1
|
Kunjumon TK, Ghosh PP, Currie LMJ, Mathur J. Proximity driven plastid-nucleus relationships are facilitated by tandem plastid-ER dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6275-6294. [PMID: 39034638 PMCID: PMC11523032 DOI: 10.1093/jxb/erae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Peri-nuclear clustering (PNC) of chloroplasts has largely been described in senescent and pathogen- or reactive oxygen species-stressed cells. Stromules, tubular plastid extensions, are also observed under similar conditions. Coincident observations of PNC and stromules associate the two phenomena in facilitating retrograde signaling between chloroplasts and the nucleus. However, PNC incidence in non-stressed cells under normal growth and developmental conditions, when stromules are usually not observed, remains unclear. Using transgenic Arabidopsis expressing different organelle-targeted fluorescent proteins, we show that PNC is a dynamic subcellular phenomenon that continues in the absence of light and is not dependent on stromule formation. PNC is facilitated by tandem plastid-endoplasmic reticulum (ER) dynamics created through membrane contact sites between the two organelles. While PNC increases upon ER membrane expansion, some plastids may remain in the peri-nuclear region due to their localization in ER-lined nuclear indentions. Moreover, some PNC plastids may sporadically extend stromules into ER-lined nuclear grooves. Our findings strongly indicate that PNC is not an exclusive response to stress caused by pathogens, high light, or exogenous H2O2 treatment, and does not require stromule formation. However, morphological and behavioral alterations in ER and concomitant changes in tandem, plastid-ER dynamics play a major role in facilitating the phenomenon.
Collapse
Affiliation(s)
- Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Laura M J Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| |
Collapse
|
2
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
3
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Hall MR, Kunjumon TK, Ghosh PP, Currie L, Mathur J. Organelle Interactions in Plant Cells. Results Probl Cell Differ 2024; 73:43-69. [PMID: 39242374 DOI: 10.1007/978-3-031-62036-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The sequestration of enzymes and associated processes into sub-cellular domains, called organelles, is considered a defining feature of eukaryotic cells. However, what leads to specific outcomes and allows a eukaryotic cell to function singularly is the interactivity and exchanges between discrete organelles. Our ability to observe and assess sub-cellular interactions in living plant cells has expanded greatly following the creation of fluorescent fusion proteins targeted to different organelles. Notably, organelle interactivity changes quickly in response to stress and reverts to a normal less interactive state as homeostasis is re-established. Using key observations of some of the organelles present in a plant cell, this chapter provides a brief overview of our present understanding of organelle interactions in plant cells.
Collapse
Affiliation(s)
- Maya-Renee Hall
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Laura Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
5
|
Breves SS, Silva FA, Euclydes NC, Saia TFF, Jean-Baptiste J, Andrade Neto ER, Fontes EPB. Begomovirus-Host Interactions: Viral Proteins Orchestrating Intra and Intercellular Transport of Viral DNA While Suppressing Host Defense Mechanisms. Viruses 2023; 15:1593. [PMID: 37515277 PMCID: PMC10384534 DOI: 10.3390/v15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.
Collapse
Affiliation(s)
- Sâmera S Breves
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Fredy A Silva
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Nívea C Euclydes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Thainá F F Saia
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - James Jean-Baptiste
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Eugenio R Andrade Neto
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| |
Collapse
|
6
|
Prautsch J, Erickson JL, Özyürek S, Gormanns R, Franke L, Lu Y, Marx J, Niemeyer F, Parker JE, Stuttmann J, Schattat MH. Effector XopQ-induced stromule formation in Nicotiana benthamiana depends on ETI signaling components ADR1 and NRG1. PLANT PHYSIOLOGY 2023; 191:161-176. [PMID: 36259930 PMCID: PMC9806647 DOI: 10.1093/plphys/kiac481] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
In Nicotiana benthamiana, the expression of the Xanthomonas effector XANTHOMONAS OUTER PROTEIN Q (XopQ) triggers RECOGNITION OF XOPQ1 (ROQ1)-dependent effector-triggered immunity (ETI) responses accompanied by the accumulation of plastids around the nucleus and the formation of stromules. Both plastid clustering and stromules were proposed to contribute to ETI-related hypersensitive cell death and thereby to plant immunity. Whether these reactions are directly connected to ETI signaling events has not been tested. Here, we utilized transient expression experiments to determine whether XopQ-triggered plastid reactions are a result of XopQ perception by the immune receptor ROQ1 or a consequence of XopQ virulence activity. We found that N. benthamiana mutants lacking ROQ1, ENHANCED DISEASE SUSCEPTIBILITY 1, or the helper NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT IMMUNE RECEPTORS (NLRs) N-REQUIRED GENE 1 (NRG1) and ACTIVATED DISEASE RESISTANCE GENE 1 (ADR1), fail to elicit XopQ-dependent host cell death and stromule formation. Mutants lacking only NRG1 lost XopQ-dependent cell death but retained some stromule induction that was abolished in the nrg1_adr1 double mutant. This analysis aligns XopQ-triggered stromules with the ETI signaling cascade but not to host programmed cell death. Furthermore, data reveal that XopQ-triggered plastid clustering is not strictly linked to stromule formation during ETI. Our data suggest that stromule formation, in contrast to chloroplast perinuclear dynamics, is an integral part of the N. benthamiana ETI response and that both NRG1 and ADR1 hNLRs play a role in this ETI response.
Collapse
Affiliation(s)
- Jennifer Prautsch
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Sedef Özyürek
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rahel Gormanns
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Lars Franke
- Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Yang Lu
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jolina Marx
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Frederik Niemeyer
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Stuttmann
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | | |
Collapse
|
7
|
Reyes Caldas PA, Zhu J, Breakspear A, Thapa SP, Toruño TY, Perilla-Henao LM, Casteel C, Faulkner CR, Coaker G. Effectors from a Bacterial Vector-Borne Pathogen Exhibit Diverse Subcellular Localization, Expression Profiles, and Manipulation of Plant Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1067-1080. [PMID: 35952362 PMCID: PMC9844206 DOI: 10.1094/mpmi-05-22-0114-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Jie Zhu
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| | | | - Shree P. Thapa
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| | - Tania Y. Toruño
- Plant Pathology Department, University of California, Davis, CA, U.S.A
- Rijk Zwaan Breeding B.V, Burgemeester Crezéelaan 40, De Lier, 2678 KX, The Netherlands
| | | | - Clare Casteel
- Plant Pathology Department, University of California, Davis, CA, U.S.A
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY, U.S.A
| | | | - Gitta Coaker
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| |
Collapse
|
8
|
Expression, Purification, and Characterisation of South African Cassava Mosaic Virus Cell-to-Cell Movement Protein. Curr Issues Mol Biol 2022; 44:2717-2729. [PMID: 35735627 PMCID: PMC9221656 DOI: 10.3390/cimb44060186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
South African cassava mosaic virus (SACMV) is a circular ssDNA bipartite begomovirus, whose genome comprises DNA-A (encodes six genes) and DNA-B (encodes BC1 cell-to-cell movement and BV1 nuclear shuttle proteins) components. A few secondary and tertiary structural and physicochemical characteristics of partial but not full-length begomovirus proteins have been elucidated to date. The full-length codon-optimised SACMV BC1 gene was cloned into a pET-28a (+) expression vector and transformed into expression host cells E. coli BL21 (DE3). The optimal expression of the full-length BC1-encoded movement protein (MP) was obtained via induction with 0.25 mM IPTG at an OD600 of ~0.45 at 37 °C for four hours. Denatured protein fractions (dialysed in 4 M urea), passed through an IMAC column, successfully bound to the nickel resin, and eluted using 250 mM imidazole. The protein was refolded using stepwise dialysis. The molecular weight of MP was confirmed to be 35 kDa using SDS-PAGE. The secondary structure of SACMV MP presented as predominantly β-strands. An ANS (1-anilino-8-naphthalene sulphonate)-binding assay confirmed that MP possesses hydrophobic pockets with the ability to bind ligands such as ANS (8-anilino-1-naphthalenesulphonic acid). A 2' (3')-N-methylanthraniloyl-ATP (mant-ATP) assay showed binding of mant-ATP to MP and indicated that, while hydrophobic pockets are present, MP also exhibits hydrophilic regions. Intrinsic tryptophan fluorescence indicated a significant conformational change in the denatured form of BC1 in the presence of ATP. In addition, a phosphatase assay showed that MP possessed ATPase activity.
Collapse
|
9
|
Chang H, Lee C, Chang C, Jan F. FKBP-type peptidyl-prolyl cis-trans isomerase interacts with the movement protein of tomato leaf curl New Delhi virus and impacts viral replication in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:561-575. [PMID: 34984809 PMCID: PMC8916215 DOI: 10.1111/mpp.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Begomoviruses belonging to the family Geminiviridae are plant-infecting DNA viruses. Begomoviral movement protein (MP) has been reported to be required for virus movement, host range determination, and symptom development. In the present study, the FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans isomerase (NbFKPPIase) of Nicotiana benthamiana was identified by a yeast two-hybrid screening system using the MP of tomato leaf curl New Delhi virus (ToLCNDV) oriental melon (OM) isolate (MPOM ) as bait. Transient silencing of the gene encoding NbFKPPIase increased replication of three test begomoviruses, and transient overexpression decreased viral replication, indicating that NbFKPPIase plays a role in defence against begomoviruses. However, infection of N. benthamiana by ToLCNDV-OM or overexpression of the gene encoding MPOM drastically reduced the expression of the gene encoding NbFKPPIase. Fluorescence resonance energy transfer analysis revealed that MPOM interacted with NbFKPPIase in the periphery of cells. Expression of the gene encoding NbFKPPIase was induced by salicylic acid but not by methyl jasmonate or ethylene. Moreover, the expression of the gene encoding NbFKPPIase was down-regulated in response to 6-benzylaminopurine and up-regulated in response to gibberellin or indole-3-acetic acid, suggesting a role of NbFKPPIase in plant development. Transcriptome analysis and comparison of N. benthamiana transient silencing and overexpression of the gene encoding MPOM led to the identification of several differentially expressed genes whose functions are probably associated with cell cycle regulation. Our results indicate that begomoviruses could suppress NbFKPPIase-mediated defence and biological functions by transcriptional inhibition and physical interaction between MP and NbFKPPIase to facilitate infection.
Collapse
Affiliation(s)
- Ho‐Hsiung Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chia‐Hwa Lee
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
| | - Chung‐Jan Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Fuh‐Jyh Jan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
10
|
Pandey V, Srivastava A, Mishra M, Gaur RK. Chilli leaf curl disease populations in India are highly recombinant, and rapidly segregated. 3 Biotech 2022; 12:83. [PMID: 35251885 PMCID: PMC8882514 DOI: 10.1007/s13205-022-03139-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/02/2022] [Indexed: 11/01/2022] Open
Abstract
Capsicum annuum, a valuable spice and vegetable crop belonging to the Solanaceae family, is extensively grown across the Indian subcontinent. Chilli production is restricted by a begomoviral infection named as chilli leaf curl disease (ChiLCD) mainly in tropical and subtropical regions which leads to considerable economic losses, thus affecting chilli cultivation. Here, we studied the genetic diversity with structural evaluation of chilli leaf curl disease and satellite molecules infecting Chilli in India. We retrieved 121 reference sequences of ChiLCD including DNA-A, DNA-B, beta-satellite and alpha-satellites from GenBank reported from India. The population diversity and genetic variation were estimated through various parameters which decipher the four major groups of phylogenetic divergence for DNA-A and five groups of beta-satellite showing percentage similarity with isolates within and across India. Further, transitional and transversional bias for ORFs were observed highest in C4 and REn genes, respectively, and for DNA-A and DNA-B, these values were 1.07 and 1.22, respectively. The recombination breakpoints for DNA-A were estimated 49 majorly in V1, C1,C2 and C4 genome region and highest 22 breakpoints were determined for Rep (AC1) of ORFs, similarly 9 events for beta-satellite were found less around βC1ORF. Moreover, the evolution and genetic variability were also contributed through parameters such as nucleotide substitution which were found within the range of RNA viruses for DNA-A, DNA-B, for all 6 ORFs (relaxed clock) and beta-satellite. Additionally, total numbers of mutations (η) for DNA-A, DNA-B, alpha-satellites and beta-satellites were 2505, 419, 807 and 1288 detected, respectively, while it was found 987 highest for Rep gene among all ORFs. Further, neutrality tests determine the dominant nature of population expansion and purifying selection for all the genes of begomovirus associated with ChiLCD and satellite molecules supporting conserved nature of gene. The combined Tajima's D and Fu and Li'S D* negative values in tests indicated that population are under purified selection and an excess of low-frequency polymorphism. Our analysis indicates the potential contribution of genetic mutations and recombination of ChiLCD which leads to rapid adaptation and evolution of begomovirus and its satellite molecules accelerating its host range and diversity within and across the Indian subcontinent. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03139-w.
Collapse
Affiliation(s)
- Vineeta Pandey
- grid.411985.00000 0001 0662 4146Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Aarshi Srivastava
- grid.411985.00000 0001 0662 4146Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Megha Mishra
- grid.444560.70000 0004 1793 810XDepartment of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan 332311 India
| | - R. K. Gaur
- grid.411985.00000 0001 0662 4146Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| |
Collapse
|
11
|
Navarro JA, Saiz-Bonilla M, Sanchez-Navarro JA, Pallas V. The mitochondrial and chloroplast dual targeting of a multifunctional plant viral protein modulates chloroplast-to-nucleus communication, RNA silencing suppressor activity, encapsidation, pathogenesis and tissue tropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:197-218. [PMID: 34309112 DOI: 10.1111/tpj.15435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 05/22/2023]
Abstract
Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.
Collapse
Affiliation(s)
- Jose A Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Maria Saiz-Bonilla
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Jesus A Sanchez-Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Vicente Pallas
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| |
Collapse
|
12
|
Happle A, Jeske H, Kleinow T. Dynamic subcellular distribution of begomoviral nuclear shuttle and movement proteins. Virology 2021; 562:158-175. [PMID: 34339930 DOI: 10.1016/j.virol.2021.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
The Abutilon mosaic virus (AbMV) encodes a nuclear shuttle protein (NSP), and a movement protein (MP) which cooperatively accomplish viral DNA transport through the plant. Subcellular distribution patterns of fluorescent protein-tagged NSP and MP were tracked in Nicotiana benthamiana leaves in presence or absence of an AbMV infection using light microscopy. NSP was located within the nucleus and associated with early endosomes in the presence of MP. MP appeared at the plasma membrane, plasmodesmata and in motile vesicles, trafficking along the endoplasmic reticulum in an actin-dependent manner. MP and NSP did not co-localize and employed separate cellular pathways. Correspondingly, Förster resonance energy transfer analysis did not support physical interaction between NSP and MP. Time lapse movies illustrate the cellular dynamics of both proteins on their way around the nucleus and to the cell periphery and provide a first hint for the nuclear egress of NSP complexes.
Collapse
Affiliation(s)
- Andrea Happle
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Holger Jeske
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Tatjana Kleinow
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
13
|
Gouveia-Mageste BC, Martins LGC, Dal-Bianco M, Machado JPB, da Silva JCF, Kim AY, Yazaki J, dos Santos AA, Ecker JR, Fontes EPB. A plant-specific syntaxin-6 protein contributes to the intracytoplasmic route for the begomovirus CabLCV. PLANT PHYSIOLOGY 2021; 187:158-173. [PMID: 34618135 PMCID: PMC8418432 DOI: 10.1093/plphys/kiab252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
Because of limited free diffusion in the cytoplasm, viruses must use active transport mechanisms to move intracellularly. Nevertheless, how the plant single-stranded DNA begomoviruses hijack the host intracytoplasmic transport machinery to move from the nucleus to the plasmodesmata remains enigmatic. Here, we identified nuclear shuttle protein (NSP)-interacting proteins from Arabidopsis (Arabidopsis thaliana) by probing a protein microarray and demonstrated that the cabbage leaf curl virus NSP, a facilitator of the nucleocytoplasmic trafficking of viral (v)DNA, interacts in planta with an endosomal vesicle-localized, plant-specific syntaxin-6 protein, designated NSP-interacting syntaxin domain-containing protein (NISP). NISP displays a proviral function, unlike the syntaxin-6 paralog AT2G18860 that failed to interact with NSP. Consistent with these findings, nisp-1 mutant plants were less susceptible to begomovirus infection, a phenotype reversed by NISP complementation. NISP-overexpressing lines accumulated higher levels of vDNA than wild-type. Furthermore, NISP interacted with an NSP-interacting GTPase (NIG) involved in NSP-vDNA nucleocytoplasmic translocation. The NISP-NIG interaction was enhanced by NSP. We also showed that endosomal NISP associates with vDNA. NISP may function as a docking site for recruiting NIG and NSP into endosomes, providing a mechanism for the intracytoplasmic translocation of the NSP-vDNA complex toward and from the cell periphery.
Collapse
Affiliation(s)
- Bianca Castro Gouveia-Mageste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Laura Gonçalves Costa Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Maximiller Dal-Bianco
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - João Paulo Batista Machado
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Agronomy Institute, Universidade Federal de Viçosa, Campus Florestal, Florestal, Minas Gerais 35690-000, Brazil
| | - José Cleydson Ferreira da Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Alice Y. Kim
- Genomic Analysis Laboratory, Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Junshi Yazaki
- Genomic Analysis Laboratory, Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Anésia Aparecida dos Santos
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Departament of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Joseph R. Ecker
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Elizabeth Pacheco Batista Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| |
Collapse
|
14
|
Mathur J. Organelle extensions in plant cells. PLANT PHYSIOLOGY 2021; 185:593-607. [PMID: 33793902 PMCID: PMC8133556 DOI: 10.1093/plphys/kiaa055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 05/03/2023]
Abstract
The life strategy of plants includes their ability to respond quickly at the cellular level to changes in their environment. The use of targeted fluorescent protein probes and imaging of living cells has revealed several rapidly induced organelle responses that create the efficient sub-cellular machinery for maintaining homeostasis in the plant cell. Several organelles, including plastids, mitochondria, and peroxisomes, extend and retract thin tubules that have been named stromules, matrixules, and peroxules, respectively. Here, I combine all these thin tubular forms under the common head of organelle extensions. All extensions change shape continuously and in their elongated form considerably increase organelle outreach into the surrounding cytoplasm. Their pleomorphy reflects their interactions with the dynamic endoplasmic reticulum and cytoskeletal elements. Here, using foundational images and time-lapse movies, and providing salient information on some molecular and biochemically characterized mutants with increased organelle extensions, I draw attention to their common role in maintaining homeostasis in plant cells.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular biology, University of Guelph, 50 Stone Road, Guelph, Ontario, N1G2W1 Canada
- Author for communication:
| |
Collapse
|
15
|
Hanson MR, Conklin PL. Stromules, functional extensions of plastids within the plant cell. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:25-32. [PMID: 33137706 DOI: 10.1016/j.pbi.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Stromules are thin tubular extensions of the plastid compartment surrounded by the envelope membrane. A myriad of functions have been proposed for them, and they likely have multiple roles. Recent work has illuminated aspects of their formation, especially the important of microtubules in their movement and microfilaments in anchoring. A variety of biotic and abiotic stresses result in induction of stromule formation, and in recent years, stromule formation has been strongly implicated as part of the innate immune response. Both stromules and chloroplasts relocate to surround the nucleus when pathogens are sensed, possibly to supply signaling molecules such as reactive oxygen species. In addition to the nucleus, stromules have been observed in close proximity to other compartments such as mitochondria, endoplasmic reticulum, and the plasma membrane, potentially facilitating exchange of substrates and products to carry out important biosynthetic pathways. Much remains to be learned about the identity of proteins and other molecules released from chloroplasts and stromules and how they function in plant development and defense.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | - Patricia L Conklin
- Biological Sciences Department, State University of New York, Cortland, NY 13045, USA
| |
Collapse
|
16
|
Mathur J. Review: Morphology, behaviour and interactions of organelles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110662. [PMID: 33218631 DOI: 10.1016/j.plantsci.2020.110662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
High quality transmission electron micrographs have played a major role in shaping our views on organelles in plant cells. However, these snapshots of dead, fixed and sectioned tissue do not automatically convey an appreciation of the dynamic nature of organelles in living cells. Advances in the imaging of subcellular structures in living cells using multicoloured, targeted fluorescent proteins reveal considerable changes in organelle pleomorphy that might be limited to small regions of the cell. The fresh data and insights also challenge several existing ideas on organelle behaviour and interactivity. Here, using succinct examples from plastids, mitochondria, peroxisomes, and the endoplasmic reticulum I present an evolving view of subcellular dynamics in the plant cell.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, N1G2W1, Canada
| |
Collapse
|
17
|
Gözen I, Dommersnes P. Biological lipid nanotubes and their potential role in evolution. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2020; 229:2843-2862. [PMID: 33224439 PMCID: PMC7666715 DOI: 10.1140/epjst/e2020-000130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The membrane of cells and organelles are highly deformable fluid interfaces, and can take on a multitude of shapes. One distinctive and particularly interesting property of biological membranes is their ability to from long and uniform nanotubes. These nanoconduits are surprisingly omnipresent in all domains of life, from archaea, bacteria, to plants and mammals. Some of these tubes have been known for a century, while others were only recently discovered. Their designations are different in different branches of biology, e.g. they are called stromule in plants and tunneling nanotubes in mammals. The mechanical transformation of flat membranes to tubes involves typically a combination of membrane anchoring and external forces, leading to a pulling action that results in very rapid membrane nanotube formation - micrometer long tubes can form in a matter of seconds. Their radius is set by a mechanical balance of tension and bending forces. There also exists a large class of membrane nanotubes that form due to curvature inducing molecules. It seems plausible that nanotube formation and functionality in plants and animals may have been inherited from their bacterial ancestors during endosymbiotic evolution. Here we attempt to connect observations of nanotubes in different branches of biology, and outline their similarities and differences with the aim of providing a perspective on their joint functions and evolutionary origin.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318 Norway
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0315 Norway
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 412 96 Sweden
| | - Paul Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Hoegskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
18
|
Pei S, Dong R, Bao Y, He RL, Yau SST. Classification of genomic components and prediction of genes of Begomovirus based on subsequence natural vector and support vector machine. PeerJ 2020; 8:e9625. [PMID: 32832270 PMCID: PMC7409808 DOI: 10.7717/peerj.9625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 12/02/2022] Open
Abstract
Background Begomoviruses are widely distributed and causing devastating diseases in many crops. According to the number of genomic components, a begomovirus is known as either monopartite or bipartite begomovirus. Both the monopartite and bipartite begomoviruses have the DNA-A component which encodes all essential proteins for virus functions, while the bipartite begomoviruses still contain the DNA-B component. The satellite molecules, known as betasatellites, alphasatellites or deltasatellites, sometimes exist in the begomoviruses. So, the genomic components of begomoviruses are complex and varied. Different genomic components have different gene structures and functions. Classifying the components of begomoviruses is important for studying the virus origin and pathogenic mechanism. Methods We propose a model combining Subsequence Natural Vector (SNV) method with Support Vector Machine (SVM) algorithm, to classify the genomic components of begomoviruses and predict the genes of begomoviruses. First, the genome sequence is represented as a vector numerically by the SNV method. Then SVM is applied on the datasets to build the classification model. At last, recursive feature elimination (RFE) is used to select essential features of the subsequence natural vectors based on the importance of features. Results In the investigation, DNA-A, DNA-B, and different satellite DNAs are selected to build the model. To evaluate our model, the homology-based method BLAST and two machine learning algorithms Random Forest and Naive Bayes method are used to compare with our model. According to the results, our classification model can classify DNA-A, DNA-B, and different satellites with high accuracy. Especially, we can distinguish whether a DNA-A component is from a monopartite or a bipartite begomovirus. Then, based on the results of classification, we can also predict the genes of different genomic components. According to the selected features, we find that the content of four nucleotides in the second and tenth segments (approximately 150-350 bp and 1,450–1,650 bp) are the most different between DNA-A components of monopartite and bipartite begomoviruses, which may be related to the pre-coat protein (AV2) and the transcriptional activator protein (AC2) genes. Our results advance the understanding of the unique structures of the genomic components of begomoviruses.
Collapse
Affiliation(s)
- Shaojun Pei
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Rui Dong
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, United States of America
| | - Stephen S-T Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Kleinow T, Happle A, Kober S, Linzmeier L, Rehm TM, Fritze J, Buchholz PCF, Kepp G, Jeske H, Wege C. Phosphorylations of the Abutilon Mosaic Virus Movement Protein Affect Its Self-Interaction, Symptom Development, Viral DNA Accumulation, and Host Range. FRONTIERS IN PLANT SCIENCE 2020; 11:1155. [PMID: 32849713 PMCID: PMC7411133 DOI: 10.3389/fpls.2020.01155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The genome of bipartite geminiviruses in the genus Begomovirus comprises two circular DNAs: DNA-A and DNA-B. The DNA-B component encodes a nuclear shuttle protein (NSP) and a movement protein (MP), which cooperate for systemic spread of infectious nucleic acids within host plants and affect pathogenicity. MP mediates multiple functions during intra- and intercellular trafficking, such as binding of viral nucleoprotein complexes, targeting to and modification of plasmodesmata, and release of the cargo after cell-to-cell transfer. For Abutilon mosaic virus (AbMV), phosphorylation of MP expressed in bacteria, yeast, and Nicotiana benthamiana plants, respectively, has been demonstrated in previous studies. Three phosphorylation sites (T221, S223, and S250) were identified in its C-terminal oligomerization domain by mass spectrometry, suggesting a regulation of MP by posttranslational modification. To examine the influence of the three sites on the self-interaction in more detail, MP mutants were tested for their interaction in yeast by two-hybrid assays, or by Förster resonance energy transfer (FRET) techniques in planta. Expression constructs with point mutations leading to simultaneous (triple) exchange of T221, S223, and S250 to either uncharged alanine (MPAAA), or phosphorylation charge-mimicking aspartate residues (MPDDD) were compared. MPDDD interfered with MP-MP binding in contrast to MPAAA. The roles of the phosphorylation sites for the viral life cycle were studied further, using plant-infectious AbMV DNA-B variants with the same triple mutants each. When co-inoculated with wild-type DNA-A, both mutants infected N. benthamiana plants systemically, but were unable to do so for some other plant species of the families Solanaceae or Malvaceae. Systemically infected plants developed symptoms and viral DNA levels different from those of wild-type AbMV for most virus-plant combinations. The results indicate a regulation of diverse MP functions by posttranslational modifications and underscore their biological relevance for a complex host plant-geminivirus interaction.
Collapse
|
20
|
Subramaniam S. Rhes Tunnels: A Radical New Way of Communication in the Brain's Striatum? Bioessays 2020; 42:e1900231. [PMID: 32236969 PMCID: PMC7310467 DOI: 10.1002/bies.201900231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Ras homolog enriched in the striatum (Rhes) is a striatal enriched protein that promotes the formation of thin membranous tubes resembling tunneling nanotubes (TNT)-"Rhes tunnels"-that connect neighboring cell and transport cargoes: vesicles and proteins between the neuronal cells. Here the literature on TNT-like structures is reviewed, and the implications of Rhes-mediated TNT, the mechanisms of its formation, and its potential in novel cell-to-cell communication in regulating striatal biology and disease are emphasized. Thought-provoking ideas regarding how Rhes-mediated TNT, if it exists, in vivo, would radically change the way neurons communicate in the brain are discussed.
Collapse
|
21
|
Lee C, Zheng Y, Chan C, Ku H, Chang C, Jan F. A single amino acid substitution in the movement protein enables the mechanical transmission of a geminivirus. MOLECULAR PLANT PATHOLOGY 2020; 21:571-588. [PMID: 32078762 PMCID: PMC7060137 DOI: 10.1111/mpp.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Begomoviruses of the Geminiviridae are usually transmitted by whiteflies and rarely by mechanical inoculation. We used tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, to address this issue. Most ToLCNDV isolates are not mechanically transmissible to their natural hosts. The ToLCNDV-OM isolate, originally identified from a diseased oriental melon plant, is mechanically transmissible, while the ToLCNDV-CB isolate, from a diseased cucumber plant, is not. Genetic swapping and pathological tests were performed to identify the molecular determinants involved in mechanical transmission. Various viral infectious clones were constructed and successfully introduced into Nicotiana benthamiana, oriental melon, and cucumber plants by Agrobacterium-mediated inoculation. Mechanical transmissibility was assessed via direct rub inoculation with sap prepared from infected N. benthamiana. The presence or absence of viral DNA in plants was validated by PCR, Southern blotting, and in situ hybridization. The results reveal that mechanical transmissibility is associated with the movement protein (MP) of viral DNA-B in ToLCNDV-OM. However, the nuclear shuttle protein of DNA-B plays no role in mechanical transmission. Analyses of infectious clones carrying a single amino acid substitution reveal that the glutamate at amino acid position 19 of MP in ToLCNDV-OM is critical for mechanical transmissibility. The substitution of glutamate with glycine at this position in the MP of ToLCNDV-OM abolishes mechanical transmissibility. In contrast, the substitution of glycine with glutamate at the 19th amino acid position in the MP of ToLCNDV-CB enables mechanical transmission. This is the first time that a specific geminiviral movement protein has been identified as a determinant of mechanical transmissibility.
Collapse
Affiliation(s)
- Chia‐Hwa Lee
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichungTaipeiTaiwan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - You‐Xiu Zheng
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chin‐Hsiang Chan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Department of AgronomyNational Chung Hsing UniversityTaichungTaiwan
| | - Hsin‐Mei Ku
- Department of AgronomyNational Chung Hsing UniversityTaichungTaiwan
| | - Chung‐Jan Chang
- Department of Plant PathologyUniversity of GeorgiaGriffinUSA
| | - Fuh‐Jyh Jan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichungTaipeiTaiwan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
22
|
Abstract
The geminivirus capsid architecture is unique and built from twinned pseudo T=1 icosahedrons with 110 copies of the coat protein (CP). The CP is multifunctional. It performs various functions during the infection of a wide range of agriculturally important plant hosts. The CP multimerizes via pentameric intermediates during assembly and encapsulates the ssDNA genome to generate the unique capsid morphology. The virus capsid protects and transports the genome in the insect vector and plant host enroute to the plant nucleus for replication and the production of progeny. This review further explores CP:CP and CP:DNA interactions, and the environmental conditions that govern the assembly of the geminivirus capsid. This analysis was facilitated by new data available for the family, including three-dimensional structures and molecular biology data for several members. In addition, current and promising new control strategies of plant crop infection, which can lead to starvation for subsistence farmers, are discussed.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
23
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
24
|
Guerrero J, Regedanz E, Lu L, Ruan J, Bisaro DM, Sunter G. Manipulation of the Plant Host by the Geminivirus AC2/C2 Protein, a Central Player in the Infection Cycle. FRONTIERS IN PLANT SCIENCE 2020; 11:591. [PMID: 32508858 PMCID: PMC7248346 DOI: 10.3389/fpls.2020.00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/20/2020] [Indexed: 05/22/2023]
Abstract
Geminiviruses are a significant group of emergent plant DNA viruses causing devastating diseases in food crops worldwide, including the Southern United States, Central America and the Caribbean. Crop failure due to geminivirus-related disease can be as high as 100%. Improved global transportation has enhanced the spread of geminiviruses and their vectors, supporting the emergence of new, more virulent recombinant strains. With limited coding capacity, geminiviruses encode multifunctional proteins, including the AC2/C2 gene that plays a central role in the viral replication-cycle through suppression of host defenses and transcriptional regulation of the late viral genes. The AC2/C2 proteins encoded by mono- and bipartite geminiviruses and the curtovirus C2 can be considered virulence factors, and are known to interact with both basal and inducible systems. This review highlights the role of AC2/C2 in affecting the jasmonic acid and salicylic acid (JA and SA) pathways, the ubiquitin/proteasome system (UPS), and RNA silencing pathways. In addition to suppressing host defenses, AC2/C2 play a critical role in regulating expression of the coat protein during the viral life cycle. It is important that the timing of CP expression is regulated to ensure that ssDNA is converted to dsDNA early during an infection and is sequestered late in the infection. How AC2 interacts with host transcription factors to regulate CP expression is discussed along with how computational approaches can help identify critical host networks targeted by geminivirus AC2 proteins. Thus, the role of AC2/C2 in the viral life-cycle is to prevent the host from mounting an efficient defense response to geminivirus infection and to ensure maximal amplification and encapsidation of the viral genome.
Collapse
Affiliation(s)
- Jennifer Guerrero
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Elizabeth Regedanz
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Liu Lu
- Department of Computer Science, North Dakota State University, Fargo, ND, United States
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, United States
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Garry Sunter
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Garry Sunter,
| |
Collapse
|
25
|
Abdelkhalek A, Ismail IA, Dessoky ES, El-Hallous EI, Hafez E. A tomato kinesin-like protein is associated with Tobacco mosaic virus infection. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1673207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Ismail A. Ismail
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Eldessoky S. Dessoky
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ehab I. El-Hallous
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
- Department of Zoology, Faculty of Science, Arish University, Al-Arish, Egypt
| | - Elsayed Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| |
Collapse
|
26
|
Ding X, Jimenez‐Gongora T, Krenz B, Lozano‐Duran R. Chloroplast clustering around the nucleus is a general response to pathogen perception in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:1298-1306. [PMID: 31257720 PMCID: PMC6715600 DOI: 10.1111/mpp.12840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It is increasingly clear that chloroplasts play a central role in plant stress responses. Upon activation of immune responses, chloroplasts are the source of multiple defensive signals, including reactive oxygen species (ROS). Intriguingly, it has been described that chloroplasts establish physical contact with the nucleus, through clustering around it and extending stromules, following activation of effector-triggered immunity (ETI). However, how prevalent this phenomenon is in plant-pathogen interactions, how its induction occurs, and what the underlying biological significance is are important questions that remain unanswered. Here, we describe that the chloroplast perinuclear clustering seems to be a general plant response upon perception of an invasion threat. Indeed, activation of pattern-triggered immunity, ETI, transient expression of the Rep protein from geminiviruses, or infection with viruses or bacteria all are capable of triggering this response in Nicotiana benthamiana. Interestingly, this response seems non-cell-autonomous, and exogenous treatment with H2 O2 is sufficient to elicit this relocalization of chloroplasts, which appears to require accumulation of ROS. Taken together, our results indicate that chloroplasts cluster around the nucleus during plant-pathogen interactions, suggesting a fundamental role of this positioning in plant defence, and identify ROS as sufficient and possibly required for the onset of this response.
Collapse
Affiliation(s)
- Xue Ding
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Tamara Jimenez‐Gongora
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Bjӧrn Krenz
- Leibniz Institute DSMZ38124BraunschweigGermany
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
| |
Collapse
|
27
|
Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. MOLECULAR PLANT PATHOLOGY 2019; 20:943-960. [PMID: 30985068 PMCID: PMC6589724 DOI: 10.1111/mpp.12804] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Geminivirus disease complexes potentially interfere with plants physiology and cause disastrous effects on a wide range of economically important crops throughout the world. Diverse geminivirus betasatellite associations exacerbate the epidemic threat for global food security. Our previous study showed that βC1, the pathogenicity determinant of geminivirus betasatellites induce symptom development by disrupting the ultrastructure and function of chloroplasts. Here we explored the betasatellite-virus-chloroplast interaction in the scope of viral pathogenesis as well as plant defence responses, using Nicotiana benthamiana-Radish leaf curl betasatellite (RaLCB) as the model system. We have shown an interaction between RaLCB-encoded βC1 and one of the extrinsic subunit proteins of oxygen-evolving complex of photosystem II both in vitro and in vivo. Further, we demonstrate a novel function of the Nicotiana benthamiana oxygen-evolving enhancer protein 2 (PsbP), in that it binds DNA, including geminivirus DNA. Transient silencing of PsbP in N. benthamiana plants enhances pathogenicity and viral DNA accumulation. Overexpression of PsbP impedes disease development during the early phase of infection, suggesting that PsbP is involved in generation of defence response during geminivirus infection. In addition, βC1-PsbP interaction hampers non-specific binding of PsbP to the geminivirus DNA. Our findings suggest that betasatellite-encoded βC1 protein accomplishes counter-defence by physical interaction with PsbP reducing the ability of PsbP to bind geminivirus DNA to establish infection.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Kalaiarasan Ponnusamy
- Synthetic Biology Laboratory, School of BiotechnologyJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
28
|
Kumar RV. Plant Antiviral Immunity Against Geminiviruses and Viral Counter-Defense for Survival. Front Microbiol 2019; 10:1460. [PMID: 31297106 PMCID: PMC6607972 DOI: 10.3389/fmicb.2019.01460] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
The family Geminiviridae includes plant-infecting viruses whose genomes are composed of one or two circular non-enveloped ssDNAs(+) of about 2.5-5.2 kb each in size. These insect-transmissible geminiviruses cause significant crop losses across continents and pose a serious threat to food security. Under the control of promoters generally located within the intergenic region, their genomes encode five to eight ORFs from overlapping viral transcripts. Most proteins encoded by geminiviruses perform multiple functions, such as suppressing defense responses, hijacking ubiquitin-proteasomal pathways, altering hormonal responses, manipulating cell cycle regulation, and exploiting protein-signaling cascades. Geminiviruses establish complex but coordinated interactions with several host elements to spread and facilitate successful infection cycles. Consequently, plants have evolved several multilayered defense strategies against geminivirus infection and distribution. Recent studies on the evasion of host-mediated resistance factors by various geminivirus proteins through novel mechanisms have provided new insights into the development of antiviral strategies against geminiviruses. This review summarizes the current knowledge concerning virus movement within and between cells, as well as the recent advances in our understanding of the biological roles of virus-encoded proteins in manipulating host-mediated responses and insect transmission. This review also highlights unexplored areas that may increase our understanding of the biology of geminiviruses and how to combat these important plant pathogens.
Collapse
Affiliation(s)
- R. Vinoth Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
29
|
Diamos AG, Crawford JM, Mason HS. Fine-tuning expression of begomoviral movement and nuclear shuttle proteins confers cell-to-cell movement to mastreviral replicons in Nicotiana benthamiana leaves. J Gen Virol 2019; 100:1038-1051. [PMID: 31107197 DOI: 10.1099/jgv.0.001275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geminiviruses are a group of small plant viruses responsible for devastating crop damage worldwide. The emergence of agricultural diseases caused by geminiviruses is attributed in part to their high rates of recombination, leading to complementary function between viral components across species and genera. We have developed a mastreviral reporter system based on bean yellow dwarf virus (BeYDV) that replicates to high levels in the plant nucleus, expressing very high levels of GFP. To investigate the potential for complementation of movement function by other geminivirus genera, the movement protein (MP) and nuclear shuttle protein (NSP) from the bipartite begomovirus Bean dwarf mosaic virus (BDMV) were produced and characterized in Nicotiana benthamiana leaves. While overexpression of MP and NSP strongly inhibited GFP expression from the mastreviral reporter and caused adverse plant symptoms, optimizing the expression levels of MP and NSP allowed functional cell-to-cell movement. Hybrid virus vectors were created that express BDMV MP and NSP from mastreviral replicons, allowing efficient cell-to-cell movement comparable to native BDMV replicons. We find that the expression levels of MP and NSP must be fine-tuned to provide sufficient MP/NSP for movement without eliciting the plant hypersensitive response or adversely impacting gene expression from viral replicons. The ability to confer cell-to-cell movement to mastrevirus replicons depended strongly on replicon size: 2.1-2.7 kb replicons were efficiently moved, while 3 kb replicons were inhibited, and 3.9 kb replicons were very strongly inhibited. Optimized expression of MP/NSP from the normally phloem-limited Abutilon mosaic virus (AbMV) allows efficient movement in non-phloem cells.
Collapse
Affiliation(s)
- Andrew G Diamos
- 1 Center for Immunology, Virology, and Vaccinology, Biodesign Institute at ASU, and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - John M Crawford
- 1 Center for Immunology, Virology, and Vaccinology, Biodesign Institute at ASU, and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hugh S Mason
- 1 Center for Immunology, Virology, and Vaccinology, Biodesign Institute at ASU, and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
30
|
DeBlasio SL, Xu Y, Johnson RS, Rebelo AR, MacCoss MJ, Gray SM, Heck M. The Interaction Dynamics of Two Potato Leafroll Virus Movement Proteins Affects Their Localization to the Outer Membranes of Mitochondria and Plastids. Viruses 2018; 10:E585. [PMID: 30373157 PMCID: PMC6265731 DOI: 10.3390/v10110585] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Luteoviridae is an agriculturally important family of viruses whose replication and transport are restricted to plant phloem. Their genomes encode for four proteins that regulate viral movement. These include two structural proteins that make up the capsid and two non-structural proteins known as P3a and P17. Little is known about how these proteins interact with each other and the host to coordinate virus movement within and between cells. We used quantitative, affinity purification-mass spectrometry to show that the P3a protein of Potato leafroll virus complexes with virus and that this interaction is partially dependent on P17. Bimolecular complementation assays (BiFC) were used to validate that P3a and P17 self-interact as well as directly interact with each other. Co-localization with fluorescent-based organelle markers demonstrates that P3a directs P17 to the mitochondrial outer membrane while P17 regulates the localization of the P3a-P17 heterodimer to plastids. Residues in the C-terminus of P3a were shown to regulate P3a association with host mitochondria by using mutational analysis and also varying BiFC tag orientation. Collectively, our work reveals that the PLRV movement proteins play a game of intracellular hopscotch along host organelles to transport the virus to the cell periphery.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Ana Rita Rebelo
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Stewart M Gray
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Michelle Heck
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Itoh RD, Ishikawa H, Nakajima KP, Moriyama S, Fujiwara MT. Isolation and analysis of a stromule-overproducing Arabidopsis mutant suggest the role of PARC6 in plastid morphology maintenance in the leaf epidermis. PHYSIOLOGIA PLANTARUM 2018; 162:479-494. [PMID: 28984364 DOI: 10.1111/ppl.12648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 05/10/2023]
Abstract
Stromules, or stroma-filled tubules, are thin extensions of the plastid envelope membrane that are most frequently observed in undifferentiated or non-mesophyll cells. The formation of stromules is developmentally regulated and responsive to biotic and abiotic stress; however, the physiological roles and molecular mechanisms of the stromule formation remain enigmatic. Accordingly, we attempted to obtain Arabidopsis thaliana mutants with aberrant stromule biogenesis in the leaf epidermis. Here, we characterize one of the obtained mutants. Plastids in the leaf epidermis of this mutant were giant and pleomorphic, typically having one or more constrictions that indicated arrested plastid division, and usually possessed one or more extremely long stromules, which indicated the deregulation of stromule formation. Genetic mapping, whole-genome resequencing-aided exome analysis, and gene complementation identified PARC6/CDP1/ARC6H, which encodes a vascular plant-specific, chloroplast division site-positioning factor, as the causal gene for the stromule phenotype. Yeast two-hybrid assay and double mutant analysis also identified a possible interaction between PARC6 and MinD1, another known chloroplast division site-positioning factor, during the morphogenesis of leaf epidermal plastids. To the best of our knowledge, PARC6 is the only known A. thaliana chloroplast division factor whose mutations more extensively affect the morphology of plastids in non-mesophyll tissue than in mesophyll tissue. Therefore, the present study demonstrates that PARC6 plays a pivotal role in the morphology maintenance and stromule regulation of non-mesophyll plastids.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Hiroki Ishikawa
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Kohdai P Nakajima
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Shota Moriyama
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Makoto T Fujiwara
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
32
|
Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. MOLECULAR PLANT PATHOLOGY 2018; 19:504-518. [PMID: 28056496 PMCID: PMC6638057 DOI: 10.1111/mpp.12533] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus-infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant-virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome-based antiviral resistance in economically important crops.
Collapse
Affiliation(s)
- Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
33
|
Barton KA, Wozny MR, Mathur N, Jaipargas EA, Mathur J. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells. J Cell Sci 2018; 131:jcs.202275. [PMID: 28320821 DOI: 10.1242/jcs.202275] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/16/2017] [Indexed: 01/11/2023] Open
Abstract
Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 (gl2) and immutans (im), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment.
Collapse
Affiliation(s)
- Kiah A Barton
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Michael R Wozny
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Erica-Ashley Jaipargas
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
34
|
Hanson MR, Hines KM. Stromules: Probing Formation and Function. PLANT PHYSIOLOGY 2018; 176:128-137. [PMID: 29097392 PMCID: PMC5761818 DOI: 10.1104/pp.17.01287] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 05/18/2023]
Abstract
Stromules are plastid stroma-filled tubules that increase the surface area of the envelope and extend the reach of the plastid within the plant cell, affecting biosynthesis, metabolism, and signaling.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, New York 14853
| | - Kevin M Hines
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, New York 14853
| |
Collapse
|
35
|
Delfosse K, Wozny MR, Barton KA, Mathur N, Griffiths N, Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. FRONTIERS IN PLANT SCIENCE 2018; 9:754. [PMID: 29915611 PMCID: PMC5995270 DOI: 10.3389/fpls.2018.00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 05/13/2023]
Abstract
UNLABELLED Plastids in the viridiplantae sporadically form thin tubules called stromules that increase the interactive surface between the plastid and the surrounding cytoplasm. Several recent publications that report observations of certain proteins localizing to the extensions have then used the observations to suggest stromule-specific functions. The mechanisms by which specific localizations on these transient and sporadically formed extensions might occur remain unclear. Previous studies have yet to address the spatiotemporal relationship between a particular protein localization pattern and its distribution on an extended stromules and/or the plastid body. Here, we have used discrete protein patches found in several transgenic plants as fiducial markers to investigate this relationship. While we consider the inner plastid envelope-membrane localized protein patches of the GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR1 and the TRIOSE-PHOSPHATE/ PHOSPHATE TRANSLOCATOR 1 as artifacts of fluorescent fusion protein over-expression, stromule formation is not compromised in the respective stable transgenic lines that maintain normal growth and development. Our analysis of chloroplasts in the transgenic lines in the Arabidopsis Columbia background, and in the arc6 mutant, under stromule-inducing conditions shows that the possibility of finding a particular protein-enriched domain on an extended stromule or on a region of the main plastid body is stochastic. Our observations provide insights on the behavior of chloroplasts, the relationship between stromules and the plastid-body and strongly challenge claims of stromule-specific functions based solely upon protein localization to plastid extensions. ONE SENTENCE SUMMARY Observations of the spatiotemporal relationship between plastid envelope localized fluorescent protein fusions of two sugar-phosphate transporters and stromules suggest a stochastic rather than specific localization pattern that questions the idea of independent functions for stromules.
Collapse
|
36
|
Chen L, Yan Z, Xia Z, Cheng Y, Jiao Z, Sun B, Zhou T, Fan Z. A Violaxanthin Deepoxidase Interacts with a Viral Suppressor of RNA Silencing to Inhibit Virus Amplification. PLANT PHYSIOLOGY 2017; 175:1774-1794. [PMID: 29021224 PMCID: PMC5717725 DOI: 10.1104/pp.17.00638] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
RNA silencing plays a critical role against viral infection. To counteract this antiviral silencing, viruses have evolved various RNA silencing suppressors. Meanwhile, plants have evolved counter-counter defense strategies against RNA silencing suppression (RSS). In this study, the violaxanthin deepoxidase protein of maize (Zea mays), ZmVDE, was shown to interact specifically with the helper component-proteinase (HC-Pro; a viral RNA silencing suppressor) of Sugarcane mosaic virus (SCMV) via its mature protein region by yeast two-hybrid assay, which was confirmed by coimmunoprecipitation in Nicotiana benthamiana cells. It was demonstrated that amino acids 101 to 460 in HC-Pro and the amino acid glutamine-292 in ZmVDE mature protein were essential for this interaction. The mRNA levels of ZmVDE were down-regulated 75% to 65% at an early stage of SCMV infection. Interestingly, ZmVDE, which normally localized in the chloroplasts and cytoplasm, could relocalize to HC-Pro-containing aggregate bodies in the presence of HC-Pro alone or SCMV infection. In addition, ZmVDE could attenuate the RSS activity of HC-Pro in a specific protein interaction-dependent manner. Subsequently, transient silencing of the ZmVDE gene facilitated SCMV RNA and coat protein accumulation. Taken together, our results suggest that ZmVDE interacts with SCMV HC-Pro and attenuates its RSS activity, contributing to decreased SCMV accumulation. This study demonstrates that a host factor can be involved in secondary defense responses against viral infection in monocot plants.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zhaoling Yan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zihao Xia
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Yuqin Cheng
- Department of Pomology/Laboratory of Stress Physiology and Molecular Biology for Tree Fruits-Key Laboratory of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Jiao
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Biao Sun
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing 100193, China
| |
Collapse
|
37
|
Krapp S, Schuy C, Greiner E, Stephan I, Alberter B, Funk C, Marschall M, Wege C, Bailer SM, Kleinow T, Krenz B. Begomoviral Movement Protein Effects in Human and Plant Cells: Towards New Potential Interaction Partners. Viruses 2017; 9:E334. [PMID: 29120369 PMCID: PMC5707541 DOI: 10.3390/v9110334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
Geminiviral single-stranded circular DNA genomes replicate in nuclei so that the progeny DNA has to cross both the nuclear envelope and the plasmodesmata for systemic spread within plant tissues. For intra- and intercellular transport, two proteins are required: a nuclear shuttle protein (NSP) and a movement protein (MP). New characteristics of ectopically produced Abutilon mosaic virus (AbMV) MP (MPAbMV), either authentically expressed or fused to a yellow fluorescent protein or epitope tags, respectively, were determined by localization studies in mammalian cell lines in comparison to plant cells. Wild-type MPAbMV and the distinct MPAbMV: reporter protein fusions appeared as curled threads throughout mammalian cells. Co-staining with cytoskeleton markers for actin, intermediate filaments, or microtubules identified these threads as re-organized microtubules. These were, however, not stabilized by the viral MP, as demonstrated by nocodazole treatment. The MP of a related bipartite New World begomovirus, Cleome leaf crumple virus (ClLCrV), resulted in the same intensified microtubule bundling, whereas that of a nanovirus did not. The C-terminal section of MPAbMV, i.e., the protein's oligomerization domain, was dispensable for the effect. However, MP expression in plant cells did not affect the microtubules network. Since plant epidermal cells are quiescent whilst mammalian cells are proliferating, the replication-associated protein RepAbMV protein was then co-expressed with MPAbMV to induce cell progression into S-phase, thereby inducing distinct microtubule bundling without MP recruitment to the newly formed threads. Co-immunoprecipitation of MPAbMV in the presence of RepAbMV, followed by mass spectrometry identified potential novel MPAbMV-host interaction partners: the peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 (Pin4) and stomatal cytokinesis defective 2 (SCD2) proteins. Possible roles of these putative interaction partners in the begomoviral life cycle and cytoskeletal association modes are discussed.
Collapse
Affiliation(s)
- Susanna Krapp
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Christian Schuy
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Eva Greiner
- Department Biologie, Lehrstuhl Biochemie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Irina Stephan
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Barbara Alberter
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, Universität Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany.
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Christina Wege
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, Universität Stuttgart, Nobelstrasse 12, 70569 Stuttgart, Germany.
| | - Tatjana Kleinow
- Abteilung Molekularbiologie und Virologie der Pflanzen, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Björn Krenz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124 Braunschweig, Germany.
| |
Collapse
|
38
|
Silva JCF, Carvalho TFM, Fontes EPB, Cerqueira FR. Fangorn Forest (F2): a machine learning approach to classify genes and genera in the family Geminiviridae. BMC Bioinformatics 2017; 18:431. [PMID: 28964254 PMCID: PMC5622471 DOI: 10.1186/s12859-017-1839-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/20/2017] [Indexed: 11/14/2022] Open
Abstract
Background Geminiviruses infect a broad range of cultivated and non-cultivated plants, causing significant economic losses worldwide. The studies of the diversity of species, taxonomy, mechanisms of evolution, geographic distribution, and mechanisms of interaction of these pathogens with the host have greatly increased in recent years. Furthermore, the use of rolling circle amplification (RCA) and advanced metagenomics approaches have enabled the elucidation of viromes and the identification of many viral agents in a large number of plant species. As a result, determining the nomenclature and taxonomically classifying geminiviruses turned into complex tasks. In addition, the gene responsible for viral replication (particularly, the viruses belonging to the genus Mastrevirus) may be spliced due to the use of the transcriptional/splicing machinery in the host cells. However, the current tools have limitations concerning the identification of introns. Results This study proposes a new method, designated Fangorn Forest (F2), based on machine learning approaches to classify genera using an ab initio approach, i.e., using only the genomic sequence, as well as to predict and classify genes in the family Geminiviridae. In this investigation, nine genera of the family Geminiviridae and their related satellite DNAs were selected. We obtained two training sets, one for genus classification, containing attributes extracted from the complete genome of geminiviruses, while the other was made up to classify geminivirus genes, containing attributes extracted from ORFs taken from the complete genomes cited above. Three ML algorithms were applied on those datasets to build the predictive models: support vector machines, using the sequential minimal optimization training approach, random forest (RF), and multilayer perceptron. RF demonstrated a very high predictive power, achieving 0.966, 0.964, and 0.995 of precision, recall, and area under the curve (AUC), respectively, for genus classification. For gene classification, RF could reach 0.983, 0.983, and 0.998 of precision, recall, and AUC, respectively. Conclusions Therefore, Fangorn Forest is proven to be an efficient method for classifying genera of the family Geminiviridae with high precision and effective gene prediction and classification. The method is freely accessible at www.geminivirus.org:8080/geminivirusdw/discoveryGeminivirus.jsp. Electronic supplementary material The online version of this article (10.1186/s12859-017-1839-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Cleydson F Silva
- Department of Informatics, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Thales F M Carvalho
- Department of Informatics, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil. .,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Fabio R Cerqueira
- Department of Informatics, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil. .,Department of Production Engineering, Universidade Federal Fluminense, Rua Domingos Silvério, s/n, Bairro Quitandinha, Petrópolis, Rio de Janeiro, 25650-050, Brazil.
| |
Collapse
|
39
|
Ganusova EE, Rice JH, Carlew TS, Patel A, Perrodin-Njoku E, Hewezi T, Burch-Smith TM. Altered Expression of a Chloroplast Protein Affects the Outcome of Virus and Nematode Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:478-488. [PMID: 28323529 DOI: 10.1094/mpmi-02-17-0031-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The chloroplast-resident RNA helicase ISE2 (INCREASED SIZE EXCLUSION LIMIT2) can modulate the formation and distribution of plasmodesmata and intercellular trafficking. We have determined that ISE2 expression is induced by viral infection. Therefore, the responses of Nicotiana benthamiana plants with varying levels of ISE2 expression to infection by Tobacco mosaic virus and Turnip mosaic virus were examined. Surprisingly, increased or decreased ISE2 expression led to faster viral systemic spread and, in some cases, enhanced systemic necrosis. The contributions of RNA silencing and hormone-mediated immune responses to the increased viral susceptibility of these plants were assessed. In addition, Arabidopsis thaliana plants with increased ISE2 expression were found to be more susceptible to infection by the beet cyst nematode Heterodera schachtii. Our analyses provide intriguing insights into unexpected functional roles of a chloroplast protein in mediating plant-pathogen interactions. The possible roles of plasmodesmata in determining the outcomes of these interactions are also discussed.
Collapse
Affiliation(s)
- Elena E Ganusova
- 1 Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Hollis Rice
- 2 Department of Plant Sciences, University of Tennessee; and
| | - Timothy S Carlew
- 1 Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Akshita Patel
- 1 Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Emmanuel Perrodin-Njoku
- 3 National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
| | - Tarek Hewezi
- 2 Department of Plant Sciences, University of Tennessee; and
| | - Tessa M Burch-Smith
- 1 Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
40
|
Silva JCF, Carvalho TFM, Basso MF, Deguchi M, Pereira WA, Sobrinho RR, Vidigal PMP, Brustolini OJB, Silva FF, Dal-Bianco M, Fontes RLF, Santos AA, Zerbini FM, Cerqueira FR, Fontes EPB. Geminivirus data warehouse: a database enriched with machine learning approaches. BMC Bioinformatics 2017; 18:240. [PMID: 28476106 PMCID: PMC5420152 DOI: 10.1186/s12859-017-1646-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/25/2017] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND The Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. RESULTS Here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. CONCLUSIONS The use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.
Collapse
Affiliation(s)
- Jose Cleydson F Silva
- Departamento de Informática, Universidade Federal de Viçosa, Viçosa, Brazil.,National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Marcos F Basso
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Michihito Deguchi
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Welison A Pereira
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Roberto R Sobrinho
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Pedro M P Vidigal
- Núcleo de Biomoléculas, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Otávio J B Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Fabyano F Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maximiller Dal-Bianco
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Anésia A Santos
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil.,Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Francisco Murilo Zerbini
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil.,Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Fabio R Cerqueira
- Departamento de Informática, Universidade Federal de Viçosa, Viçosa, Brazil.,Departamento de Engenharia de Produção, Universidade Federal Fluminense, Petrópolis, Rio de Janeiro, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil. .,Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
41
|
Gorovits R, Czosnek H. The Involvement of Heat Shock Proteins in the Establishment of Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:355. [PMID: 28360921 PMCID: PMC5352662 DOI: 10.3389/fpls.2017.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/01/2017] [Indexed: 05/07/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a begomovirus, induces protein aggregation in infected tomatoes and in its whitefly vector Bemisia tabaci. The interactions between TYLCV and HSP70 and HSP90 in plants and vectors are necessity for virus infection to proceed. In infected host cells, HSP70 and HSP90 are redistributed from a soluble to an aggregated state. These aggregates contain, together with viral DNA/proteins and virions, HSPs and components of the protein quality control system such as ubiquitin, 26S proteasome subunits, and the autophagy protein ATG8. TYLCV CP can form complexes with HSPs in tomato and whitefly. Nonetheless, HSP70 and HSP90 play different roles in the viral cell cycle in the plant host. In the infected host cell, HSP70, but not HSP90, participates in the translocation of CP from the cytoplasm into the nucleus. Viral amounts decrease when HSP70 is inhibited, but increase when HSP90 is downregulated. In the whitefly vector, HSP70 impairs the circulative transmission of TYLCV; its inhibition increases transmission. Hence, the efficiency of virus acquisition by whiteflies depends on the functionality of both plant chaperones and their cross-talk with other protein mechanisms controlling virus-induced aggregation.
Collapse
|
42
|
Vismans G, van der Meer T, Langevoort O, Schreuder M, Bouwmeester H, Peisker H, Dörman P, Ketelaar T, van der Krol A. Low-Phosphate Induction of Plastidal Stromules Is Dependent on Strigolactones But Not on the Canonical Strigolactone Signaling Component MAX2. PLANT PHYSIOLOGY 2016; 172:2235-2244. [PMID: 27760882 PMCID: PMC5129712 DOI: 10.1104/pp.16.01146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/13/2016] [Indexed: 05/18/2023]
Abstract
Stromules are highly dynamic protrusions of the plastids in plants. Several factors, such as drought and light conditions, influence the stromule frequency (SF) in a positive or negative way. A relatively recently discovered class of plant hormones are the strigolactones; strigolactones inhibit branching of the shoots and promote beneficial interactions between roots and arbuscular mycorrhizal fungi. Here, we investigate the link between the formation of stromules and strigolactones. This research shows a strong link between strigolactones and the formation of stromules: SF correlates with strigolactone levels in the wild type and strigolactone mutants (max2-1 max3-9), and SF is stimulated by strigolactone GR24 and reduced by strigolactone inhibitor D2.
Collapse
Affiliation(s)
- Gilles Vismans
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Tom van der Meer
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Olivier Langevoort
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Marielle Schreuder
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Harro Bouwmeester
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Helga Peisker
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Peter Dörman
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Tijs Ketelaar
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| | - Alexander van der Krol
- Laboratory of Plant Physiology (G.V., T.v.d.M., O.L., M.S., A.v.d.K.) and Laboratory of Cell Biology (G.V., T.v.d.M., O.L., T.K), Wageningen University, 6708 PB Wageningen, The Netherlands; and
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany (H.P., P.D.)
| |
Collapse
|
43
|
Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in Plant-Virus Interaction. Front Microbiol 2016; 7:1565. [PMID: 27757106 PMCID: PMC5047884 DOI: 10.3389/fmicb.2016.01565] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
| |
Collapse
|
44
|
Carmo LST, Murad AM, Resende RO, Boiteux LS, Ribeiro SG, Jorrín-Novo JV, Mehta A. Plant responses to tomato chlorotic mottle virus: Proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. J Proteomics 2016; 151:284-292. [PMID: 27457268 DOI: 10.1016/j.jprot.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Tomato chlorotic mottle virus (ToCMoV) is a widespread bipartite Begomovirus species found in tomato fields in Brazil. In this study, plant responses and putative mechanisms associated with the 'Tyking'-derived recessive resistance to ToCMoV were investigated. Changes in the protein profile in the inoculated plants of two near isogenic tomato lines resistant ('LAM 157') and susceptible ('Santa Clara') to ToCMoV were analyzed. Seedlings were biolistically inoculated with an infectious ToCMoV clone. Leaves from infected plants (confirmed by PCR) were sampled at 15days after inoculation. Proteins were extracted using phenol and analyzed by shotgun MS (2D-nanoUPLC/HDMSE). Out of the 534 identified proteins, 82 presented statistically significant differences in abundance, including 35 unique proteins displayed in the resistant tomato inoculated with ToCMoV. Proteins associated to chromatin structure, cytoskeleton structure, cuticle biosynthesis, and ubiquitin pathway were identified and their putative roles during virus infection process were discussed. The protein profile analysis allowed for the development of a hypothetical model showing how the resistant host cell responds to ToCMoV infection. The data obtained provide a better understanding of resistant mechanisms used by the host plant to contain viral infection and could be the basis for further investigation in other plant-begomovirus pathosystems. BIOLOGICAL SIGNIFICANCE In this study we propose a model of resistance to begomovirus in tomato and highlight host proteins, which could be targets for future investigations in plant-begomovirus pathosystems.
Collapse
Affiliation(s)
- Lílian S T Carmo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Renato O Resende
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
45
|
Ho J, Theg SM. The Formation of Stromules In Vitro from Chloroplasts Isolated from Nicotiana benthamiana. PLoS One 2016; 11:e0146489. [PMID: 26840974 PMCID: PMC4739594 DOI: 10.1371/journal.pone.0146489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022] Open
Abstract
Stromules are stroma-containing tubules that have been observed to emanate from the main plastidic body in vivo. These structures have been shown to require cytoskeletal components for movement. Though numerous studies have shown a close association with the endoplasmic reticulum, nucleus, mitochondria, and other plastids, the mechanism of formation and their overall function remain unknown. A limiting factor in studying these structures has been the lack of a reconstituted system for in vitro stromule formation. In this study, stromule formation was induced in vitro by adding a plant extract fraction that is greater than 100 kDa to a population of isolated chloroplasts. Kinetic measurements show that stromule formation occurs within ~10 seconds after the addition of the plant extract fraction. Heat inactivation and apyrase treatment reveal that the stromule stimulating compound found in the extract fraction is a protein or protein complex 100 kDa or greater. The formation of the stromules in vitro with isolated chloroplasts and a concentrated fraction of cell extract opens an avenue for the biochemical dissection of this process that has heretofore been studied only in vivo.
Collapse
Affiliation(s)
- Jonathan Ho
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Steven M. Theg
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
46
|
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China; State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University Beijing, China
| |
Collapse
|
47
|
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 2015; 18:453-65. [DOI: 10.1111/cmi.12530] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Cécile Lorrain
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Diane G.O. Saunders
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- The Genome Analysis Centre; Norwich Research Park; Norwich NR4 7UH UK
- The John Innes Centre; Norwich Research Park; Norwich NR4 7UH UK
| | - Joe Win
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Jan Sklenar
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Sophien Kamoun
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| |
Collapse
|
48
|
Chloroplast Stromules Function during Innate Immunity. Dev Cell 2015; 34:45-57. [PMID: 26120031 DOI: 10.1016/j.devcel.2015.05.011] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/04/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Abstract
Inter-organellar communication is vital for successful innate immune responses that confer defense against pathogens. However, little is known about how chloroplasts, which are a major production site of pro-defense molecules, communicate and coordinate with other organelles during defense. Here we show that chloroplasts send out dynamic tubular extensions called stromules during innate immunity or exogenous application of the pro-defense signals, hydrogen peroxide (H2O2) and salicylic acid. Interestingly, numerous stromules surround nuclei during defense response, and these connections correlate with an accumulation of chloroplast-localized NRIP1 defense protein and H2O2 in the nucleus. Furthermore, silencing and knockout of chloroplast unusual positioning 1 (CHUP1) that encodes a chloroplast outer envelope protein constitutively induces stromules in the absence of pathogen infection and enhances programmed cell death. These results support a model in which stromules aid in the amplification and/or transport of pro-defense signals into the nucleus and other subcellular compartments during immunity.
Collapse
|
49
|
Krenz B, Deuschle K, Deigner T, Unseld S, Kepp G, Wege C, Kleinow T, Jeske H. Early function of the Abutilon mosaic virus AC2 gene as a replication brake. J Virol 2015; 89:3683-99. [PMID: 25589661 PMCID: PMC4403429 DOI: 10.1128/jvi.03491-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The C2/AC2 genes of monopartite/bipartite geminiviruses of the genera Begomovirus and Curtovirus encode important pathogenicity factors with multiple functions described so far. A novel function of Abutilon mosaic virus (AbMV) AC2 as a replication brake is described, utilizing transgenic plants with dimeric inserts of DNA B or with a reporter construct to express green fluorescent protein (GFP). Their replicational release upon AbMV superinfection or the individual and combined expression of epitope-tagged AbMV AC1, AC2, and AC3 was studied. In addition, the effects were compared in the presence and in the absence of an unrelated tombusvirus suppressor of silencing (P19). The results show that AC2 suppresses replication reproducibly in all assays and that AC3 counteracts this effect. Examination of the topoisomer distribution of supercoiled DNA, which indicates changes in the viral minichromosome structure, did not support any influence of AC2 on transcriptional gene silencing and DNA methylation. The geminiviral AC2 protein has been detected here for the first time in plants. The experiments revealed an extremely low level of AC2, which was slightly increased if constructs with an intron and a hemagglutinin (HA) tag in addition to P19 expression were used. AbMV AC2 properties are discussed with reference to those of other geminiviruses with respect to charge, modification, and size in order to delimit possible reasons for the different behaviors. IMPORTANCE The (A)C2 genes encode a key pathogenicity factor of begomoviruses and curtoviruses in the plant virus family Geminiviridae. This factor has been implicated in the resistance breaking observed in agricultural cotton production. AC2 is a multifunctional protein involved in transcriptional control, gene silencing, and regulation of basal biosynthesis. Here, a new function of Abutilon mosaic virus AC2 in replication control is added as a feature of this protein in viral multiplication, providing a novel finding on geminiviral molecular biology.
Collapse
Affiliation(s)
- Björn Krenz
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Kathrin Deuschle
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Tobias Deigner
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Sigrid Unseld
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Gabi Kepp
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Christina Wege
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Tatjana Kleinow
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Holger Jeske
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
50
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|