1
|
Hansen FJ, Mittelstädt A, Clausen FN, Knoedler S, Knoedler L, Klöckner S, Kuchenreuther I, Mazurie J, Arnold LS, Anthuber A, Jacobsen A, Merkel S, Weisel N, Klösch B, Karabiber A, Tacyildiz I, Czubayko F, Reitberger H, Gendy AE, Brunner M, Krautz C, Wolff K, Mihai S, Neufert C, Siebler J, Grützmann R, Weber GF, David P. CD71 expressing circulating neutrophils serve as a novel prognostic biomarker for metastatic spread and reduced outcome in pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:21164. [PMID: 39256468 PMCID: PMC11387421 DOI: 10.1038/s41598-024-70916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, presenting a persisting global health burden. Neutrophils have a double-edged role in tumor progression exhibiting both pro-tumor and anti-tumor functions. CD71, also known as transferrin receptor 1, performs a critical role in cellular iron uptake and is highly expressed on proliferating cells, and especially on activated immune cells. CD71 is known to be elevated in various types of solid cancers and is associated with poor prognosis, however, the expression of CD71 on neutrophils in PDAC and its potential clinical impact is still unknown. Therefore, we analyzed CD71 on circulating neutrophils in PDAC and clinical control patients and found a significant increased expression in PDAC patients. High expression of CD71 on neutrophils in PDAC patients was associated with reduced outcome compared to low expression. CD71 on neutrophils correlated positively with the levels of proinflammatory cytokines IL-6, IFN-γ, and growth factor ligands CD40-L, and BAFF in plasma of PDAC patients. Finally, we have demonstrated that high expression of CD71 on neutrophils was also associated with an increased expression of CD39 and CD25 on circulating T-cells. Based on our findings, we hypothesize that CD71 on neutrophils is associated with tumor progression in PDAC. Further studies are required to investigate the distinct functionality of CD71 expressing neutrophils and their potential clinical application.
Collapse
Affiliation(s)
- Frederik J Hansen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anke Mittelstädt
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Finn-Niklas Clausen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Ingolstädter Landtsraße 1, 85764, Neuherberg, Germany
| | - Leonard Knoedler
- Division of Genetic Immunotherapy (LIT), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Sebastian Klöckner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Isabelle Kuchenreuther
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Johanne Mazurie
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Lisa-Sophie Arnold
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anna Anthuber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anne Jacobsen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Susanne Merkel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Nadine Weisel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Bettina Klösch
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Alara Karabiber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Irem Tacyildiz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Franziska Czubayko
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Helena Reitberger
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Amr El Gendy
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Kerstin Wolff
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sidonia Mihai
- Zentrallabor im Universitätsklinikum, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 12, Erlangen, Germany
| | - Clemens Neufert
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Paul David
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| |
Collapse
|
2
|
Wang S, Cheng M, Wang S, Jiang W, Yang F, Shen X, Zhang L, Yan X, Jiang B, Fan K. A Self-Catalytic NO/O 2 Gas-Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403921. [PMID: 39101290 DOI: 10.1002/adma.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/29/2024] [Indexed: 08/06/2024]
Abstract
Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu-HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2-transporting ability of heme, HRRu-HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu-HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu-HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.
Collapse
Affiliation(s)
- Shuyu Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Miaomiao Cheng
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shenghui Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifei Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment, Henan, 450001, China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Bratti M, Stubbs E, Kolodych S, Souchet H, Kelly L, Merlin J, Marchal M, Castellano R, Josselin E, Pasquer H, Benajiba L, Puissant A, Koniev O, Collette Y, Belanger C, Hermine O, Monteiro RC, Launay P. INA03: A Potent Transferrin-Competitive Antibody-Drug Conjugate against CD71 for Safer Acute Leukemia Treatment. Mol Cancer Ther 2024; 23:1159-1175. [PMID: 38641421 DOI: 10.1158/1535-7163.mct-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Innovative strategies for enhancing efficacy and overcoming drug resistance in hematologic cancers, such as using antibody-drug conjugates (ADC), have shifted the paradigm of conventional care by delivering promising outcomes in cancer therapies with a significant reduction in the risk of relapse. Transferrin receptor (TfR1), cluster of differentiation 71 (CD71), is known to be overexpressed in malignant cells and considered a potent antitumor target. Therefore, we developed an anti-CD71 ADC, INA03, a humanized antibody conjugated to monomethyl auristatin E through a 3-arylpropiolonitrile-valine-citrulline linker. In this study, we investigated the potency and safety of INA03, in competition with Transferrin (Tf), the CD71's natural ligand, as a novel strategy to specifically target highly proliferative cells. The high expression of CD71 was confirmed on different leukemic cell lines, allowing INA03 to bind efficiently. Subsequently, INA03 rapidly internalizes into lysosomal compartments, in which its cytotoxic drug is released following cathepsin B cleavage. Downregulation of CD71 expression using shRNA highlighted that INA03-induced cell death was dependent on CD71 density at the cell surface. INA03 intravenous treatment in acute leukemia mouse models significantly reduced tumor burden, increased mouse survival, and showed no residual disease compared with conventional chemotherapies. Because INA03 competes with human Tf, a double knock-in (human CD71/human Tf) competent mouse model was generated to mimic human pharmacokinetics and pharmacodynamics. INA03 administration in human CD71/hTf mice did not reveal any improper toxicities, even at high doses. Hence, these data demonstrate the promising preclinical efficacy and safety of INA03 and support its development as a novel acute leukemia treatment. Significance: The Tf receptor is believed to be undruggable because of its ubiquitous expression. By entering into competition with its cognate ligand, the Tf and INA03 ADC can safely achieve potency.
Collapse
Affiliation(s)
| | | | | | | | - Lois Kelly
- Institut de Recherche Saint-Louis (IRSL), INSERM U944, Paris, France
| | | | - Michelle Marchal
- INATHERYS, Evry, France
- Institut Imagine, INSERM U1163, CNRS ERL8654, Paris, France
| | - Remy Castellano
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Emmanuelle Josselin
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Pasquer
- Institut de Recherche Saint-Louis (IRSL), INSERM U944, Paris, France
- Université Paris Cité, APHP, Hôpital Saint-Louis, Paris, France
| | - Lina Benajiba
- Institut de Recherche Saint-Louis (IRSL), INSERM U944, Paris, France
- Université Paris Cité, APHP, Hôpital Saint-Louis, Paris, France
| | | | | | - Yves Collette
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | | | - Olivier Hermine
- INATHERYS, Evry, France
- Institut Imagine, INSERM U1163, CNRS ERL8654, Paris, France
| | - Renato C Monteiro
- INATHERYS, Evry, France
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, CNRS ERL8252, Inflamex Laboratory of Excellence, Paris, France
| | - Pierre Launay
- INATHERYS, Evry, France
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, CNRS ERL8252, Inflamex Laboratory of Excellence, Paris, France
| |
Collapse
|
4
|
Xing Y, Jing R, Tang X, Jiang Z. Dual-Targeted Zeolitic Imidazolate Frameworks Drug Delivery System Reversing Cisplatin Resistance to Treat Resistant Ovarian Cancer. Int J Nanomedicine 2024; 19:6603-6618. [PMID: 38979533 PMCID: PMC11230133 DOI: 10.2147/ijn.s434950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/22/2024] [Indexed: 07/10/2024] Open
Abstract
Objective Ovarian cancer cells are prone to acquire tolerance to chemotherapeutic agents, which seriously affects clinical outcomes. The development of novel strategies to enhance the targeting of chemotherapeutic agents to overcome drug resistance and minimize side effects is significant for improving the clinical outcomes of ovarian cancer patients. Methods We employed folic acid (FA)-modified ZIF-90 nanomaterials (FA-ZIF-90) to deliver the chemotherapeutic drug, cisplatin (DDP), via dual targeting to improve its targeting to circumvent cisplatin resistance in ovarian cancer cells, especially by targeting mitochondria. FA-ZIF-90/DDP could rapidly release DDP in response to dual stimulation of acidity and ATP in tumor cells. Results FA-ZIF-90/DDP showed good blood compatibility. It was efficiently taken up by human ovarian cancer cisplatin-resistant cells A2780/DDP and aggregated in the mitochondrial region. FA-ZIF-90/DDP significantly inhibited the mitochondrial activity and metastatic ability of A2780/DDP cells. In addition, it effectively induced apoptosis in A2780/DDP cells and overcame cisplatin resistance. In vivo experiments showed that FA-ZIF-90/DDP increased the accumulation of DDP in tumor tissues and significantly inhibited tumor growth. Conclusion FA-modified ZIF-90 nanocarriers can improve the tumor targeting and anti-tumor effects of chemotherapeutic drugs, reduce toxic side effects, and are expected to be a novel therapeutic strategy to reverse drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Rui Jing
- School of Medical Technology, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Ahmad A, Rabbani G, Zamzami MA, Hosawi S, Baothman OA, Altayeb H, Akhtar MSN, Ahmad V, Khan MV, Khan ME, Kim SH. An affordable label-free ultrasensitive immunosensor based on gold nanoparticles deposited on glassy carbon electrode for the transferrin receptor detection. Int J Biol Macromol 2024; 273:133083. [PMID: 38866289 DOI: 10.1016/j.ijbiomac.2024.133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
In recent decades, there has been a concerning and consistent rise in the incidence of cancer, posing a significant threat to human health and overall quality of life. The transferrin receptor (TfR) is one of the most crucial protein biomarkers observed to be overexpressed in various cancers. This study reports on the development of a novel voltammetric immunosensor for TfR detection. The electrochemical platform was made up of a glassy carbon electrode (GCE) functionalized with gold nanoparticles (AuNPs), on which anti-TfR was immobilized. The surface characteristics and electrochemical behaviors of the modified electrodes were comprehensively investigated through scanning electron microscopy, XPS, Raman spectroscopy FT-IR, electrochemical cyclic voltammetry and impedance spectroscopy. The developed immunosensor exhibited robust analytical performance with TfR fortified buffer solution, showing a linear range (LR) response from 0.01 to 3000 μg/mL, with a limit of detection (LOD) of 0.01 μg/mL and reproducibility (RSD <4 %). The fabricated sensor demonstrated high reproducibility and selectivity when subjected to testing with various types of interfering proteins. The immunosensor designed for TfR detection demonstrated several advantageous features, such as being cost-effective and requiring a small volume of test sample making it highly suitable for point-of-care applications.
Collapse
Affiliation(s)
- Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Gulam Rabbani
- IT-medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea.
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Othman A Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | | | - Varish Ahmad
- Department of Health Information technology, The Applied College, King Abdulaziz University, Jeddah 21452, Saudi Arabia
| | - Mohsin Vahid Khan
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
8
|
Chulkova SV, Sholokhova EN, Poddubnaya IV, Gladilina IA, Egorova AV, Stilidi IS. [Expression of transferrin receptor 1 and β1-integrins correlates with estrogen receptor status and immune infiltration in breast cancer]. Arkh Patol 2024; 86:23-30. [PMID: 39073538 DOI: 10.17116/patol20248604123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cancer cells can aberrantly express various markers, including transferrin receptor 1 (CD71) and β1-integrin molecules. Their role in invasion, migration and metastasis has been demonstrated. Determination of their expression in breast cancer (BC) may be an important point to characterize the clinical course of the tumor and prognosis of the disease. OBJECTIVE To study of transferrin receptor 1 (CD71) expression by primary breast cancer cells in correlation with tumor cell phenotype. MATERIAL AND METHODS Determination of BC phenotype: immunohistochemical staining method (immunofluorescence). Antibodies to ER (estrogen receptors), KL-1 (pancytokeratin), CD71 (transferrin receptor), CD29 (β1-integrins). CD45, CD3, CD4, CD8, CD20 infiltration was also evaluated. ZEISS microscope (AXIOSKOP; Germany), method of G.J. Hammerling et al. Statistical processing: IBM-SPSS Statistics v.21. RESULTS 63% of BC cases had CD71+ phenotype. CD71-mosaic tumors were observed in 14.4%. β1-integrin expression was monomorphic in 51.6% of cases and mosaic in 38.7%. 85% of ER-positive tumors were CD71-positive with a monomorphic type of reaction; p=0.014. Among ER-negative tumors, CD71-negative reactions were 2-fold more frequent and the monomorphic type was less frequent. ER-positive tumors were CD29-positive in 73%; p=0.031. 45.5% of ER+ tumors were CD29-monomorphic. Among ER-negative tumors, the frequency of CD29-monomorphic tumors was 55%. Significant infiltration by CD3+ cells was predominant in CD71-positive tumors; p=0.016. In the CD29-monomorphic phenotype, CD45+ infiltration was 31.3%, and in the mosaic phenotype, 67.1%. CONCLUSION BC aberrantly expresses transferrin receptors, β1-integrins. CD71 expression is associated with ER expression. ER-positive tumors are often monomorphic for CD71. Prominent CD3+ infiltration was present in CD71+ tumors. Expression of β1-integrins correlated with ER+ status and weak immune infiltration.
Collapse
Affiliation(s)
- S V Chulkova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E N Sholokhova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - I V Poddubnaya
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - I A Gladilina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Egorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I S Stilidi
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
9
|
Hashemian M, Poustchi H, Sharafkhah M, Pourshams A, Mohammadi-Nasrabadi F, Hekmatdoost A, Malekzadeh R. Iron, Copper, and Magnesium Concentration in Hair and Risk of Esophageal Cancer: A Nested Case-Control Study. ARCHIVES OF IRANIAN MEDICINE 2023; 26:665-670. [PMID: 38431946 PMCID: PMC10915918 DOI: 10.34172/aim.2023.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/14/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND An association has already been hypothesized between iron, copper, and magnesium status assessed through food frequency questionnaires (FFQs) and the risk of esophageal squamous cell carcinoma (ESCC). However, self-reported dietary assessment methods are prone to measurement errors. We studied the association between iron, copper, and magnesium status and ESCC risk, using hair samples as a long exposure biomarker. METHODS We designed a nested case-control study within the Golestan Cohort Study, that recruited about 50000 participants in 2004-2008, and collected biospecimens at baseline. We identified 96 incident cases of ESCC with available hair samples. They were age-matched with cancer-free controls from the cohort. We used inductively coupled plasma mass spectrometry (ICP-MS) to measure iron, copper, and magnesium concentrations in hair samples. We used multiple logistic regression models to determine odds ratios and 95% confidence intervals. RESULTS Median concentrations of iron, copper, and magnesium were 35.4, 19.3, and 41.7 ppm in cases and 25.8, 18.3, and 50.0 ppm in controls, respectively. Iron was significantly associated with the risk of ESCC in continuous analysis (OR=1.41, 95% CI=1.03-1.92), but not in the tertiles analyses (ORT3 vs. T1=1.81, 95% CI=0.77-4.28). No associations were observed between copper and magnesium and ESCC risk, in either the tertiles models or the continuous estimate (copper: ORT3 vs. T1=2.56, 95% CI=1.00-6.54; magnesium: ORT3 vs. T1=0.75, 95% CI=0.32-1.78). CONCLUSION Higher iron status may be related to a higher risk of ESCC in this population.
Collapse
Affiliation(s)
- Maryam Hashemian
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Biology Department, School of Arts and Sciences, Utica University, Utica, NY, USA
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi-Nasrabadi
- Food and Nutrition Policy and Planning Research Department, National Nutrition and Food Technology Research Institute (NNFTRI), Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Departments of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Feng G, Arima Y, Midorikawa K, Kobayashi H, Oikawa S, Zhao W, Zhang Z, Takeuchi K, Murata M. Knockdown of TFRC suppressed the progression of nasopharyngeal carcinoma by downregulating the PI3K/Akt/mTOR pathway. Cancer Cell Int 2023; 23:185. [PMID: 37644594 PMCID: PMC10466839 DOI: 10.1186/s12935-023-02995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The transferrin receptor (TfR) encoded by TFRC gene is the main cellular iron importer. TfR is highly expressed in many cancers and is expected to be a promising new target for cancer therapy; however, its role in nasopharyngeal carcinoma (NPC) remains unknown. METHODS The TfR levels were investigated in NPC tissues and cell lines using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. Knockdown of TFRC using two siRNA to investigate the effects on intracellular iron level and biological functions, including proliferation by CKK-8 assay, colony formation, cell apoptosis and cell cycle by flow cytometry, migration and invasion, and tumor growth in vivo by nude mouse xenografts. RNA sequencing was performed to find possible mechanism after TFRC knockdown on NPC cells and further verified by western blotting. RESULTS TfR was overexpressed in NPC cell lines and tissues. Knockdown of TFRC inhibited cell proliferation concomitant with increased apoptosis and cell cycle arrest, and it decreased intracellular iron, colony formation, migration, invasion, and epithelial-mesenchymal transition in HK1-EBV cells. Western blotting showed that TFRC knockdown suppressed the levels of the iron storage protein FTH1, anti-apoptotic marker BCL-xL, and epithelial-mesenchymal transition markers. We confirmed in vivo that TFRC knockdown also inhibited NPC tumor growth and decreased Ki67 expression in tumor tissues of nude mouse xenografts. RNA sequencing and western blotting revealed that TFRC silencing inhibited the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS These results indicated that TfR was overexpressed in NPC, and TFRC knockdown inhibited NPC progression by suppressing the PI3K/Akt/mTOR signaling pathway. Thus, TfR may serve as a novel biomarker and therapeutic target for NPC.
Collapse
Affiliation(s)
- Guofei Feng
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Yasushi Arima
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, 510-0226, Mie, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Weilin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| |
Collapse
|
11
|
Alshalani A, Beuger BM, Tuip-de Boer AM, van Bruggen R, Acker JP, Juffermans NP. The impact of biological age of red blood cell on in vitro endothelial activation markers. Front Physiol 2023; 14:1127103. [PMID: 36969576 PMCID: PMC10030615 DOI: 10.3389/fphys.2023.1127103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction: Blood donor characteristics influence red blood cell transfusion outcomes. As donor sex affects the distribution of young to old RBCs in the circulation, we hypothesized that the amount of circulating young RBCs in the blood product are associated with immune suppression.Materials and Methods: Blood samples were collected from healthy volunteers and density fractionated into young and old subpopulations. In an activated endothelial cell model, RBC adhesion to endothelium and secretion of endothelial activation markers were assessed. The impact of RBC biological age was also assessed in a T cell proliferation assay and in a whole blood stimulation assay.Results: After Percoll fractionation, young RBCs contained more reticulocytes compared to old RBCs. Young RBCs associated with lower levels of E-selectin, ICAM-1, and vWF from activated endothelial cells compared to old RBCs. RBC subpopulations did not affect T cell proliferation or cytokine responses following whole blood stimulation.Conclusion: Young RBCs contain more reticulocytes which are associated with lower levels of endothelial activation markers compared to old RBCs.
Collapse
Affiliation(s)
- Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Abdulrahman Alshalani,
| | - Boukje M. Beuger
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Anita M. Tuip-de Boer
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jason P. Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, Amsterdam, Netherlands
- Department of Intensive Care, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Li J, Zhang Z, Zhang B, Yan X, Fan K. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy. Biomater Sci 2023; 11:3394-3413. [PMID: 36847174 DOI: 10.1039/d2bm02152h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Achieving effective drug delivery to traverse the blood-brain barrier (BBB) and target tumor cells remains the greatest challenge for brain tumor therapy. Importantly, the overexpressed membrane receptors on the brain endothelial cells, especially transferrin receptor 1 (TfR1), which mediate their ligands/antibodies to overcome the BBB by transcytosis, have been emerging as promising targets for brain tumor therapy. By employing ligands (e.g., transferrin, H-ferritin), antibodies or targeting peptides of TfR1 or aptamers, various functional nano-formulations have been developed in the last decade. These agents showed great potential for the treatment of brain diseases due to their ideal size, high loading capacity, controlled drug release and suitable pharmacokinetics. Herein, we summarize the latest advances on TfR1-targeted nanomedicine for brain tumor therapy. Moreover, we also discuss the strategies of improving stability, targeting ability and accumulation of nano-formulations in brain tumors for better outcomes. In this review, we hope to provide inspiration for the rational design of TfR1-targeted nanomedicine against brain tumors.
Collapse
Affiliation(s)
- Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Baoli Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
13
|
Arora R, Haynes L, Kumar M, McNeil R, Ashkani J, Nakoneshny SC, Matthews TW, Chandarana S, Hart RD, Jones SJM, Dort JC, Itani D, Chanda A, Bose P. NCBP2 and TFRC are novel prognostic biomarkers in oral squamous cell carcinoma. Cancer Gene Ther 2023; 30:752-765. [PMID: 36635327 DOI: 10.1038/s41417-022-00578-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
There are few prognostic biomarkers and targeted therapeutics currently in use for the clinical management of oral squamous cell carcinoma (OSCC) and patient outcomes remain poor in this disease. A majority of mutations in OSCC are loss-of-function events in tumour suppressor genes that are refractory to conventional modes of targeting. Interestingly, the chromosomal segment 3q22-3q29 is amplified in many epithelial cancers, including OSCC. We hypothesized that some of the 468 genes located on 3q22-3q29 might be drivers of oral carcinogenesis and could be exploited as potential prognostic biomarkers and therapeutic targets. Our integrative analysis of copy number variation (CNV), gene expression and clinical data from The Cancer Genome Atlas (TCGA), identified two candidate genes: NCBP2, TFRC, whose expression positively correlates with worse overall survival (OS) in HPV-negative OSCC patients. Expression of NCBP2 and TFRC is significantly higher in tumour cells compared to most normal human tissues. High NCBP2 and TFRC protein abundance is associated with worse overall, disease-specific survival, and progression-free interval in an in-house cohort of HPV-negative OSCC patients. Finally, due to a lack of evidence for the role of NCBP2 in carcinogenesis, we tested if modulating NCBP2 levels in human OSCC cell lines affected their carcinogenic behaviour. We found that NCBP2 depletion reduced OSCC cell proliferation, migration, and invasion. Differential expression analysis revealed the upregulation of several tumour-promoting genes in patients with high NCBP2 expression. We thus propose both NCBP2 and TFRC as novel prognostic and potentially therapeutic biomarkers for HPV-negative OSCC.
Collapse
Affiliation(s)
- Rahul Arora
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Logan Haynes
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Mehul Kumar
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Reid McNeil
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jahanshah Ashkani
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Steven C Nakoneshny
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - T Wayne Matthews
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Robert D Hart
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Joseph C Dort
- Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Surgery, Section of Otolaryngology-Head & Neck Surgery, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Doha Itani
- Department of Anatomic and Molecular Pathology, Dalhousie University, Saint John, NB, Canada
| | - Ayan Chanda
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.
| |
Collapse
|
14
|
Belvin BR, Lewis JP. Ferroportin depletes iron needed for cell cycle progression in head and neck squamous cell carcinoma. Front Oncol 2023; 12:1025434. [PMID: 36698390 PMCID: PMC9868905 DOI: 10.3389/fonc.2022.1025434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Ferroportin (FPN), the only identified eukaryotic iron efflux channel, plays an important role in iron homeostasis and is downregulated in many cancers. To determine if iron related pathways are important for Head and Neck Squamous Cell Carcinoma (HNSCC) progression and proliferation, we utilize a model of FPN over-expression to simulate iron depletion and probe associated molecular pathways. Methods The state of iron related proteins and ferroptosis sensitivity was assessed in a panel of metastatic HNSCC cell lines. Stable, inducible expression of FPN was confirmed in the metastatic HNSCC lines HN12 and JHU-022 as well as the non-transformed normal oral keratinocyte (NOK) cell line and the effect of FPN mediated iron depletion was assessed in these cell lines. Results HNSCC cells are sensitive to iron chelation and ferroptosis, but the non-transformed NOK cell line is not. We found that FPN expression inhibits HNSCC cell proliferation and colony formation but NOK cells are unaffected. Inhibition of cell proliferation is rescued by the addition of hepcidin. Decreases in proliferation are due to the disruption of iron homeostasis via loss of labile iron caused by elevated FPN levels. This in turn protects HNSCC cells from ferroptotic cell death. Expression of FPN induces DNA damage, activates p21, and reduces levels of cyclin proteins thereby inhibiting cell cycle progression of HNSCC cells, arresting cells in the S-phase. Induction of FPN severely inhibits Edu incorporation and increased β-galactosidase activity, indicating cells have entered senescence. Finally, in an oral orthotopic mouse xenograft model, FPN induction yields a significant decrease in tumor growth. Conclusions Our results indicate that iron plays a role in HNSCC cell proliferation and growth and is important for cell cycle progression. Iron based interventional strategies such as ferroptosis or iron chelation may have potential therapeutic benefits in advanced HNSCC.
Collapse
Affiliation(s)
- Benjamin Ross Belvin
- Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, United States
| | - Janina P. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Richmond, VA, United States,Department of Biochemistry and Molecular Biology, School of Medicine, Richmond, VA, United States,Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: Janina P. Lewis,
| |
Collapse
|
15
|
Zhang D, Tang Q, Chen J, Wei Y, Chen J. Novel Development of Nanoparticles-A Promising Direction for Precise Tumor Management. Pharmaceutics 2022; 15:pharmaceutics15010024. [PMID: 36678653 PMCID: PMC9862928 DOI: 10.3390/pharmaceutics15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although the clinical application of nanoparticles is still limited by biological barriers and distribution, with the deepening of our understanding of nanoparticles over the past decades, people are gradually breaking through the previous limitations in the diagnosis and treatment of tumors, providing novel strategies for clinical decision makers. The transition of nanoparticles from passive targeting to active tumor-targeting by abundant surface-modified nanoparticles is also a development process of precision cancer treatment. Different particles can be used as targeted delivery tools of antitumor drugs. The mechanism of gold nanoparticles inducing apoptosis and cycle arrest of tumor cells has been discovered. Moreover, the unique photothermal effect of gold nanoparticles may be widely used in tumor therapy in the future, with less side effects on surrounding tissues. Lipid-based nanoparticles are expected to overcome the blood-brain barrier due to their special characteristics, while polymer-based nanoparticles show better biocompatibility and lower toxicity. In this paper, we discuss the development of nanoparticles in tumor therapy and the challenges that need to be addressed.
Collapse
Affiliation(s)
- Dengke Zhang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Tang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Chen
- Department of Medicine & Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, China
| | - Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (Y.W.); (J.C.)
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (Y.W.); (J.C.)
| |
Collapse
|
16
|
Chulkova SV, Sholokhova EN, Poddubnaya IV, Stilidi IS, Tupitsyn NN. The analysis of the relationship between transferrin receptor 1 (TfR1) and clinical, morphological and immunophenotypic characteristics of breast cancer: retrospective cohort study. JOURNAL OF MODERN ONCOLOGY 2022. [DOI: 10.26442/18151434.2022.3.201821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background. Transferrin receptor 1 (TfR1) expression has been identified in a number of malignant tumors. It is noted that its overexpression gives growth advantages to cancer cells. Estimation of transferrin receptor expression in breast cancer (BC) might be an important component in disease prognosis, choice of treatment, also might be an attractive target for targeted therapy.
Aim. To evaluate the expression of TfR1 by BC cells and to study its relationship with the clinical, morphological and immunophenotypic characteristics of the tumor.
Materials and methods. This study included 82 patients with BC who received treatment at the Blokhin National Medical Research Center of Oncology (Moscow). The expression of TfR1 on primary tumor cells was studied, the relationship of TfR1 with clinical, morphological and immunophenotypic characteristics of BC was analyzed. Immunophenotyping of the primary tumor was performed by the immunohistochemical method (immunofluorescent staining) on cryostat sections. Antibodies to CD71, CD95, CD54, CD29, MUC1, Pgp170 were used. The reaction was evaluated using a luminescent microscope (AXIOSKOP, Germany). The study was dominated by patients with stage IIB 54% and IIIB 21%. Infiltrative ductal BC was diagnosed in 67% (n=55) of patients, infiltrative-lobular in 22% (n=18) of cases, other types in 11.0% (n=9).
Results. BC cells expressed TfR1 in most cases (64.4%; n=61). A combination of TfR1 monomorphic expression with MUC1 monomorphic expression (74.4%; n=47) was noted. CD29 is presented both mosaic (38.7%) and monomorphic (51.6%). The Pgp170 antigen was monomorphically observed in 27.5% of cases. As the proportion of TfR+ cells increased, the expression frequency of the adhesion molecule CD54 increased from 10.5 to 33.3%, a positive correlation was established (r=0.293; p=0.008). In the group with TfR1 monomorphic expression, the frequency of tumors expressing the CD95 apoptosis molecule decreased: 25.0% vs 13% (p=0.042).
Conclusion. BC cells overexpress TfR1. TfR1 expression is associated with tumor immunophenotype.
Collapse
|
17
|
Yang X, Tang Z, Li J, Jiang J. Esophagus cancer and essential trace elements. Front Public Health 2022; 10:1038153. [PMID: 36466456 PMCID: PMC9709130 DOI: 10.3389/fpubh.2022.1038153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous epidemiological and laboratory studies on essential trace elements have reported protective associations in developing various cancer types, including esophagus cancer (EC). However, the results are not always consistent. Some essential trace elements could play a vital role in preventing esophagus cancer. Some showed no association with esophageal cancer risk, while others harmed individuals. This article reviews the association between the intake or supplementation of essential trace elements (especially zinc, copper, iron, and selenium) and the risk of esophageal cancer. Generally, zinc intake may decrease the risk of esophageal cancer (EC), especially in high esophageal squamous cell carcinoma (ESCC) prevalence regions. The association between copper supplementation and EC remains uncertain. Total iron consumption is thought to be associated with lower EC risk, while heme iron intake may be associated with higher EC risk. Selenium intake showed a protective effect against EC, especially for those individuals with a low baseline selenium level. This review also prospects the research direction of the association between EC and essential trace elements.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizong Jiang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jizong Jiang
| |
Collapse
|
18
|
Ferroptosis Induction and YAP Inhibition as New Therapeutic Targets in Gastrointestinal Stromal Tumors (GISTs). Cancers (Basel) 2022; 14:cancers14205050. [PMID: 36291834 PMCID: PMC9599726 DOI: 10.3390/cancers14205050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
GISTs are sarcomas of the gastrointestinal tract often associated with gain-of-function mutations in KIT or PDGFRA receptor genes. While most GISTs initially respond to tyrosine kinase inhibitors, relapses due to acquired resistance frequently occur. The induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, emerged as a novel therapeutic approach in cancers and remains poorly characterized in GISTs. We studied hallmarks of ferroptosis, i.e., lipid peroxidation, iron and glutathione content, and GPX4 protein expression in imatinib-sensitive (GIST882) and -resistant (GIST48) GIST cell lines. GIST cells were highly sensitive to the induction of ferroptosis by RSL3, which was reversed by liproxstatin and deferoxamine. Lipid peroxidation and ferroptosis were mediated by VP and CA3 in GIST cells through a significant decrease in antioxidant defenses. Moreover, VP, but surprisingly not CA3, inhibited a series of target genes downstream of YAP in GIST cells. The ferroptosis marker TFRC was also investigated by immunohistochemistry in GIST tissue arrays. TFRC expression was observed in all samples. High TFRC expression was positively correlated with high-risk GISTs, elevated mitotic count, and YAP nuclear localization, reflecting YAP activation. This study highlights ferroptosis as a novel cell death mechanism in GISTs, and a potential therapeutic target to overcome resistance to tyrosine kinase inhibitors.
Collapse
|
19
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
20
|
Howard D, Turnbull T, Paterson DJ, Thierry B, Kempson I. Cell Size as a Primary Determinant in Targeted Nanoparticle Uptake. ACS APPLIED BIO MATERIALS 2022; 5:4222-4231. [PMID: 36027561 DOI: 10.1021/acsabm.2c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanoparticle (NP) internalization by cells is complex, highly heterogeneous, and fundamentally important for nanomedicine. We report powerful probabilistic statistics from single-cell data on quantitative NP uptake of PEG-coated transferrin receptor-targeted gold NPs for cancer-derived and fibroblast cells according to their cell size, receptor expression, and receptor density. The smaller cancer cells had a greater receptor density and more efficient uptake of targeted NPs. However, simply due to fibroblasts being larger with more receptors, they exhibited greater NP uptake. While highly heterogeneous, targeted NP uptake strongly correlated with receptor expression. When uptake was normalized to cell size, no correlation existed. Consequently, skewed population distributions in cell sizes explain the distribution in NP uptake. Furthermore, exposure to the transferrin receptor-targeted NPs alters the fibroblast size and receptor expression, suggesting that the receptor-targeted NPs may interfere with the metabolic flux and nutrient exchange, which could assist in explaining the altered regulation of cells exposed to nanoparticles.
Collapse
Affiliation(s)
- Douglas Howard
- Future Industries Institute, University of South Australia, Mawson Lakes, Salisbury, South Australia 5095, Australia
| | - Tyron Turnbull
- Future Industries Institute, University of South Australia, Mawson Lakes, Salisbury, South Australia 5095, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes, Salisbury, South Australia 5095, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, Salisbury, South Australia 5095, Australia
| |
Collapse
|
21
|
Singh S, Serwer L, DuPage A, Elkins K, Chauhan N, Ravn M, Buchanan F, Wang L, Krimm M, Wong K, Sagert J, Tipton K, Moore SJ, Huang Y, Jang A, Ureno E, Miller A, Patrick S, Duvur S, Liu S, Vasiljeva O, Li Y, Henriques T, Badagnani I, Jeffries S, Schleyer S, Leanna R, Krebber C, Viswanathan S, Desnoyers L, Terrett J, Belvin M, Morgan-Lappe S, Kavanaugh WM, Richardson J. Nonclinical Efficacy and Safety of CX-2029, an Anti-CD71 Probody-Drug Conjugate. Mol Cancer Ther 2022; 21:1326-1336. [PMID: 35666803 PMCID: PMC9662867 DOI: 10.1158/1535-7163.mct-21-0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/19/2021] [Accepted: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Probody therapeutics (Pb-Txs) are conditionally activated antibody-drug conjugates (ADCs) designed to remain inactive until proteolytically activated in the tumor microenvironment, enabling safer targeting of antigens expressed in both tumor and normal tissue. Previous attempts to target CD71, a highly expressed tumor antigen, have failed to establish an acceptable therapeutic window due to widespread normal tissue expression. This study evaluated whether a probody-drug conjugate targeting CD71 can demonstrate a favorable efficacy and tolerability profile in preclinical studies for the treatment of cancer. CX-2029, a Pb-Tx conjugated to maleimido-caproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E, was developed as a novel cancer therapeutic targeting CD71. Preclinical studies were performed to evaluate the efficacy and safety of this anti-CD71 PDC in patient-derived xenograft (PDX) mouse models and cynomolgus monkeys, respectively. CD71 expression was detected at high levels by IHC across a broad range of tumor and normal tissues. In vitro, the masked Pb-Tx form of the anti-CD71 PDC displayed a >50-fold reduced affinity for binding to CD71 on cells compared with protease-activated, unmasked anti-CD71 PDC. Potent in vivo tumor growth inhibition (stasis or regression) was observed in >80% of PDX models (28/34) at 3 or 6 mg/kg. Anti-CD71 PDC remained mostly masked (>80%) in circulation throughout dosing in cynomolgus monkeys at 2, 6, and 12 mg/kg and displayed a 10-fold improvement in tolerability compared with an anti-CD71 ADC, which was lethal. Preclinically, anti-CD71 PDC exhibits a highly efficacious and acceptable safety profile that demonstrates the utility of the Pb-Tx platform to target CD71, an otherwise undruggable target. These data support further clinical development of the anti-CD71 PDC CX-2029 as a novel cancer therapeutic.
Collapse
Affiliation(s)
- Shweta Singh
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Laura Serwer
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Amy DuPage
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Kristi Elkins
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | | | | | - Leyu Wang
- AbbVie Inc., North Chicago, Illinois
| | - Michael Krimm
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Ken Wong
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Jason Sagert
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | | | - Yuanhui Huang
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Andrew Jang
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Eric Ureno
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Adam Miller
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Sarah Patrick
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Shanti Duvur
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Shouchun Liu
- CytomX Therapeutics, Inc, South San Francisco, California
| | - Olga Vasiljeva
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | | | | | | | - Siew Schleyer
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Claus Krebber
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Luc Desnoyers
- CytomX Therapeutics, Inc, South San Francisco, California
| | | | - Marcia Belvin
- CytomX Therapeutics, Inc, South San Francisco, California
- Corresponding Author: Marcia Belvin, CytomX Therapeutics, Inc., South San Francisco, CA 94080. Phone: (650)-892-9803; E-mail:
| | | | | | | |
Collapse
|
22
|
Gong G, Qian W, Zhang L, Jia J, Xie J, Zhu Q, Liu W, Tu P, Gao M, Zhang L, Tang H, Su H, Wei K, Zhou C, Wang KK, Zhang Z, Pan Q. A curcumin-induced assembly of a transferrin nanocarrier system and its antitumor effect. Colloids Surf B Biointerfaces 2022; 217:112613. [DOI: 10.1016/j.colsurfb.2022.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
|
23
|
Sohrabi M, Nikkhah M, Sohrabi M, Rezaee Farimani A, Mirasgari Shahi M, Ziaie H, Shirmardi S, Kohi Z, Salehpour D, Safarnezhad Tameshkel F, Hajibaba M, Zamani F, Ajdarkosh H, Sohrabi M, Gholami A. Evaluating tissue levels of the eight trace elements and heavy metals among esophagus and gastric cancer patients: A comparison between cancerous and non-cancerous tissues. J Trace Elem Med Biol 2021; 68:126761. [PMID: 34139544 DOI: 10.1016/j.jtemb.2021.126761] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Considering the affecting role of environmental factors including trace elements and heavy metals on the upper gastrointestinal (GI) cancers, there is paucity of empirical research in tissue evaluations. OBJECTIVES The present study aimed to measure the tissue content of some trace elements and heavy metals such as zinc (Zn), chromium (Cr), manganese (Mn), tin (Sn), copper (Cu), aluminum (Al), lead (Pb), and iron (Fe) in esophagus and gastric cancerous tissues compared to the adjacent healthy tissues. METHODS In a cross-sectional study, the aforementioned trace elements and heavy metals were evaluated among patients with esophagus and gastric cancers. During endoscopy, multiple samples were taken from cancerous lesions and the adjacent healthy tissues. The classic flame atomic absorption spectroscopy (FAAS) method was employed as the study framework. RESULTS Fifty patients with the mean age of 53.92 ± 8.73 were enrolled in the current study. Thirteen patients suffered from esophageal cancer and thirty-seven patients were afflicted with gastric cancer. The results revealed significant differences in the median concentrations of Zn, Cr, Sn and, Cu (P < 0.05) between the two groups. Although there were no significant changes in the tissue content in the esophageal samples, in the median concentrations of Zn, Cr and, Sn (P < 0.05) in gastric tissues, significant differences were observed. Further, the results indicated that gender enacted an affecting role in the level of some trace elements and heavy metals. CONCLUSION The tissue contents of some elements were altered in gastric and esophageal cancers; this difference may reflect the underlying mechanism of cellular changing during the tumorigenesis or direct exposure of these elements. It seems that under the shade of other coexisting risk factors, larger cohort studies are suggested to be conducted to investigate other probable aspects in this area of interest.
Collapse
Affiliation(s)
- Masoudreza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikkhah
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Sohrabi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | - Azam Rezaee Farimani
- Department of Clinical Biochemistry, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Hossein Ziaie
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Shirmardi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | - Zahra Kohi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | - Delaram Salehpour
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran
| | | | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Sohrabi
- Department of Chemistry, Faculty of Basic Sciences, Tehran Islamic Azad University, North Branch, Tehran, Iran.
| | - Ali Gholami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
24
|
Johnson M, El-Khoueiry A, Hafez N, Lakhani N, Mamdani H, Rodon J, Sanborn RE, Garcia-Corbacho J, Boni V, Stroh M, Hannah AL, Wang S, Castro H, Spira A. Phase I, First-in-Human Study of the Probody Therapeutic CX-2029 in Adults with Advanced Solid Tumor Malignancies. Clin Cancer Res 2021; 27:4521-4530. [PMID: 34083236 DOI: 10.1158/1078-0432.ccr-21-0194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE PROCLAIM-CX-2029 is a phase I first-in-human study of CX-2029, a Probody-drug conjugate targeting CD71 (transferrin receptor 1) in adults with advanced solid tumors. Although the transferrin receptor is highly expressed across multiple tumor types, it has not been considered a target for antibody-drug conjugates (ADCs) due to its broad expression on normal cells. CX-2029 is a masked form of a proprietary anti-CD71 antibody conjugated to monomethyl auristatin E, designed to be unmasked in the tumor microenvironment by tumor-associated proteases, therefore limiting off-tumor toxicity and creating a therapeutic window for this previously undruggable target. PATIENTS AND METHODS This was a dose-escalation, multicenter trial to evaluate the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of CX-2029. The primary endpoint was to determine the maximum tolerated dose (MTD) and cycle 1 dose-limiting toxicity (DLT). CX-2029 was administered i.v. every 3 weeks. RESULTS Forty-five patients were enrolled in eight dose levels. No DLTs were reported in the dose escalation through 4 mg/kg. At 5 mg/kg, there were two DLTs (febrile neutropenia and pancytopenia). Following expansion of the 4 mg/kg dose to six patients, two additional DLTs were observed (infusion-related reaction and neutropenia/anemia). Both the 4 and 5 mg/kg doses were declared above the maximum tolerated dose. The recommended phase II dose is 3 mg/kg. The most common dose-dependent hematologic toxicities were anemia and neutropenia. Confirmed partial responses were observed in three patients, all with squamous histologies. CONCLUSIONS The Probody therapeutic platform enables targeting CD71, a previously undruggable ADC target, at tolerable doses associated with clinical activity.See related commentary by Oberoi and Garralda, p. 4459.
Collapse
Affiliation(s)
- Melissa Johnson
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee.
| | | | | | | | | | - Jordi Rodon
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon
| | - Javier Garcia-Corbacho
- Department of Medical Oncology (Hospital Clinic Barcelona)/Translational Genomics and Targeted Therapies in Solid Tumors (IDIBAPS), Barcelona, Spain
| | - Valentina Boni
- START Madrid-CIOCC, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Mark Stroh
- CytomX Therapeutics, Inc., South San Francisco, California
| | | | - Song Wang
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Henry Castro
- CytomX Therapeutics, Inc., South San Francisco, California
| | | |
Collapse
|
25
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
26
|
Importance of Potential New Biomarkers in Patient with Serouse Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11061026. [PMID: 34205023 PMCID: PMC8227487 DOI: 10.3390/diagnostics11061026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer remains the gynecological cancer with the highest mortality rate. In our study, we compare a number of proteins from different effector pathways to assess their usefulness in the diagnosis of ovarian cancer. The tissue expression of the tested proteins was assessed by two methods: qRT-PCR and an immunohistochemical analysis. A significantly higher level of mRNA expression was found in the ovarian cancer group for YAP and TEAD4 (p = 0.004 and p = 0.003, respectively). There was no statistical significance in the expression of mRNA for SMAD3, and there was borderline statistical significance for SMAD2 between the groups of ovarian cancer patients and other subgroups of patients with simple cysts and healthy ovarian tissue (p = 0.726 and p = 0.046, respectively). Significantly higher levels of transferrin receptor (CD71), H2A.X, and ADH1A gene expression were found in the ovarian cancer group compared to the control group for YAP, and TEAD4 showed strong nuclear and cytoplasmic staining in ovarian carcinoma and weak staining in non-carcinoma ovarian samples, ADH1A1 showed strong staining in the cytoplasm of carcinoma sections and a weak positive reaction in the non-carcinoma section, H2A.X showed strong positive nuclear staining in carcinoma sections and moderate positive staining in non-carcinoma samples, and CD71 showed moderate positive staining in carcinoma and non-carcinoma samples. YAP, TEAD4, and ADH1A proteins appear to be promising biomarkers in the diagnosis of ovarian cancer.
Collapse
|
27
|
Dinh HQ, Eggert T, Meyer MA, Zhu YP, Olingy CE, Llewellyn R, Wu R, Hedrick CC. Coexpression of CD71 and CD117 Identifies an Early Unipotent Neutrophil Progenitor Population in Human Bone Marrow. Immunity 2021; 53:319-334.e6. [PMID: 32814027 DOI: 10.1016/j.immuni.2020.07.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/18/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
Neutrophils are the most abundant peripheral immune cells and thus, are continually replenished by bone marrow-derived progenitors. Still, how newly identified neutrophil subsets fit into the bone marrow neutrophil lineage remains unclear. Here, we use mass cytometry to show that two recently defined human neutrophil progenitor populations contain a homogeneous progenitor subset we term "early neutrophil progenitors" (eNePs) (Lin-CD66b+CD117+CD71+). Surface marker- and RNA-expression analyses, together with in vitro colony formation and in vivo adoptive humanized mouse transfers, indicate that eNePs are the earliest human neutrophil progenitors. Furthermore, we identified CD71 as a marker associated with the earliest neutrophil developmental stages. Expression of CD71 marks proliferating neutrophils, which were expanded in the blood of melanoma patients and detectable in blood and tumors from lung cancer patients. In summary, we establish CD117+CD71+ eNeP as the inceptive human neutrophil progenitor and propose a refined model of the neutrophil developmental lineage in bone marrow.
Collapse
Affiliation(s)
- Huy Q Dinh
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tobias Eggert
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Melissa A Meyer
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Yanfang Peipei Zhu
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Claire E Olingy
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ryan Llewellyn
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Runpei Wu
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine C Hedrick
- Center for Cancer Immunotherapy & Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-cancer Agents. Front Immunol 2021; 12:607692. [PMID: 33815364 PMCID: PMC8010148 DOI: 10.3389/fimmu.2021.607692] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
The transferrin receptor 1 (TfR1), also known as cluster of differentiation 71 (CD71), is a type II transmembrane glycoprotein that binds transferrin (Tf) and performs a critical role in cellular iron uptake through the interaction with iron-bound Tf. Iron is required for multiple cellular processes and is essential for DNA synthesis and, thus, cellular proliferation. Due to its central role in cancer cell pathology, malignant cells often overexpress TfR1 and this increased expression can be associated with poor prognosis in different types of cancer. The elevated levels of TfR1 expression on malignant cells, together with its extracellular accessibility, ability to internalize, and central role in cancer cell pathology make this receptor an attractive target for antibody-mediated therapy. The TfR1 can be targeted by antibodies for cancer therapy in two distinct ways: (1) indirectly through the use of antibodies conjugated to anti-cancer agents that are internalized by receptor-mediated endocytosis or (2) directly through the use of antibodies that disrupt the function of the receptor and/or induce Fc effector functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Although TfR1 has been used extensively as a target for antibody-mediated cancer therapy over the years, interest continues to increase for both targeting the receptor for delivery purposes and for its use as direct anti-cancer agents. This review focuses on the developments in the use of antibodies targeting TfR1 as direct anti-tumor agents.
Collapse
Affiliation(s)
- Pierre V. Candelaria
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Lai Sum Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Manuel L. Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- The Molecular Biology Institute, UCLA, Los Angeles, CA, United States
- UCLA AIDS Institute, UCLA, Los Angeles, CA, United States
| | - Tracy R. Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
29
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Saeed MEM, Breuer E, Hegazy MEF, Efferth T. Retrospective study of small pet tumors treated with Artemisia annua and iron. Int J Oncol 2019; 56:123-138. [PMID: 31789393 PMCID: PMC6910181 DOI: 10.3892/ijo.2019.4921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Artemisinin from Artemisia annua L. and its derivatives are well-known antimalarial drugs. In addition, in vitro studies, in vivo studies and clinical trials have demonstrated that these drugs exhibit anticancer activity in human patients with cancer. Therefore, the aim of the present study was to investigate whether a phytotherapeutic A. annua preparation exerts anticancer activity in veterinary tumors of small pets. Dogs and cats with spontaneous cancer (n=20) were treated with standard therapy plus a commercial A. annua preparation (Luparte®) and compared with a control group treated with standard therapy alone (n=11). Immunohistochemical analyses were performed with formalin-fixed paraffin-embedded tumor biopsies to analyze the expression of transferrin receptor (TfR) and the proliferation marker Ki-67 as possible biomarkers to assess treatment response of tumors to A. annua. Finally, the expression levels of TfR and Ki-67 were compared with the IC50 values towards artemisinin in two dog tumor cells lines (DH82 and DGBM) and a panel of 54 human tumor cell lines. Retrospectively, the present study assessed the survival times of small animals treated by standard therapy with or without A. annua. A. annua treatment was associated with a significantly higher number of animals surviving >18 months compared with animals without A. annua treatment (P=0.0331). Using a second set of small pet tumors, a significant correlation was identified between TfR and Ki-67 expression by immunohistochemistry (P=0.025). To further assess the association of transferrin and Ki-67 expression with cellular response to artemisinin, the present study compared the expression of these two biomarkers and the IC50 values for artemisinin in National Cancer Institute tumor cell lines in vitro. Both markers were inversely associated with artemisinin response (P<0.05), and the expression levels of TfR and Ki-67 were significantly correlated (P=0.008). In conclusion, the promising results of the present retrospective study warrant further confirmation by prospective studies in the future.
Collapse
Affiliation(s)
- Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, D‑55128 Rhineland‑Palatinate, Germany
| | - Elmar Breuer
- Veterinary Clinic for Small Animals, 'Alte Ziegelei' Müllheim, D‑79379 Baden, Germany
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, D‑55128 Rhineland‑Palatinate, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, D‑55128 Rhineland‑Palatinate, Germany
| |
Collapse
|
31
|
O'Dwyer DN, Moore BB. Ironing Out the Roles of Macrophages in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:127-129. [PMID: 31091960 PMCID: PMC6635782 DOI: 10.1164/rccm.201904-0891ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- David N O'Dwyer
- 1 Division of Pulmonary and Critical Care Medicine University of Michigan Ann Arbor, Michigan
| | - Bethany B Moore
- 2 Division of Pulmonary and Critical Care Medicine and.,3 Department of Microbiology and Immunology University of Michigan Ann Arbor, Michigan
| |
Collapse
|
32
|
Cui C, Cheng X, Yan L, Ding H, Guan X, Zhang W, Tian X, Hao C. Downregulation of TfR1 promotes progression of colorectal cancer via the JAK/STAT pathway. Cancer Manag Res 2019; 11:6323-6341. [PMID: 31372038 PMCID: PMC6628123 DOI: 10.2147/cmar.s198911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/20/2019] [Indexed: 01/05/2023] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies. The incidence of CRC has been rapidly increasing in China. Transferrin receptor 1 (TfR1) is a key regulator of cellular iron homeostasis. Several studies have demonstrated TfR1 overexpression in a variety of human tumors, but the association between TfR1 and CRC remains unclear. Methods: TfR1 expression was evaluated in six CRC cell lines and tumor tissues. A total of 201 CRC patients were included for immunohistochemistry and 19 pairs of frozen tissues were used for real-time PCR. Cell proliferation, cell cycle, cell migration and invasion, and in vivo carcinogenesis were tested after downregulation of TfR1 by lentivirus. Protein microarray and Western blot analyses were used to explore the underlying mechanisms of TfR1 in CRC. Results: TfR1 expression was higher in CRC tissues than in normal tissues (57.2% vs 22.9%, P<0.001). TfR1 expression was obviously higher in CRC tissues with well differentiation (P=0.008), no lymph node metastasis (P=0.002), no distant metastasis (P=0.006), no vascular invasion (P<0.001) and early TNM stage (P=0.013). CRC patients with TfR1-positive expression had a better survival than those with TfR1-negative expression (P=0.044). Downregulation of TfR1 expression inhibited cell proliferation, promoted cells from G1 phase to S phase and facilitated cell migration and invasion. Knockdown of TfR1 also suppressed tumor growth in BALB/C-nu mice. Protein microarray and Western blot analyses showed that the Janus protein tyrosine kinase/signal transducer and activator of transcription pathway was activated along with downregulation of TfR1 expression. Conclusion: Though TfR1 was overexpressed in colorectal cancer tissues, there was evidence that downregulation of TfR1 could promote cancer progression.
Collapse
Affiliation(s)
- Can Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Carcinoma Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Huirong Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| |
Collapse
|
33
|
Wu X, Liu H, Han D, Peng B, Zhang H, Zhang L, Li J, Liu J, Cui C, Fang S, Li M, Ye M, Tan W. Elucidation and Structural Modeling of CD71 as a Molecular Target for Cell-Specific Aptamer Binding. J Am Chem Soc 2019; 141:10760-10769. [PMID: 31185171 DOI: 10.1021/jacs.9b03720] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pancreatic cancer is a highly lethal malignancy associated with tissues of the pancreas. Early diagnosis and effective treatment are crucial to improving the survival rate of patients with pancreatic cancer. In a previous study, we employed the cell-SELEX strategy to obtain an ssDNA aptamer termed XQ-2d with high binding affinity for pancreatic cancer. Here, we first identify CD71 as the XQ-2d-binding target. We found that knockdown of CD71 abolished the binding of XQ-2d and that the binding affinity of XQ-2d is associated with membrane-bound CD71, rather than total CD71 levels. Competitive analysis revealed that XQ-2d shares the same binding site on CD71 with transferrin (Tf), but not anti-CD71 antibody. We then used a surface energy transfer (SET) nanoruler to measure the distance between the binding sites of XQ-2d and anti-CD71 antibody, and it was about 15 nm. Furthermore, we did molecular dynamics simulation to clarify that the spatial structure of XQ-2d and Tf competitively binding to CD71. We also engineered XQ-2d-mediated targeted therapy for pancreatic cancer, using an XQ-2d-based complex for loading doxorubicin (Dox). Because CD71 is overexpressed not only in pancreatic cancer but also in a variety of tumors, our work provides a systematic novel way of studying a potential biomarker and also promising tools for cancer diagnosis and therapy, opening new doors for effective cancer theranostics.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Honglin Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China.,School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Dongmei Han
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Bo Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Hui Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Jianglin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | | | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China.,Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611 , United States
| | | | | | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China.,Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute , University of Florida , Gainesville , Florida 32611 , United States.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
34
|
Leung THY, Tang HWM, Siu MKY, Chan DW, Chan KKL, Cheung ANY, Ngan HYS. CD71 + Population Enriched by HPV-E6 Protein Promotes Cancer Aggressiveness and Radioresistance in Cervical Cancer Cells. Mol Cancer Res 2019; 17:1867-1880. [PMID: 31235657 DOI: 10.1158/1541-7786.mcr-19-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
A subpopulation of cells within tumors has been suggested to possess the ability to initiate tumorigenesis and contribute to resistance to cancer therapy. Identification and isolation of this subpopulation in cancer cells can be achieved by detecting specific cell-surface markers. In this study, flow cytometry analysis revealed an abundant CD71+ subpopulation in human papillomavirus (HPV)-positive cervical cancer cells, while limited CD71+ cells were detected in HPV-negative cervical cancer cells. Furthermore, ectopic expression of the HPV-E6 protein in HPV-negative C33A cells enriched the CD71+subpopulation. The CD71+ subpopulation isolated from the C33A cell line and an HPV-E6-overexpressing clone exhibited enhanced transforming ability, proliferation, and resistance to irradiation. In contrast, suppression of CD71 in HPV-positive SiHa cells and the HPV-E6-overexpressing stable clone inhibited spheroid formation and in vitro and in vivo tumorigenicity and sensitized cells to irradiation treatment. CRISPR/Cas9 knockout of CD71 in SiHa cells also produced similar inhibitory effects on tumorigenicity. Double knockout of CD71 and CD55 reversed the oncogenic properties of the HPV-E6-overexpressing clone. These findings suggest that the HPV-E6 protein enriches the subpopulation of CD71+cells in cervical cancer, which exhibit cancer stem-like cell properties and are resistant to irradiation treatment. Targeting the CD71+ subpopulation in cervical cancer cells with siRNAs or CRISPR/Cas9 may provide new insights for the development of novel therapeutic approaches for treating cervical cancer. IMPLICATIONS: We describe the enrichment of CD71+ population by HPV-E6 protein in cervical cancer cells that promotes cancer aggressiveness and resistance to irradiation treatment.
Collapse
Affiliation(s)
- Thomas Ho-Yin Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Hermit Wai-Man Tang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Michelle Kwan-Yee Siu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - David Wai Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Karen Kar-Loen Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Annie Nga-Yin Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hextan Yuen-Sheung Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
35
|
Liu Q, Bi C, Li J, Liu X, Peng R, Jin C, Sun Y, Lyu Y, Liu H, Wang H, Luo C, Tan W. Generating Giant Membrane Vesicles from Live Cells with Preserved Cellular Properties. RESEARCH (WASHINGTON, D.C.) 2019; 2019:6523970. [PMID: 31549076 PMCID: PMC6750080 DOI: 10.34133/2019/6523970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022]
Abstract
Biomimetic giant membrane vesicles, with size and lipid compositions comparable to cells, have been recognized as an attractive experimental alternative to living systems. Due to the similarity of their membrane structure to that of body cells, cell-derived giant plasma membrane vesicles have been used as a membrane model for studying lipid/protein behavior of plasma membranes. However, further application of biomimetic giant membrane vesicles has been hampered by the side-effects of chemical vesiculants and the utilization of osmotic buffer. We herein develop a facile strategy to derive giant membrane vesicles (GMVs) from mammalian cells in biofriendly medium with high yields. These GMVs preserve membrane properties and adaptability for surface modification and encapsulation of exogenous molecules, which would facilitate their potential biological applications. Moreover, by loading GMVs with therapeutic drugs, GMVs could be employed for drug transport to tumor cells, which represents another step forward in the biomedical application of giant membrane vesicles. This study highlights biocompatible GMVs with biomimicking membrane surface properties and adaptability as an ideal platform for drug delivery strategies with potential clinical applications.
Collapse
Affiliation(s)
- Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Cheng Bi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Jiangling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Xuejiao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Cheng Jin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Yang Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Huijing Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Can Luo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Departments of Chemistry, Physiology and Functional Genomics, Molecular Genetics and Microbiology and Pathology and Laboratory Medicine, UF Health Cancer Center, Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Zeller MP, Rochwerg B, Jamula E, Li N, Hillis C, Acker JP, Runciman RJR, Lane SJ, Ahmed N, Arnold DM, Heddle NM. Sex-mismatched red blood cell transfusions and mortality: A systematic review and meta-analysis. Vox Sang 2019; 114:505-516. [PMID: 31124172 DOI: 10.1111/vox.12783] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Selection of a compatible red blood cell (RBC) unit does not include matching for donor sex. This systematic review and meta-analysis aims to summarize the evidence examining the impact of sex-mismatched RBC transfusion on recipient mortality. MATERIALS AND METHODS Ovid MEDLINE, Ovid EMBASE, CINAHL, PubMed, Web of Science and the Cochrane Database of Systematic Reviews were searched from inception up to 23 November 2018. Randomized controlled trials and observational studies were included in the search. Eligible studies reported on the impact of sex-matched compared to sex-mismatched RBC transfusion on recipient mortality. Two investigators independently extracted data and assessed study quality. A three-level meta-analytic model was applied to emphasize the unknown dependence among the effect sizes. RESULTS Five retrospective observational studies (n = 86 737) were included; no RCTs were found. Sex-mismatched RBC transfusions were associated with a higher risk of death compared with sex-matched transfusions (pooled hazard ratio [HR]: 1·13; 95% confidence interval [CI]: 1·02-1·24). In the subgroup of cardiovascular surgery (n = 57 712), there was no significant increase in mortality with sex-mismatched transfusions (pooled HR: 1·08; 95% CI: 0·95-1·22). The data were prone to confounding, selection bias and reporting bias. Certainty of the evidence was very low. CONCLUSION Sex-mismatched RBC transfusions were associated with an increased risk of death in this pooled analysis. However, the certainty of the evidence was very low from observational studies. The need to match donor and recipient sex for transfusions requires further investigation because of the potential widespread impact.
Collapse
Affiliation(s)
- Michelle P Zeller
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada.,Canadian Blood Services, Medical Office, Hamilton, ON, Canada.,Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bram Rochwerg
- Division of Critical Care, Department of Medicine, McMaster University, Hamilton, ON, Canada.,Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
| | - Erin Jamula
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Na Li
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Christopher Hillis
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada.,Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada
| | - Ryan J R Runciman
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Shannon J Lane
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Naveen Ahmed
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Donald M Arnold
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada.,Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nancy M Heddle
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada.,Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
DNA Damage Response After Ionizing Radiation Exposure in Skin Keratinocytes Derived from Human-Induced Pluripotent Stem Cells. Int J Radiat Oncol Biol Phys 2019; 105:193-205. [PMID: 31085283 DOI: 10.1016/j.ijrobp.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE Epidermal cells are positioned on the body surface and thus risk being exposed to genotoxic stress, including ionizing radiation (IR), ultraviolet rays, and chemical compounds. The biological effect of IR on the skin tissue is a significant problem for medical applications such as radiation therapy. Keratinocyte stem cells and progenitors are at risk for IR-dependent tumorigenesis during radiation therapy for cancer treatment. To elucidate the molecular mechanism of genome stability in epidermal cells, we derived skin keratinocytes from human-induced pluripotent stem cells (iPSCs) and analyzed their DNA damage response (DDR). METHODS AND MATERIALS Skin keratinocytes were derived from iPSCs and designated as first- (P1), second- (P2), and third- (P3) passage cells to compare the differentiation states of DDR. After 2 Gy gamma-ray exposure, cells were immunostained with DNA double-strand break markers γ-H2AX/53BP1 and cell senescence markers p16/p21 for DDR analysis. DDR protein expression level, cell survival, and apoptosis were analyzed by western blotting, WST-8 assay and TUNEL assay, respectively. DDR of constructed 3D organoid modeling was also analyzed. RESULTS P1, P2, and P3 keratinocytes were characterized with keratinocyte markers keratin 14 and p63 using immunofluorescence, and all cells were positive to both markers. Derived keratinocytes showed high expression of integrin α6 and CD71 (real-time (qRT)-PCR ratio: iPSCs: integrin α6: 1.12, CD71: 1.25, P1: integrin α6: 7.80, CD71: 0.43, P2: integrin α6: 5.53, CD71: 0.48), suggesting that P1 and P2 keratinocytes have potential as keratinocyte progenitors. Meanwhile, P3 keratinocytes showed low expression of integrin α6 and CD71 (qRT-PCR ratio: P3: integrin α6: 0.55, CD71: 0.10), suggesting differentiated keratinocytes. After IR exposure, the P1 and P2 keratinocytes showed an increase in DNA repair activity by a γ-H2AX/53BP1 focus assay (P1: γ-H2AX: 28.0%, 53BP1: 17.0%, P2: γ-H2AX: 37.7%, 53BP1: 28.3%) but not in P3 keratinocytes (P3: γ-H2AX: 74.7%, 53BP1: 63.7%) compared with iPSCs (γ-H2AX: 57.0%, 53BP1: 55.0%). Furthermore, in derived keratinocytes, expression of the cellular senescence markers p16 and p21 were increased compared with iPSCs (P16: non irradiated, iPSCs: 0%, P1: 12.5%, P2: 14.5%, P3: 29.7%, IR, iPSCs: 0%, P1: 19.5%, P2: 34.8%, P3: 64.5%). DDR protein expression, cellular sensitivity, and apoptosis activity decreased in derived keratinocytes compared with iPSCs. CONCLUSIONS We have demonstrated the derivation of keratinocytes from iPSCs and their characterization of differentiated states and DDR. Derived keratinocytes showed progenitors like character as a result of DDR. These results suggest that derived keratinocytes are useful tools for analyzing the effects of IR, such as DDR on the skin tissue from radiation therapy for cancer.
Collapse
|
38
|
Ye J, Ma J, Liu C, Huang J, Wang L, Zhong X. A novel iron(II) phenanthroline complex exhibits anticancer activity against TFR1-overexpressing esophageal squamous cell carcinoma cells through ROS accumulation and DNA damage. Biochem Pharmacol 2019; 166:93-107. [PMID: 31078603 DOI: 10.1016/j.bcp.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and aggressive cancers worldwide, especially in China, with poor prognosis due to the lack of effective therapeutic strategies. Here, the anticancer effect and pharmacological mechanism of a newly synthesized Fe(II) phenanthroline complex was studied in ESCC. Our data showed that transferrin receptor 1 (TFR1) was specifically overexpressed in ESCC tissues compared to its expression in normal esophageal tissues, a finding further supported by public datasets. The newly synthesized Fe(II) complex was selectively transported into ESCC cells overexpressing TFR1 through TFR1-mediated endocytosis and exhibited anticancer activity in a dose-dependent manner. The mechanistic study elucidated that the Fe(II) complex caused cell cycle arrest at the G0/G1 phase by blocking the CDK4/6-cyclin D1 complex and induced mitochondria-mediated apoptosis. Furthermore, exposure to the Fe(II) complex led to excessive reactive oxygen species (ROS) accumulation by thioredoxin reductase (TrxR) inhibition and DNA double-strand breaks (DSBs), which in turn sequentially activated ATM, CHK1/2 and p53. Moreover, combination treatment with cisplatin and the Fe(II) complex exhibited a synergistic effect in ESCC cells. Taken together, our results initially suggest the potential application of the Fe(II) complex in ESCC chemotherapy, especially for patients with TFR1 overexpression.
Collapse
Affiliation(s)
- Jiecheng Ye
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jiwei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Chan Liu
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Jianxian Huang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| | - Xueyun Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
39
|
Babu KR, Muckenthaler MU. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep 2019; 9:1518. [PMID: 30728365 PMCID: PMC6365501 DOI: 10.1038/s41598-018-35947-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
Transferrin receptor 1 (TFR1) is a transmembrane glycoprotein that allows for transferrin-bound iron uptake in mammalian cells. It is overexpressed in various cancers to satisfy the high iron demand of fast proliferating cells. Here we show that in hepatocellular carcinoma (HCC) TFR1 expression is regulated by miR-148a. Within the TFR1 3′UTR we identified and experimentally validated two evolutionarily conserved miRNA response elements (MREs) for miR-148/152 family members, including miR-148a. Interestingly, analyses of RNA sequencing data from patients with liver hepatocellular carcinoma (LIHC) revealed a significant inverse correlation of TFR1 mRNA levels and miR-148a. In addition, TFR1 mRNA levels were significantly increased in the tumor compared to matched normal healthy tissue, while miR-148a levels are decreased. Functional analysis demonstrated post-transcriptional regulation of TFR1 by miR-148a in HCC cells as well as decreased HCC cell proliferation upon either miR-148a overexpression or TFR1 knockdown. We hypothesize that decreased expression of miR-148a in HCC may elevate transferrin-bound iron uptake, increasing cellular iron levels and cell proliferation.
Collapse
Affiliation(s)
- Kamesh R Babu
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany. .,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
40
|
Mao QQ, Liu Y. Impact of early enteral nutrition on intestinal mucosal barrier and nutrition status in advanced esophageal cancer patients undergoing synchronous chemoradiotherapy. Shijie Huaren Xiaohua Zazhi 2019; 27:101-106. [DOI: 10.11569/wcjd.v27.i2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effect of early enteral nutrition on intestinal mucosal barrier and nutrition status in advanced esophageal cancer patients undergoing synchronous chemoradiotherapy.
METHODS Ninety-two advanced esophageal cancer patients undergoing synchronous chemoradiotherapy from July 2015 to October 2016 were divided into an intervention group and a control group. The control group was given routine diet or intravenous nutrition support, and the intervention group was given early enteral nutrition support. One month after treatment, intestinal mucosal barrier, serum nutrition indexes, and short-term efficacy were compared between the two groups.
RESULTS Serum endotoxin, diamine oxidase, and D-lactic acid were significantly lower in the intervention group than in the control group (10.24 ± 2.12 EU/L vs 15.45 ± 3.21 EU/L, 5.65 ± 0.82 U/L vs 8.05 ± 1.35 U/L, 0.29 ± 0.07 μmol/L vs 0.35 ± 0.08 μmol/L; t = 9.186, 10.306, 3.828; P < 0.05 or 0.01). Serum albumin, prealbumin, and transferrin were significantly higher in the intervention group than in the control group (32.41 ± 4.35 g/L vs 28.45 ± 4.32 g/L, 0.26 ± 0.0 g/L vs 0.19 ± 0.06 g/L, 1.82 ± 0.36 vs 1.45 ± 0.32; t = 4.381, 4.748, 5.210; P < 0.05). Remission rate and control rate were significantly higher in the intervention group than in the control group (80.43% vs 60.87%, 91.30% vs 76.09%; χ2 = 4.246, 3.903; P < 0.05).
CONCLUSION Early enteral nutrition support can help improve the short-term efficacy in advanced esophageal cancer patients undergoing synchronous chemoradiotherapy, which may be related to protecting intestinal mucosal barrier function and improving the nutritional status.
Collapse
Affiliation(s)
- Qing-Qing Mao
- Department of Gastroenterology, The 903rd Hospital of Chinese People's Liberation Army, Hangzhou 310013, Zhejiang Province, China
| | - Ying Liu
- Department of Oncology, The 903rd Hospital of Chinese People's Liberation Army, Hangzhou 310013, Zhejiang Province, China
| |
Collapse
|
41
|
A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2018; 19:ijms19123859. [PMID: 30518027 PMCID: PMC6321581 DOI: 10.3390/ijms19123859] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Designing new drug delivery systems (DDSs) for safer cancer therapy during pre-clinical and clinical applications still constitutes a considerable challenge, despite advances made in related fields. Lipid-based drug delivery systems (LBDDSs) have emerged as biocompatible candidates that overcome many biological obstacles. In particular, a combination of the merits of lipid carriers and functional polymers has maximized drug delivery efficiency. Functionalization of LBDDSs enables the accumulation of anti-cancer drugs at target destinations, which means they are more effective at controlled drug release in tumor microenvironments (TMEs). This review highlights the various types of ligands used to achieve tumor-specific delivery and discusses the strategies used to achieve the effective release of drugs in TMEs and not into healthy tissues. Moreover, innovative recent designs of LBDDSs are also described. These smart systems offer great potential for more advanced cancer therapies that address the challenges posed in this research area.
Collapse
|
42
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Miyazawa M, Bogdan AR, Tsuji Y. Perturbation of Iron Metabolism by Cisplatin through Inhibition of Iron Regulatory Protein 2. Cell Chem Biol 2018; 26:85-97.e4. [PMID: 30449675 DOI: 10.1016/j.chembiol.2018.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 06/29/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
Cisplatin is classically known to exhibit anticancer activity through DNA damage in the nucleus. Here we found a mechanism by which cisplatin affects iron metabolism, leading to toxicity and cell death. Cisplatin causes intracellular iron deficiency through direct inhibition of the master regulator of iron metabolism, iron regulatory protein 2 (IRP2) with marginal effects on IRP1. Cisplatin, but not carboplatin or transplatin, binds human IRP2 at Cys512 and Cys516 and impairs IRP2 binding to iron-responsive elements of ferritin and transferrin receptor-1 (TfR1) mRNAs. IRP2 inhibition by cisplatin caused ferritin upregulation and TfR1 downregulation leading to sustained intracellular iron deficiency. Cys512/516Ala mutant IRP2 made cells more resistant to cisplatin. Furthermore, combination of cisplatin and the iron chelator desferrioxamine enhanced cytotoxicity through augmented iron depletion in culture and xenograft mouse model. Collectively, cisplatin is an inhibitor of IRP2 that induces intracellular iron deficiency.
Collapse
Affiliation(s)
- Masaki Miyazawa
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| | - Alexander R Bogdan
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| |
Collapse
|
44
|
Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment. Sci Rep 2018; 8:13505. [PMID: 30202000 PMCID: PMC6131143 DOI: 10.1038/s41598-018-31232-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023] Open
Abstract
One of the main characteristics of cancer tissues is poor development of neovascularization that results in a limited blood circulation. Because of this phenomenon, it is harder for cancer tissues to diffuse their elevated heat into other parts of the body. The scientific principle of radiofrequency hyperthermia relies on this quality of cancer tissues which with higher temperature becomes more apparent. Despite the obvious necessity to selectively heat the cancer tissue for radiofrequency hyperthermia, a proper thermosensitizer has not been developed until now. Here, we show that transferrin containing ferric ion could be an ideal thermosensitizer for the increased efficiency of radiofrequency hyperthermia. In our result, the ferric ion-enriched cancer tissues dramatically react with 13.56 MHz radiofrequency wave to cause cancer-selective dielectric temperature increment. The overall anticancer efficacy of a 13.56 MHz radiofrequency hyperthermia using transferrin as a thermosensitizer was much higher than the oncotherapeutic efficacy of paclitaxel, successfully eradicating cancer in a tumor-xenografted mouse experiment.
Collapse
|
45
|
Lan L, Wei W, Zheng Y, Niu L, Chen X, Huang D, Gao Y, Mo S, Lu J, Guo M, Liu Y, Lu B. Deferoxamine suppresses esophageal squamous cell carcinoma cell growth via ERK1/2 mediated mitochondrial dysfunction. Cancer Lett 2018; 432:132-143. [DOI: 10.1016/j.canlet.2018.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022]
|
46
|
Shen Y, Li X, Zhao B, Xue Y, Wang S, Chen X, Yang J, Lv H, Shang P. Iron metabolism gene expression and prognostic features of hepatocellular carcinoma. J Cell Biochem 2018; 119:9178-9204. [PMID: 30076742 DOI: 10.1002/jcb.27184] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
Iron metabolism is crucial to hepatocellular carcinoma progression and is a key determinant of prognosis. Protein-protein interactions within the iron metabolism gene network were analyzed using the European Molecular Biology Laboratory's Search Tool for Recurring Instances of Neighbouring Genes/Proteins database. We obtained 423 liver hepatocellular carcinoma gene expression profiles from the Cancer Genome Atlas database. The expression and pathway enrichment of representative iron intake genes (TFRC and DMT1), utilization genes (FTH1, FTL, HIF1A, HMOX1, SLC25A37, and SLC25A38), and efflux genes (FLVCR1 and SLC40A1) was investigated in tumor and adjacent tissues. We determined the relationship between iron metabolism and the prognostic features of liver hepatocellular carcinoma. The liver metabolism genes TFRC and FLVCR1 were related to survival, disease status, and prognosis in patients with hepatocellular carcinoma. Our results provide novel insight into liver cancer therapy.
Collapse
Affiliation(s)
- Ying Shen
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Xin Li
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Bin Zhao
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Yanru Xue
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Xin Chen
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Jiancheng Yang
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Huanhuan Lv
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Peng Shang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
47
|
Role of transferrin receptor in hepatitis C viral infection. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hepatitis C virus (HCV) is the main pathogen causing chronic hepatitis and primary liver cancer. Various viral proteins and host cell molecules are involved in the HCV cell entry, but the mechanism of infection has not been completely elucidated. The transferrin receptor can act as a receptor for many viruses during cell entry. The transferrin receptor is not only closely related to HCV-induced iron metabolism disorders but also mediates the fusion of HCV with the host cell membrane as a specific receptor for CD81-dependent viral adhesion.
Collapse
|
48
|
|
49
|
Miyazawa M, Bogdan AR, Hashimoto K, Tsuji Y. Regulation of transferrin receptor-1 mRNA by the interplay between IRE-binding proteins and miR-7/miR-141 in the 3'-IRE stem-loops. RNA (NEW YORK, N.Y.) 2018; 24:468-479. [PMID: 29295890 PMCID: PMC5855948 DOI: 10.1261/rna.063941.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/21/2017] [Indexed: 05/07/2023]
Abstract
Intracellular iron is tightly regulated by coordinated expression of iron transport and storage genes, such as transferrin receptor-1 (TfR1) and ferritin. They are primarily regulated by iron through iron-induced dissociation of iron-regulatory proteins (IRPs) from iron-responsive elements (IREs) in the 3'-UTR (untranslated region) of TfR1 or 5'-UTR of ferritin mRNA, resulting in destabilization of TfR1 mRNA and release of ferritin translation block. Thus high iron decreases iron transport via TfR1 mRNA degradation and increases iron storage via ferritin translational up-regulation. However, the molecular mechanism of TfR1 mRNA destabilization in response to iron remains elusive. Here, we demonstrate that miR-7-5p and miR-141-3p target 3'-TfR1 IREs and down-regulate TfR1 mRNA and protein expression. Conversely, miR-7-5p and miR-141-3p antagomiRs partially but significantly blocked iron- or IRP knockdown-induced down-regulation of TfR1 mRNA, suggesting the interplay between these microRNAs and IRPs along with involvement of another uncharacterized mechanism in TfR1 mRNA degradation. Luciferase reporter assays using 3'-UTR TfR1 IRE mutants suggested that the IREs C and E are targets of miR-7-5p and miR-141-3p, respectively. Furthermore, miR-7 expression was inversely correlated with TfR1 mRNA in human pancreatic adenocarcinoma patient samples. These results suggest a role of microRNAs in the TfR1 regulation in the IRP-IRE system.
Collapse
Affiliation(s)
- Masaki Miyazawa
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alexander R Bogdan
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Kazunori Hashimoto
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
50
|
Chalouni C, Doll S. Fate of Antibody-Drug Conjugates in Cancer Cells. J Exp Clin Cancer Res 2018; 37:20. [PMID: 29409507 PMCID: PMC5802061 DOI: 10.1186/s13046-017-0667-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) are a class of cancer therapeutics that combines antigen specificity and potent cytotoxicity in a single molecule as they are comprised of an engineered antibody linked chemically to a cytotoxic drug. Four ADCs have received approval by the Food and Drug Administration (FDA) and the European Medicine Agency (EMA) and can be prescribed for metastatic conditions while around 60 ADCs are currently enrolled in clinical trials. The efficacy of an ADC greatly relies on its intracellular trafficking and processing of its components to trigger tumor cell death. A limited number of studies have addressed these critical processes that both challenge and help foster the design of ADCs. This review highlights those mechanisms and their relevance for future development of ADCs as cancer therapeutics.
Collapse
|