1
|
Kelman MJ, Miller JD, Renaud JB, Baskova D, Sumarah MW. A Multi-Year Study of Mycotoxin Co-Occurrence in Wheat and Corn Grown in Ontario, Canada. Toxins (Basel) 2024; 16:372. [PMID: 39195782 PMCID: PMC11359917 DOI: 10.3390/toxins16080372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Mycotoxin emergence and co-occurrence trends in Canadian grains are dynamic and evolving in response to changing weather patterns within each growing season. The mycotoxins deoxynivalenol and zearalenone are the dominant mycotoxins detected in grains grown in Eastern Canada. Two potential emerging mycotoxins of concern are sterigmatocystin, produced by Aspergillus versicolor, and diacetoxyscirpenol, a type A trichothecene produced by a number of Fusarium species. In response to a call from the 83rd Joint Expert Committee on Food Additives and Contaminants, we conducted a comprehensive survey of samples from cereal production areas in Ontario, Canada. Some 159 wheat and 160 corn samples were collected from farms over a three-year period. Samples were extracted and analyzed by LC-MS/MS for 33 mycotoxins and secondary metabolites. Ergosterol was analyzed as an estimate of the overall fungal biomass in the samples. In wheat, the ratio of DON to its glucoside, deoxynivalenol-3-glucoside (DON-3G), exhibited high variability, likely attributable to differences among cultivars. In corn, the ratio was more consistent across the samples. Sterigmatocystin was detected in some wheat that had higher concentrations of ergosterol. Diacetoxyscirpenol was not detected in either corn or wheat over the three years, demonstrating a low risk to Ontario grain. Overall, there was some change to the mycotoxin profiles over the three years for wheat and corn. Ongoing surveys are required to reassess trends and ensure the safety of the food value chain, especially for emerging mycotoxins.
Collapse
Affiliation(s)
- Megan J. Kelman
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
| | - J. David Miller
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| | - Justin B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
| | - Daria Baskova
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mark W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (M.J.K.); (J.B.R.); (D.B.)
| |
Collapse
|
2
|
Nuankaew S, Boonyuen N, Thumanu K, Pornputtapong N. Development of a machine learning model for systematics of Aspergillus section Nigri using synchrotron radiation-based fourier transform infrared spectroscopy. Heliyon 2024; 10:e26812. [PMID: 38439823 PMCID: PMC10909729 DOI: 10.1016/j.heliyon.2024.e26812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Aspergillus section Nigri (black aspergilli) fungi are economically important food spoilage agents. Some species in this section also produce harmful mycotoxins in food. However, it is remarkably difficult to identify this fungal group at the species level using morphological and chemical characteristics. The molecular approach for classification is preferable; however, it is time-consuming, making it inappropriate for rapid testing of large numbers of samples. To address this, we explored synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR) as a rapid method for obtaining data suitable for species classification. SR-FTIR data were obtained from the mycelia/conidia of 22 black aspergilli species. The Convolutional Neural Network (CNN) approach, a supervised deep learning algorithm, was used with SR-FTIR data to classify black aspergilli at the species level. A subset of the data was used to train the CNN model, and the model classification performance was evaluated using the validation data subsets. The model demonstrated a 95.97% accuracy in species classification on the testing (blind) data subset. The technique presented herein could be an alternative method for identifying problematic black aspergilli in the food industry.
Collapse
Affiliation(s)
- Salilaporn Nuankaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, 30000, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Mageswari A, Choi Y, Thao LD, Lee D, Kim DH, Park MS, Hong SB. Re-Identification of Aspergillus Subgenus Circumdati Strains in Korea Led to the Discovery of Three Unrecorded Species. MYCOBIOLOGY 2023; 51:288-299. [PMID: 37929011 PMCID: PMC10621256 DOI: 10.1080/12298093.2023.2257997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/17/2023] [Indexed: 11/07/2023]
Abstract
Aspergillus is one of the largest and diverse genera of fungi with huge economical, biotechnological, and social significance. Taxonomically, Aspergillus is divided into six subgenera comprising 27 sections. In this study, 235 strains of Aspergillus subgenus Circumdati (section: Candidi, Circumdati, Flavi, Flavipedes, Nigri, and Terrei) preserved at the Korean Agricultural Culture Collection (KACC) were analyzed and re-identified using a combined dataset of partial β-tubulin (BenA), Calmodulin (CaM) gene sequences and morphological data. We confirmed nineteen species to be priorly reported in Korea (A. neotritici, A. terreus, A. floccosus, A. allahabadii, A. steynii, A. westerdijkiae, A. ochraceus, A. ostianus, A. sclerotiorum, A. luchuensis, A. tubingensis, A. niger, A. welwitschiae, A. japonicus, A. nomius, A. tamarii, A. parasiticus, A. flavi, and A. oryzae). Among the studied strains, three species (A. subalbidus, A. iizukae, and A. uvarum), previously unreported or not officially documented, were discovered in Korea, to the best of our knowledge. We have given a detailed description of the characteristic features of the three species, which remain uncharted in Korea.
Collapse
Affiliation(s)
- Anbazhagan Mageswari
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Yunhee Choi
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Le Dinh Thao
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
- Plant Protection Research Institute, Hanoi, Vietnam
| | - Daseul Lee
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Dong-Hyun Kim
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Myung Soo Park
- Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju, South Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| |
Collapse
|
4
|
Wang X, Jarmusch SA, Frisvad JC, Larsen TO. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in Aspergillus section Nigri. Nat Prod Rep 2023; 40:237-274. [PMID: 35587705 DOI: 10.1039/d1np00074h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.
Collapse
Affiliation(s)
- Xinhui Wang
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Jens C Frisvad
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Multiplex PCR Identification of Aspergillus cristatus and Aspergillus chevalieri in Liupao Tea Based on Orphan Genes. Foods 2022; 11:foods11152217. [PMID: 35892804 PMCID: PMC9332452 DOI: 10.3390/foods11152217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
“Golden flower” fungi in dark tea are beneficial to human health. The rapid identification method of “golden flower” fungi can verify the quality of dark tea products and ensure food safety. In this study, 6 strains were isolated from Liupao tea. They were respectively identified as A. cristatus, A. chevalieri, and A. pseudoglaucus. A. pseudoglaucus was reported as Liupao tea “golden flower” fungus for the first time. It was found that the ITS and BenA sequences of A. cristatus and A. chevalieri were highly conserved. It is difficult to clearly distinguish these closely related species by ITS sequencing. To rapidly identify species, multiplex PCR species-specific primers were designed based on orphan genes screened by comparative genomics analysis. Multiplex PCR results showed that orphan genes were specific and effective for the identification of A. cristatus and A. chevalieri isolated from Liupao tea and Fu brick tea. We confirmed that orphan genes can be used for identification of closely related Aspergillus species. Validation showed that the method is convenient, rapid, robust, sequencing-free, and economical. This promising method will be greatly beneficial to the dark tea processing industry and consumers.
Collapse
|
6
|
Kelman M, Renaud J, Baines D, Yeung KC, Miller J, Sumarah M. Mycotoxin determination in fungal contaminated Canadian silage toxic to dairy cows and goats. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silage has become a key component of year-long animal feed in Canada and parts of northern Europe. It provides several advantages to farmers over traditional feed components, such as increased digestibility, higher nutrient content and preservation of the forages to meet seasonal feeding demands. Some ensiled materials can contain toxic fungal metabolites resulting from ‘in field’ contamination. In addition, when improperly stored or exposed to air during the feedout stage, silage is highly susceptible to aerobic spoilage by yeasts and filamentous fungi resulting in lower nutrient value and further mycotoxin contamination. In this study, silage samples were collected from 25 Canadian dairy goat and cattle farms where animals experienced feed-related health issues. Twenty-six unique fungal species were isolated from these samples, with the majority being Penicillium. High resolution liquid chromatography tandem mass spectrometry (HRLC-MS/MS) was used to identify a total of 125 known mycotoxins and fungal secondary metabolites from these silage samples, many of which were not produced by the 26 isolated filamentous fungi grown in agar cultures. Various mycotoxins resulting from preharvest contamination were detected, including ergot alkaloids, fumonisins and trichothecenes, some in high concentrations. Toxins produced after harvest included roquefortine C, citrinin and penitrem A. This study reinforces the need for farmers to implement best management practices to minimise fungal contamination and the resulting mycotoxin deposition in their crop and stored feed to maintain animal health.
Collapse
Affiliation(s)
- M.J. Kelman
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - J.B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - D. Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South Lethbridge, Alberta T1J 4B1, Canada
| | - K.K.-C. Yeung
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - J.D Miller
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - M.W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| |
Collapse
|
7
|
Subba P, Saha P, Karthikkeyan G, Biswas M, Prasad TSK, Roy-Barman S. Metabolite profiling reveals overexpression of the global regulator, MoLAEA leads to increased synthesis of metabolites in Magnaporthe oryzae. J Appl Microbiol 2022; 132:3825-3838. [PMID: 35261134 DOI: 10.1111/jam.15518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
AIMS To study the altered metabolic pathways and metabolites produced in overexpression and knockdown mutants of a global regulator named MoLAEA, which was recently found to regulate the expression of the genes involved in secondary metabolism in one of the most destructive plant pathogens, Magnaporthe oryzae. METHODS AND RESULTS Mass spectrometry-based global untargeted metabolomic profiling was used to identify altered metabolites. Metabolites were extracted from the mutant strains of MoLAEA using two extraction methods viz., aqueous and organic extraction and data acquired using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive and negative polarities. Levels of metabolites involved in various biological pathways such as amino acid as well as polyamine biosynthesis, fatty acid and pyrimidine metabolism showed remarkable change in the mutant strains. Interestingly, metabolites involved in stress responses were produced in higher quantities in the overexpression strain whereas, certain overproduced metabolites were associated with distinctive phenotypic changes in the overexpression strain compared to the wild-type. Further, the expression of several genes involved in the stress responses was found to have higher expression in the overexpression strain. CONCLUSIONS The global regulator MoLAEA is involved in secondary metabolism in the plant pathogen M. oryzae such that the mutant strains showed altered level of several metabolites involved in the biosynthesis pathways compared to the wild-type. Also, metabolites involved in stress responses were overproduced in the overexpression strain and this can be seen in the higher growth in media amended with stress-inducing agents or higher expression of genes involved in stress response in the overexpression strain compared to the wild-type. SIGNIFICANCE AND IMPACT This is the first report of metabolite profiling relative to the global regulation of secondary metabolism in M. oryzae, where secondary metabolism is poorly understood. It opens up avenues for more relevant investigations on the genetic regulation of several of the metabolites found in the analysis, which have not been previously characterized in M. oryzae.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Pallabi Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore-575018, India
| | - Mousumi Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | | | | |
Collapse
|
8
|
Márquez-Benavides L, Saucedo-Martínez BC, Sánchez-Yáñez JM. Detección de Aspergillus fumigatus en Hordeum vulgare comercializado en Morelia, Mich, México con potencial para sintetizar ocratoxina A. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2022. [DOI: 10.36610/j.jsars.2022.130100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Reis T, Tralamazza S, Coelho E, Zorzete P, Corrêa B. Early expression of the aflatoxin gene cluster in Aspergillus nomiae isolated from Brazil nut. Toxicon 2022; 209:36-42. [DOI: 10.1016/j.toxicon.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
10
|
EL-Shahid ZA, Abd EL-Hady FK, Fayad W, Abdel-Aziz MS, Abd EL-Azeem EM, Ahmed EK. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Potentials Using the One Strain Many Compounds Technique for Red Sea Soft Corals Associated Fungi’ Secondary Metabolites and Chemical Composition Correlations. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2021; 11:467-489. [DOI: 10.1080/22311866.2021.1978862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 09/01/2023]
Affiliation(s)
- Zeinab A. EL-Shahid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Faten K. Abd EL-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, Egypt
| | | | | | - Emad K. Ahmed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China. Toxins (Basel) 2021; 13:678. [PMID: 34678973 PMCID: PMC8541519 DOI: 10.3390/toxins13100678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia;
| | | | - Yougquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chengrong Nie
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Mingjun He
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Yang Liu
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| |
Collapse
|
12
|
Wang C, Yang J, Qin J, Yang Y. Eco-Friendly Nanoplatforms for Crop Quality Control, Protection, and Nutrition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004525. [PMID: 33977068 PMCID: PMC8097385 DOI: 10.1002/advs.202004525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Indexed: 05/27/2023]
Abstract
Agricultural chemicals have been widely utilized to manage pests, weeds, and plant pathogens for maximizing crop yields. However, the excessive use of these organic substances to compensate their instability in the environment has caused severe environmental consequences, threatened human health, and consumed enormous economic costs. In order to improve the utilization efficiency of these agricultural chemicals, one strategy that attracted researchers is to design novel eco-friendly nanoplatforms. To date, numerous advanced nanoplatforms with functional components have been applied in the agricultural field, such as silica-based materials for pesticides delivery, metal/metal oxide nanoparticles for pesticides/mycotoxins detection, and carbon nanoparticles for fertilizers delivery. In this review, the synthesis, applications, and mechanisms of recent eco-friendly nanoplatforms in the agricultural field, including pesticides and mycotoxins on-site detection, phytopathogen inactivation, pest control, and crops growth regulation for guaranteeing food security, enhancing the utilization efficiency of agricultural chemicals and increasing crop yields are highlighted. The review also stimulates new thinking for improving the existing agricultural technologies, protecting crops from biotic and abiotic stress, alleviating the global food crisis, and ensuring food security. In addition, the challenges to overcome the constrained applications of functional nanoplatforms in the agricultural field are also discussed.
Collapse
Affiliation(s)
- Chao‐Yi Wang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jie Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Jian‐Chun Qin
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| | - Ying‐Wei Yang
- College of Chemistry and College of Plant ScienceJilin UniversityChangchun130012P. R. China
| |
Collapse
|
13
|
Mandal V, Adhikary R, Maiti PK, Mandal S, Mandal V. Morpho-biochemical and molecular characterization of two new strains of Aspergillus fumigatus nHF-01 and A. fumigatus PPR-01 producing broad-spectrum antimicrobial compounds. Braz J Microbiol 2021; 52:905-917. [PMID: 33715141 DOI: 10.1007/s42770-021-00439-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
The main objective of the study is to characterize two new strains of Aspergillus fumigatus through morphometric, biochemical, molecular methods, and to evaluate their antimicrobial potentiality. The micro-morphotaxonomy, growth, and metabolic behavior of the strains, nHF-01 and PPR-01, were studied in different growth conditions and compared with standard strain. The molecular characterization was done by sequencing the ncrDNA ITS1-5.8S-ITS2 and D1-D2 domains of the nc 28S rDNA region and compared with a secondary structure-based phylogenetic tree. The secretory antimicrobials and pigments were characterized by TLC, UV-Vis, and FT-IR spectroscopy. Both the strains showed distinct growth patterns in different nutritional media and could assimilate a wide range of carbohydrates with distinctive biochemical properties. The molecular characterization revealed the strains, nHF-01 and PPR-01, as Aspergillus fumigatus (GenBank Accession No. MN190286 and MN190284, respectively). It was observed that the strain nHF-01 produces red to brownish pigments having mild antimicrobial activity while the strain PPR-01 does not represent such transformations. The extractable compounds had a significant antimicrobial potentiality against the human pathogenic bacteria. From this analysis, it can be concluded that the nHF-01 and PPR-01 strains are distinct from other A. fumigatus by their unique characters. Large-scale production and detailed molecular elucidation of the antimicrobial compounds may lead to the discovery of new antimicrobial compounds from these strains.
Collapse
Affiliation(s)
- Vivekananda Mandal
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, WB, 732 103, India
| | - Rajsekhar Adhikary
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, WB, 732 103, India
| | - Pulak Kumar Maiti
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
| | - Vivekananda Mandal
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, WB, 732 103, India.
| |
Collapse
|
14
|
Emadi A, Jayedi A, Mirmohammadkhani M, Abdolshahi A. Aflatoxin reduction in nuts by roasting, irradiation and fumigation: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 62:5056-5066. [PMID: 33543987 DOI: 10.1080/10408398.2021.1881436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study aimed to investigate the reduction of aflatoxins as a potent hazard for human health in nuts during roasting, irradiation, and fumigation processes. A systematic search was performed in PubMed, Scopus, and ISI Web of Science on 6 April 2020 to find interventional studies assessing the effects of roasting, fumigation, and irradiation methods on total and individual aflatoxins concentration in nuts. Study-specific results were pooled by using a random-effects model. A total of 19 trials were included in the analyses. In most studies, the influence of method on aflatoxin reduction was assessed on peanuts. The results showed that the roasting method significantly reduced aflatoxin B1, B2, G1, and G2 concentrations by 46.91%, 30.66%, 40.88%, and 26.19%, respectively. Such results for the fumigation method were 20.88% and 22.56% for aflatoxin B1 and aflatoxin total, respectively. There was a 58.60% reduction in aflatoxin B1 and a 74.97% reduction in aflatoxin total concentrations in nuts following the irradiation method. The findings indicated that the evaluated processes could be influential for reducing aflatoxin levels in nuts.
Collapse
Affiliation(s)
- Alireza Emadi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran.,Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Jayedi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
15
|
Nleya N, Ngoma L, Adetunji MC, Mwanza M. Biodiversity of Aflatoxigenic Aspergillus Species in Dairy Feeds in Bulawayo, Zimbabwe. Front Microbiol 2021; 11:599605. [PMID: 33552013 PMCID: PMC7859627 DOI: 10.3389/fmicb.2020.599605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
The presence of molds, especially certain species of Aspergillus, in food commodities may contribute to aflatoxin contamination. The aim of this study was to determine the biodiversity of Aspergillus species in dairy feeds from farms in select locations in Zimbabwe and assess their aflatoxin production potential using a polyphasic approach. A total of 96 feed samples were collected, which consisted of dairy feed concentrate, mixed ration, brewers’ spent grain, and grass from 13 farms during the dry season (August–October, 2016) and the following rainy season (January–March, 2017). A total of 199 presumptive isolates representing four sections from genus Aspergillus (Nigri, Fumigati, Flavi, and Circumdati) were recovered from the feeds. Section Flavi, which includes several aflatoxin producers, constituted 23% (n = 46) of the isolates. Species from this section were A. flavus, A. nomius, A. oryzae, A. parasiticus, and A. parvisclerotigenus, and 39 (84.4%) of these showed evidence of aflatoxin production in plate assays. Of the 46 section Flavi isolates examined, some lacked one or more of the five targeted aflatoxin cluster genes (aflD, aflR, aflS, aflM, and aflP). The presence of the five genes was as follows: aflD (76.9%), aflR (48.7%), aflS (74.4%), aflM (64.1%), and aflP (79.5%). This study highlights the species diversity of aflatoxigenic fungi that have the potential to contaminate different types of feed for dairy cows. Our findings underscore the importance of preventing contamination of feedstuffs by these fungi so that aflatoxins do not end up in the diets of consumers.
Collapse
Affiliation(s)
- Nancy Nleya
- Department of Animal Health, Northwest University, Mmabatho, South Africa.,Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Lubanza Ngoma
- Department of Animal Health, Northwest University, Mmabatho, South Africa.,Food Security and Food Safety Niche Area, Northwest University, Mmabatho, South Africa
| | - Modupeade C Adetunji
- Department of Animal Health, Northwest University, Mmabatho, South Africa.,Department of Biological Sciences, Trinity University, Lagos, Nigeria
| | - Mulunda Mwanza
- Department of Animal Health, Northwest University, Mmabatho, South Africa.,Food Security and Food Safety Niche Area, Northwest University, Mmabatho, South Africa
| |
Collapse
|
16
|
Seidl B, Bueschl C, Schuhmacher R. The Comprehensive and Reliable Detection of Secondary Metabolites in Trichoderma reesei: A Tool for the Discovery of Novel Substances. Methods Mol Biol 2021; 2234:271-295. [PMID: 33165793 DOI: 10.1007/978-1-0716-1048-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A method based on reversed phase high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (RP-HPLC-ESI-HRMS) for the comprehensive and reliable detection of secondary metabolites of Trichoderma reesei cultured in synthetic minimal liquid medium is presented. A stable isotope-assisted (SIA) workflow is used, which allows the automated, comprehensive extraction of truly fungal metabolite-derived LC-MS signals from the acquired chromatographic data. The subsequent statistical data analysis and a typical outcome of such a metabolomics data evaluation are shown by way of example in a previously published study on the influence of the pleiotropic regulator transcription factor Xylanase promoter binding protein 1 (Xpp1) in T. reesei on secondary metabolism.
Collapse
Affiliation(s)
- Bernhard Seidl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria.
| |
Collapse
|
17
|
da Silva JJ, Iamanaka BT, Ferranti LS, Massi FP, Taniwaki MH, Puel O, Lorber S, Frisvad JC, Fungaro MHP. Diversity within Aspergillus niger Clade and Description of a New Species: Aspergillus vinaceus sp. nov. J Fungi (Basel) 2020; 6:jof6040371. [PMID: 33348541 PMCID: PMC7767288 DOI: 10.3390/jof6040371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes. To elucidate the taxonomic position of these haplotypes, two other loci, part of the beta-tubulin gene and part of the RNA polymerase II gene, were sequenced and used to perform an analysis of Genealogical Concordance Phylogenetic Species Recognition. This analysis enabled the recognition of two new phylogenetic species. One of the new phylogenetic species showed morphological and chemical distinguishable features in comparison to the known species A. welwitschiae and A. niger. This species is illustrated and described as Aspergillus vinaceus sp. nov. In contrast to A. niger and A. welwitschiae, A. vinaceus strains produced asperazine, but none of them were found to produce ochratoxin A and/or fumonisins. Sclerotium production on laboratory media, which does not occur in strains of A. niger and A. welwitschiae, and strictly sclerotium-associated secondary metabolites (14-Epi-hydroxy-10,23-dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydro-21-oxo-aflavinine) were found in A. vinaceus. The strain type of A. vinaceus sp. nov. is ITAL 47,456 (T) (=IBT 35556).
Collapse
Affiliation(s)
- Josué J. da Silva
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Beatriz T. Iamanaka
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Larissa S. Ferranti
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Fernanda P. Massi
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Marta H. Taniwaki
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Maria Helena P. Fungaro
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
- Correspondence: ; Tel.: +55-4399-955-4100
| |
Collapse
|
18
|
Barros Correia ACR, Barbosa RN, Frisvad JC, Houbraken J, Souza-Motta CM. The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01605-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Ezekiel CN, Kraak B, Sandoval-Denis M, Sulyok M, Oyedele OA, Ayeni KI, Makinde OM, Akinyemi OM, Krska R, Crous PW, Houbraken J. Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals, legumes and soils in north-central Nigeria. MycoKeys 2020; 67:95-124. [PMID: 32565683 PMCID: PMC7295817 DOI: 10.3897/mycokeys.67.52716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mycological investigation of various foods (mainly cowpea, groundnut, maize, rice, sorghum) and agricultural soils from two states in north-central Nigeria (Nasarawa and Niger), was conducted in order to understand the role of filamentous fungi in food contamination and public health. A total of 839 fungal isolates were recovered from 84% of the 250 food and all 30 soil samples. Preliminary identifications were made, based on macro- and micromorphological characters. Representative strains (n = 121) were studied in detail using morphology and DNA sequencing, involving genera/species-specific markers, while extrolite profiles using LC-MS/MS were obtained for a selection of strains. The representative strains grouped in seven genera (Aspergillus, Fusarium, Macrophomina, Meyerozyma, Neocosmospora, Neotestudina and Phoma). Amongst the 21 species that were isolated during this study was one novel species belonging to the Fusariumfujikuroi species complex, F.madaensesp. nov., obtained from groundnut and sorghum in Nasarawa state. The examined strains produced diverse extrolites, including several uncommon compounds: averantinmethylether in A.aflatoxiformans; aspergillimide in A.flavus; heptelidic acid in A.austwickii; desoxypaxillin, kotanin A and paspalitrems (A and B) in A.aflatoxiformans, A.austwickii and A.cerealis; aurasperon C, dimethylsulochrin, fellutanine A, methylorsellinic acid, nigragillin and pyrophen in A.brunneoviolaceus; cyclosporins (A, B, C and H) in A.niger; methylorsellinic acid, pyrophen and secalonic acid in A.piperis; aspulvinone E, fonsecin, kojic acid, kotanin A, malformin C, pyranonigrin and pyrophen in A.vadensis; and all compounds in F.madaense sp. nov., Meyerozyma, Neocosmospora and Neotestudina. This study provides snapshot data for prediction of food contamination and fungal biodiversity exploitation.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria.,Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria University of Natural Resources and Life Sciences Vienna Tulln Austria
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| | - Marcelo Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria University of Natural Resources and Life Sciences Vienna Tulln Austria
| | - Oluwawapelumi A Oyedele
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Kolawole I Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Oluwadamilola M Makinde
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Oluwatosin M Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria Babcock University Ilishan Remo Nigeria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria University of Natural Resources and Life Sciences Vienna Tulln Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK Queen's University Belfast Belfast United Kingdom
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands
| |
Collapse
|
20
|
Ezekiel CN, Oyedele OA, Kraak B, Ayeni KI, Sulyok M, Houbraken J, Krska R. Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Front Microbiol 2020; 11:615. [PMID: 32328050 PMCID: PMC7161469 DOI: 10.3389/fmicb.2020.00615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Low moisture content ready-to-eat foods vended in Nigerian markets could be pre-packaged or packaged at point of sale. These foods are widely and frequently consumed across Nigeria as quick foods. Despite their importance in the daily diets of Nigerians, a comprehensive study on the diversity of fungi, fungal metabolite production potential, and mycotoxin contamination in the foods has not yet been reported. Therefore, this study assessed the diversity of fungi in 70 samples of low moisture content ready-to-eat foods [cheese balls, garri (cassava-based), granola (a mix of cereals and nuts) and popcorn] in Nigeria by applying a polyphasic approach including morphological examination, genera/species-specific gene marker sequencing and secondary metabolite profiling of fungal cultures. Additionally, mycotoxin levels in the foods were determined by LC-MS/MS. Fungal strains (n = 148) were recovered only from garri. Molecular analysis of 107 representative isolates revealed 27 species belonging to 12 genera: Acremonium, Allophoma, Aspergillus, Cladosporium, Fusarium, Microdochium, Penicillium, Sarocladium, Talaromyces, and Tolypocladium in the Ascomycota, and Fomitopsis and Trametes in the Basidiomycota. To the best of our knowledge Allophoma, Fomitopsis, Microdochium, Tolypocladium, and Trametes are reported in African food for the first time. A total of 21 uncommon metabolites were found in cultures of the following species: andrastin A and sporogen AO1 in Aspergillus flavus; paspalin in A. brunneoviolaceus; lecanoic acid and rugulusovin in A. sydowii; sclerotin A in P. citrinum and Talaromyces siamensis; barceloneic acid, festuclavine, fumigaclavine, isochromophilons (IV, VI, and IX), ochrephilone, sclerotioramin, and sclerotiorin in P. sclerotium; epoxyagroclavine, infectopyron, methylorsellinic acid and trichodermamide C in P. steckii; moniliformin and sporogen AO1 in P. copticola; and aminodimethyloctadecanol in Tolypocladium. Twenty-four mycotoxins in addition to other 73 fungal and plant toxins were quantified in the foods. In garri, cheeseballs, popcorn and granola were 1, 6, 12, and 23 mycotoxins detected, respectively. Deoxynivalenol, fumonisins, moniliformin, aflatoxins and citrinin contaminated 37, 31, 31, 20, and 14% of all food samples, respectively. Overall, citrinin had the highest mean concentration of 1481 μg/kg in the foods, suggesting high citrinin exposures in the Nigerian populace. Fungal and mycotoxin contamination of the foods depend on pre-food and post-food processing practices.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | | | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, Netherlands
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, Netherlands
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
21
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
22
|
Bouti K, Verheecke‐Vaessen C, Mokrane S, Meklat A, Djemouai N, Sabaou N, Mathieu F, Riba A. Polyphasic characterization of
Aspergillus
section
Flavi
isolated from animal feeds in Algeria. J Food Saf 2019. [DOI: 10.1111/jfs.12743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Karima Bouti
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Carol Verheecke‐Vaessen
- Applied Mycology Group, Environment and AgriFood ThemeCranfield University Cranfield UK
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS Toulouse France
| | - Salim Mokrane
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Département de Biologie et Physiologie Cellulaire, Faculté des Sciences de la Nature et de la VieUniversité Saad Dahlab Blida Algeria
| | - Nadjette Djemouai
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Laboratoire de Biologie et Physiologie des OrganismesUniversité des Sciences et de la Technologie Houari Boumediene Bab Ezzouar (USTHB) Algiers Algeria
| | - Nasserdine Sabaou
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
| | - Florence Mathieu
- Applied Mycology Group, Environment and AgriFood ThemeCranfield University Cranfield UK
| | - Amar Riba
- Laboratoire de Biologie des Systèmes MicrobiensEcole Normale Supérieure de Kouba Alger Algeria
- Département de Biologie, Faculté des SciencesUniversité M'Hamed Bougara Boumerdès Algeria
| |
Collapse
|
23
|
Effect of temperature on growth, gene expression, and aflatoxin production by Aspergillus nomius isolated from Brazil nuts. Mycotoxin Res 2019; 36:173-180. [PMID: 31828531 DOI: 10.1007/s12550-019-00380-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Aspergillus nomius is a potent producer of aflatoxins B and G and is one of the most common species of fungi found in Brazil nuts. Temperature is considered a major abiotic factor that influences fungal colonization and aflatoxin production in nuts during pre- and post-harvest. Therefore, assessment of the response of aflatoxigenic species to different temperatures is important to add information about the understanding of aflatoxin production by Aspergillus nomius and may help in the development of new strategies to prevent aflatoxin contamination. The aim of this study was to evaluate the effect of temperature (25, 30, and 35 °C) on the radial growth, aflatoxin production (B and G), and aflatoxin gene expression of seven A. nomius strains isolated from Brazil nuts. The optimal temperature for growth was 30 °C and was also the best condition for the expression of the aflR, aflD, and aflQ genes. However, maximum production of aflatoxins B and G occurred at 25 °C. Interestingly, high expression of the structural gene aflQ was observed in the maximum aflatoxin production condition (25 °C). The present study demonstrates that temperature may influence aflatoxin production by A. nomius. The combination of molecular and physiological data aids the understanding of the aflatoxigenic species response to different temperatures and can assist in predicting the driving environmental factors that influence aflatoxin contamination of Brazil nuts.
Collapse
|
24
|
Tapfuma KI, Uche-Okereafor N, Sebola TE, Hussan R, Mekuto L, Makatini MM, Green E, Mavumengwana V. Cytotoxic activity of crude extracts from Datura stramonium's fungal endophytes against A549 lung carcinoma and UMG87 glioblastoma cell lines and LC-QTOF-MS/MS based metabolite profiling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:330. [PMID: 31752824 PMCID: PMC6873518 DOI: 10.1186/s12906-019-2752-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/11/2019] [Indexed: 02/12/2023]
Abstract
BACKGROUND Endophytic fungi are a proven source of bioactive secondary metabolites that may provide lead compounds for novel drug discovery. In this study, crude extracts from fungal endophytes isolated from Datura stramonium were evaluated for cytotoxic activity on two human cancer cell lines. METHODS Fungal endophytes were isolated from surface sterilized aerial parts of D. stramonium and identified using molecular, morphological and phylogenetic methods. Ethyl acetate crude extracts from these isolates were evaluated for cytotoxic activity on A549 lung carcinoma and UMG87 glioblastoma cell lines. Metabolite profiling was then performed by liquid chromatography coupled to quadrupole time-of-flight with tandem mass spectrometry (LC-QTOF-MS/MS) for the cytotoxic crude extract. RESULTS Eleven fungal endophytes were identified from D. stramonium. Significant cytotoxicity was only observed from the crude extract of Alternaria sp. KTDL7 on UMG87 glioblastoma cells (IC50 = 21.49 μg/ml). Metabolite profiling of this crude extract tentatively revealed the presence of the following secondary metabolites: 1,8-dihydroxynaphthalene (1), anserinone B (2), phelligridin B (3), metacytofilin (4), phomopsidin (5) and vermixocin A (6). Compounds 2 and 3 have been shown to be cytotoxic in literature. CONCLUSION The findings in this study suggest that the crude extract of Alternaria sp. KTDL7 possesses compound(s) cytotoxic to glioblastoma multiforme cells. Future studies to isolate and characterize the cytotoxic compound(s) from this fungus could result in lead development of a fungal-based drug for glioblastoma multiforme treatment.
Collapse
|
25
|
de Almeida ÂB, Corrêa IP, Furuie JL, de Farias Pires T, do Rocio Dalzoto P, Pimentel IC. Inhibition of growth and ochratoxin A production in Aspergillus species by fungi isolated from coffee beans. Braz J Microbiol 2019; 50:1091-1098. [PMID: 31515726 DOI: 10.1007/s42770-019-00152-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin found in several agricultural commodities. Produced by Aspergillus spp., it is nephrotoxic and hepatotoxic and can be carcinogenic. Preventive measures are preventing fungal growth and OTA production. In this study, fungal strains (Rhizopus oryzae, Lichtheimia ramosa, Aspergillus westerdijkiae, Aspergillus niger, Aspergillus tamarii, Aspergillus sp., and Aspergillus fumigatus) isolated from coffee beans were identified for their abilities to inhibit the growth of Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus carbonarius, and Aspergillus niger, and OTA production. All fungi strains tested were able to inhibit growth of the four Aspergillus species and OTA production, where A. niger showed the best results in both tests. L. ramosa showed the lowest growth-reducing potential, while the other fungal strains had a growth-reducing potential higher than 70% against all Aspergillus species tested. Regarding OTA production, L. ramosa and Aspergillus sp. completely inhibited the mycotoxin production by A. ochraceus and non-toxigenic strain A. niger completely inhibited OTA production by A. niger. Our findings indicate that the strains tested can be used as an alternative means to control growth of OTA-producing fungi and production of the mycotoxin in coffee beans.
Collapse
Affiliation(s)
- Ângela Bozza de Almeida
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Isabela Pauluk Corrêa
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Jason Lee Furuie
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil.
| | - Thiago de Farias Pires
- Laboratório de Genética e Cardiologia Molecular, Universidade de São Paulo, Instituto do Coração, São Paulo, Brazil
| | - Patrícia do Rocio Dalzoto
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| | - Ida Chapaval Pimentel
- Departamento de Patologia Básica, Laboratório de Microbiologia e Biologia Molecular, Universidade Federal do Paraná, Setor de Ciências Biológicas, Paraná, Brazil
| |
Collapse
|
26
|
Frisvad J, Hubka V, Ezekiel C, Hong SB, Nováková A, Chen A, Arzanlou M, Larsen T, Sklenář F, Mahakarnchanakul W, Samson R, Houbraken J. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 2019; 93:1-63. [PMID: 30108412 PMCID: PMC6080641 DOI: 10.1016/j.simyco.2018.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Rémo, Nigeria
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | - A. Nováková
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A.J. Chen
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - M. Arzanlou
- Department of Plant Protection, University of Tabriz, Tabriz, Iran
| | - T.O. Larsen
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - W. Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
27
|
Nepal B, Myers R, Lohmar JM, Puel O, Thompson B, Van Cura M, Calvo AM. Characterization of the putative polysaccharide synthase CpsA and its effects on the virulence of the human pathogen Aspergillus fumigatus. PLoS One 2019; 14:e0216092. [PMID: 31026268 PMCID: PMC6485754 DOI: 10.1371/journal.pone.0216092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/12/2019] [Indexed: 11/18/2022] Open
Abstract
The fungus Aspergillus fumigatus is a ubiquitous opportunistic human pathogen capable of causing a life-threatening disease called invasive aspergillosis, or IA, with an associated 40-90% mortality rate in immunocompromised patients. Of the approximately 250 species known in the genus Aspergillus, A. fumigatus is responsible for up to 90% of IA infections. This study focuses on examining the role of the putative polysaccharide synthase cpsA gene in A. fumigatus virulence. Additionally, we evaluated its role in cellular processes that influence invasion and colonization of host tissue. Importantly, our results support that cpsA is indispensable for virulence in A. fumigatus infection of non-neutropenic hosts. Our study revealed that cpsA affects growth and sporulation in this fungus. Absence of cpsA resulted in a drastic reduction in conidiation, and forced overexpression of cpsA produced partially fluffy colonies with low sporulation levels, suggesting that wild-type cpsA expression levels are required for proper conidiation in this fungus. This study also showed that cpsA is necessary for normal cell wall integrity and composition. Furthermore, both deletion and overexpression of cpsA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, and caused increased sensitivity to oxidative stress. Interestingly, metabolomics analysis indicated that cpsA affects A. fumigatus secondary metabolism. Forced overexpression of cpsA resulted in a statistically significant difference in the production of fumigaclavine A, fumigaclavine B, fumigaclavine C, verruculogen TR-2, and tryprostatin A.
Collapse
Affiliation(s)
- Binita Nepal
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Ryan Myers
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Jessica M. Lohmar
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Brett Thompson
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Matthew Van Cura
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, United States of America
- * E-mail:
| |
Collapse
|
28
|
Mitema A, Okoth S, Rafudeen SM. The Development of a qPCR Assay to Measure Aspergillus flavus Biomass in Maize and the Use of a Biocontrol Strategy to Limit Aflatoxin Production. Toxins (Basel) 2019; 11:toxins11030179. [PMID: 30934573 PMCID: PMC6468655 DOI: 10.3390/toxins11030179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Aspergillus flavus colonisation of maize can produce mycotoxins that are detrimental to both human and animal health. Screening of maize lines, resistant to A. flavus infection, together with a biocontrol strategy, could help minimize subsequent aflatoxin contamination. We developed a qPCR assay to measure A. flavus biomass and showed that two African maize lines, GAF4 and KDV1, had different fungal loads for the aflatoxigenic isolate (KSM014), fourteen days after infection. The qPCR assay revealed no significant variation in A. flavus biomass between diseased and non-diseased maize tissues for GAF4, while KDV1 had a significantly higher A. flavus biomass (p < 0.05) in infected shoots and roots compared to the control. The biocontrol strategy using an atoxigenic isolate (KSM012) against the toxigenic isolate (KSM014), showed aflatoxin production inhibition at the co-infection ratio, 50:50 for both maize lines (KDV1 > 99.7% and GAF ≥ 69.4%), as confirmed by bioanalytical techniques. As far as we are aware, this is the first report in Kenya where the biomass of A. flavus from maize tissue was detected and quantified using a qPCR assay. Our results suggest that maize lines, which have adequate resistance to A. flavus, together with the appropriate biocontrol strategy, could limit outbreaks of aflatoxicoses.
Collapse
Affiliation(s)
- Alfred Mitema
- Plant Stress Laboratory 204/207, Department of Molecular and Cell Biology, MCB Building, Upper Campus, University of Cape Town, Private bag X3, Rondebosch, Cape Town 7701, South Africa.
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
| | - Suhail M Rafudeen
- Plant Stress Laboratory 204/207, Department of Molecular and Cell Biology, MCB Building, Upper Campus, University of Cape Town, Private bag X3, Rondebosch, Cape Town 7701, South Africa.
| |
Collapse
|
29
|
Sanitá Lima M, Coutinho de Lucas R, Lima N, Polizeli MDLTDM, Santos C. Fungal Community Ecology Using MALDI-TOF MS Demands Curated Mass Spectral Databases. Front Microbiol 2019; 10:315. [PMID: 30873137 PMCID: PMC6401475 DOI: 10.3389/fmicb.2019.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Matheus Sanitá Lima
- Department of Biology, University of Western Ontario, London, ON, Canada.,Biology Department, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rosymar Coutinho de Lucas
- Biology Department, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Nelson Lima
- CEB - Biological Engineering Centre, University of Minho, Braga, Portugal
| | | | - Cledir Santos
- Department of Chemical Science and Natural Resources, BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
30
|
Adekoya I, Njobeh P, Obadina A, Landschoot S, Audenaert K, Okoth S, De Boevre M, De Saeger S. Investigation of the Metabolic Profile and Toxigenic Variability of Fungal Species Occurring in Fermented Foods and Beverage from Nigeria and South Africa Using UPLC-MS/MS. Toxins (Basel) 2019; 11:E85. [PMID: 30717215 PMCID: PMC6409632 DOI: 10.3390/toxins11020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022] Open
Abstract
Fungal species recovered from fermented foods and beverage from Nigeria and South Africa were studied to establish their toxigenic potential in producing an array of secondary metabolites including mycotoxins (n = 49) that could compromise human and animal safety. In total, 385 fungal isolates were grown on solidified yeast extract sucrose agar. Their metabolites were extracted and analyzed via ultra-performance liquid chromatography tandem mass spectrometry. To examine the grouping of isolates and co-occurrence of metabolites, hierarchal clustering and pairwise association analysis was performed. Of the 385 fungal strains tested, over 41% were toxigenic producing different mycotoxins. A. flavus and A. parasiticus strains were the principal producers of aflatoxin B₁ (27⁻7406 µg/kg). Aflatoxin B₁ and cyclopiazonic acid had a positive association. Ochratoxin A was produced by 67% of the A. niger strains in the range of 28⁻1302 µg/kg. The sterigmatocystin producers found were A. versicolor (n = 12), A. amstelodami (n = 4), and A. sydowii (n = 6). Apart from P. chrysogenum, none of the Penicillium spp. produced roquefortine C. Amongst the Fusarium strains tested, F. verticillioides produced fumonisin B₁ (range: 77⁻218 µg/kg) meanwhile low levels of deoxynivalenol were observed. The production of multiple metabolites by single fungal species was also evident.
Collapse
Affiliation(s)
- Ifeoluwa Adekoya
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Adewale Obadina
- Department of Food Science and Technology, Federal University of Agriculture, PMB, 2240 Abeokuta, Nigeria.
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium.
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, B-9000 Ghent, Belgium.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box, Nairobi 30197, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
31
|
|
32
|
Silano V, Barat Baviera JM, Bolognesi C, Brüschweiler BJ, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Riviere G, Steffensen IL, Tlustos C, van Loveren H, Vernis L, Zorn H, Kärenlampi S, Marcon F, Penninks A, Smith A, Aguilera-Gómez M, Andryszkiewicz M, Arcella D, Kovalkovičová N, Liu Y, Rossi A, Engel KH, Chesson A. Safety evaluation of the food enzyme α-amylase from a genetically modified Aspergillus niger (strain NZYM-MC). EFSA J 2018; 16:e05451. [PMID: 32625727 PMCID: PMC7009399 DOI: 10.2903/j.efsa.2018.5451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The food enzyme alpha-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the genetically modified strain of Aspergillus niger by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and recombinant DNA. This α-amylase is intended to be used in starch processing for glucose syrups production, beverage alcohol (distilling) processes and baking processes. Residual amounts of total organic solids (TOS) are removed by distillation and by the purification steps applied during the production of glucose syrups, consequently dietary exposure was not calculated. For baking processes, based on the proposed maximum use levels, dietary exposure to the food enzyme-TOS was estimated to be up to 3.784 mg TOS/kg body weight per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rodents. The Panel identified a no observed adverse effect level (NOAEL) at the highest dose of 1,400 mg TOS/kg body weight (bw) per day. Similarity of the amino acid sequence to those of known allergens was searched and two matches were found. The Panel considered that, under the intended condition of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood of such reactions to occur is considered to be low. Based on the data provided, the removal of TOS during the production of glucose syrups and the derived margin of exposure for baking processes, the Panel concluded that this food enzyme does not raise safety concerns under the intended conditions of use.
Collapse
|
33
|
Silano V, Barat Baviera JM, Bolognesi C, Brüschweiler BJ, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Riviere G, Steffensen IL, Tlustos C, Van Loveren H, Vernis L, Zorn H, Jany KD, Kärenlampi S, Penninks A, Želježic D, Aguilera-Gómez M, Andryszkiewicz M, Arcella D, Gomes A, Kovalkovičová N, Liu Y, Rossi A, Engel KH, Chesson A. Safety of the food enzyme glucoamylase from a genetically modified Aspergillus niger (strain NZYM-BF). EFSA J 2018; 16:e05450. [PMID: 32625726 PMCID: PMC7009475 DOI: 10.2903/j.efsa.2018.5450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The food enzyme glucoamylase (glucan 1,4-α-glucosidase; EC 3.2.1.3) is produced with the genetically modified strain of Aspergillus niger by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and recombinant DNA. This glucoamylase is intended to be used in brewing processes and in starch processing for glucose syrups production. Residual amounts of total organic solids (TOS) are removed by the purification steps applied during the production of glucose syrups, consequently dietary exposure was not calculated. For brewing processes, based on the proposed maximum use levels, dietary exposure to the food enzyme-TOS was estimated to be below 3.627 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rodents. The Panel identified a no-observed-adverse-effect level (NOAEL) at the highest dose of 1,360 mg TOS/kg bw per day. Similarity of the amino acid sequence to those of known allergens was searched and one match was found. The Panel considered that, under the intended condition of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood of such reactions to occur is considered to be low. Based on the data provided, the removal of TOS during the production of glucose syrups and the derived margin of exposure for brewing processes, the Panel concluded that this food enzyme does not raise safety concerns under the intended conditions of use.
Collapse
|
34
|
Tantaoui-Elaraki A, Riba A, Oueslati S, Zinedine A. Toxigenic fungi and mycotoxin occurrence and prevention in food and feed in northern Africa – a review. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
North African countries (Algeria, Morocco and Tunisia) are surrounded by water bodies, such as the Mediterranean Sea and the Atlantic Ocean. Their climate is characterised by high temperatures and high relative humidity in some areas, which are environmental conditions favourable to fast fungal growth and toxinogenesis. This paper reports information on the presence of toxigenic fungi, mycotoxins (especially aflatoxins and ochratoxin A) and emerging Fusarium mycotoxins (enniatins, beauvericin and fusaproliferin) in some Northern African commodities that are largely consumed and were investigated thoroughly, especially raw cereals, bread, couscous, pasta, milk, spices, wine, beer, fruit juices, olives and olive oil, dried fruits and nuts, poultry feeds, etc. in the three North African countries. High contamination levels have been reported for some food samples from the three countries. Steps towards better prevention of mycotoxin production in feeds and decrease of intestinal absorption, by means of plant essential oils associated with clay, have been undertaken. Morocco presumably is the country where mycotoxin regulation is the most detailed in comparison with Algeria and Tunisia. Finally, the conclusion section offers some prospects and recommendations for actions by authorities and scientists during the monitoring of mycotoxins in the foods and feeds produced and/or commercialised in the three countries.
Collapse
Affiliation(s)
- A. Tantaoui-Elaraki
- FENEX Office, Résidence Al-Khadra, No. 11, Guich Oudayas, 10100 Témara, Morocco
| | - A. Riba
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger & Département de Biologie, Université M’hamed Bougara, Avenue de l’indépendance, 35000 Boumerdès, Algeria
| | - S. Oueslati
- Laboratoire Matériaux, Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, BP 51, La Marsa 2070, Tunisia
| | - A. Zinedine
- Department of Biology, Faculty of Sciences, Chouaib Doukkali University, BP 20, El Jadida 24000, Morocco
| |
Collapse
|
35
|
Oppong-Danquah E, Parrot D, Blümel M, Labes A, Tasdemir D. Molecular Networking-Based Metabolome and Bioactivity Analyses of Marine-Adapted Fungi Co-cultivated With Phytopathogens. Front Microbiol 2018; 9:2072. [PMID: 30237790 PMCID: PMC6135897 DOI: 10.3389/fmicb.2018.02072] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
Fungi represent a rich source of bioactive metabolites and some are marketed as alternatives to synthetic agrochemicals against plant pathogens. However, the culturability of fungal strains in artificial laboratory conditions is still limited and the standard mono-cultures do not reflect their full spectrum chemical diversity. Phytopathogenic fungi and bacteria have successfully been used in the activation of cryptic biosynthetic pathways to promote the production of new secondary metabolites in co-culture experiments. The aim of this study was to map the fungal diversity of Windebyer Noor, a brackish lake connected to Baltic Sea (Germany), to induce the chemical space of the isolated marine-adapted fungi by co-culturing with phytopathogens, and to assess their inhibitory potential against six commercially important phytopathogens. Out of 123 marine-adapted fungal isolates obtained, 21 were selected based on their phylogenetic and metabolite diversity. They were challenged with two phytopathogenic bacteria (Pseudomonas syringae and Ralstonia solanacearum) and two phytopathogenic fungi (Magnaporthe oryzae and Botrytis cinerea) on solid agar. An in-depth untargeted metabolomics approach incorporating UPLC-QToF-HRMS/MS-based molecular networking (MN), in silico MS/MS databases, and manual dereplication was employed for comparative analysis of the extracts belonging to nine most bioactive co-cultures and their respective mono-cultures. The phytopathogens triggered interspecies chemical communications with marine-adapted fungi, leading to the production of new compounds and enhanced expression of known metabolites in co-cultures. MN successfully generated a detailed map of the chemical inventory of both mono- and co-cultures. We annotated overall 18 molecular clusters (belonging to terpenes, alkaloids, peptides, and polyketides), 9 of which were exclusively produced in co-cultures. Several clusters contained compounds, which could not be annotated to any known compounds, suggesting that they are putatively new metabolites. Direct antagonistic effects of the marine-adapted fungi on the phytopathogens were observed and anti-phytopathogenic activity was demonstrated.The untargeted metabolomics approach combined with bioactivity testing allowed prioritization of two co-cultures for purification and characterization of marine fungal metabolites with crop-protective activity. To our knowledge, this is the first study employing plant pathogens to challenge marine-adapted fungi.
Collapse
Affiliation(s)
- Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Delphine Parrot
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Antje Labes
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Kiel University, Kiel, Germany
| |
Collapse
|
36
|
Tsang CC, Tang JY, Lau SK, Woo PC. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era - Past, present and future. Comput Struct Biotechnol J 2018; 16:197-210. [PMID: 30002790 PMCID: PMC6039702 DOI: 10.1016/j.csbj.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/12/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species important to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxonomic studies on these fungi are essential since they could provide invaluable information on their evolutionary relationships and define criteria for species recognition. With the advancement of various biological, biochemical and computational technologies, different approaches have been adopted for the taxonomy of Aspergillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different taxonomic approaches focus on different sets of characters of the organisms, various classification and identification schemes would result. In view of this, the consolidated species concept, which takes into account different types of characters, is recently accepted for taxonomic purposes and, together with the lately implemented 'One Fungus - One Name' policy, is expected to bring a more stable taxonomy for Aspergillus, Penicillium and Talaromyces, which could facilitate their evolutionary studies. The most significant taxonomic change for the three genera was the transfer of Penicillium subgenus Biverticillium to Talaromyces (e.g. the medically important thermally dimorphic 'P. marneffei' endemic in Southeast Asia is now named T. marneffei), leaving both Penicillium and Talaromyces as monophyletic genera. Several distantly related Aspergillus-like fungi were also segregated from Aspergillus, making this genus, containing members of both sexual and asexual morphs, monophyletic as well. In the current omics era, application of various state-of-the-art omics technologies is likely to provide comprehensive information on the evolution of Aspergillus, Penicillium and Talaromyces and a stable taxonomy will hopefully be achieved.
Collapse
Affiliation(s)
- Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - James Y.M. Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
37
|
Abdolshahi A, Tabatabaie yazdi F, Shabani AA, Mortazavi SA, Marvdashti LM. Aflatoxin binding efficiency of Saccharomyces cerevisiae mannoprotein in contaminated pistachio nuts. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Genomic diversity in ochratoxigenic and non ochratoxigenic strains of Aspergillus carbonarius. Sci Rep 2018; 8:5439. [PMID: 29615708 PMCID: PMC5883058 DOI: 10.1038/s41598-018-23802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin with nephrotoxic effects on animals and humans. Aspergillus carbonarius is the main responsible for OTA contamination of grapes and derived products. We present the genome resequencing of four A. carbonarius strains, one OTA producer and three atypical and unique non-OTA producing strains. These strains were sequenced using Illumina technology and compared with a reference genome of this species. We performed some specific bioinformatics analyses in genes involved in OTA biosynthesis. Data obtained in this study revealed the high genomic diversity within A. carbonarius strains. Although some gaps of more than 1,000 bp were identified in non-ochratoxigenic strains, no large deletions in functional genes related with OTA production were found. Moreover, the expression of five genes of the putative OTA biosynthetic cluster was down regulated under OTA-inducing conditions in the non-ochratoxigenic strains. Knowledge of the regulatory mechanisms involved in OTA biosynthesis will provide a deeper understanding of these non-ochratoxigenic strains.
Collapse
|
39
|
Schubert M, Spiegel H, Schillberg S, Nölke G. Aspergillus-specific antibodies - Targets and applications. Biotechnol Adv 2018; 36:1167-1184. [PMID: 29608951 DOI: 10.1016/j.biotechadv.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Aspergillus is a fungal genus comprising several hundred species, many of which can damage the health of plants, animals and humans by direct infection and/or due to the production of toxic secondary metabolites known as mycotoxins. Aspergillus-specific antibodies have been generated against polypeptides, polysaccharides and secondary metabolites found in the cell wall or secretions, and these can be used to detect and monitor infections or to quantify mycotoxin contamination in food and feed. However, most Aspergillus-specific antibodies are generated against heterogeneous antigen preparations and the specific target remains unknown. Target identification is important because this can help to characterize fungal morphology, confirm host penetration by opportunistic pathogens, detect specific disease-related biomarkers, identify new candidate targets for antifungal drug design, and qualify antibodies for diagnostic and therapeutic applications. In this review, we discuss how antibodies are raised against heterogeneous Aspergillus antigen preparations and how they can be characterized, focusing on strategies to identify their specific antigens and epitopes. We also discuss the therapeutic, diagnostic and biotechnological applications of Aspergillus-specific antibodies.
Collapse
Affiliation(s)
- Max Schubert
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; Justus-Liebig University Giessen, Institute for Phytopathology and Applied Zoology, Phytopathology Department, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| |
Collapse
|
40
|
Okoth S, De Boevre M, Vidal A, Diana Di Mavungu J, Landschoot S, Kyallo M, Njuguna J, Harvey J, De Saeger S. Genetic and Toxigenic Variability within Aspergillus flavus Population Isolated from Maize in Two Diverse Environments in Kenya. Front Microbiol 2018; 9:57. [PMID: 29434580 PMCID: PMC5790802 DOI: 10.3389/fmicb.2018.00057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022] Open
Abstract
Aspergillus flavus is the main producer of carcinogenic aflatoxins in agricultural commodities such as maize. This fungus occurs naturally on crops, and produces aflatoxins when environmental conditions are favorable. The aim of this study is to analyse the genetic variability among 109 A. flavus isolates previously recovered from maize sampled from a known aflatoxin-hotspot (Eastern region, Kenya) and the major maize-growing area in the Rift Valley (Kenya), and to determine their toxigenic potential. DNA analyses of internal transcribed spacer (ITS) regions of ribosomal DNA, partial β-tubulin gene (benA) and calmodulin gene (CaM) sequences were used. The strains were further analyzed for the presence of four aflatoxin-biosynthesis genes in relation to their capability to produce aflatoxins and other metabolites, targeting the regulatory gene aflR and the structural genes aflP, aflD, and aflQ. In addition, the metabolic profile of the fungal strains was unraveled using state-of-the-art LC-MS/MS instrumentation. The three gene-sequence data grouped the isolates into two major clades, A. minisclerotigenes and A. flavus. A. minisclerotigenes was most prevalent in Eastern Kenya, while A. flavus was common in both regions. A. parasiticus was represented by a single isolate collected from Rift Valley. Diversity existed within the A. flavus population, which formed several subclades. An inconsistency in identification of some isolates using the three markers was observed. The calmodulin gene sequences showed wider variation of polymorphisms. The aflatoxin production pattern was not consistent with the presence of aflatoxigenic genes, suggesting an inability of the primers to always detect the genes or presence of genetic mutations. Significant variation was observed in toxin profiles of the isolates. This is the first time that a profound metabolic profiling of A. flavus isolates was done in Kenya. Positive associations were evident for some metabolites, while for others no associations were found and for a few metabolite-pairs negative associations were seen. Additionally, the growth medium influenced the mycotoxin metabolite production. These results confirm the wide variation that exists among the group A. flavus and the need for more insight in clustering the group.
Collapse
Affiliation(s)
- Sheila Okoth
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Marthe De Boevre
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Arnau Vidal
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Applied Bioscience Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Martina Kyallo
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Jagger Harvey
- Feed the Future Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
41
|
Bragulat MR, Eustaquio A, Cabañes FJ. Study on the presence of ochratoxin α in cultures of ochratoxigenic and non- ochratoxigenic strains of Aspergillus carbonarius. PLoS One 2017; 12:e0185986. [PMID: 29016677 PMCID: PMC5634603 DOI: 10.1371/journal.pone.0185986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022] Open
Abstract
Ochratoxin A (OTA) is a potent nephrotoxin and carcinogen which is found in a wide variety of common foods and beverages and it is produced by several species of Aspergillus and Penicillium. Ochratoxin α (OTα), a major metabolite of OTA, has also been reported to occur in cultures of OTA-producing species. However there is some controversial about the participation of OTα in the biosynthesis of OTA, mainly because its biosynthesis pathway has not yet been completely characterized. Aspergillus carbonarius is the main responsible source of ochratoxin A (OTA) in food commodities such as wine, grapes or dried vine fruits from main viticultural regions worldwide. However, little is known about the presence of OTα in isolates of A. carbonarius. In this study we evaluated the effects of temperature and incubation time on OTα production by both OTA and non-OTA-producing strains of A. carbonarius. OTA and OTα were detected on the basis of HPLC fluorometric response compared with that of their standards and confirmed by HPLC-MS in selected samples. The non-OTA-producing strains did produce neither OTA nor OTα at any of the conditions tested. The OTA-producing strains studied were able to produce both OTA and OTα in most of the conditions tested. In general, higher amounts of OTA than OTα were produced, but a positive correlation in the production of these two metabolites was detected. The lack of production of both OTA and OTα in the non-OTA-producing strains could be caused by the presence of silent genes or by mutations in functional or regulatory genes involved in OTA production.
Collapse
Affiliation(s)
- M. Rosa Bragulat
- Veterinary Mycology Group, Departament of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Eustaquio
- Chemical Analysis Service, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F. Javier Cabañes
- Veterinary Mycology Group, Departament of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail:
| |
Collapse
|
42
|
Paterson RRM, Venâncio A, Lima N, Guilloux-Bénatier M, Rousseaux S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res Int 2017; 103:478-491. [PMID: 29389638 DOI: 10.1016/j.foodres.2017.09.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Wine is a significant contributor to the economies of many countries. However, the commodity can become contaminated with mycotoxins produced by certain fungi. Most information on mycotoxins in wine is from Spain, Italy and France. Grapes can be infected by mycotoxigenic fungi, of which Aspergillus carbonarius producing ochratoxin A (OTA) is of highest concern. Climate is the most important factor in determining contamination once the fungi are established, with high temperatures being a major factor for OTA contamination: OTA in wine is at higher concentrations in warmer southern Europe than northern. Contamination by fumonisins is a particular concern, related to Aspergillus niger producing these compounds and the fungus being isolated frequently from grapes. Aflatoxins can be present in wine, but patulin is seldom detected. Alternaria mycotoxins (e.g. alternariol) have been frequently observed. There are indications that T-2 toxin may be common. Also, the combined effects of mycotoxins in wine require consideration. No other mycotoxins are currently of concern. Accurate fungal identifications and mycotoxin detection from the fungi are important and a consideration of practical methods are required. There is a diversity of wines that can be contaminated (e.g. red, white, sweet, dry and fortified). The occurrence of OTA is higher in red and sweet than white wines. Steps to control mycotoxins in wine involve good agriculture practices. The effect of climate change on vines and mycotoxins in wine needs urgent consideration by well-constructed modelling studies and expert interpretation of existing data. Reliable models of the effect of climate change on vines is a priority: the health of vines affects mycotoxin contamination. A modelling study of OTA in grapes at higher temperatures over 100years is required. Progress has been made in reducing OTA in wine. The other mycotoxins require consideration and the effects of climate change will become crucial.
Collapse
Affiliation(s)
- R Russell M Paterson
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal.
| | - Armando Venâncio
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal
| | - Nelson Lima
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal
| | | | - Sandrine Rousseaux
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
43
|
Aqueveque PM, Cespedes CL, Kubo I, Seigler DS, Sterner O. The impact of Andean Patagonian mycoflora in the search for new lead molecules. Ann N Y Acad Sci 2017. [PMID: 28640968 DOI: 10.1111/nyas.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secondary metabolites from fungi have become a major source of chemical innovation in programs searching for lead molecules with bioactivities, especially over the last 50 years. In this review, we discuss the fundamental considerations in the discovery of molecules for agricultural and medicinal uses. This group of organisms possesses a strong potential for scientific and industrial communities. Recently, the incorporation of new technologies for the artificial cultivation of fungi and the use of better equipment to isolate and identify active metabolites has allowed the discovery of leading molecules for the design of new and safer drugs and pesticides. The geographical region including the Patagonian Andes mountains harbors a wide diversity of fungi, many of them still unknown and so far associated with Chilean-Argentinian Andean endemic forests. There have been very few chemical studies of the fungi located in this region. However, those few studies have allowed the discovery of new molecules. We argue that the richness of fungal biodiversity in this region offers an interesting source for the discovery of bioactive molecules for the basic and applied sciences.
Collapse
Affiliation(s)
- Pedro M Aqueveque
- Laboratory of Applied Microbiology and Mycology, Agroindustry Department, Faculty of Agricultural Engineering, University of Concepcion, Chillan, Chile
| | - Carlos L Cespedes
- Laboratory of Chemical-Ecology, Basic Science Department, Faculty of Sciences, Universidad del Bio Bio, Chillan, Chile
| | - Isao Kubo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - David S Seigler
- Plant Biology Department, Herbarium ILL, University of Illinois, Urbana-Champaign, Illinois
| | - Olov Sterner
- Division of Organic and Bioorganic Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Silano V, Bolognesi C, Castle L, Cravedi JP, Fowler P, Franz R, Grob K, Gürtler R, Husøy T, Kärenlampi S, Mennes W, Milana MR, Penninks A, Smith A, de Fátima Tavares Poças M, Tlustos C, Wölfle D, Zorn H, Zugravu CA, Chesson A, Glandorf B, Hermann L, Jany KD, Marcon F, Želježic D, Aguilera-Gomez M, Andryszkiewicz M, Arcella D, Kovalkovicova N, Liu Y, Engel KH. Safety evaluation of the food enzyme endo-1,4-β-xylanase from genetically modified Aspergillus niger strain XYL. EFSA J 2017; 15:e04755. [PMID: 32625474 PMCID: PMC7009954 DOI: 10.2903/j.efsa.2017.4755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The food enzyme considered in this opinion is an endo-1,4-β-xylanase (EC 3.2.1.8) produced with a genetically modified strain of Aspergillus niger. The genetic modifications do not give rise to safety concerns. The food enzyme contains neither the production organism nor recombinant DNA. The endo-1,4-β-xylanase is intended to be used in baking processes. Based on the maximum use levels recommended for the respective food process, dietary exposure to the food enzyme-total organic solids (TOS) was estimated on the basis of individual data from the EFSA Comprehensive European Food Consumption Database. This exposure estimate is below 0.013 mg TOS/kg body weight (bw) per day in European populations. No safety concerns were identified in relation to the genetic modifications performed, the manufacturing process, the compositional and biochemical data provided, allergenicity and exposure assessments. The allergenicity was evaluated by comparing the amino acid sequence to those of known allergens; no match was found. The Panel considered that the likelihood of allergic reactions to dietary intake of endo-1,4-β-xylanase is low and, therefore, does not give rise to safety concerns. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rodents. A no observed adverse effect level was derived (4,095 and 4,457 mg TOS/kg bw per day for males and females, respectively), which, compared with the dietary exposure, results in a sufficiently high margin of exposure. However, the genotoxicity data were incomplete. Due to the absence of the recommended combination of microbial strains used in the Ames test (i.e. lack of Salmonella Typhimurium TA102 and Escherichia coli WP2), no conclusions can be drawn on potential DNA oxidising or cross-linking mechanisms giving rise to gene mutations. Consequently, no final conclusions can be drawn on genotoxicity.
Collapse
|
45
|
Chung H, Lee N, Seo JA, Kim YS. Comparative analysis of nonvolatile and volatile metabolites in Lichtheimia ramosa cultivated in different growth media. Biosci Biotechnol Biochem 2017; 81:565-572. [DOI: 10.1080/09168451.2016.1256756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Lichtheimia ramosa is one of the predominant filamentous fungi in Korean traditional nuruk. The nonvolatile and volatile metabolites of L. ramosa cultivated in three growth media: complete medium (CM), potato dextrose broth (PDB), and sabouraud dextrose broth (SDB), were investigated and compared. Among nonvolatile metabolites, serine, lysine, and ornithine increased in CM and PDB cultivated with L. ramosa during the exponential phase. In addition, glucose level increased in CM whereas decreased in PDB and SDB. The major volatile metabolites in the extract samples were acetic acid, ethanol, 3-methyl-2-buten-1-ol, 2-phenylethanol, ethylacetate, 2-furaldehyde, 5-(hydroxymethyl)-2-furaldehyde, 2,3-dihydro-3,5,-dihydroxy-6-methyl-4H-pyran-4-one, and α-humulene. In particular, the levels of volatile metabolites related to makgeolli (e.g., acetic acid, ethanol, and ethyl acetate) were highest in extracts cultivated in CM. On the other hand, the level of 2-phenylethanol was relatively higher in PDB and SDB, possibly due to there being more phenylalanine present in the biomass sample in media.
Collapse
Affiliation(s)
- Hyun Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - NaKyeom Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
46
|
Righetti L, Paglia G, Galaverna G, Dall'Asta C. Recent Advances and Future Challenges in Modified Mycotoxin Analysis: Why HRMS Has Become a Key Instrument in Food Contaminant Research. Toxins (Basel) 2016; 8:E361. [PMID: 27918432 PMCID: PMC5198555 DOI: 10.3390/toxins8120361] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 01/24/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi in crops worldwide. These compounds can undergo modification in plants, leading to the formation of a large number of possible modified forms, whose toxicological relevance and occurrence in food and feed is still largely unexplored. The analysis of modified mycotoxins by liquid chromatography-mass spectrometry remains a challenge because of their chemical diversity, the large number of isomeric forms, and the lack of analytical standards. Here, the potential benefits of high-resolution and ion mobility mass spectrometry as a tool for separation and structure confirmation of modified mycotoxins have been investigated/reviewed.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| | - Giuseppe Paglia
- Center of Biomedicine, European Academy of Bolzano/Bozen, Via Galvani 31, Bolzano 39100, Italy.
| | - Gianni Galaverna
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| | - Chiara Dall'Asta
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| |
Collapse
|
47
|
Mahmoud MA, Abd-El-Aziz AR, Al-Othman MR. Molecular and biochemical taxonomic tools for the identification and classification of plant-pathogenic Penicilliumspecies. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1228480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mohamed A. Mahmoud
- Mycology and Plant Diseases Survey Department, Plant Pathology Research Institute, Agricultural Research Center , Giza, Egypt
| | - Abeer R.M. Abd-El-Aziz
- Botany and Microbiology Department, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Monira R. Al-Othman
- Botany and Microbiology Department, College of Science, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Kim W, Peever TL, Park JJ, Park CM, Gang DR, Xian M, Davidson JA, Infantino A, Kaiser WJ, Chen W. Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera. Sci Rep 2016; 6:20192. [PMID: 26847260 PMCID: PMC4742866 DOI: 10.1038/srep20192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/23/2015] [Indexed: 01/28/2023] Open
Abstract
Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma species and the possible use of a metabolomics approach using liquid chromatography-mass spectrometry for their classification. The metabolic features of 45 strains including 11 known species isolated from various legumes were extracted, and the datasets were analyzed using chemometrics methods such as principal component and hierarchical clustering analyses. We found a high degree of intra-species consistency in metabolic profiles, but inter-species diversity was high. Molecular phylogenies of the legume-associated Ascochyta/Phoma species were estimated using sequence data from three protein-coding genes and the five major chemical groups that were detected in the hierarchical clustering analysis were mapped to the phylogeny. Clusters based on similarity of metabolic features were largely congruent with the species phylogeny. These results indicated that evolutionarily distinct fungal lineages have diversified their metabolic capacities as they have evolved independently. This whole metabolomics approach may be an effective tool for chemotaxonomy of fungal taxa lacking information on their metabolic content.
Collapse
Affiliation(s)
- Wonyong Kim
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Tobin L. Peever
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Chung-Min Park
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jenny A. Davidson
- South Australian Research and Development Institute, Adelaide, South Australia 5001, Australia
| | - Alessandro Infantino
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria (CREA), Centro di Ricerca per la Patologia Vegetale, Rome, 00156, Italy
| | - Walter J. Kaiser
- USDA-ARS Western Regional Plant Introduction Station, Washington State University, Pullman, WA 99164, USA
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
- USDA-ARS Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
49
|
Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol 2015; 99:7859-77. [DOI: 10.1007/s00253-015-6839-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
|
50
|
|