1
|
Naik A, Kale AA, Rajwade JM. Sensing the future: A review on emerging technologies for assessing and monitoring bone health. BIOMATERIALS ADVANCES 2024; 165:214008. [PMID: 39213957 DOI: 10.1016/j.bioadv.2024.214008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Bone health is crucial at all stages of life. Several medical conditions and changes in lifestyle affect the growth, structure, and functions of bones. This may lead to the development of bone degenerative disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc., which are major public health concerns worldwide. Accurate and reliable measurement and monitoring of bone health are important aspects for early diagnosis and interventions to prevent such disorders. Significant progress has recently been made in developing new sensing technologies that offer non-invasive, low-cost, and accurate measurements of bone health. In this review, we have described bone remodeling processes and common bone disorders. We have also compiled information on the bone turnover markers for their use as biomarkers in biosensing devices to monitor bone health. Second, this review details biosensing technology for bone health assessment, including the latest developments in various non-invasive techniques, including dual-energy X-ray absorptiometry, magnetic resonance imaging, computed tomography, and biosensors. Further, we have also discussed the potential of emerging technologies, such as biosensors based on nano- and micro-electromechanical systems and application of artificial intelligence in non-invasive techniques for improving bone health assessment. Finally, we have summarized the advantages and limitations of each technology and described clinical applications for detecting bone disorders and monitoring treatment outcomes. Overall, this review highlights the potential of emerging technologies for improving bone health assessment with the potential to revolutionize clinical practice and improve patient outcomes. The review highlights key challenges and future directions for biosensor research that pave the way for continued innovations to improve diagnosis, monitoring, and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Anup A Kale
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India.
| |
Collapse
|
2
|
Ma J, Wang Z, Sun Y, Zheng R, Tan H, Zhang H, Jin Z, Wu Y, Sun Z. Phillyrin: A potential therapeutic agent for osteoarthritis via modulation of NF-κB and Nrf2 signaling pathways. Int Immunopharmacol 2024; 141:112960. [PMID: 39159565 DOI: 10.1016/j.intimp.2024.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Osteoarthritis (OA) is the predominant cause of disability among elderly people worldwide and is characterized by cartilage degeneration and excessive bone formation. Phillyrin, derived from forsythia, is a key extract renowned for its pronounced antibacterial and anti-inflammatory effects. Forsythia, deeply integrated into traditional Oriental medicine, has historically been utilized for its various pharmacological effects, including antibacterial, anti-inflammatory, and hepato-protective properties. Nevertheless, the anti-inflammatory impact of phillyrin on the progression of osteoarthritis remains enigmatic. The objective of this research was to assess the anti-inflammatory and anti-aging properties of phillyrin in mouse chondrocytes induced by IL-1β, as well as to elucidate the fundamental mechanisms underlying the phenomenon at play. Additionally, the investigation extends to observing the impact of phillyrin by establishing a murine osteoarthritic model. The ultimate goal was to identify phillyrin as a potential antiosteoarthritic agent. This investigation employs a multifaceted approach. Initially, key action targets of phillyrin, along with its probable action pathways, were identified by molecular docking and network pharmacological techniques. These findings were subsequently confirmed through both in vivo and in vitro studies. Network pharmacological analysis revealed NFE2L2 (NRF2), NFKB1, TLR4, and SERPING1 as pivotal candidate targets for the treatment of osteoarthritis with phillyrin. Molecular docking revealed hydrogen bond interactions between phillyrin and Arg415, Arg483, Ser508, and Asn387 on the Nrf2 receptor, while electrostatic interactions occurred with residues Arg415 and Arg380. Experiments conducted in vitro indicated that phillyrin preconditioning hindered the IL-1β-induced expression of proinflammatory factors which included TNF-α, COX-2, IL-6, and iNOS. Furthermore, phillyrin counteracts the IL-1β-induced degradation of aggrecan and collagen II within the extracellular matrix (ECM). This protective action is caused by the inhibition of the NF-κB pathway by phillyrin. Additionally, the mitigation of chondrocyte aging by phillyrin was observed. Our investigation revealed that phillyrin mitigates inflammation and counteracts cartilage degeneration in osteoarthritis (OA) patients by suppressing inflammation in chondrocytes and impeding aging through suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Jiawei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ze Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Rukang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Hongye Tan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Hanwen Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zebin Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| | - Zeming Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou 325035, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
3
|
Zhang Z, Zhang N, Li M, Ma X, Qiu Y. Sappanone a alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis via activating the SIRT1/Nrf2 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8759-8770. [PMID: 38832987 DOI: 10.1007/s00210-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that cause pain and disability in adults. Chondrocyte ferroptosis is found to be involved in OA progression. Sappanone A has been found as an anti-inflammatory and antioxidative agent in several diseases. This study aims to investigate the effects of sappanone A on OA progression and chondrocyte ferroptosis. IL-1β-induced chondrocytes and destabilization of the medial meniscus (DMM)-induced rats were respectively used as the OA model in vitro and in vivo. The effects of sappanone A on inflammation, extracellular matrix (ECM) metabolism, and ferroptosis were determined. Our results showed that in IL-1β-induced chondrocytes, sappanone A suppressed the production of NO, PGE2, TNF-α, IL-6, iNOS, and COX2. Sappanone A also inhibited the expression of MMP3, MMP13, and ADAMTS5, while increasing collagen II expression. Moreover, sappanone A alleviated cytotoxicity and decreased the levels of intracellular ROS, lipid ROS, MDA, and iron, while increasing GSH levels. Additionally, sappanone A increased the protein expression of SLC7A11 and GPX4. Administration of ferroptosis activator reversed the inhibitory effects of sappanone A on IL-1β-induced inflammation and ECM degradation. More importantly, Sappanone A activated the Nrf2 signaling by targeting SIRT1. The inhibition of sappanone A on ferroptosis was greatly eliminated due to the addition of SIRT1 inhibitor. Furthermore, intra-articular injection of sappanone A mitigated cartilage destruction and ferroptosis in DMM-induced OA rats. In conclusion, sappanone A protects against inflammation and ECM degradation in OA via decreasing chondrocyte ferroptosis by activating the SIRT1/Nrf2 signaling. These findings deepen our understanding of chondrocyte ferroptosis in OA and highlight the therapeutic potential of sappanone A for OA.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Nanzhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xing Ma
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yusheng Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Yang J, Li W, Lin X, Liang W. A lactate metabolism-related gene signature to diagnose osteoarthritis based on machine learning combined with experimental validation. Aging (Albany NY) 2024; 16:205873. [PMID: 39418100 DOI: 10.18632/aging.205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lactate is gradually proved as the essential regulator in intercellular signal transduction, energy metabolism reprogramming, and histone modification. This study aims to clarify the diagnosis value of lactate metabolism-related genes in osteoarthritis (OA). METHODS Lactate metabolism-related genes were retrieved from the MSigDB. GSE51588 was downloaded from the Gene Expression Omnibus (GEO) as the training dataset. GSE114007, GSE117999, and GSE82107 datasets were adopted for external validation. Genomic difference detection, protein-protein interaction network analysis, LASSO, SVM-RFE, Boruta, and univariate logistic regression (LR) analyses were used for feature selection. Multivariate LR, Random Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB) were used to develop the multiple-gene diagnosis models. 12 control and 12 OA samples were collected from the local hospital for re-verification. The transfection assays were conducted to explore the regulatory ability of the gene to the apoptosis and vitality of chondrocytes. RESULTS Through the bioinformatical analyses and machine learning algorithms, SLC2A1 and NDUFB9 of the 273 lactate metabolism-related genes were identified as the significant diagnosis biomarkers. The LR, RF, SVM, and XGB models performed impressively in the cohorts (AUC > 0.7). The local clinical samples indicated that SLC2A1 and NDUFB9 were both down-regulated in the OA samples (both P < 0.05). The knockdown of NDUFB9 inhibited the viability and promoted the apoptosis of the CHON-001 cells treated with IL-1beta (both P < 0.05). CONCLUSIONS A lactate metabolism-related gene signature was constructed to diagnose OA, which was validated in multiple independent cohorts, local clinical samples, and cellular functional experiments.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| | - Wenjun Li
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| | - Xuemei Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children’s Medical Center, Tianhe, Guangzhou 510623, Guangdong Province, China
| | - Wei Liang
- Department of Pain Medicine, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
- Department of Traditional Chinese Orthopedics and Traumatology, Yuebei People’s Hospital, Wujiang, Shaoguan 512000, Guangdong Province, China
| |
Collapse
|
5
|
Di Cicco G, Marzano E, Mastrostefano A, Pitocco D, Castilho RS, Zambelli R, Mascio A, Greco T, Cinelli V, Comisi C, Maccauro G, Perisano C. The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies. Biomedicines 2024; 12:2292. [PMID: 39457605 PMCID: PMC11505501 DOI: 10.3390/biomedicines12102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is the most common degenerative joint disease and affects millions of people worldwide, particularly the elderly population. The pathophysiology of OA is complex and involves multiple factors. Methods: Several studies have emphasized the crucial role of inflammation in this process. The receptor activator of NF-κB ligand (RANKL), the receptor activator of NF-κB (RANK), and osteoprotegerin (OPG) trigger a signaling cascade that leads to the excessive production of RANKL in the serum. Conclusions: The aim of this narrative review is (i) to assess the role of the RANK/RANKL/OPG signaling pathway in the context of OA progression, focusing especially on the physiopathology and on all the mechanisms leading to the activation of the inflammatory cascade, and (ii) to evaluate all the potential therapeutic strategies currently available that restore balance to bone formation and resorption, reducing structural abnormalities and relieving pain in patients with OA.
Collapse
Affiliation(s)
- Gabriele Di Cicco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Emanuela Marzano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Andrea Mastrostefano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.D.C.)
| | - Dario Pitocco
- Diabetes Care Unit, Endocrinology, University Hospital “A. Gemelli”, Catholic University of the Sacred Heart, 00136 Rome, Italy
| | - Rodrigo Simões Castilho
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Roberto Zambelli
- Department of Orthopaedics and Traumatology, Mater Dei Hospital, Belo Horizonte 30170-041, Brazil
| | - Antonio Mascio
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Tommaso Greco
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
- Department of Life Sciences, Health, and Healthcare Professions, Link Campus University, 00165 Rome, Italy
| | - Virginia Cinelli
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Chiara Comisi
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Giulio Maccauro
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Carlo Perisano
- Department of Orthopedics and Geriatric Sciences, Catholic University of the Sacred Heart, 00136 Rome, Italy
- Department of Orthopedics and Rheumatological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| |
Collapse
|
6
|
Sun X, Zhen X, Gu S, Liu K, Yang W, Dong H. Cost-utility analysis of duloxetine in osteoarthritis: from Chinese healthcare perspective. Expert Rev Pharmacoecon Outcomes Res 2024:1-12. [PMID: 39340167 DOI: 10.1080/14737167.2024.2410973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVES To estimate the cost-utility of duloxetine compared with that of a placebo, common traditional nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 (COX-2) inhibitors for the treatment of osteoarthritis (OA) from a Chinese healthcare perspective. METHODS A Markov model was constructed. The costs and utility inputs were obtained from the database and published literature. Incremental cost-effectiveness ratio (ICER) was the main model outputs. Subgroup analyses were also conducted for patients at high risk of gastrointestinal (GI) or cardiovascular (CV) AEs. Deterministic and probabilistic sensitivity analyses were performed. RESULTS The model estimated an ICER of $3409.21/QALY for duloxetine compared with etoricoxib, with duloxetine dominating other active treatment strategies in patients at a low risk of GI and CV AEs. The ICER for duloxetine over etoricoxib was $322.21/QALY in patients at high risk of GI and CV AEs. These results were consistent with the sensitivity analyses; 53.64% and 53.93% of the patients were willing to use duloxetine comparing with etoricoxib, for which the thresholds were 1.0 and 3.0 per capita gross domestic product (GDP), respectively. CONCLUSIONS Duloxetine is a valuable option for patients with OA; however, uncertainties exist in the model, and these suggestions can be adopted with caution.
Collapse
Affiliation(s)
- Xueshan Sun
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuemei Zhen
- School of Health Care Management, Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Health Economics and Policy Research (Shandong University), Jinan, Shandong, China
| | - Shuyan Gu
- Center for Health Policy and Management Studies, School of Government, Nanjing University, Nanjing, Jiangsu, China
| | - Kaijie Liu
- Taizhou Hospital of Zhejiang, Linhai, Zhejiang, China
| | - Wenqianzi Yang
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hengjin Dong
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
7
|
Humayun A, Rehman M, Liu B. A method framework of semi-automatic knee bone segmentation and reconstruction from computed tomography (CT) images. Quant Imaging Med Surg 2024; 14:7151-7175. [PMID: 39429595 PMCID: PMC11485355 DOI: 10.21037/qims-24-821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Background Accurate delineation of knee bone boundaries is crucial for computer-aided diagnosis (CAD) and effective treatment planning in knee diseases. Current methods often struggle with precise segmentation due to the knee joint's complexity, which includes intricate bone structures and overlapping soft tissues. These challenges are further complicated by variations in patient anatomy and image quality, highlighting the need for improved techniques. This paper presents a novel semi-automatic segmentation method for extracting knee bones from sequential computed tomography (CT) images. Methods Our approach integrates the fuzzy C-means (FCM) algorithm with an adaptive region-based active contour model (ACM). Initially, the FCM algorithm assigns membership degrees to each voxel, distinguishing bone regions from surrounding soft tissues based on their likelihood of belonging to specific bone regions. Subsequently, the adaptive region-based ACM utilizes these membership degrees to guide the contour evolution and refine segmentation boundaries. To ensure clinical applicability, we further enhance our method using the marching cubes algorithm to reconstruct a three-dimensional (3D) model. We evaluated the method on six randomly selected knee joints. Results We evaluated the method using quantitative metrics such as the Dice coefficient, sensitivity, specificity, and geometrical assessment. Our method achieved high Dice scores for the femur (98.95%), tibia (98.10%), and patella (97.14%), demonstrating superior accuracy. Remarkably low root mean square distance (RSD) values were obtained for the tibia and femur (0.5±0.14 mm) and patella (0.6±0.13 mm), indicating precise segmentation. Conclusions The proposed method offers significant advancements in CAD systems for knee pathologies. Our approach demonstrates superior performance in achieving precise and accurate segmentation of knee bones, providing valuable insights for anatomical analysis, surgical planning, and patient-specific prostheses.
Collapse
Affiliation(s)
- Ahsan Humayun
- International School of Information Science & Engineering (DUT-RUISE), Dalian University of Technology, Dalian, China
- Key Lab of Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian, China
- DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian University of Technology, Dalian, China
| | - Mustafain Rehman
- International School of Information Science & Engineering (DUT-RUISE), Dalian University of Technology, Dalian, China
- Key Lab of Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian, China
- DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian University of Technology, Dalian, China
| | - Bin Liu
- International School of Information Science & Engineering (DUT-RUISE), Dalian University of Technology, Dalian, China
- Key Lab of Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian, China
- DUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Tosun O, Sinci KA, Baysan C, Kucukciloglu Y, Aksit M, Kazimoglu C, Karaca G, Cilengir AH. Phenotypic variations in knee osteoarthritis: insights from MRI and radiographic comparisons. Skeletal Radiol 2024:10.1007/s00256-024-04807-z. [PMID: 39347861 DOI: 10.1007/s00256-024-04807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE To investigate the correlation between MRI-based phenotypes (cartilage-meniscus, subchondral bone, and inflammatory) and radiography-based atrophic and hypertrophic phenotypes, aiming to demonstrate MRI's diagnostic capability in identifying complex osteoarthritis phenotypes that radiography cannot fully capture. MATERIALS AND METHODS This single-center retrospective study examined knee radiographs and MRIs of patients from November 2021 to April 2023 to identify osteoarthritis phenotypes. Radiographs were staged by the Kellgren-Lawrence system, and both modalities were classified into atrophic or hypertrophic phenotypes. MRIs were further classified into three phenotypes: cartilage-meniscus, subchondral bone, and inflammatory. Associations between phenotypes, Kellgren-Lawrence stage, age, and gender were analyzed with Pearson chi-square test and student T-test. Reliability measurements were evaluated using kappa statistic. RESULTS A total of 214 knees from 187 individuals (73.3% women, 26.7% men; mean age 57.1 ± 9.1 years) were included. The hypertrophic MRI phenotype was significantly associated with cartilage-meniscus and subchondral bone phenotypes (p < 0.001). Cartilage-meniscus and subchondral bone phenotypes were less prevalent in Kellgren-Lawrence stage 2 than in stages 3 and 4 (p < 0.001 and p = 0.004, respectively). The subchondral bone phenotype was more common in men (p = 0.022), and the cartilage-meniscus phenotype in the elderly (p < 0.001). Radiography and MRI had substantial agreement (Kappa = 0.637, p < 0.001) in diagnosing hypertrophic and atrophic phenotypes. CONCLUSION The hypertrophic phenotype was associated with cartilage-meniscus and subchondral bone phenotypes, with lower prevalences in Kellgren-Lawrence stage 2 knees. MRI offers enhanced phenotypic characterization, which facilitates more precise and individualized management in osteoarthritis care. Despite limitations compared to MRI, radiography remains valuable for the evaluation of hypertrophic and atrophic phenotypes.
Collapse
Affiliation(s)
- Ozgur Tosun
- Faculty of Medicine, Department of Radiology, Izmir Katip Celebi University, Karabaglar, 35360, Izmir, Türkiye.
| | - Kazim Ayberk Sinci
- Faculty of Medicine, Department of Radiology, Izmir Katip Celebi University, Karabaglar, 35360, Izmir, Türkiye
| | - Caner Baysan
- Faculty of Medicine, Department of Public Health, Ege University, Ege University Campus, Bornova, 35100, Izmir, Türkiye
| | - Yasemin Kucukciloglu
- Faculty of Medicine, Department of Radiology, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus
| | - Mehmet Aksit
- Faculty of Medicine, Department of Radiology, Izmir Katip Celebi University, Karabaglar, 35360, Izmir, Türkiye
| | - Cemal Kazimoglu
- Faculty of Medicine, Department of Orthopedics and Traumatology, Izmir Katip Celebi University, Karabaglar, Izmir, 35360, Türkiye
| | - Gokay Karaca
- Faculty of Medicine, Department of Radiology, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus
| | - Atilla Hikmet Cilengir
- Faculty of Medicine, Department of Radiology, Izmir Democracy University, Uckuyular, Gürsel Aksel Boulevard No: 14, Karabaglar, Izmir, 35140, Türkiye
| |
Collapse
|
9
|
Govindaraj K, Kannan S, Coutinho de Almeida R, Jansen Klomp L, Karperien M, Meulenbelt I, Post JN. Dissecting SOX9 dynamics reveals its differential regulation in osteoarthritis. J Cell Physiol 2024:e31443. [PMID: 39344191 DOI: 10.1002/jcp.31443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
The transcription factor SOX9 is integral to tissue homeostasis and is implicated in skeletal malformation, campomelic dysplasia, and osteoarthritis (OA). Despite extensive research, the complete regulatory landscape of SOX9 transcriptional activity, interconnected with signaling pathways (TGFβ, WNT, BMP, IHH, NFκB, and HIF), remains challenging to decipher. This study focuses on elucidating SOX9 signaling in OA pathology using Fluorescence Recovery After Photobleaching (FRAP) to assess SOX9 activity directly in live human primary chondrocytes (hPCs). Single cell FRAP data revealed two distinct subpopulations with differential SOX9 dynamics, showing varied distribution between healthy and OA hPCs. Moreover, inherently elevated SOX9-DNA binding was observed in healthy hPCs compared to preserved and OA counterparts. Anabolic factors (BMP7 and GREM1) and catabolic inhibitors (DKK1 and FRZb) were found to modulate SOX9 transcriptional activity in OA-hPCs. These findings provide valuable insights into the intricate regulation of SOX9 signaling in OA, suggesting potential therapeutic avenues for modulating SOX9 activity in diseased states.
Collapse
Affiliation(s)
- Kannan Govindaraj
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Sakshi Kannan
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lucas Jansen Klomp
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
- Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janine N Post
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede, The Netherlands
| |
Collapse
|
10
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
11
|
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024; 12:2182. [PMID: 39457494 PMCID: PMC11505131 DOI: 10.3390/biomedicines12102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of "leaky gut syndrome" is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic-GM-OA connection and advance precision medicine in OA management.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
12
|
Lee G, Yang J, Kim SJ, Tran TT, Lee SY, Park KH, Kwon SH, Chung KH, Koh JT, Huh YH, Seon JK, Kim HA, Chun JS, Ryu JH. Enhancement of Intracellular Cholesterol Efflux in Chondrocytes Leading to Alleviation of Osteoarthritis Progression. Arthritis Rheumatol 2024. [PMID: 39262222 DOI: 10.1002/art.42984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/26/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common degenerative disease worldwide, with no practical means of prevention and limited treatment options. Recently, our group unveiled a novel mechanism contributing to OA pathogenesis in association with abnormal cholesterol metabolism in chondrocytes. In this study, we aimed to establish a clinical link between lipid profiles and OA in humans, assess the effectiveness of cholesterol-lowering drugs in suppressing OA development in mice, and uncover the cholesterol-lowering mechanisms that effectively impede OA progression. METHODS Five clinically approved cholesterol-lowering drugs (fenofibrate, atorvastatin, ezetimibe, niacin, and lomitapide) were injected into the knee joints or administered with diet to mice with OA who underwent destabilization of the medial meniscus induction and were fed a 2% high-cholesterol diet. Gene expression linked to cholesterol metabolism was determined using microarray analysis. Furthermore, the in vivo functions of these genes were explored through intra-articular injection of either its inhibitor or adenovirus. RESULTS Logistic regression analysis confirmed a close relationship between the diagnostic criteria of hyperlipidemia based on serum lipid levels and OA incidence. Among the cholesterol-lowering drugs examined, fenofibrate exerted the most significant protective effect against cartilage destruction, which was attributed to elevated levels of high-density lipoprotein cholesterol that are crucial for cholesterol efflux. Notably, cholesterol efflux was suppressed during OA progression via down-regulation of apolipoprotein A1-binding protein (AIBP) expression. Overexpression of AIBP effectively inhibits OA progression. CONCLUSION Our results suggest that restoration of cholesterol homeostasis to a normal state through administration of fenofibrate or AIBP overexpression, both of which induce cholesterol efflux, offers an effective therapeutic option for patients with OA.
Collapse
Affiliation(s)
- Gyuseok Lee
- Chonnam National University, Gwangju, Republic of Korea
| | - Jiye Yang
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Su-Jin Kim
- Chonnam National University, Gwangju, Republic of Korea
| | | | - Sun Young Lee
- Chonnam National University, Gwangju, Republic of Korea
| | - Ka Hyon Park
- Chonnam National University, Gwangju, Republic of Korea
| | | | - Ki-Ho Chung
- Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Chonnam National University, Gwangju, Republic of Korea
| | - Yun Hyun Huh
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jong-Keun Seon
- Chonnam National University Hwasun Hospital and Medical School, Hwasun, Republic of Korea
| | - Hyun Ah Kim
- Hallym University, Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jang-Soo Chun
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Je-Hwang Ryu
- Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Ventura L, do Espírito-Santo RF, Keaser M, Zhang Y, Ro JY, Da Silva JT. Green Light Exposure Reduces Primary Hyperalgesia and Proinflammatory Cytokines in a Rodent Model of Knee Osteoarthritis: Shedding Light on Sex Differences. Biomedicines 2024; 12:2005. [PMID: 39335519 PMCID: PMC11429231 DOI: 10.3390/biomedicines12092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Knee osteoarthritis (OA) often causes chronic pain that disproportionately affects females. Proinflammatory cytokines TNF-α, IL-1β, and IL-6 are key effectors of OA pathological changes. Green light shows potential as an alternative intervention for various pain conditions. However, no studies have investigated green light's analgesic effects in both sexes in chronic knee OA. We induced unilateral knee OA with intra-articular injection of monoiodoacetate (MIA) in male and female Sprague-Dawley rats. Two days post-injection, the rats were exposed to green-light-emitting diodes (GLED) or ambient room light eight hours daily for 24 days. Knee mechanical sensitivity was assessed using a small animal algometer. Blood serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 were quantified at baseline and 23 days post-injection. MIA injection decreased the knee mechanical thresholds of the male and female rats. GLED exposure attenuated mechanical hypersensitivity in both sexes compared to the controls; however, GLED-induced analgesia occurred sooner and with greater magnitude in males than in females. In both sexes, the analgesic effects of green light lasted 5 days after the final GLED session. Finally, GLED exposure reversed the elevation of serum proinflammatory cytokines. These findings suggest that GLED exposure reduces primary hyperalgesia in OA, potentially by lowering proinflammatory cytokines, and indicate sex differences in GLED-induced analgesia.
Collapse
Affiliation(s)
- Laura Ventura
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Renan F do Espírito-Santo
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Michael Keaser
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Youping Zhang
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Jin Y Ro
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
| | - Joyce T Da Silva
- Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, University of Maryland Baltimore School of Dentistry, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Maheshwari R, Sharma M, Chidrawar VR. Development of engineered transferosomal gel containing meloxicam for the treatment of osteoarthritis. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:830-839. [PMID: 38657858 DOI: 10.1016/j.pharma.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE .In this study, we investigated the potential of meloxicam (MLX) developed as transferosomal gel as a novel lipidic drug delivery system to address osteoarthritis (OTA), a degenerative joint disease that causes pain and stiffness. By incorporating meloxicam into a transferosomal gel, our aim was to provide a targeted and efficient delivery system capable of alleviating symptoms and slowing down the progression of OTA. MATERIAL AND METHODS Classical lipid film hydration technique was utilized to formulate different transferosomal formulations. Different transferosomal formulations were prepared by varying the molar ratio of phospholipon-90H (phosphodylcholine) to DSPE (50:50, 60:40, 70:30, 80:20, and 90:10) and per batch, 80mg of total lipid was used. The quality control parameters such as entrapment efficiency, particle size and morphology, polydispersity and surface electric charge, in vitro drug release, ex vivo permeation and stability were measured. RESULTS The optimized transferosomal formulations revealed a small vesicle size (121±12nm) and greater MLX entrapment (68.98±2.3%). Transferosomes mediated gel formulation MLX34 displayed pH (6.3±0.2), viscosity (6236±12.3 cps), spreadability (13.77±1.77 gm.cm/sec) and also displayed sustained release pattern of drug release (81.76±7.87% MLX released from Carbopol-934 gel matrix in 24h). MLX34 revealed close to substantial anti-inflammatory response, with ∼81% inhibition of TNF-α in 48h. Physical stability analysis concluded that refrigerator temperature was the preferred temperature to store transferosomal gel. CONCLUSION MLX loaded transferosomes containing gel improved the skin penetration and therefore resulted into increased inhibition of TNF-α level.
Collapse
Affiliation(s)
- Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India.
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
15
|
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Cerri PS, Gil CD, de Jesus Simões M. Relationship between autophagy and NLRP3 inflammasome during articular cartilage degradation in oestrogen-deficient rats with streptozotocin-induced diabetes. Ann Anat 2024; 257:152318. [PMID: 39216675 DOI: 10.1016/j.aanat.2024.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Estrogen deficiency and Diabetes mellitus (DM) cause joint tissue deterioration, although the mechanisms are uncertain. This study evaluated the immunoexpression of autophagy and NLRP3-inflammasome markers, in rat articular cartilage with estrogen deficiency and DM. METHODS Twenty rats were sham-operated (SHAM) or ovariectomized (OVX) and equally allocated into four groups: SHAM and OVX groups administered with vehicle solution; SHAM and OVX groups treated with 60 mg/kg/body weight of streptozotocin, intraperitoneally, to induce DM (SHAM-DM and OVX-DM groups). After seven weeks, the rats were euthanized, and their joint knees were processed for paraffin embedding. Sections were stained with haematoxylin-eosin, toluidine blue, safranin-O/fast-green or subjected to picrosirius-red-polarisation method; immunohistochemistry to detect beclin-1 and microtubule-associated protein 1B-light chain 3 (autophagy markers), NLRP3 and interleukin-1β (IL-1β) (inflammasome activation markers), along with matrix metalloproteinase-9 (MMP-9), Nuclear factor-kappa B (NFκB), and Vascular endothelial growth factor A (VEGF-A) were performed. RESULTS Deterioration of articular cartilage and subchondral bone were greater in SHAM-DM and OVX-DM groups. Higher percentages of immunolabeled chondrocytes to NLRP3, IL-1β, MMP-9, NFκB, and VEGF-A, as well as lower percentages of chondrocytes immunolabeled to autophagy markers, were noticed in estrogen-deficient and diabetic groups. These differences were greater in the OVX-DM group. Percentages of immunolabeled chondrocytes showed negative correlation between autophagy markers v.s IL-1β, NLRP-3, MMP-9, NFκB, and VEGF-A, along with positive correlation between VEGF-A vs. MMP-9, NFκB, IL-1β, and NLRP3, and MMP-9 vs. NFκB. CONCLUSIONS In conclusion, autophagy reduction and NLRP3 inflammasome activation in chondrocytes may be implicated in articular cartilage degradation, under estrogen-deficient and DM conditions. Moreover, the combination of estrogen deficiency and DM may potentiate those effects.
Collapse
Affiliation(s)
- Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil.
| | - Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Kurtulus B, Atilgan N, Yilmaz M, Dokuyucu R. Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. J Clin Med 2024; 13:5159. [PMID: 39274372 PMCID: PMC11396581 DOI: 10.3390/jcm13175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: The pathophysiology of osteoarthritis is mainly unknown. Matrix Gla protein (MGP) and Gla-rich protein (GRP) are both vitamin-K-dependent mineralization inhibitors. In this study, we aimed to compare the levels of MGP and GRP in the synovial fluid of osteoarthritic (OA) and non-osteoarthritic (non-OA) knee joints. Materials and Methods: Two groups were formed, with one consisting of patients with OA and the other non-OA, serving as a control group. The non-OA group included individuals who had arthroscopic surgery for non-cartilage-related issues. In the OA group, all participants had undergone total knee arthroplasty because of grade 4 primary degenerative osteoarthritis. During the operation, at least 1 mL of knee synovial fluid was collected. The GRP and MGP levels in the synovial fluid were measured using an ELISA kit. Results: The mean age in the OA group (62.03 ± 11.53 years) was significantly higher than that in the non-OA group (47.70 ± 14.49 years; p = 0.0001). GRP levels were significantly higher in the OA group (419.61 ± 70.14 ng/mL) compared to the non-OA group (382.18 ± 62.34 ng/mL; p = 0.037). MGP levels were significantly higher in the OA group (67.76 ± 11.36 ng/mL) compared to the non-OA group (53.49 ± 18.28 ng/mL; p = 0.001). Calcium levels (Ca++) were also significantly higher in the OA group (12.89 ± 3.43 mg/dL) compared to the non-OA group (9.51 ± 2.15 mg/dL; p = 0.0001). There was a significantly positive correlation between MGP levels and age (p = 0.011, R = +0.335). Linear regression analysis was performed to determine the effect of age on MGP levels (p = 0.011, R-Square = 0.112). The dependent variable in this analysis was MGP (ng/mL), and age was the predictor. Conclusions: In conclusion, both GRP and MGP are potentially usable biomarkers in osteoarthritis. However, GRP seems to be more valuable because it is not associated with age. In the future, both proteins could provide important contributions to the diagnosis and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Burhan Kurtulus
- Department of Orthopedics and Traumatology, Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara 06110, Turkey
| | - Numan Atilgan
- Department of Hand Surgery, Private Clinic, Gaziantep 27000, Turkey
| | - Mehmet Yilmaz
- Department of Orthopedic Surgery, Gaziantep City Hospital, Gaziantep 27060, Turkey
| | - Recep Dokuyucu
- Department of Physiology, Medical Specialization Training Center (TUSMER), Ankara 06420, Turkey
- Physioclinic Private Clinic, Gaziantep 27090, Turkey
| |
Collapse
|
17
|
Liu Y, Nie M, Li X, Wang H, Ren S, Zou D, Liu J, Li R. Garlic-derived Exosomes Alleviate Osteoarthritis Through Inhibiting the MAPK Signaling Pathway. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05047-6. [PMID: 39190086 DOI: 10.1007/s12010-024-05047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease affecting millions of people worldwide. Garlic-derived exosomes (GDEs) are nanoparticles extracted from garlic that exhibit anti-inflammatory effects on other diseases, but the effect of GDEs on OA has not been elucidated. In this study, GDEs were extracted and characterized. Chondrocytes were treated with IL-1β and incubated with GDEs in vitro, and the expression of cartilage matrix components (collagen II and aggrecan) and matrix degrading enzymes (MMP3 and MMP9) was evaluated via Western blotting. Changes in the MAPK pathway was also examined using Western blotting. The transcriptomic changes associated with GDE intervention were evaluated using high-throughput RNA-seq method. In vivo, we used anterior cruciate ligament transection (ACLT) combined with destabilization of the medial meniscus (DMM) surgery to establish a mouse OA model, and GDEs was intraarticularly injected into the joint cavity. The therapeutic effect of GDE was evaluated by behavioral and histopathological analysis. The results showed that IL-1β treatment inhibited the expression of collagen II and aggrecan, and upregulated the expression of MMP3 and MMP9, while GDE intervention alleviated these effects. GDEs also inhibited the phosphorylation of ERK, JNK, and P38. In vivo, GDE alleviated the sensitivity to heat stimulation and altered walking gait in a mouse OA model. Histopathological analysis indicated that GDE intervention ameliorated joint destruction in the knee joint without obvious toxicity. The results proved that GDEs alleviated the progression of OA in vitro and in vivo, and may be a potential disease-modifying drug for OA.
Collapse
Affiliation(s)
- Yuqin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ming Nie
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xueyi Li
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hao Wang
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shaoju Ren
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Dezheng Zou
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Ruidong Li
- Center for Joint Surgery, Department of Orthopedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
18
|
Akbarzadeh A, Gerami MH, Farrokhi MR, Shapoori S, Jafarinia M. Therapeutic prospects of microRNAs derived from mesenchymal stem cell extracellular vesicles in rheumatoid arthritis: a comprehensive overview. Mol Cell Biochem 2024:10.1007/s11010-024-05082-1. [PMID: 39105963 DOI: 10.1007/s11010-024-05082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by inflammatory joint damage. Recent studies have focused on the significance of microRNAs (miRNAs) in the pathogenesis of RA. Mesenchymal stem cells (MSCs) have emerged as a potential therapeutic option for RA based on their regenerative and immunomodulatory properties. MSCs release extracellular vesicles (EVs) containing miRNAs that can modulate immune and inflammatory responses. This article provides a comprehensive overview of the current evidence on the existence of various MSCs-derived miRNAs involved in the pathophysiology, characterization, and treatment of RA. An overview of the miRNA profiles in MSC-EVs is provided, along with an examination of their impact on various cell types implicated in RA pathogenesis, including synovial fibroblasts, macrophages, and T cells. Furthermore, the therapeutic capability of MSC-EVs for miRNA-based therapies in RA is discussed. In total, this review can present an extensive view of the complex interaction between EVs and MSC-derived miRNAs in RA and thus suggest valuable strategies for developing new therapeutic approaches to target this debilitating disease.
Collapse
Affiliation(s)
- Armin Akbarzadeh
- Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Gerami
- Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Shapoori
- Center for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Agostini F, Bressanin E, de Sire A, Finamore N, Alviti F, Santilli V, Bernetti A, Paoloni M, Mangone M. The Effect of Intra-Articular Injections of Hyaluronic Acid for the Treatment of Trapezio-Metacarpal Joint Osteoarthritis. J Pers Med 2024; 14:806. [PMID: 39201998 PMCID: PMC11355929 DOI: 10.3390/jpm14080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/13/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Osteoarthritis of the basal thumb joint is a debilitating disease with a high prevalence. Among pharmacological treatments, intra-articular injections of hyaluronic acid have been clinically applied. This study aimed to investigate the effectiveness and safety of intra-articular injections of hyaluronic acid for the treatment of trapezio-metacarpal joint osteoarthritis (TMOA), over a one-year period. METHODS Patients with TMOA were enrolled and treated with five consecutive intra-articular injections of hyaluronic acid (20 mg/2 mL, 500-750 KDa, HyalganBio) at weekly intervals. Primary outcomes were pain during different activities (changes in numerical rating scale) and function (pinch and grip strength), and secondary outcomes were safety (adverse events) and patient-reported outcomes (quick-DASH and SF-12). The outcomes were evaluated at baseline and 1-, 3-, 6-, and 12- months after the last injection. RESULTS A total of 29 patients were included. All participants completed the five injective sessions and the first follow-up. A total of 15 patients completed the study. During the follow-up period, intra-articular injections of hyaluronic acid have significantly reduced spontaneous and provoked pain and improved disability. No severe systemic adverse events were reported. CONCLUSIONS At a follow-up of up to 12 months, patients with TMOA treated with intra-articular hyaluronic acid injections reported improvements in pain relief and quality of life.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (E.B.); (F.A.); (M.P.); (M.M.)
- Department of Neurological and Rehabilitation Science, IRCCS San Raffaele, 00163 Rome, Italy
| | - Elena Bressanin
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (E.B.); (F.A.); (M.P.); (M.M.)
| | - Alessandro de Sire
- Research Center on Musculoskeletal Health, MusculoSkeletalHealth@UMG, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
- Physical and Rehabilitative Medicine Division, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Nikolaos Finamore
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (E.B.); (F.A.); (M.P.); (M.M.)
| | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (E.B.); (F.A.); (M.P.); (M.M.)
| | - Valter Santilli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (E.B.); (F.A.); (M.P.); (M.M.)
| | - Andrea Bernetti
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Marco Paoloni
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (E.B.); (F.A.); (M.P.); (M.M.)
| | - Massimiliano Mangone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (E.B.); (F.A.); (M.P.); (M.M.)
| |
Collapse
|
20
|
Coetzee M, Clifford AM, Jordaan JD, Louw QA. Health equity profile of knee replacement patients in the South African public sector: A descriptive study. SOUTH AFRICAN JOURNAL OF PHYSIOTHERAPY 2024; 80:2027. [PMID: 39114425 PMCID: PMC11304364 DOI: 10.4102/sajp.v80i1.2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 08/10/2024] Open
Abstract
Background Knee replacement surgery can significantly improve the quality of life of patients with severe knee osteoarthritis. Equitable access to knee replacement surgery is important to ensure that everyone, regardless of their socioeconomic status or geographical location, have fair and timely access. Objectives The aim of our study was to (1) describe the health equity profile and quality of life of patients awaiting knee replacement at a single academic hospital in South Africa and to (2) describe the association between these health equity factors and the waiting time. Method A cross-sectional survey and retrospective record review of patients awaiting knee replacement was conducted using the PROGRESS-Plus health equity framework. Chi-square statistics were used to calculate association between health equity factors and the waiting time. Results Three-hundred and two (N = 302) patients (77% female; mean age 67 years) participated, of whom one in three patients waited 5 years or longer for surgery. Elderly patients (> 70 years) and patients from lower socio-economic background were less likely to have equitable access to surgery. Conclusion The current screening protocol for knee replacement surgery in the public health care sector does not provide equitable access to surgery. A more holistic screening approach alongside selective surgical prioritisation and rehabilitation could reduce the waiting list and facilitate equitable access to care. Clinical implications Health equity factors such as socioeconomic status, age, and other patient characteristics such as life roles and employability should be taken into consideration when screening patients for elective knee replacement waiting lists.
Collapse
Affiliation(s)
- Marisa Coetzee
- Division of Physiotherapy, Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Amanda M. Clifford
- Division of Physiotherapy, Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Health Research Institute, Ageing Research Centre, School of Allied Health, University of Limerick, Limerick, Ireland
| | - Jacobus D. Jordaan
- Department of Orthopaedic Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Quinette A. Louw
- Division of Physiotherapy, Health and Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
21
|
Lin H, He K, Zhang S, Chen H, Wang C, Lu J, Ou Y, Chen W, Zhou Y, Li Y, Chen J. Targeting G6PD to mitigate cartilage inflammation in TMJOA: The NOX4-ROS-MAPK axis as a therapeutic avenue. Int Immunopharmacol 2024; 139:112688. [PMID: 39029227 DOI: 10.1016/j.intimp.2024.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Chondrocytes, known for their metabolic adaptability in response to varying stimuli, play a significant role in osteoarthritis (OA) progression. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has recently been found to upregulate in OA chondrocyte. However, the exact role of G6PD in temporomandibular joint osteoarthritis (TMJOA) and its effect on chondrocyte function remains unclear. In present study, we induced OA-like conditions in the rat temporomandibular joint via occlusal disharmony (OD), noting a marked increase in G6PD expression in the condylar cartilage. Our data show that G6PD knockdown in mandibular condylar chondrocytes (MCCs) reduces the expression of catabolic enzymes (e.g., MMP3, MMP13) and inflammatory cytokines (e.g., IL6) induced by IL-1β. G6PD knockdown also mitigates IL-1β-induced upregulation of ERK, JNK, and p38 phosphorylation and reduces reactive oxygen species (ROS) levels by decreasing the nicotinamide adenine dinucleotide phosphate (NADPH) and NADPH oxidases 4 (NOX4) mRNA expression. In summary, G6PD appears to regulate the inflammatory state of condylar chondrocytes via the NOX-ROS-MAPK axis, highlighting its potential as a therapeutic target for TMJOA.
Collapse
Affiliation(s)
- Hanyu Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Kaixun He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Sihui Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Huachen Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Chengchaozi Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Jie Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Yanjing Ou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Wenqian Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Yuwei Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Yang Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China; Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
22
|
Priya DP, Preetha S. Effectiveness of Brassica juncea (Mustard) Plaster on Reduction of Knee Pain and Inability among Geriatrics with Osteoarthritis. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S2861-S2863. [PMID: 39346448 PMCID: PMC11426707 DOI: 10.4103/jpbs.jpbs_495_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 10/01/2024] Open
Abstract
Pre-experimental one-group pretest posttest research design was adopted to investigate the effectiveness of Brassica juncea (mustard) plaster on reduction of knee pain and inability among 60 geriatrics with osteoarthritis. The inability was assessed using the Western Ontario McMaster University (WOMAC) Index, which includes 24 parameters under three major headings: joint pain, joint stiffness, and difficulty in performing daily activities, and the severity of pain level was assessed using a numerical pain rating scale. Mustard plaster is applied against the knee for 15 minutes once a day for seven days. On day 8, study participants were re-assessed using the WOMAC Osteoarthritis Index in the interventional group. The pretest mean score of pain was 77.80 ± 5.65, and the posttest mean score was 38.88 ± 11.76. The mean difference score was 38.92. The calculated paired 't' test value of t = 24.428 was statistically significant at P < 0.001 level.
Collapse
Affiliation(s)
- D Padma Priya
- Department of Obstetrics and Gynecological Nursing, Saveetha College of Nursing, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, India
| | - S Preetha
- B.Sc (Nursing) Final Year, Saveetha College of Nursing, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
Chin KY. Updates in the skeletal and joint protective effects of tocotrienol: a mini review. Front Endocrinol (Lausanne) 2024; 15:1417191. [PMID: 38974581 PMCID: PMC11224474 DOI: 10.3389/fendo.2024.1417191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Osteoporosis and osteoarthritis continue to pose significant challenges to the aging population, with limited preventive options and pharmacological treatments often accompanied by side effects. Amidst ongoing efforts to discover new therapeutic agents, tocotrienols (TTs) have emerged as potential candidates. Derived from annatto bean and palm oil, TTs have demonstrated efficacy in improving skeletal and joint health in numerous animal models of bone loss and osteoarthritis. Mechanistic studies suggest that TTs exert their effects through antioxidant, anti-inflammatory, Wnt-suppressive, and mevalonate-modulating mechanisms in bone, as well as through self-repair mechanisms in chondrocytes. However, human clinical trials in this field remain scarce. In conclusion, TTs hold promise as agents for preventing osteoporosis and osteoarthritis, pending further evidence from human clinical trials.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
24
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
25
|
Hung YC, Chen LJ, Wang JH, Ho TJ, Tseng GF, Chen HP. The Therapeutic Potential of Intra-Articular Injection of Synthetic Deer Antler Peptides in a Rat Model of Knee Osteoarthritis. Int J Mol Sci 2024; 25:6041. [PMID: 38892229 PMCID: PMC11172866 DOI: 10.3390/ijms25116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Synthetic deer antler peptides (TSKYR, TSK, and YR) stimulate the proliferation of human chondrocytes and osteoblasts and increase the chondrocyte content of collagen and glycosamino-glycan in vitro. This study investigated the peptide mixture's pain relief and chondroprotective effect in a rat model of collagenase-induced osteoarthritis. Thirty-six adult male Sprague-Dawley rats were divided into three groups: control (saline), positive control (hyaluronic acid), and ex-perimental (peptides). Intra-articular collagenase injections were administered on days 1 and 4 to induce osteoarthritis in the left knees of the rats. Two injections of saline, hyaluronic acid, or the peptides were injected into the same knees of each corresponding group at the beginning of week one and two, respectively. Joint swelling, arthritic pain, and histopathological changes were evaluated. Injection of the peptides significantly reduced arthritic pain compared to the control group, as evidenced by the closer-to-normal weight-bearing and paw withdrawal threshold test results. Histological analyses showed reduced cartilage matrix loss and improved total cartilage degeneration score in the experimental versus the control group. Our findings suggest that intra-articular injection of synthetic deer antler peptides is a promising treatment for osteoarthritis.
Collapse
Affiliation(s)
- Yu-Chou Hung
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Physical Medicine and Rehabilitation, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
| | - Li-Jin Chen
- Department of Anatomy, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Jen-Hung Wang
- Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Guo-Fang Tseng
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
- Department of Anatomy, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Hao-Ping Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
26
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
27
|
Adam AO, Benea HRC, Fotescu HM, Alcalá Ruiz M, Cimpean GC, Ciornei V, Cernacovschi A, Edves AR, Crisan M. Recent Trends in Adipose Tissue-Derived Injectable Therapies for Osteoarthritis: A Scoping Review of Animal Models. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:707. [PMID: 38792890 PMCID: PMC11123108 DOI: 10.3390/medicina60050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: This scoping review investigates recent trends in adipose tissue-derived injectable therapies for osteoarthritis (OA) in animal models, focusing on minimally manipulated or lightly processed adipose tissue. By evaluating and examining the specific context in which these therapies were investigated across diverse animal OA models, this review aims to provide valuable insights that will inform and guide future research and clinical applications in the ongoing pursuit of effective treatments for osteoarthritis. Materials and Methods: This research conducted a comprehensive literature review of PubMed and Embase to determine studies about minimally manipulated adipose tissue-derived injectable therapies for osteoarthritis investigated using animal models. The primary search found 530 results. After excluding articles that focused on spontaneous osteoarthritis; on transfected, preconditioned, cultured, or co-cultured adipose-derived stem cells; and articles with unavailable full text, we included 11 articles in our review. Results: The examined therapies encompassed mechanical micro-fragmented adipose tissue (MFAT) and stromal vascular fraction (SVF) obtained via collagenase digestion and centrifugation. These interventions were evaluated across various animal models, including mice, rats, rabbits, and sheep with induced OA. Notably, more studies concentrated on surgically induced OA rather than chemically induced OA. The assessment of these therapies focused on elucidating their protective immunomodulatory, anti-inflammatory, and chondroregenerative potential through comprehensive evaluations, including macroscopic assessments, histological analyses, immunohistochemical examinations, and biochemical assays. Conclusions: This review provides a comprehensive analysis of adipose tissue-derived injectable therapies for osteoarthritis across diverse animal models. While revealing potential benefits and insights, the heterogeneity of data and the limited number of studies highlight the need for further research to formulate conclusive recommendations for clinical applications.
Collapse
Affiliation(s)
- Alina Otilia Adam
- Department of Orthopedics and Traumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania; (A.O.A.)
| | - Horea Rares Ciprian Benea
- Department of Orthopedics and Traumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania; (A.O.A.)
| | - Horia Mihnea Fotescu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Miriam Alcalá Ruiz
- Department of Orthopedics and Traumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania; (A.O.A.)
| | - George Claudiu Cimpean
- Department of Orthopedics and Traumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania; (A.O.A.)
| | - Vladimir Ciornei
- Department of Orthopedics and Traumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania; (A.O.A.)
| | - Arsenii Cernacovschi
- Department of Orthopedics and Traumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania; (A.O.A.)
| | - Andrei Rares Edves
- Department of Orthopedics and Traumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania; (A.O.A.)
| | - Maria Crisan
- Department of Histology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
28
|
Rošin M, Kelam N, Jurić I, Racetin A, Ogorevc M, Corre B, Čarić D, Filipović N, Vukojević K. Syndecans, Exostosins and Sulfotransferases as Potential Synovial Inflammation Moderators in Patients with Hip Osteoarthritis. Int J Mol Sci 2024; 25:4557. [PMID: 38674142 PMCID: PMC11049902 DOI: 10.3390/ijms25084557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The gradual deterioration of articular cartilage was thought to be the central event in osteoarthritis (OA), but recent studies demonstrated the importance of low-grade synovitis in the progression of OA. The Syndecan (SDC) family of membrane proteoglycans is known to be involved in the regulation of inflammation, but there is limited evidence considering the role of syndecans in OA synovitis. Our study aimed to investigate the hip OA synovial membrane expression patterns of SDC1, SDC2 and SDC4, as well as exostosins and sulfotransferases (enzymes involved in the polymerisation and modification of syndecans' heparan sulphate chains). Synovial membrane samples of patients with OA (24) were divided into two groups according to their Krenn synovitis score severity. The immunohistochemical expressions of SDC1, SDC2, SDC4, EXT1, EXT2, NDST1 and NDST2 in synovial intima and subintima were then analysed and compared with the control group (patients with femoral neck fracture). According to our study, the immunoexpression of SDC1, NDST1 and EXT2 is significantly increased in the intimal cells of OA synovial membrane in patients with lower histological synovitis scores and SDC4 in patients with higher synovitis scores, in comparison with non-OA controls. The difference in the expression of SDC2 among the OA and non-OA groups was insignificant. SDC1, SDC4, NDST1 and EXT2 seem to be involved as inflammation moderators in low-grade OA synovitis and, therefore, should be further investigated as potential markers of disease progression and therapeutic goals.
Collapse
Affiliation(s)
- Matko Rošin
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.R.); (D.Č.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Ivana Jurić
- Department of Emergency Medicine, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia;
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Brieuc Corre
- Faculty of Medicine and Health Sciences, University of Brest, 29200 Brest, France;
| | - Davor Čarić
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.R.); (D.Č.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
29
|
Kiełbowski K, Stańska W, Bakinowska E, Rusiński M, Pawlik A. The Role of Alarmins in the Pathogenesis of Rheumatoid Arthritis, Osteoarthritis, and Psoriasis. Curr Issues Mol Biol 2024; 46:3640-3675. [PMID: 38666958 PMCID: PMC11049642 DOI: 10.3390/cimb46040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Alarmins are immune-activating factors released after cellular injury or death. By secreting alarmins, cells can interact with immune cells and induce a variety of inflammatory responses. The broad family of alarmins involves several members, such as high-mobility group box 1, S100 proteins, interleukin-33, and heat shock proteins, among others. Studies have found that the concentrations and expression profiles of alarmins are altered in immune-mediated diseases. Furthermore, they are involved in the pathogenesis of inflammatory conditions. The aim of this narrative review is to present the current evidence on the role of alarmins in rheumatoid arthritis, osteoarthritis, and psoriasis. We discuss their potential involvement in mechanisms underlying the progression of these diseases and whether they could become therapeutic targets. Moreover, we summarize the impact of pharmacological agents used in the treatment of these diseases on the expression of alarmins.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| |
Collapse
|
30
|
Jia Z, Zhang J, Yang X, Chen H, Wang Y, Francis OB, Li Y, Liu Z, Zhang S, Wang Q. Bioactive components and potential mechanisms of Biqi Capsule in the treatment of osteoarthritis: based on chondroprotective and anti-inflammatory activity. Front Pharmacol 2024; 15:1347970. [PMID: 38694911 PMCID: PMC11061359 DOI: 10.3389/fphar.2024.1347970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Cartilage damage and synovial inflammation are vital pathological changes in osteoarthritis (OA). Biqi Capsule, a traditional Chinese medicine formula used for the clinical treatment of arthritis in China, yields advantages in attenuating OA progression. The drawback here is that the bioactive components and pharmacological mechanisms by which Biqi Capsule exerts its anti-inflammatory and chondroprotective effects have yet to be fully clarified. For in vivo studies, a papain-induced OA rat model was established to explore the pharmacological effects and potential mechanisms of Biqi Capsule against OA. Biqi Capsule alleviated articular cartilage degeneration and chondrocyte damage in OA rats and inhibited the phosphorylation of NF-κB and the expression of pro-inflammatory cytokines in synovial tissue. Network pharmacology analysis suggested that the primary biological processes regulated by Biqi Capsule are inflammation and oxidative stress, and the critical pathway regulated is the PI3K/AKT signaling pathway. The result of this analysis was later verified on SW1353 cells. The in vitro studies demonstrated that Glycyrrhizic Acid and Liquiritin in Biqi Capsule attenuated H2O2-stimulated SW1353 chondrocyte damage via activation of PI3K/AKT/mTOR pathway. Moreover, Biqi Capsule alleviated inflammatory responses in LPS-stimulated RAW264.7 macrophages via the NF-κB/IL-6 pathway. These observations were suggested to have been facilitated by Brucine, Liquiritin, Salvianolic Acid B, Glycyrrhizic Acid, Cryptotanshinone, and Tanshinone ⅡA. Put together, this study partially clarifies the pharmacological mechanisms and the bioactive components of Biqi capsules against OA and suggests that it is a promising therapeutic option for the treatment of OA. Chemical compounds studied in this article. Strychnine (Pubchem CID:441071); Brucine (Pubchem CID:442021); Liquiritin (Pubchem CID:503737); Salvianolic Acid B (Pubchem CID:6451084); Glycyrrhizic Acid (Pubchem CID:14982); Cryptotanshinone (Pubchem CID:160254); Tanshinone ⅡA (Pubchem CID:164676).
Collapse
Affiliation(s)
- Ziyue Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiale Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xintong Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiyou Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxing Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Opoku Bonsu Francis
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanchao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhanbiao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
31
|
Farinelli L, Riccio M, Gigante A, De Francesco F. Pain Management Strategies in Osteoarthritis. Biomedicines 2024; 12:805. [PMID: 38672160 PMCID: PMC11048725 DOI: 10.3390/biomedicines12040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Pain is the major symptom of osteoarthritis (OA) and is an important factor in strategies to manage this disease. However, the current standard of care does not provide satisfactory pain relief for many patients. The pathophysiology of OA is complex, and its presentation as a clinical syndrome is associated with the pathologies of multiple joint tissues. Treatment options are generally classified as pharmacologic, nonpharmacologic, surgical, and complementary and/or alternative, typically used in combination to achieve optimal results. The goals of treatment are the alleviation of symptoms and improvement in functional status. Several studies are exploring various directions for OA pain management, including tissue regeneration techniques, personalized medicine, and targeted drug therapies. The aim of the present narrative review is to extensively describe all the treatments available in the current practice, further describing the most important innovative therapies. Advancements in understanding the molecular and genetic aspects of osteoarthritis may lead to more effective and tailored treatment approaches in the future.
Collapse
Affiliation(s)
- Luca Farinelli
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| | - Antonio Gigante
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
32
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
33
|
Sadik O, Tahir S, Sahibzada A, Iguh C, Ezenwa V, Bhavanam S. Colchicine Therapy for Glenohumeral Osteoarthritis: A Case Report. Cureus 2024; 16:e59181. [PMID: 38807809 PMCID: PMC11130563 DOI: 10.7759/cureus.59181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 05/30/2024] Open
Abstract
Osteoarthritis management primarily focuses on targeting pain. Conventional modalities for pain management include acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDs), and intra-articular corticosteroid injections. However, these approaches may provide minimal pain relief and can be contraindicated for some patients, highlighting the ongoing need for alternative pain management. Colchicine, commonly used in the management of gout, has emerged as a potential option for pain management in osteoarthritis. There are implications of colchicine use for knee and hand osteoarthritis but remains inconclusive. In this context, we present a case of a 68-year-old diabetic woman with glenohumeral osteoarthritis and associated right shoulder pain. Due to minimal pain relief from previous treatments, the patient was given a combination trial of colchicine and acetaminophen for three months. After completion of this treatment, the patient experienced significant pain relief and improved functionality. The aim of this case is to highlight the efficacy of colchicine as a possible treatment option for managing shoulder pain in osteoarthritis.
Collapse
Affiliation(s)
- Oman Sadik
- Family Medicine, Jackson Park Hospital, Chicago, USA
| | - Sophia Tahir
- Internal Medicine, Windsor University School of Medicine, Cayon, KNA
| | - Anum Sahibzada
- Internal Medicine, Saint James School of Medicine, The Quarter, AIA
| | - Chinenye Iguh
- Medicine, Windsor University School of Medicine, Cayon, KNA
| | - Virginia Ezenwa
- Internal Medicine, Windsor University School of Medicine, Cayon, KNA
| | | |
Collapse
|
34
|
Somaiya KJ, Samal S, Boob MA. Physiotherapeutic Intervention Techniques for Knee Osteoarthritis: A Systematic Review. Cureus 2024; 16:e56817. [PMID: 38654798 PMCID: PMC11037114 DOI: 10.7759/cureus.56817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
Globally, knee osteoarthritis (KOA) is the leading cause of disability. The most prevalent complaints associated with KOA are knee pain, joint stiffness, and weakness in the muscles of the lower limbs. These symptoms impede movement and result in functional limitations. As a result, people with KOA have a lower quality of life. For all patient groups with knee OA, an effective rehabilitation program focuses on improving knee range of motion, isometric quadriceps strength, and productivity level while reducing discomfort. The American College of Rheumatology (ACR) categorization criteria for KOA, research on KOA physiotherapy, and reviews covering various physical therapy interventions, including exercise, physical modalities, and patient education, were used to narrow down the pool of 180 systematic reviews to 15 articles. Google Scholar, PubMed, the Cochrane Library, and EMBASE were the databases that were used. The following keyword combinations were included in our search: KOA and physiotherapy or interventions or exercises, strengthening and stretching, concentric and eccentric training. Through our analysis, we identified a few methods that, in addition to standard therapy, could be used in clinical settings for people with osteoarthritis in the knee. It has been shown that Mulligan, Pilates, Kinesiotaping, Aquatic Therapy, and other current therapies are effective. The study employed a broad range of results. This review concludes that rather than relying solely on conventional therapy, it is preferable to combine a number of the most current physiotherapy techniques with it.
Collapse
Affiliation(s)
- Kamya J Somaiya
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Subrat Samal
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manali A Boob
- Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
35
|
Devor M. Pain in osteoarthritis: Driven by intrinsic rather than extrinsic joint afferents and why this should impact treatment. INTERVENTIONAL PAIN MEDICINE 2024; 3:100381. [PMID: 39239488 PMCID: PMC11372874 DOI: 10.1016/j.inpm.2023.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 09/07/2024]
Abstract
Pain in osteoarthritis (OA) results from erosion of joint cartilage, resulting in bone contacting bone without an intervening cushion. The periosteum, including its nociceptive innervation, ends at the border of the cartilage. No other innervated tissue is present between the denuded articular bone ends that could serve as a neuronal pathway to carry a bone-on-bone pain signal to the brain. The pain signaling pathway must therefore originate in afferent axons with electrogenic nociceptive sensory endings that reside within the bone itself, specifically in the opposing surfaces of epiphyseal subchondral bone. Selective ablation of this intrinsic nerve pathway, using any of a variety of approaches, is expected to permanently eliminate OA pain.
Collapse
Affiliation(s)
- Marshall Devor
- Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Kulakli S, Kulakli F, Yilmaz B, Sari İF, Oğuz ID. Is seborrheic dermatitis associated with early-stage osteoarthritis? Medicine (Baltimore) 2024; 103:e37217. [PMID: 38335384 PMCID: PMC10860987 DOI: 10.1097/md.0000000000037217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Seborrheic dermatitis (SD) and osteoarthritis involve similar factors in their pathogenesis. Both of these diseases are associated with an increased frequency of metabolic syndrome and underlying systemic inflammation. This study evaluated the thickness of the distal femoral cartilage using ultrasonography in patients with SD. The study enrolled 60 patients with SD (19 females and 41 males, mean age: 34.07 ± 12.56 years) and 60 controls matched for age and sex (20 females and 40 males, mean age: 35.08 ± 12.78 years). Ultrasonography was used to measure the distal femoral cartilage thickness (FCT) of the right medial condyle, right lateral condyle, right intercondylar area, left medial condyle, left lateral condyle, and left intercondylar area. FCT values at all points were significantly higher in patients with SD than in the controls (P < .05). Further, all FCT values were significantly higher in patients with moderate SD than in those with mild SD (P < .001). A strong positive correlation was observed between disease severity and FCT measured at right medial condyle (r = .7, P < .001), right lateral condyle (r = .749, P < .001), right intercondylar area (r = .79, P < .001), left medial condyle (r = .624, P < .001), and left intercondylar area (r = .703, P < .001). Further, a moderately positive correlation was observed between disease severity and FCT measured at left lateral condyle (r = .581, P < .001). Increased FCT in patients with SD might be an early indicator of osteoarthritis. However, further studies, especially those evaluating older patients with SD, are required to support our findings.
Collapse
Affiliation(s)
- Sevgi Kulakli
- Giresun University Faculty of Medicine, Department of Dermatology and Venereology, Giresun, Turkey
| | - Fazil Kulakli
- Giresun University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Giresun, Turkey
| | - Betül Yilmaz
- Giresun University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Giresun, Turkey
| | - İlker Fatih Sari
- Giresun University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Giresun, Turkey
| | - Işil Deniz Oğuz
- Giresun University Faculty of Medicine, Department of Dermatology and Venereology, Giresun, Turkey
| |
Collapse
|
37
|
Chen M, Liu T, Li W, Li Y, Zhong P, Yan H, Kong J, Liang W. Empowering Cartilage Restructuring with Biodegradable Magnesium Doped-Silicon Based-Nanoplatforms: Sustained Delivery and Enhanced Differentiation Potential. Int J Nanomedicine 2024; 19:491-506. [PMID: 38250188 PMCID: PMC10800145 DOI: 10.2147/ijn.s446552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Background Cartilage-related diseases, such as hypoplastic chondrodysplasia a rare genetic disorder that affects newborns, causing abnormal cartilage development and restricted skeletal growth. However, the development of effective treatment strategies for chondrodysplasia still faces significant challenges due to limitations in the controlled drug delivery, biocompatibility, and biodegradability of nanomedicines. Methods A biodegradable magnesium doped-silicon based-nanoplatforms based on silicon nanoparticles (MON) was constructed. Briefly, the MON was modified with sulfhydryl groups using MPTMS to form MOS. Further engineering of MOS was achieved by incorporating Mg2+ ions through the "dissolution-regrowth" method, resulting in MMOS. Ica was effectively loaded into the MMOS channels, and HA was anchored on the surface of MOS to obtain MMOS-Ica@HA nanoplatforms. Additionally, in vitro cell experiments and in vivo zebrafish embryo models were used to evaluate the effect of the nanoplatforms on cartilage differentiation or formation and the efficiency of treating chondrodysplasia. Results A series of characterization tests including TEM, SEM, DLS, XPS, EDX, and BET analysis validate the successful preparation of MOS-Ica@HA nanoplatforms. The prepared nanoplatforms show excellent dispersion and controllable drug release behavior. The cytotoxicity evaluation reveals the good biocompatibility of MOS-Ica@HA due to the sustained and controllable release of Ica. Importantly, the presence of Ica and Mg component in MOS-Ica@HA significantly promote chondrogenic differentiation of BMSCs via the Smad5/HIF-1α signaling pathway. In vitro and in vivo experiments confirmed that the nanoplatforms improved chondrodysplasia by promoting cartilage differentiation and formation. Conclusion The findings suggest the potential application of the developed biodegradable MMOS-Ica@HA nanoplatforms with acceptable drug loading capacity and controlled drug release in chondrodysplasia treatment, which indicates a promising approach for the treatment of chondrodysplasia.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Tao Liu
- Department of Ultrasound; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, 510076, People’s Republic of China
| | - Yingting Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Puxin Zhong
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Huanchen Yan
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Jingyin Kong
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| | - Weixiang Liang
- Department of Ultrasound; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People’s Republic of China
| |
Collapse
|
38
|
Chen S, Xu H, He Y, Meng C, Fan Y, Qu Y, Wang Y, Zhou W, Huang X, You H. Carveol alleviates osteoarthritis progression by acting on synovial macrophage polarization transformation: An in vitro and in vivo study. Chem Biol Interact 2024; 387:110781. [PMID: 37967808 DOI: 10.1016/j.cbi.2023.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023]
Abstract
Osteoarthritis (OA) is a heterogeneous disease that affects the entire joint. Its pathogenesis involves hypertrophy and hyperplasia of synovial cells and polarization infiltration of macrophages, in which macrophages, as a potential target, can delay the progression of the disease by improving the immune microenvironment in OA. To investigate the role and regulatory mechanism of Carveol in cartilage and synovial macrophage reprogramming and crosstalk during the development of OA. RAW264.7 mouse macrophage cell line was mainly used to stimulate macrophages to polarization towards M1 and M2 by LPS, IL4+IL13, respectively. Different concentrations of Carveol were given to intervene, and macrophage culture medium was collected to intervene mouse C57BL6J chondrocytes. ROS assay kit, western blotting, cellular immunofluorescence, scanning microscope and section histology were used to evaluate the effect of Carveol on anti-M1-polarization, M2-polarization promotion and cartilage protection. The mouse destabilization of medial meniscus (DMM) model was observed by micro-CT scan and histology. We found that CA could inhibit the increase of macrophage inflammation level under the intervention of LPS and promote the production of M2 anti-inflammatory substances under the intervention of IL-4+IL13. In addition, Carveol activated NRF2/HO-1/NQO1 pathway and enhanced ROS clearance in chondrocytes under the intervention of macrophage culture medium. The phosphorylation of I-κBα is inhibited, which further reduces the phosphorylation of P65 downstream of nuclear factor-κB (NF-κB) signaling pathway. In addition, Carveol inhibits mitogen activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK and P-P38, and inhibits the production of inflammatory mediators. In vivo, Carveol can reduce osteophytes and bone spurs induced by DMM, reduce hypertrophy of synovial cells, reduce infiltration of macrophages, inhibit subchondral bone destruction, and reduce articular cartilage erosion. Our study suggests that synovial macrophages are potential targets for OA treatment, and Carveol is an effective candidate for OA treatment.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Wei Zhou
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China.
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China.
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China.
| |
Collapse
|
39
|
Gálvez I, Hinchado MD, Otero E, Navarro MC, Ortega-Collazos E, Martín-Cordero L, Torres-Piles ST, Ortega E. Circulating serotonin and dopamine concentrations in osteoarthritis patients: a pilot study on the effect of pelotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:69-77. [PMID: 37962646 PMCID: PMC10752847 DOI: 10.1007/s00484-023-02571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Balneotherapy has demonstrated clinical efficacy in the management of pathologies involving low-grade inflammation and stress. In rheumatic conditions such as osteoarthritis (OA), this therapy presents anti-inflammatory properties and potential to improve psychological well-being. Although the neurohormones serotonin and dopamine are known to be involved in these processes, surprisingly they have not been studied in this context. The objective was to evaluate the effect of a cycle of balneotherapy with peloids (pelotherapy) on circulating serotonin and dopamine concentrations in a group of aged individuals with OA, after comparing their basal state to that of an age-matched control group. In our pilot study, a pelotherapy program (10 days) was carried out in a group of 16 elderly patients with OA, evaluating its effects on circulating serotonin and dopamine concentrations (measured by ELISA). Individuals with OA showed higher levels of serotonin and lower dopamine levels, in line with the inflammatory roles of these mediators. After pelotherapy, serotonin concentrations significantly decreased, potentially contributing to the previously reported anti-inflammatory effects of balneotherapy.
Collapse
Affiliation(s)
- Isabel Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - María Dolores Hinchado
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| | - Eduardo Otero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - María Carmen Navarro
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | - Leticia Martín-Cordero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600, Plasencia, Spain
| | - Silvia Teresa Torres-Piles
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Terapéutica Médico-Quirúrgica, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain.
| | - Eduardo Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| |
Collapse
|
40
|
Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry. Future Sci OA 2023; 9:FSO902. [PMID: 37753360 PMCID: PMC10518836 DOI: 10.2144/fsoa-2023-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
A comprehensive understanding of the complex physiological and pathological processes associated with alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to mimic the complex physiological, pathological and regeneration processes in the bone microenvironment in response to different therapeutic strategies. In this point, 'organ-on-a-chip' (OOAC) technology, specifically 'alveolar-bone-on-a-chip', is expected to resolve the problems by better imitating infection site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue engineering applied in dentistry.
Collapse
Affiliation(s)
- Muhammad Hidayat Syahruddin
- Postgraduate Student, Dental Science Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rahmi Anggraeni
- Research Center for Preclinical & Clinical Medicine, National Research & Innovation Agency of the Republic of Indonesia, Cibinong Science Center, Bogor, 16915, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| |
Collapse
|
41
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Rheumatoid Arthritis and Osteoarthritis. Cells 2023; 12:2716. [PMID: 38067147 PMCID: PMC10706487 DOI: 10.3390/cells12232716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Cells can communicate with each other through extracellular vesicles (EVs), which are membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory responses and senescence, among others. The cargo of these vesicles may include immunomodulatory molecules, which can then contribute to the pathogenesis of various diseases. By contrast, EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are important and prevalent joint diseases with a significant global burden.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
42
|
Liu L, Tang H, Wang Y. Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment. Heliyon 2023; 9:e21544. [PMID: 38034809 PMCID: PMC10682535 DOI: 10.1016/j.heliyon.2023.e21544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their excellent biocompatibility and biodegradability, has greatly expanded their utility in pharmacotherapeutic applications. Nevertheless, an urgent necessity exists for a comprehensive synthesis of the most recent advances in polymeric DDS, providing valuable guidance for their implementation in the context of OA therapy. This review is dedicated to summarizing and examining recent developments in the utilization of polymeric DDS for OA therapy. Initially, we present an overview of the intricate pathophysiology characterizing OA and underscore the prevailing limitations inherent to current treatment modalities. Subsequently, we introduce diverse categories of polymeric DDS, including hydrogels, nanofibers, and microspheres, elucidating their inherent advantages and limitations. Moreover, we discuss and summarize the delivery of bioactive agents through polymeric biomaterials for OA therapy, emphasizing key findings and emerging trends. Finally, we highlight prospective directions for advancing polymeric DDS, offering a promising approach to enhance their translational potential for OA therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Haifeng Tang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| |
Collapse
|
43
|
Lin CR, Tsai SHL, Wang C, Lee CL, Hung SW, Ting YT, Hung YC. Willow Bark ( Salix spp.) Used for Pain Relief in Arthritis: A Meta-Analysis of Randomized Controlled Trials. Life (Basel) 2023; 13:2058. [PMID: 37895439 PMCID: PMC10607963 DOI: 10.3390/life13102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
This study intends to assess the analgesic effects, physical facilitation, and safety of willow bark use in patients with arthritis. Our study was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Scopus, EMBASE, Web of Science, Cochrane, and ClinicalTrials.gov were searched for relative randomized controlled trials (RCTs) describing the efficacy or adverse events of willow bark in patients with arthritis until 12 April 2023. We used Cochrane ROB 2.0 and the Grading of Recommendations, Assessment, Development, and Evaluations system to evaluate the quality of studies and evidence. The meta-analysis was carried out by the fix-effects model. This study included five studies with six RCTs consisting of 329 patients with arthritis. The results showed significant differences in pain relief and improvement in physical status for patients with arthritis between willow bark treatment and placebo groups, and no significant differences in the risk of all adverse events in patients with arthritis between willow bark treatment and placebo. Owing to the potential bias, the certainty and evidence of our findings are still inadequate. Therefore, further RCTs are needed to confirm our results.
Collapse
Affiliation(s)
- Chun-Ru Lin
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Sung Huang Laurent Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung Branch, No. 222, Maijin Rd., Anle Dist., Keelung City 204006, Taiwan
| | - Che Wang
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Cheng-Lin Lee
- Department of General Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City 71004, Taiwan
| | - Shao-Wen Hung
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Yi-Tang Ting
- Department of Medical Education, Taipei Municipal Wanfang Hospital, No. 111, Sec. 3, Xinglong Rd., Wenshan District, Taipei City 116, Taiwan
| | - Yu Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City 833401, Taiwan
| |
Collapse
|
44
|
Cheleschi S, Veronese N, Carta S, Collodel G, Bottaro M, Moretti E, Corsaro R, Barbarino M, Fioravanti A. MicroRNA as Possible Mediators of the Synergistic Effect of Celecoxib and Glucosamine Sulfate in Human Osteoarthritic Chondrocyte Exposed to IL-1β. Int J Mol Sci 2023; 24:14994. [PMID: 37834442 PMCID: PMC10573984 DOI: 10.3390/ijms241914994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1β (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1β. The transfection with miRNA specific inhibitors significantly counteracted the IL-1β activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators.
Collapse
Affiliation(s)
- Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Viale Scaduto, 90100 Palermo, Italy
| | - Serafino Carta
- Section of Orthopedics and Traumatology, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Maria Bottaro
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (G.C.); (E.M.); (R.C.)
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (M.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
45
|
Alshahrani MS, Reddy RS. Quadriceps Strength, Postural Stability, and Pain Mediation in Bilateral Knee Osteoarthritis: A Comparative Analysis with Healthy Controls. Diagnostics (Basel) 2023; 13:3110. [PMID: 37835853 PMCID: PMC10573007 DOI: 10.3390/diagnostics13193110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Bilateral knee osteoarthritis (OA) poses significant challenges to individuals' functional abilities, including quadriceps strength, postural stability, and pain perception. Understanding the complex relationships among these factors is crucial for enhancing knee OA management strategies. The primary objective of this research is to evaluate and draw comparisons between the strength of the quadriceps and the level of postural stability in two distinct groups: individuals afflicted with bilateral knee OA and those who are healthy. Furthermore, the study seeks to examine the potential correlation between the strength of the quadriceps and the level of postural stability in individuals with knee OA. In addition to this, an investigation into the potential mediating effect of pain on the relationship between these physiological factors will also be conducted. A total of 95 participants with bilateral knee OA and 95 healthy controls were recruited. Quadriceps strength was assessed using dynamometry and postural stability was evaluated through anterior-posterior and medial-lateral sway measurements along with the ellipse area using a force plate. Pain levels were measured using the Visual Analog Scale (VAS). Mediation analysis was employed to explore the role of pain in mediating the relationship between quadriceps strength and postural stability. Statistical analyses included t-tests, Pearson correlation coefficients, and mediation analysis. Knee OA participants exhibited significantly lower quadriceps strength (1.08 Nm/kg ± 0.54) compared to controls (1.54 Nm/kg ± 0.57, p < 0.001). They also demonstrated compromised postural stability with increased anterior-posterior sway (9.86 mm ± 3.017 vs. 2.98 mm ± 1.12, p < 0.001), medial-lateral sway (7.87 mm ± 2.23 vs. 3.12 mm ± 1.34, p < 0.001), and larger ellipse area (935.75 mm2 ± 172.56 vs. 436.19 mm2 ± 135.48, p < 0.001). Negative correlations were observed between quadriceps strength and postural stability variables (r = from -0.43 to -0.51, p < 0.001). Pain significantly mediated the relationship between quadriceps strength and postural stability variables (p < 0.05). This study highlights the associations between quadriceps strength, postural stability, and pain mediation in individuals with bilateral knee OA. Our findings emphasize the need for targeted interventions addressing quadriceps weakness and compromised postural stability. Additionally, the mediation effect of pain underscores the complexity of these relationships, offering insights for more effective management strategies.
Collapse
Affiliation(s)
| | - Ravi Shankar Reddy
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| |
Collapse
|
46
|
Yang J, Liu P, Wang S, Jiang T, Zhang Y, Liu W. Causal relationship between sarcopenia and osteoarthritis: a bi-directional two-sample mendelian randomized study. Eur J Med Res 2023; 28:327. [PMID: 37689698 PMCID: PMC10492359 DOI: 10.1186/s40001-023-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Previous studies have shown that osteoarthritis (OA) and sarcopenia (SP) are closely related to each other, but the causal relationships between them have not been established. The aim of this study was to investigate the causal associations between OA and SP via a bi-directional Mendelian randomization (MR) approach. METHODS A bi-directional two-sample MR was adopted to research the causal relationship between SP and OA. The instrumental variables for SP and four types of OA: KOA, HOA, total knee replacement (TKR) and total hip replacement (THR) were derived from published large genome-wide association studies (GWAS). The inverse variance weighted (IVW), MR-Egger and weighted median estimator (WME) methods were used to estimate bi-directional causal effects. RESULTS Low grip strength (GS) did not have a causal effect on four types of OA (KOA: OR = 1.205, 95% CI 0.837-1.734, p = 0.316; HOA: OR = 1.090, 95% CI 0.924-1.609, p = 0.307; TKR: OR = 1.190, 95% CI 1.084-1.307, p = 0.058; THR: OR = 1.035, 95% CI 0.792-1.353, p = 0.798), while appendicular lean mass (ALM) had a causal effect on four types of OA (KOA: OR = 1.104, 95% CI 1.041-1.171, p = 0.001; HOA: OR = 1.151, 95% CI 1.071-1.237, p < 0.001; TKR: OR = 1.114, 95% CI 1.007-1.232, p < 0.001; THR: OR = 1.203, 95% CI 1.099-1.316, p < 0.001). In the reverse direction, KOA or HOA did not have a significant causal effect on both GS and ALM (KOA-GS: OR = 1.077, 95% CI 0.886-1.309, p = 0.458; KOA-ALM: Beta = 0.004, p = 0.892; HOA-GS: OR = 1.038, 95% CI 0.981-1.099, p = 0.209; HOA-ALM: Beta = - 0.017, p = 0.196; TKR-GS: OR = 0.999, 95% CI 0.739-1.351, p = 0.997; TKR-ALM: Beta = 0.018, p = 0.501; THR-GS: OR = 1.037, 95% CI 0.978-1.101, p = 0.222; THR-ALM: Beta = - 0.023, p = 0.081). CONCLUSIONS The present study suggests that SP may have a causal effect on OA through changes in muscle composition rather than muscle strength, while little evidence was provided for the causal effect of OA on SP.
Collapse
Affiliation(s)
- Jiyong Yang
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Peng Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuai Wang
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Tao Jiang
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Yilong Zhang
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China.
| |
Collapse
|
47
|
Huang Y, Lin Q, Tan X, Jia L, Li H, Zhu Z, Fu C, Wang L, Liu L, Mao M, Yi Z, Ma D, Li X. Rehmannia alcohol extract inhibits neuropeptide secretion and alleviates osteoarthritis pain through cartilage protection. Heliyon 2023; 9:e19322. [PMID: 37674829 PMCID: PMC10477487 DOI: 10.1016/j.heliyon.2023.e19322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by chronic pain, and the perception of pain is closely associated with brain function and neuropeptide regulation. Rehmannia is common plant herb with anti-inflammatory and analgesic properties that is used to treat OA. However, it is unclear whether Rehmannia alleviates OA-related pain via regulation of neuropeptides and brain function. We examined the pain relief regulatory pathway in OA after treatment with Rehmannia by verifying the therapeutic effect of Rehmannia alcohol extract in vivo and vitro and exploring of the potential mechanism underlying the analgesic effect of Rahmanian using functional magnetic resonance imaging and measuring neuropeptide secretion. Our results showed that Rehmannia alcohol extract and the related active ingredient, Rehmannioside D, can delay cartilage degradation and alleviate inflammation in OA rats. The Rehmannia alcohol extract can also relieve OA pain, reduce the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP), and reverse the pathological changes in the cerebral cortex and hippocampus. Our research results demonstrate that Rehmannia alleviates OA pain by protecting cartilage, preventing the stimulation of inflammatory factors on neuropeptide secretion, and influencing the relevant functional areas of the brain.
Collapse
Affiliation(s)
- Yanfeng Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Qing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Liangliang Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Hui Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- College of Pharmacy Science, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Zaishi Zhu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Linlong Liu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Min Mao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Zhouping Yi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, 350122, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
48
|
Valsamidou E, Amerikanou C, Tzavara C, Skarpas G, Mariolis-Sapsakos TD, Zoumpoulakis P, Kaliora AC. A standardized nutraceutical supplement contributes to pain relief, improves quality of life and regulates inflammation in knee osteoarthritis patients; A randomized clinical trial. Heliyon 2023; 9:e20143. [PMID: 37809749 PMCID: PMC10559924 DOI: 10.1016/j.heliyon.2023.e20143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints that affects greatly the elderly population and the health care systems and is on the increase due to aging and obesity. Interventions aim at palliative care and pharmaceutical therapies entail serious adverse events. Whereas polyphenols constitute a promising holistic approach in the arsenal of physicians, trials investigating biomarkers and questionnaires are scarce. As such, a randomized controlled trial (RCT) was conducted to evaluate the potency of a standardized polyphenolic supplement in the management of systemic inflammation, oxidative stress, pain and general quality of life (QoL) in patients with osteoarthritis. Sixty subjects were randomized to receive either a polyphenol supplement (curcuma phospholipid, rosemary extract, resveratrol, ascorbic acid), or an active comparator (ascorbic acid) twice, daily for 12 weeks. The group that received the polyphenols exhibited significantly lower symptoms of pain and improved physical function and QoL as it was depicted by validated questionnaires, compared to the control group. Furthermore, post intervention, inflammation was restrained in the polyphenol group. Since systemic inflammation promotes local inflammation, the decrease of pain herein might be attributed to the attenuation of systemic inflammation by the polyphenols.
Collapse
Affiliation(s)
- Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
- Qualia Pharma, 2 Kalavriton, 14564, Kifissia, Athens, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
| | - Chara Tzavara
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
| | - George Skarpas
- Evgenidio Clinic Agia Trias, 20 Papadiamantopoulou Str, Ilissia, 11852, Greece
| | | | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, Egaleo, Athens, 12243, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635, Athens, Greece
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
| |
Collapse
|
49
|
Chen B, Huang W, Liao J. Osteoarthritis: The Most Common Joint Disease and Outcome of Sports Injury. J Clin Med 2023; 12:5103. [PMID: 37568505 PMCID: PMC10419701 DOI: 10.3390/jcm12155103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease and affects an estimated 240 million people worldwide [...].
Collapse
Affiliation(s)
- Bowen Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Laboratory, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
50
|
Hoang T, Shiao Y. New Method for Reduced-Number IMU Estimation in Observing Human Joint Motion. SENSORS (BASEL, SWITZERLAND) 2023; 23:5712. [PMID: 37420876 DOI: 10.3390/s23125712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Observation of human joint motion plays an important role in many fields. The results of the human links can provide information about musculoskeletal parameters. Some devices can track real-time joint movement in the human body during essential daily activities, sports, and rehabilitation with memory for storing the information concerning the body. Based on the algorithm for signal features, the collected data can reveal the conditions of multiple physical and mental health issues. This study proposes a novel method for monitoring human joint motion at a low cost. We propose a mathematical model to analyze and simulate the joint motion of a human body. The model can be applied to an Inertial Measurement Unit (IMU) device for tracking dynamic joint motion of a human. Finally, the combination of image-processing technology was used to verify the results of model estimation. Moreover, the verification showed that the proposed method can estimate joint motions properly with reduced-number IMUs.
Collapse
Affiliation(s)
- Thang Hoang
- Faculty of Transportation Mechanical Engineering, The University of Danang-University of Science and Technology, Danang 550000, Vietnam
| | - Yaojung Shiao
- Department of Vehicle Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
- Railway Vehicle Research Center, National Taipei University of Technology, Taipei 106344, Taiwan
| |
Collapse
|