change of each monomer of the dimeric enzyme that allows Mg(2+) ion binding. This modified single-turnover protocol has general applicability for metalloenzymes.
Collapse
Affiliation(s)
- Rocco Ferrandino
- The Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
22
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42:3-19. [PMID: 24141096 PMCID: PMC3874209 DOI: 10.1093/nar/gkt990] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022] Open
Abstract
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - David T. F. Dryden
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
23
|
Čech P, Kukal J, Černý J, Schneider B, Svozil D. Automatic workflow for the classification of local DNA conformations. BMC Bioinformatics 2013; 14:205. [PMID: 23800225 PMCID: PMC3694522 DOI: 10.1186/1471-2105-14-205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/28/2013] [Indexed: 12/03/2022] Open
Abstract
Background A growing number of crystal and NMR structures reveals a considerable structural polymorphism of DNA architecture going well beyond the usual image of a double helical molecule. DNA is highly variable with dinucleotide steps exhibiting a substantial flexibility in a sequence-dependent manner. An analysis of the conformational space of the DNA backbone and the enhancement of our understanding of the conformational dependencies in DNA are therefore important for full comprehension of DNA structural polymorphism. Results A detailed classification of local DNA conformations based on the technique of Fourier averaging was published in our previous work. However, this procedure requires a considerable amount of manual work. To overcome this limitation we developed an automatic classification method consisting of the combination of supervised and unsupervised approaches. A proposed workflow is composed of k-NN method followed by a non-hierarchical single-pass clustering algorithm. We applied this workflow to analyze 816 X-ray and 664 NMR DNA structures released till February 2013. We identified and annotated six new conformers, and we assigned four of these conformers to two structurally important DNA families: guanine quadruplexes and Holliday (four-way) junctions. We also compared populations of the assigned conformers in the dataset of X-ray and NMR structures. Conclusions In the present work we developed a machine learning workflow for the automatic classification of dinucleotide conformations. Dinucleotides with unassigned conformations can be either classified into one of already known 24 classes or they can be flagged as unclassifiable. The proposed machine learning workflow permits identification of new classes among so far unclassifiable data, and we identified and annotated six new conformations in the X-ray structures released since our previous analysis. The results illustrate the utility of machine learning approaches in the classification of local DNA conformations.
Collapse
Affiliation(s)
- Petr Čech
- Laboratory of Informatics and Chemistry, ICT Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | | | | | | | | |
Collapse
|
24
|
Sidorova NY, Scott T, Rau DC. DNA concentration-dependent dissociation of EcoRI: direct transfer or reaction during hopping. Biophys J 2013; 104:1296-303. [PMID: 23528089 DOI: 10.1016/j.bpj.2013.01.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/29/2022] Open
Abstract
Direct transfer of proteins between DNA helices is a recognized important feature of the recognition site search process. Direct transfer is characterized by a dissociation rate that depends on total DNA concentration. This is taken as evidence for the formation of an intermediate DNA-protein-DNA ternary complex. We find that the dissociation rate of EcoRI-DNA-specific complexes at 80 mM NaCl depends on the concentration of competitor oligonucleotide suggesting that direct transfer contributes to EcoRI dissociation. This dependence on competitor DNA concentration is not seen at 180 mM salt. A careful examination of the salt concentration dependence of the dissociation rate, however, shows that the predictions for the formation of a ternary complex are not observed experimentally. The findings can be rationalized by considering that just after dissociating from a DNA fragment the protein remains in close proximity to that fragment, can reassociate with it, and diffuse back to the recognition site rather than bind to an oligonucleotide in solution, a hopping excursion. The probability that a protein will bind to an oligonucleotide during a hop can be approximately calculated and shown to explain the data. A dependence of the dissociation rate of a DNA-protein complex on competitor DNA concentration does not necessarily mean direct transfer.
Collapse
Affiliation(s)
- Nina Y Sidorova
- The Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
25
|
Kim S, Broströmer E, Xing D, Jin J, Chong S, Ge H, Wang S, Gu C, Yang L, Gao YQ, Su XD, Sun Y, Xie XS. Probing allostery through DNA. Science 2013; 339:816-9. [PMID: 23413354 DOI: 10.1126/science.1229223] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.
Collapse
Affiliation(s)
- Sangjin Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Crenshaw CM, Nam K, Oo K, Kutchukian PS, Bowman BR, Karplus M, Verdine GL. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J Biol Chem 2012; 287:24916-28. [PMID: 22511791 PMCID: PMC3408145 DOI: 10.1074/jbc.m111.316497] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.
Collapse
Affiliation(s)
- Charisse M. Crenshaw
- From the Departments of Molecular and Cellular Biology, ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Kwangho Nam
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | - Peter S. Kutchukian
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Brian R. Bowman
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Martin Karplus
- Chemical and Chemical Biology, and ,the L'Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Gregory L. Verdine
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, ,the Program in Cancer Chemical Biology and Chemical Biology Initiative, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and , To whom correspondence should be addressed. 12 Oxford St., Cambridge, MA 02138. Fax: 617-495-8755; E-mail:
| |
Collapse
|
27
|
Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016-45. [PMID: 22638584 PMCID: PMC3424549 DOI: 10.1093/nar/gks382] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CENT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
Holz-Schietinger C, Matje DM, Harrison MF, Reich NO. Oligomerization of DNMT3A controls the mechanism of de novo DNA methylation. J Biol Chem 2011; 286:41479-41488. [PMID: 21979949 PMCID: PMC3308859 DOI: 10.1074/jbc.m111.284687] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/26/2011] [Indexed: 01/01/2023] Open
Abstract
DNMT3A is one of two human de novo DNA methyltransferases essential for regulating gene expression through cellular development and differentiation. Here we describe the consequences of single amino acid mutations, including those implicated in the development of acute myeloid leukemia (AML) and myelodysplastic syndromes, at the DNMT3A·DNMT3A homotetramer and DNMT3A·DNMT3L heterotetramer interfaces. A model for the DNMT3A homotetramer was developed via computational interface scanning and tested using light scattering and electrophoretic mobility shift assays. Distinct oligomeric states were functionally characterized using fluorescence anisotropy and steady-state kinetics. Replacement of residues that result in DNMT3A dimers, including those identified in AML patients, show minor changes in methylation activity but lose the capacity for processive catalysis on multisite DNA substrates, unlike the highly processive wild-type enzyme. Our results are consistent with the bimodal distribution of DNA methylation in vivo and the loss of clustered methylation in AML patients. Tetramerization with the known interacting partner DNMT3L rescues processive catalysis, demonstrating that protein binding at the DNMT3A tetramer interface can modulate methylation patterning. Our results provide a structural mechanism for the regulation of DNMT3A activity and epigenetic imprinting.
Collapse
Affiliation(s)
- Celeste Holz-Schietinger
- Interdepartmental Program in Biomolecular Science & Engineering, University of California, Santa Barbara, California 93106-9510
| | - Douglas M Matje
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510
| | - Madeleine Flexer Harrison
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510
| | - Norbert O Reich
- Interdepartmental Program in Biomolecular Science & Engineering, University of California, Santa Barbara, California 93106-9510; Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510.
| |
Collapse
|
29
|
Frustration in protein-DNA binding influences conformational switching and target search kinetics. Proc Natl Acad Sci U S A 2011; 108:17957-62. [PMID: 22003125 DOI: 10.1073/pnas.1109594108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rapid recognition of DNA target sites involves facilitated diffusion through which alternative sites are searched on genomic DNA. A key mechanism facilitating the localization of the target by a DNA-binding protein (DBP) is one-dimensional diffusion (sliding) in which electrostatic forces attract the protein to the DNA. As the protein reaches its target DNA site, it switches from purely electrostatic binding to a specific set of interactions with the DNA bases that also involves hydrogen bonding and van der Waals forces. High overlap between the DBP patches used for nonspecific and specific interactions with DNA may enable an immediate transition between the two binding modes following target site localization. By contrast, an imperfect overlap may result in greater frustration between the two potentially competing binding modes and consequently slower switching between them. A structural analysis of 125 DBPs indicates frustration between the two binding modes that results in a large difference between the orientations of the protein to the DNA when it slides compared to when it specifically interacts with DNA. Coarse-grained molecular dynamics simulations of in silico designed peptides comprising the full range of frustrations between the two interfaces show slower transition from nonspecific to specific DNA binding as the overlap between the patches involved in the two binding modes decreases. The complex search kinetics may regulate the search by eliminating trapping of the protein in semispecific sites while sliding.
Collapse
|
30
|
Callahan SJ, Morgan RD, Jain R, Townson SA, Wilson GG, Roberts RJ, Aggarwal AK. Crystallization and preliminary crystallographic analysis of the type IIL restriction enzyme MmeI in complex with DNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1262-5. [PMID: 22102043 PMCID: PMC3212378 DOI: 10.1107/s1744309111028041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/13/2011] [Indexed: 11/10/2022]
Abstract
Type IIL restriction enzymes have rejuvenated the search for user-specified DNA binding and cutting. By aligning and contrasting the highly comparable amino-acid sequences yet diverse recognition specificities across the family of enzymes, amino acids involved in DNA binding have been identified and mutated to produce alternative binding specificities. To date, the specificity of MmeI (a type IIL restriction enzyme) has successfully been altered at positions 3, 4 and 6 of the asymmetric TCCRAC (where R is a purine) DNA-recognition sequence. To further understand the structural basis of MmeI DNA-binding specificity, the enzyme has been crystallized in complex with its DNA substrate. The crystal belonged to space group P1, with unit-cell parameters a = 61.73, b = 94.96, c = 161.24 Å, α = 72.79, β = 89.12, γ = 71.68°, and diffracted to 2.6 Å resolution when exposed to synchrotron radiation. The structure promises to reveal the basis of MmeI DNA-binding specificity and will complement efforts to create enzymes with novel specificities.
Collapse
Affiliation(s)
- Scott J. Callahan
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, New York, NY 10029-6574, USA
| | | | - Rinku Jain
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, New York, NY 10029-6574, USA
| | - Sharon A. Townson
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, New York, NY 10029-6574, USA
| | | | | | - Aneel K. Aggarwal
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, New York, NY 10029-6574, USA
| |
Collapse
|
31
|
Tang GQ, Deshpande AP, Patel SS. Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase. J Biol Chem 2011; 286:38805-38813. [PMID: 21911502 DOI: 10.1074/jbc.m111.261966] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter recognition is the first and the most important step during gene expression. Our studies of the yeast (Saccharomyces cerevisiae) mitochondrial (mt) transcription machinery provide mechanistic understandings on the basic problem of how the mt RNA polymerase (RNAP) with the help of the initiation factor discriminates between promoter and non-promoter sequences. We have used fluorescence-based approaches to quantify DNA binding, bending, and opening steps by the core mtRNAP subunit (Rpo41) and the transcription factor (Mtf1). Our results show that promoter recognition is not achieved by tight and selective binding to the promoter sequence. Instead, promoter recognition is achieved by an induced-fit mechanism of transcription factor-dependent differential conformational changes in the promoter and non-promoter DNAs. While Rpo41 induces a slight bend upon binding both the DNAs, addition of the Mtf1 results in severe bending of the promoter and unbending of the non-promoter DNA. Only the sharply bent DNA results in the catalytically active open complex. Such an induced-fit mechanism serves three purposes: 1) assures catalysis at promoter sites, 2) prevents RNA synthesis at non-promoter sites, and 3) provides a conformational state at the non-promoter sites that would aid in facile translocation to scan for specific sites.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854
| | - Aishwarya P Deshpande
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854
| | - Smita S Patel
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey 08854.
| |
Collapse
|
32
|
Sidorova NY, Muradymov S, Rau DC. Solution parameters modulating DNA binding specificity of the restriction endonuclease EcoRV. FEBS J 2011; 278:2713-27. [PMID: 21624054 DOI: 10.1111/j.1742-4658.2011.08198.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The DNA binding stringency of restriction endonucleases is crucial for their proper function. The X-ray structures of the specific and non-cognate complexes of the restriction nuclease EcoRV are considerably different suggesting significant differences in the hydration and binding free energies. Nonetheless, the majority of studies performed at pH 7.5, optimal for enzymatic activity, have found a < 10-fold difference between EcoRV binding constants to the specific and nonspecific sequences in the absence of divalent ions. We used a recently developed self-cleavage assay to measure EcoRV-DNA competitive binding and to evaluate the influence of water activity, pH and salt concentration on the binding stringency of the enzyme in the absence of divalent ions. We find the enzyme can readily distinguish specific and nonspecific sequences. The relative specific-nonspecific binding constant increases strongly with increasing neutral solute concentration and with decreasing pH. The difference in number of associated waters between specific and nonspecific DNA-EcoRV complexes is consistent with the differences in the crystal structures. Despite the large pH dependence of the sequence specificity, the osmotic pressure dependence indicates little change in structure with pH. The large osmotic pressure dependence means that measurement of protein-DNA specificity in dilute solution cannot be directly applied to binding in the crowded environment of the cell. In addition to divalent ions, water activity and pH are key parameters that strongly modulate binding specificity of EcoRV.
Collapse
Affiliation(s)
- Nina Y Sidorova
- Laboratory of Physical and Structural Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-0924, USA.
| | | | | |
Collapse
|
33
|
An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J 2011; 30:2167-76. [PMID: 21522129 DOI: 10.1038/emboj.2011.127] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/24/2011] [Indexed: 01/23/2023] Open
Abstract
The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence-specific DNA binding and homo-tetramerization domains. Interestingly, the affinities of p53 for specific and non-specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA. The structure reveals that sequence-specific DNA binding proceeds via an induced fit mechanism that involves a conformational switch in loop L1 of the p53 DNA binding domain. Analysis of loop L1 mutants demonstrated that the conformational switch allows DNA binding off-rates to be regulated independently of affinities. These results may explain the universal prevalence of conformational switching in sequence-specific DNA binding proteins and suggest that proteins like p53 rely more on differences in binding off-rates, than on differences in affinities, to recognize their specific DNA sites.
Collapse
|
34
|
Kruse AC, Huseby MJ, Shi K, Digre J, Ohlendorf DH, Earhart CA. Structure of a mutant β toxin from Staphylococcus aureus reveals domain swapping and conformational flexibility. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:438-41. [PMID: 21505235 DOI: 10.1107/s1744309111005239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022]
Abstract
The 3.35 Å resolution crystal structure of a mutant form of the staphylococcal sphingomyelinase β toxin in which a conserved hydrophobic β-hairpin has been deleted is reported. It is shown that this mutation induces domain swapping of a C-terminal β-strand, leading to the formation of dimers linked by a conformationally flexible hinge region. Eight dimers are seen in the asymmetric unit, exhibiting a broad spectrum of conformations trapped in place by intermolecular contacts within the crystal lattice. Furthermore, the 16 monomers within each asymmetric unit exhibit a remarkable heterogeneity in thermal factors, which can be accounted for by the varying degrees to which each monomer interacts with other molecules in the crystal. This structure provides a unique example of the challenges associated with crystallographic study of flexible proteins.
Collapse
Affiliation(s)
- Andrew C Kruse
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
35
|
The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. J Mol Biol 2010; 406:285-312. [PMID: 21167173 DOI: 10.1016/j.jmb.2010.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 11/21/2022]
Abstract
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes -2.3 kcal mol(-1) to -0.9 kcal mol(-1) (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of +1.3 kcal mol(-1). Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.
Collapse
|
36
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
37
|
Firczuk M, Wojciechowski M, Czapinska H, Bochtler M. DNA intercalation without flipping in the specific ThaI-DNA complex. Nucleic Acids Res 2010; 39:744-54. [PMID: 20861000 PMCID: PMC3025569 DOI: 10.1093/nar/gkq834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The PD-(D/E)XK type II restriction endonuclease ThaI cuts the target sequence CG/CG with blunt ends. Here, we report the 1.3 Å resolution structure of the enzyme in complex with substrate DNA and a sodium or calcium ion taking the place of a catalytic magnesium ion. The structure identifies Glu54, Asp82 and Lys93 as the active site residues. This agrees with earlier bioinformatic predictions and implies that the PD and (D/E)XK motifs in the sequence are incidental. DNA recognition is very unusual: the two Met47 residues of the ThaI dimer intercalate symmetrically into the CG steps of the target sequence. They approach the DNA from the minor groove side and penetrate the base stack entirely. The DNA accommodates the intercalating residues without nucleotide flipping by a doubling of the CG step rise to twice its usual value, which is accompanied by drastic unwinding. Displacement of the Met47 side chains from the base pair midlines toward the downstream CG steps leads to large and compensating tilts of the first and second CG steps. DNA intercalation by ThaI is unlike intercalation by HincII, HinP1I or proteins that bend or repair DNA.
Collapse
|
38
|
Vanamee ES, Viadiu H, Chan SH, Ummat A, Hartline AM, Xu SY, Aggarwal AK. Asymmetric DNA recognition by the OkrAI endonuclease, an isoschizomer of BamHI. Nucleic Acids Res 2010; 39:712-9. [PMID: 20833632 PMCID: PMC3025578 DOI: 10.1093/nar/gkq779] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Restriction enzymes share little or no sequence homology with the exception of isoschizomers, or enzymes that recognize and cleave the same DNA sequence. We present here the structure of a BamHI isoschizomer, OkrAI, bound to the same DNA sequence (TATGGATCCATA) as that cocrystallized with BamHI. We show that OkrAI is a more minimal version of BamHI, lacking not only the N- and C-terminal helices but also an internal 310 helix and containing β-strands that are shorter than those in BamHI. Despite these structural differences, OkrAI recognizes the DNA in a remarkably similar manner to BamHI, including asymmetric contacts via C-terminal ‘arms’ that appear to ‘compete’ for the minor groove. However, the arms are shorter than in BamHI. We observe similar DNA-binding affinities between OkrAI and BamHI but OkrAI has higher star activity (at 37°C) compared to BamHI. Together, the OkrAI and BamHI structures offer a rare opportunity to compare two restriction enzymes that work on exactly the same DNA substrate.
Collapse
Affiliation(s)
- Eva Scheuring Vanamee
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Raskó T, Dér A, Klement E, Slaska-Kiss K, Pósfai E, Medzihradszky KF, Marshak DR, Roberts RJ, Kiss A. BspRI restriction endonuclease: cloning, expression in Escherichia coli and sequential cleavage mechanism. Nucleic Acids Res 2010; 38:7155-66. [PMID: 20587501 PMCID: PMC2978348 DOI: 10.1093/nar/gkq567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GGCC-specific restriction endonuclease BspRI is one of the few Type IIP restriction endonucleases, which were suggested to be a monomer. Amino acid sequence information obtained by Edman sequencing and mass spectrometry analysis was used to clone the gene encoding BspRI. The bspRIR gene is located adjacently to the gene of the cognate modification methyltransferase and encodes a 304 aa protein. Expression of the bspRIR gene in Escherichia coli was dependent on the replacement of the native TTG initiation codon with an ATG codon, explaining previous failures in cloning the gene using functional selection. A plasmid containing a single BspRI recognition site was used to analyze kinetically nicking and second-strand cleavage under steady-state conditions. Cleavage of the supercoiled plasmid went through a relaxed intermediate indicating sequential hydrolysis of the two strands. Results of the kinetic analysis of the first- and second-strand cleavage are consistent with cutting the double-stranded substrate site in two independent binding events. A database search identified eight putative restriction-modification systems in which the predicted endonucleases as well as the methyltransferases share high sequence similarity with the corresponding protein of the BspRI system. BspRI and the related putative restriction endonucleases belong to the PD-(D/E)XK nuclease superfamily.
Collapse
Affiliation(s)
- Tamás Raskó
- Institute of Biochemistry, Proteomics Research Group, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ballin JD, Prevas JP, Ross CR, Toth EA, Wilson GM, Record MT. Contributions of the histidine side chain and the N-terminal alpha-amino group to the binding thermodynamics of oligopeptides to nucleic acids as a function of pH. Biochemistry 2010; 49:2018-30. [PMID: 20108951 DOI: 10.1021/bi902027z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interactions of histidine with nucleic acid phosphates and histidine pK(a) shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK ((+)NH(3)-His-Trp-Lys-Lys-NH(2)) and its lysine analogue KWKK ((+)NH(3)-Lys-Trp-Lys-Lys-NH(2)) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, K(obs), and magnitudes of log-log salt derivatives, SK(obs) identical with (partial differential logK(obs)/partial differential log[Na(+)]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and alpha-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same K(obs) and SK(obs) within uncertainty, and these SK(obs) values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pK(a) shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pK(a) shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the alpha-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific vs nonspecific nucleic acid binding.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Clore GM, Iwahara J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 2009; 109:4108-39. [PMID: 19522502 DOI: 10.1021/cr900033p] [Citation(s) in RCA: 588] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- G Marius Clore
- Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| | | |
Collapse
|
42
|
Rau DC, Sidorova NY. Diffusion of the restriction nuclease EcoRI along DNA. J Mol Biol 2009; 395:408-16. [PMID: 19874828 DOI: 10.1016/j.jmb.2009.10.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/20/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Many specific sequence DNA binding proteins locate their target sequence by first binding to DNA nonspecifically, then by linearly diffusing or hopping along DNA until either the protein dissociates from the DNA or it finds the recognition sequence. We have devised a method for measuring one-dimensional diffusion along DNA based on the ratio of the dissociation rate of protein from DNA fragments containing one specific binding site to the dissociation rate from DNA fragments containing two specific binding sites. Our extensive measurements of dissociation rates and specific-nonspecific relative binding constants of the restriction nuclease EcoRI enable us to determine the diffusion rate of nonspecifically bound protein along the DNA. By varying the distance between the two binding sites, we confirm a linear diffusion mechanism. The sliding rate is relatively insensitive to salt concentration and osmotic pressure, indicating that the protein moves smoothly along the DNA probably following the helical phosphate-sugar backbone of DNA. We calculate a diffusion coefficient for EcoRI of 3 x 10(4) bp(2) s(-)(1) EcoRI is able to diffuse approximately 150 bp, on average, along the DNA in 1 s. This diffusion rate is about 2000-fold slower than the diffusion of free protein in solution. A factor of 40-50 can be accounted for by rotational friction resulting from following the helical path of the DNA backbone. Two possibilities could account for the remaining activation energy: salt bridges between the DNA and the protein are transiently broken, or the water structure at the protein-DNA interface is disrupted as the two surfaces move past each other.
Collapse
Affiliation(s)
- Donald C Rau
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
Ashworth J, Baker D. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Nucleic Acids Res 2009; 37:e73. [PMID: 19389725 PMCID: PMC2691843 DOI: 10.1093/nar/gkp242] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biological functions of DNA-binding proteins often require that they interact with their targets with high affinity and/or high specificity. Here, we describe a computational method that estimates the extent of optimization for affinity and specificity of amino acids at a protein-DNA interface based on the crystal structure of the complex, by modeling the changes in binding-free energy associated with all individual amino acid and base substitutions at the interface. The extent to which residues are predicted to be optimal for specificity versus affinity varies within a given protein-DNA interface and between different complexes, and in many cases recapitulates previous experimental observations. The approach provides a complement to traditional methods of mutational analysis, and should be useful for rapidly formulating hypotheses about the roles of amino acid residues in protein-DNA interfaces.
Collapse
Affiliation(s)
- Justin Ashworth
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
44
|
Sokolowska M, Czapinska H, Bochtler M. Crystal structure of the beta beta alpha-Me type II restriction endonuclease Hpy99I with target DNA. Nucleic Acids Res 2009; 37:3799-810. [PMID: 19380375 PMCID: PMC2699513 DOI: 10.1093/nar/gkp228] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ββα-Me restriction endonuclease (REase) Hpy99I recognizes the CGWCG target sequence and cleaves it with unusual stagger (five nucleotide 5′-recessed ends). Here we present the crystal structure of the specific complex of the dimeric enzyme with DNA. The Hpy99I protomer consists of an antiparallel β-barrel and two β4α2 repeats. Each repeat coordinates a structural zinc ion with four cysteine thiolates in two CXXC motifs. The ββα-Me region of the second β4α2 repeat holds the catalytic metal ion (or its sodium surrogate) via Asp148 and Asn165 and activates a water molecule with the general base His149. In the specific complex, Hpy99I forms a ring-like structure around the DNA that contacts DNA bases on the major and minor groove sides via the first and second β4α2 repeats, respectively. Hpy99I interacts with the central base pair of the recognition sequence only on the minor groove side, where A:T resembles T:A and G:C is similar to C:G. The Hpy99I–DNA co-crystal structure provides the first detailed illustration of the ββα-Me site in REases and complements structural information on the use of this active site motif in other groups of endonucleases such as homing endonucleases (e.g. I-PpoI) and Holliday junction resolvases (e.g. T4 endonuclease VII).
Collapse
Affiliation(s)
- Monika Sokolowska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
45
|
Gao M, Skolnick J. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions. PLoS Comput Biol 2009; 5:e1000341. [PMID: 19343221 PMCID: PMC2659451 DOI: 10.1371/journal.pcbi.1000341] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/26/2009] [Indexed: 11/19/2022] Open
Abstract
DNA–protein interactions are involved in many essential biological
activities. Because there is no simple mapping code between DNA base pairs and
protein amino acids, the prediction of DNA–protein interactions is a
challenging problem. Here, we present a novel computational approach for
predicting DNA-binding protein residues and DNA–protein interaction
modes without knowing its specific DNA target sequence. Given the structure of a
DNA-binding protein, the method first generates an ensemble of complex
structures obtained by rigid-body docking with a nonspecific canonical B-DNA.
Representative models are subsequently selected through clustering and ranking
by their DNA–protein interfacial energy. Analysis of these encounter
complex models suggests that the recognition sites for specific DNA binding are
usually favorable interaction sites for the nonspecific DNA probe and that
nonspecific DNA–protein interaction modes exhibit some similarity to
specific DNA–protein binding modes. Although the method requires as
input the knowledge that the protein binds DNA, in benchmark tests, it achieves
better performance in identifying DNA-binding sites than three previously
established methods, which are based on sophisticated machine-learning
techniques. We further apply our method to protein structures predicted through
modeling and demonstrate that our method performs satisfactorily on protein
models whose root-mean-square Cα deviation from native is up to 5
Å from their native structures. This study provides valuable
structural insights into how a specific DNA-binding protein interacts with a
nonspecific DNA sequence. The similarity between the specific
DNA–protein interaction mode and nonspecific interaction modes may
reflect an important sampling step in search of its specific DNA targets by a
DNA-binding protein. Many essential biological activities require interactions between DNA and
proteins. These proteins usually use certain amino acids, called DNA-binding
sites, to recognize their specific DNA targets. To facilitate the search of its
specific DNA targets, a DNA-binding protein often associates with nonspecific
DNA and then diffuses along the DNA. Due to the weak interactions between
nonspecific DNA and the protein, structural characterization of nonspecific
DNA–protein complexes is experimentally challenging. This paper
describes a computational modeling study on nonspecific DNA–protein
complexes and comparative analysis with respect to specific
DNA–protein complexes. The study found that the specific DNA-binding
sites on a protein are typically favorable for nonspecific DNA and that
nonspecific and specific DNA–protein interaction modes are quite
similar. This similarity may reflect an important sampling step in the search
for the specific DNA target sequence by a DNA-binding protein. On the basis of
these observations, a novel method was proposed for predicting DNA-binding sites
and binding modes of a DNA-binding protein without knowing its specific DNA
target sequence. Ultimately, the combination of this method and protein
structure prediction may lead the way to high throughput modeling of
DNA–protein interactions.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biology, Georgia
Institute of Technology, Atlanta, Georgia, United States of America
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia
Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
46
|
Nakonieczna J, Kaczorowski T, Obarska-Kosinska A, Bujnicki JM. Functional analysis of MmeI from methanol utilizer Methylophilus methylotrophus, a subtype IIC restriction-modification enzyme related to type I enzymes. Appl Environ Microbiol 2009; 75:212-23. [PMID: 18997032 PMCID: PMC2612229 DOI: 10.1128/aem.01322-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/29/2008] [Indexed: 11/20/2022] Open
Abstract
MmeI from Methylophilus methylotrophus belongs to the type II restriction-modification enzymes. It recognizes an asymmetric DNA sequence, 5'-TCCRAC-3' (R indicates G or A), and cuts both strands at fixed positions downstream of the specific site. This particular feature has been exploited in transcript profiling of complex genomes (using serial analysis of gene expression technology). We have shown previously that the endonucleolytic activity of MmeI is strongly dependent on the presence of S-adenosyl-l-methionine (J. Nakonieczna, J. W. Zmijewski, B. Banecki, and A. J. Podhajska, Mol. Biotechnol. 37:127-135, 2007), which puts MmeI in subtype IIG. The same cofactor is used by MmeI as a methyl group donor for modification of an adenine in the upper strand of the recognition site to N(6)-methyladenine. Both enzymatic activities reside in a single polypeptide (919 amino acids [aa]), which puts MmeI also in subtype IIC of the restriction-modification systems. Based on a molecular model, generated with the use of bioinformatic tools and validated by site-directed mutagenesis, we were able to localize three functional domains in the structure of the MmeI enzyme: (i) the N-terminal portion containing the endonucleolytic domain with the catalytic Mg2+-binding motif D(70)-X(9)-EXK(82), characteristic for the PD-(D/E)XK superfamily of nucleases; (ii) a central portion (aa 310 to 610) containing nine sequence motifs conserved among N(6)-adenine gamma-class DNA methyltransferases; (iii) the C-terminal portion (aa 610 to 919) containing a putative target recognition domain. Interestingly, all three domains showed highest similarity to the corresponding elements of type I enzymes rather than to classical type II enzymes. We have found that MmeI variants deficient in restriction activity (D70A, E80A, and K82A) can bind and methylate specific nucleotide sequence. This suggests that domains of MmeI responsible for DNA restriction and modification can act independently. Moreover, we have shown that a single amino acid residue substitution within the putative target recognition domain (S807A) resulted in a MmeI variant with a higher endonucleolytic activity than the wild-type enzyme.
Collapse
Affiliation(s)
- Joanna Nakonieczna
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
47
|
Little EJ, Babic AC, Horton NC. Early interrogation and recognition of DNA sequence by indirect readout. Structure 2008; 16:1828-37. [PMID: 19081059 PMCID: PMC2637360 DOI: 10.1016/j.str.2008.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/28/2008] [Accepted: 09/21/2008] [Indexed: 01/07/2023]
Abstract
Control of replication, transcription, recombination and repair requires proteins capable of finding particular DNA sequences in a background of a large excess of nonspecific sequences. Such recognition can involve direct readout, with direct contacts to the bases of DNA, or in some cases through the less well-characterized indirect readout mechanisms. In order to measure the relative contributions of direct and indirect readout by a sequence specific endonuclease, HincII, a mutant enzyme deficient in a direct contact, was characterized, and surprisingly showed no loss of sequence specificity. The three dimensional crystal structure shows the loss of most of the direct readout contacts to the DNA, possibly capturing an early stage in target site recognition using predominately indirect readout to prescreen sites before full sequence interrogation.
Collapse
Affiliation(s)
- Elizabeth J Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
48
|
Dolan J, Chen A, Weber IT, Harrison RW, Leis J. Defining the DNA substrate binding sites on HIV-1 integrase. J Mol Biol 2008; 385:568-79. [PMID: 19014951 DOI: 10.1016/j.jmb.2008.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
A tetramer model for human immunodeficiency virus type 1 (HIV-1) integrase (IN) with DNA representing long terminal repeat (LTR) termini was previously assembled to predict the IN residues that interact with the LTR termini; these predictions were experimentally verified for nine amino acid residues [Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]. In a similar strategy, the unique amino acids found in avian sarcoma virus IN, rather than HIV-1 or Mason-Pfizer monkey virus IN, were substituted into the structurally related positions of HIV-1 IN. Substitutions of six additional residues (Q44, L68, E69, D229, S230, and D253) showed changes in the 3' processing specificity of the enzyme, verifying their predicted interaction with the LTR DNA. The newly identified residues extend interactions along a 16-bp length of the LTR termini and are consistent with known LTR DNA/HIV-1 IN cross-links. The tetramer model for HIV-1 IN with LTR termini was modified to include two IN binding domains for lens-epithelium-derived growth factor/p75. The target DNA was predicted to bind in a surface trench perpendicular to the plane of the LTR DNA binding sites of HIV-1 IN and extending alongside lens-epithelium-derived growth factor. This hypothesis is supported by the in vitro activity phenotype of HIV-1 IN mutant, with a K219S substitution showing loss in strand transfer activity while maintaining 3' processing on an HIV-1 substrate. Mutations at seven other residues reported in the literature have the same phenotype, and all eight residues align along the length of the putative target DNA binding trench.
Collapse
Affiliation(s)
- James Dolan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
49
|
Pallan PS, Egli M. Insights into RNA/DNA hybrid recognition and processing by RNase H from the crystal structure of a non-specific enzyme-dsDNA complex. Cell Cycle 2008; 7:2562-9. [PMID: 18719385 DOI: 10.4161/cc.7.16.6461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme's interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)](2). The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg(2+) at the active site. A subset of amino acids engaged in contacts to RNA 2'-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme's interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.
Collapse
Affiliation(s)
- Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
50
|
Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc Natl Acad Sci U S A 2008; 105:10791-6. [PMID: 18669665 DOI: 10.1073/pnas.0801612105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The astonishingly efficient location and excision of damaged DNA bases by DNA repair glycosylases is an especially intriguing problem in biology. One example is the enzyme uracil DNA glycosylase (UNG), which captures and excises rare extrahelical uracil bases that have emerged from the DNA base stack by spontaneous base pair breathing motions. Here, we explore the efficiency and mechanism by which UNG executes intramolecular transfer and excision of two uracil sites embedded on the same or opposite DNA strands at increasing site spacings. The efficiency of intramolecular site transfer decreased from 41 to 0% as the base pair spacing between uracil sites on the same DNA strand increased from 20 to 800 bp. The mechanism of transfer is dominated by DNA hopping between landing sites of approximately 10 bp size, over which rapid 1D scanning likely occurs. Consistent with DNA hopping, site transfer at 20- and 56-bp spacings was unaffected by whether the uracils were placed on the same or opposite strands. Thus, UNG uses hopping and 3D diffusion through bulk solution as the principal pathways for efficient patrolling of long genomic DNA sequences for damage. Short-range sliding over the range of a helical turn allows for redundant inspection of very local DNA sequences and trapping of spontaneously emerging extrahelical uracils.
Collapse
|