1
|
Liguori-Bills N, Blinov ML. bnglViz: online visualization of rule-based models. Bioinformatics 2024; 40:btae351. [PMID: 38814806 PMCID: PMC11176710 DOI: 10.1093/bioinformatics/btae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
MOTIVATION Rule-based modeling is a powerful method to describe and simulate interactions among multi-site molecules and multi-molecular species, accounting for the internal connectivity of molecules in chemical species. This modeling technique is implemented in BioNetGen software that is used by various tools and software frameworks, such as BioNetGen stand-alone software, NFSim simulation engine, Virtual Cell simulation and modeling framework, SmolDyn and PySB software tools. These tools exchange models using BioNetGen scripting language (BNGL). Until now, there was no online visualization of such rule-based models. Modelers and researchers reading the manuscripts describing rule-based models had to learn BNGL scripting or master one of these tools to understand the models. RESULTS Here, we introduce bnglViz, an online platform for visualizing BNGL files as graphical cartoons, empowering researchers to grasp the nuances of rule-based models swiftly and efficiently, and making the exploration of complex biological systems more accessible than ever before. The produced visualizations can be used as supplemental figures in publications or as a way to annotate BNGL models on web repositories. AVAILABILITY AND IMPLEMENTATION Available at https://bnglviz.github.io/.
Collapse
Affiliation(s)
- Noah Liguori-Bills
- Marine Earth and Atmospheric Sciences Department, North Carolina State University, Raleigh, NC 27695, United States
| | - Michael L Blinov
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, United States
| |
Collapse
|
2
|
Loman TE, Ma Y, Ilin V, Gowda S, Korsbo N, Yewale N, Rackauckas C, Isaacson SA. Catalyst: Fast and flexible modeling of reaction networks. PLoS Comput Biol 2023; 19:e1011530. [PMID: 37851697 PMCID: PMC10584191 DOI: 10.1371/journal.pcbi.1011530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
We introduce Catalyst.jl, a flexible and feature-filled Julia library for modeling and high-performance simulation of chemical reaction networks (CRNs). Catalyst supports simulating stochastic chemical kinetics (jump process), chemical Langevin equation (stochastic differential equation), and reaction rate equation (ordinary differential equation) representations for CRNs. Through comprehensive benchmarks, we demonstrate that Catalyst simulation runtimes are often one to two orders of magnitude faster than other popular tools. More broadly, Catalyst acts as both a domain-specific language and an intermediate representation for symbolically encoding CRN models as Julia-native objects. This enables a pipeline of symbolically specifying, analyzing, and modifying CRNs; converting Catalyst models to symbolic representations of concrete mathematical models; and generating compiled code for numerical solvers. Leveraging ModelingToolkit.jl and Symbolics.jl, Catalyst models can be analyzed, simplified, and compiled into optimized representations for use in numerical solvers. Finally, we demonstrate Catalyst's broad extensibility and composability by highlighting how it can compose with a variety of Julia libraries, and how existing open-source biological modeling projects have extended its intermediate representation.
Collapse
Affiliation(s)
- Torkel E. Loman
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yingbo Ma
- JuliaHub, Cambridge, Massachusetts, United States of America
| | - Vasily Ilin
- Department of Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Shashi Gowda
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Niklas Korsbo
- Pumas-AI, Baltimore, Maryland, United States of America
| | - Nikhil Yewale
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Chris Rackauckas
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- JuliaHub, Cambridge, Massachusetts, United States of America
- Pumas-AI, Baltimore, Maryland, United States of America
| | - Samuel A. Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Kerketta R, Erasmus MF, Wilson BS, Halasz AM, Edwards JS. Spatial Stochastic Model of the Pre-B Cell Receptor. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:683-693. [PMID: 35482702 PMCID: PMC10123485 DOI: 10.1109/tcbb.2022.3166149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Survival and proliferation of immature B lymphocytes requires expression and tonic signaling of the pre-B cell receptor (pre-BCR). This low level, ligand-independent signaling is likely achieved through frequent, but short-lived, homo interactions. Tonic signaling is also central in the pathology of precursor B acute lymphoblastic leukemia (B-ALL). In order to understand how repeated, transient events can lead to sustained signaling and to assess the impact of receptor accumulation induced by the membrane landscape, we developed a spatial stochastic model of receptor aggregation and downstream signaling events. Our rule- and agent-based model builds on previous mature BCR signaling models and incorporates novel parameters derived from single particle tracking of pre-BCR on surfaces of two different B-ALL cell lines, 697 and Nalm6. Live cell tracking of receptors on the two cell lines revealed characteristic differences in their dimer dissociation rates and diffusion coefficients. We report here that these differences affect pre-BCR aggregation and consequent signal initiation events. Receptors on Nalm6 cells, which have a lower off-rate and lower diffusion coefficient, more frequently form higher order oligomers than pre-BCR on 697 cells, resulting in higher levels of downstream phosphorylation in the Nalm6 cell line.
Collapse
|
4
|
Wysocka EM, Page M, Snowden J, Simpson TI. Comparison of rule- and ordinary differential equation-based dynamic model of DARPP-32 signalling network. PeerJ 2022; 10:e14516. [PMID: 36540795 PMCID: PMC9760030 DOI: 10.7717/peerj.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Dynamic modelling has considerably improved our understanding of complex molecular mechanisms. Ordinary differential equations (ODEs) are the most detailed and popular approach to modelling the dynamics of molecular systems. However, their application in signalling networks, characterised by multi-state molecular complexes, can be prohibitive. Contemporary modelling methods, such as rule- based (RB) modelling, have addressed these issues. The advantages of RB modelling over ODEs have been presented and discussed in numerous reviews. In this study, we conduct a direct comparison of the time courses of a molecular system founded on the same reaction network but encoded in the two frameworks. To make such a comparison, a set of reactions that underlie an ODE model was manually encoded in the Kappa language, one of the RB implementations. A comparison of the models was performed at the level of model specification and dynamics, acquired through model simulations. In line with previous reports, we confirm that the Kappa model recapitulates the general dynamics of its ODE counterpart with minor differences. These occur when molecules have multiple sites binding the same interactor. Furthermore, activation of these molecules in the RB model is slower than in the ODE one. As reported for other molecular systems, we find that, also for the DARPP-32 reaction network, the RB representation offers a more expressive and flexible syntax that facilitates access to fine details of the model, easing model reuse. In parallel with these analyses, we report a refactored model of the DARPP-32 interaction network that can serve as a canvas for the development of more complex dynamic models to study this important molecular system.
Collapse
Affiliation(s)
- Emilia M. Wysocka
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - T. Ian Simpson
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Kanagy WK, Cleyrat C, Fazel M, Lucero SR, Bruchez MP, Lidke KA, Wilson BS, Lidke DS. Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1. Mol Biol Cell 2022; 33:ar89. [PMID: 35793126 PMCID: PMC9582627 DOI: 10.1091/mbc.e21-12-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.
Collapse
Affiliation(s)
- William K Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mohamadreza Fazel
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Marcel P Bruchez
- Department of Biological Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
6
|
Ismail NI, Mokhtar AMA. Modularisation of published and novel models toward a complex KIR2DL4 pathway in pbNK cell. MethodsX 2022; 9:101760. [PMID: 35774414 PMCID: PMC9237949 DOI: 10.1016/j.mex.2022.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
KIR2DL4 is an interesting receptor expressed on the peripheral blood natural killer (pbNK) cell as it can be either activating or inhibitory depending on the amino acid residues in the domain. This model uses mathematical modelling to investigate the downstream effects of natural killer cells’ activation (KIR2DL4) receptor after stimulation by key ligand (HLA-G) on pbNK cells. Development of this large pathway is based on a comprehensive qualitative description of pbNKs’ intracellular signalling pathways leading to chemokine and cytotoxin secretion, obtained from the KEGG database (https://www.genome.jp/pathway/hsa04650). From this qualitative description we built a quantitative model for the pathway, reusing existing curated models where possible and implementing new models as needed. This model employs a composite approach for generating modular models. The approach allows for the construction of large-scale complex model by combining component of sub-models that can be modified individually. This large pathway consists of two published sub-models; the Ca2+ model and the NFAT model, and a newly built FCεRIγ sub-model. The full pathway was fitted to published dataset and fitted well to one of two secreted cytokines. The model can be used to predict the production of IFNγ and TNFα cytokines.Development of pathway and mathematical model Reusing existing curated models and implementing new models Model optimization and analysis
Collapse
Affiliation(s)
- Nurul Izza Ismail
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | |
Collapse
|
7
|
A multiscale model of the regulation of aquaporin 2 recycling. NPJ Syst Biol Appl 2022; 8:16. [PMID: 35534498 PMCID: PMC9085758 DOI: 10.1038/s41540-022-00223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
The response of cells to their environment is driven by a variety of proteins and messenger molecules. In eukaryotes, their distribution and location in the cell are regulated by the vesicular transport system. The transport of aquaporin 2 between membrane and storage region is a crucial part of the water reabsorption in renal principal cells, and its malfunction can lead to Diabetes insipidus. To understand the regulation of this system, we aggregated pathways and mechanisms from literature and derived three models in a hypothesis-driven approach. Furthermore, we combined the models to a single system to gain insight into key regulatory mechanisms of Aquaporin 2 recycling. To achieve this, we developed a multiscale computational framework for the modeling and simulation of cellular systems. The analysis of the system rationalizes that the compartmentalization of cAMP in renal principal cells is a result of the protein kinase A signalosome and can only occur if specific cellular components are observed in conjunction. Endocytotic and exocytotic processes are inherently connected and can be regulated by the same protein kinase A signal.
Collapse
|
8
|
Fischer S, Dinh M, Henry V, Robert P, Goelzer A, Fromion V. BiPSim: a flexible and generic stochastic simulator for polymerization processes. Sci Rep 2021; 11:14112. [PMID: 34238958 PMCID: PMC8266833 DOI: 10.1038/s41598-021-92833-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Detailed whole-cell modeling requires an integration of heterogeneous cell processes having different modeling formalisms, for which whole-cell simulation could remain tractable. Here, we introduce BiPSim, an open-source stochastic simulator of template-based polymerization processes, such as replication, transcription and translation. BiPSim combines an efficient abstract representation of reactions and a constant-time implementation of the Gillespie’s Stochastic Simulation Algorithm (SSA) with respect to reactions, which makes it highly efficient to simulate large-scale polymerization processes stochastically. Moreover, multi-level descriptions of polymerization processes can be handled simultaneously, allowing the user to tune a trade-off between simulation speed and model granularity. We evaluated the performance of BiPSim by simulating genome-wide gene expression in bacteria for multiple levels of granularity. Finally, since no cell-type specific information is hard-coded in the simulator, models can easily be adapted to other organismal species. We expect that BiPSim should open new perspectives for the genome-wide simulation of stochastic phenomena in biology.
Collapse
Affiliation(s)
- Stephan Fischer
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marc Dinh
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Henry
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Anne Goelzer
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Fromion
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Ovchinnikov A, Pérez Verona I, Pogudin G, Tribastone M. CLUE: Exact maximal reduction of kinetic models by constrained lumping of differential equations. Bioinformatics 2021; 37:1732-1738. [PMID: 33532849 DOI: 10.1093/bioinformatics/btab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/13/2020] [Accepted: 01/30/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Detailed mechanistic models of biological processes can pose significant challenges for analysis and parameter estimations due to the large number of equations used to track the dynamics of all distinct configurations in which each involved biochemical species can be found. Model reduction can help tame such complexity by providing a lower-dimensional model in which each macro-variable can be directly related to the original variables. RESULTS We present CLUE, an algorithm for exact model reduction of systems of polynomial differential equations by constrained linear lumping. It computes the smallest dimensional reduction as a linear mapping of the state space such that the reduced model preserves the dynamics of user-specified linear combinations of the original variables. Even though CLUE works with nonlinear differential equations, it is based on linear algebra tools, which makes it applicable to high-dimensional models. Using case studies from the literature, we show how CLUE can substantially lower model dimensionality and help extract biologically intelligible insights from the reduction. AVAILABILITY An implementation of the algorithm and relevant resources to replicate the experiments herein reported are freely available for download at https://github.com/pogudingleb/CLUE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexey Ovchinnikov
- Department of Mathematics, CUNY Queens College, Queens, NY, 11367, and CUNY Graduate Center, New York, NY, 10016, USA
| | | | - Gleb Pogudin
- LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, 91120, France
| | | |
Collapse
|
10
|
Hastings JF, O'Donnell YEI, Fey D, Croucher DR. Applications of personalised signalling network models in precision oncology. Pharmacol Ther 2020; 212:107555. [PMID: 32320730 DOI: 10.1016/j.pharmthera.2020.107555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
As our ability to provide in-depth, patient-specific characterisation of the molecular alterations within tumours rapidly improves, it is becoming apparent that new approaches will be required to leverage the power of this data and derive the full benefit for each individual patient. Systems biology approaches are beginning to emerge within this field as a potential method of incorporating large volumes of network level data and distilling a coherent, clinically-relevant prediction of drug response. However, the initial promise of this developing field is yet to be realised. Here we argue that in order to develop these precise models of individual drug response and tailor treatment accordingly, we will need to develop mathematical models capable of capturing both the dynamic nature of drug-response signalling networks and key patient-specific information such as mutation status or expression profiles. We also review the modelling approaches commonly utilised within this field, and outline recent examples of their use in furthering the application of systems biology for a precision medicine approach to cancer treatment.
Collapse
Affiliation(s)
- Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
11
|
Gupta S, Lee REC, Faeder JR. Parallel Tempering with Lasso for model reduction in systems biology. PLoS Comput Biol 2020; 16:e1007669. [PMID: 32150537 PMCID: PMC7082068 DOI: 10.1371/journal.pcbi.1007669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/19/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Systems Biology models reveal relationships between signaling inputs and observable molecular or cellular behaviors. The complexity of these models, however, often obscures key elements that regulate emergent properties. We use a Bayesian model reduction approach that combines Parallel Tempering with Lasso regularization to identify minimal subsets of reactions in a signaling network that are sufficient to reproduce experimentally observed data. The Bayesian approach finds distinct reduced models that fit data equivalently. A variant of this approach that uses Lasso to perform selection at the level of reaction modules is applied to the NF-κB signaling network to test the necessity of feedback loops for responses to pulsatile and continuous pathway stimulation. Taken together, our results demonstrate that Bayesian parameter estimation combined with regularization can isolate and reveal core motifs sufficient to explain data from complex signaling systems. Cells respond to diverse environmental cues using complex networks of interacting proteins and other biomolecules. Mathematical and computational models have become invaluable tools to understand these networks and make informed predictions to rationally perturb cell behavior. However, the complexity of detailed models that try to capture all known biochemical elements of signaling networks often makes it difficult to determine the key regulatory elements that are responsible for specific cell behaviors. Here, we present a Bayesian computational approach, PTLasso, to automatically extract minimal subsets of detailed models that are sufficient to explain experimental data. The method simultaneously calibrates and reduces models, and the Bayesian approach samples globally, allowing us to find alternate mechanistic explanations for the data if present. We demonstrate the method on both synthetic and real biological data and show that PTLasso is an effective method to isolate distinct parts of a larger signaling model that are sufficient for specific data.
Collapse
Affiliation(s)
- Sanjana Gupta
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robin E C Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Santibáñez R, Garrido D, Martin AJM. Pleione: A tool for statistical and multi-objective calibration of Rule-based models. Sci Rep 2019; 9:15104. [PMID: 31641245 PMCID: PMC6805871 DOI: 10.1038/s41598-019-51546-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022] Open
Abstract
Mathematical models based on Ordinary Differential Equations (ODEs) are frequently used to describe and simulate biological systems. Nevertheless, such models are often difficult to understand. Unlike ODE models, Rule-Based Models (RBMs) utilise formal language to describe reactions as a cumulative number of statements that are easier to understand and correct. They are also gaining popularity because of their conciseness and simulation flexibility. However, RBMs generally lack tools to perform further analysis that requires simulation. This situation arises because exact and approximate simulations are computationally intensive. Translating RBMs into ODEs is commonly used to reduce simulation time, but this technique may be prohibitive due to combinatorial explosion. Here, we present the software called Pleione to calibrate RBMs. Parameter calibration is essential given the incomplete experimental determination of reaction rates and the goal of using models to reproduce experimental data. The software distributes stochastic simulations and calculations and incorporates equivalence tests to determine the fitness of RBMs compared with data. The primary features of Pleione were thoroughly tested on a model of gene regulation in Escherichia coli. Pleione yielded satisfactory results regarding calculation time and error reduction for multiple simulators, models, parameter search strategies, and computing infrastructures.
Collapse
Affiliation(s)
- Rodrigo Santibáñez
- Network Biology Lab, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Alberto J M Martin
- Network Biology Lab, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile.
| |
Collapse
|
13
|
Mitra ED, Suderman R, Colvin J, Ionkov A, Hu A, Sauro HM, Posner RG, Hlavacek WS. PyBioNetFit and the Biological Property Specification Language. iScience 2019; 19:1012-1036. [PMID: 31522114 PMCID: PMC6744527 DOI: 10.1016/j.isci.2019.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
In systems biology modeling, important steps include model parameterization, uncertainty quantification, and evaluation of agreement with experimental observations. To help modelers perform these steps, we developed the software PyBioNetFit, which in addition supports checking models against known system properties and solving design problems. PyBioNetFit introduces Biological Property Specification Language (BPSL) for the formal declaration of system properties. BPSL allows qualitative data to be used alone or in combination with quantitative data. PyBioNetFit performs parameterization with parallelized metaheuristic optimization algorithms that work directly with existing model definition standards: BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML). We demonstrate PyBioNetFit's capabilities by solving various example problems, including the challenging problem of parameterizing a 153-parameter model of cell cycle control in yeast based on both quantitative and qualitative data. We demonstrate the model checking and design applications of PyBioNetFit and BPSL by analyzing a model of targeted drug interventions in autophagy signaling.
Collapse
Affiliation(s)
- Eshan D Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Joshua Colvin
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Alexander Ionkov
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Andrew Hu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
14
|
Travers T, Kanagy WK, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 2019; 30:2331-2347. [PMID: 31216232 PMCID: PMC6743456 DOI: 10.1091/mbc.e18-11-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Syk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as tetrameric (αβγ2) FcεRI. Syk activation is generally attributed to cis binding of its tandem SH2 domains to dual phosphotyrosines within FcεRIγ-ITAMs (immunoreceptor tyrosine-based activation motifs). However, the mechanistic details of Syk docking on γ homodimers are unresolved. Here, we estimate that multivalent interactions for WT Syk improve cis-oriented binding by three orders of magnitude. We applied molecular dynamics (MD), hybrid MD/worm-like chain polymer modeling, and live cell imaging to evaluate relative binding and signaling output for all possible cis and trans Syk-FcεRIγ configurations. Syk binding is likely modulated during signaling by autophosphorylation on Y130 in interdomain A, since a Y130E phosphomimetic form of Syk is predicted to lead to reduced helicity of interdomain A and alter Syk's bias for cis binding. Experiments in reconstituted γ-KO cells, whose γ subunits are linked by disulfide bonds, as well as in cells expressing monomeric ITAM or hemITAM γ-chimeras, support model predictions that short distances between γ ITAM pairs are required for trans docking. We propose that the full range of docking configurations improves signaling efficiency by expanding the combinatorial possibilities for Syk recruitment, particularly under conditions of incomplete ITAM phosphorylation.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Rachael A. Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elton Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cedric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
15
|
Vernuccio S, Broadbelt LJ. Discerning complex reaction networks using automated generators. AIChE J 2019. [DOI: 10.1002/aic.16663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sergio Vernuccio
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois
| | - Linda J. Broadbelt
- Department of Chemical and Biological Engineering Northwestern University Evanston Illinois
| |
Collapse
|
16
|
Thanh VH. Efficient anticorrelated variance reduction for stochastic simulation of biochemical reactions. IET Syst Biol 2019; 13:16-23. [PMID: 30774112 DOI: 10.1049/iet-syb.2018.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigate the computational challenge of improving the accuracy of the stochastic simulation estimation by inducing negative correlation through the anticorrelated variance reduction technique. A direct application of the technique to the stochastic simulation algorithm (SSA), employing the inverse transformation, is not efficient for simulating large networks because its computational cost is similar to the sum of independent simulation runs. We propose in this study a new algorithm that employs the propensity bounds of reactions, introduced recently in their rejection-based SSA, to correlate and synchronise the trajectories during the simulation. The selection of reaction firings by our approach is exact due to the rejection-based mechanism. In addition, by applying the anticorrelated variance technique to select reaction firings, our approach can induce substantial correlation between realisations, hence reducing the variance of the estimator. The computational advantage of our rejection-based approach in comparison with the traditional inverse transformation is that it only needs to maintain a single data structure storing propensity bounds of reactions, which is updated infrequently, hence achieving better performance.
Collapse
Affiliation(s)
- Vo Hong Thanh
- Department of Computer Science, Aalto University, Espoo, Finland and The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI) Rovereto, Italy.
| |
Collapse
|
17
|
Tapia JJ, Saglam AS, Czech J, Kuczewski R, Bartol TM, Sejnowski TJ, Faeder JR. MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework. Methods Mol Biol 2019; 1945:203-229. [PMID: 30945248 PMCID: PMC6580425 DOI: 10.1007/978-1-4939-9102-0_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spatial heterogeneity can have dramatic effects on the biochemical networks that drive cell regulation and decision-making. For this reason, a number of methods have been developed to model spatial heterogeneity and incorporated into widely used modeling platforms. Unfortunately, the standard approaches for specifying and simulating chemical reaction networks become untenable when dealing with multistate, multicomponent systems that are characterized by combinatorial complexity. To address this issue, we developed MCell-R, a framework that extends the particle-based spatial Monte Carlo simulator, MCell, with the rule-based model specification and simulation capabilities provided by BioNetGen and NFsim. The BioNetGen syntax enables the specification of biomolecules as structured objects whose components can have different internal states that represent such features as covalent modification and conformation and which can bind components of other molecules to form molecular complexes. The network-free simulation algorithm used by NFsim enables efficient simulation of rule-based models even when the size of the network implied by the biochemical rules is too large to enumerate explicitly, which frequently occurs in detailed models of biochemical signaling. The result is a framework that can efficiently simulate systems characterized by combinatorial complexity at the level of spatially resolved individual molecules over biologically relevant time and length scales.
Collapse
Affiliation(s)
- Jose-Juan Tapia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ali Sinan Saglam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob Czech
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Robert Kuczewski
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas M. Bartol
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Multicellular Models Bridging Intracellular Signaling and Gene Transcription to Population Dynamics. Processes (Basel) 2018. [DOI: 10.3390/pr6110217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell signaling and gene transcription occur at faster time scales compared to cellular death, division, and evolution. Bridging these multiscale events in a model is computationally challenging. We introduce a framework for the systematic development of multiscale cell population models. Using message passing interface (MPI) parallelism, the framework creates a population model from a single-cell biochemical network model. It launches parallel simulations on a single-cell model and treats each stand-alone parallel process as a cell object. MPI mediates cell-to-cell and cell-to-environment communications in a server-client fashion. In the framework, model-specific higher level rules link the intracellular molecular events to cellular functions, such as death, division, or phenotype change. Cell death is implemented by terminating a parallel process, while cell division is carried out by creating a new process (daughter cell) from an existing one (mother cell). We first demonstrate these capabilities by creating two simple example models. In one model, we consider a relatively simple scenario where cells can evolve independently. In the other model, we consider interdependency among the cells, where cellular communication determines their collective behavior and evolution under a temporally evolving growth condition. We then demonstrate the framework’s capability by simulating a full-scale model of bacterial quorum sensing, where the dynamics of a population of bacterial cells is dictated by the intercellular communications in a time-evolving growth environment.
Collapse
|
19
|
Shahinuzzaman M, Khetan J, Barua D. A spatio-temporal model reveals self-limiting Fc ɛRI cross-linking by multivalent antigens. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180190. [PMID: 30839725 PMCID: PMC6170560 DOI: 10.1098/rsos.180190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Aggregation of cell surface receptor proteins by multivalent antigens is an essential early step for immune cell signalling. A number of experimental and modelling studies in the past have investigated multivalent ligand-mediated aggregation of IgE receptors (FcɛRI) in the plasma membrane of mast cells. However, understanding of the mechanisms of FcɛRI aggregation remains incomplete. Experimental reports indicate that FcɛRI forms relatively small and finite-sized clusters when stimulated by a multivalent ligand. By contrast, modelling studies have shown that receptor cross-linking by a trivalent ligand may lead to the formation of large receptor superaggregates that may potentially give rise to hyperactive cellular responses. In this work, we have developed a Brownian dynamics-based spatio-temporal model to analyse FcɛRI aggregation by a trivalent antigen. Unlike the existing models, which implemented non-spatial simulation approaches, our model explicitly accounts for the coarse-grained site-specific features of the multivalent species (molecules and complexes). The model incorporates membrane diffusion, steric collisions and sub-nanometre-scale site-specific interaction of the time-evolving species of arbitrary structures. Using the model, we investigated temporal evolution of the species and their diffusivities. Consistent with a recent experimental report, our model predicted sharp decay in species mobility in the plasma membrane in response receptor cross-linking by a multivalent antigen. We show that, due to such decay in the species mobility, post-stimulation receptor aggregation may become self-limiting. Our analysis reveals a potential regulatory mechanism suppressing hyperactivation of immune cells in response to multivalent antigens.
Collapse
Affiliation(s)
| | | | - Dipak Barua
- Author for correspondence: Dipak Barua e-mail:
| |
Collapse
|
20
|
Thanh VH. A Critical Comparison of Rejection-Based Algorithms for Simulation of Large Biochemical Reaction Networks. Bull Math Biol 2018; 81:3053-3073. [PMID: 29981002 DOI: 10.1007/s11538-018-0462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022]
Abstract
The rejection-based simulation technique has been applying to improve the computational efficiency of the stochastic simulation algorithm (SSA) in simulating large reaction networks, which are required for a thorough understanding of biological systems. We compare two recently proposed simulation methods, namely the composition-rejection algorithm (SSA-CR) and the rejection-based SSA (RSSA), aiming for this purpose. We discuss the right interpretation of the rejection-based technique used in these algorithms in order to make an informed choice when dealing with different aspects of biochemical networks. We provide the theoretical analysis as well as the detailed runtime comparison of these algorithms on concrete biological models. We highlight important factors that are omitted in previous analysis of these algorithms. The numerical comparison shows that for reaction networks where the search cost is expensive then SSA-CR is more efficient, and for reaction networks where the update cost is dominant, often the case in practice, then RSSA should be the choice.
Collapse
Affiliation(s)
- Vo Hong Thanh
- Department of Computer Science, Aalto University, Espoo, Finland. .,The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.
| |
Collapse
|
21
|
Abstract
Stochastic simulation has been widely used to model the dynamics of biochemical reaction networks. Several algorithms have been proposed that are exact solutions of the chemical master equation, following the work of Gillespie. These stochastic simulation approaches can be broadly classified into two categories: network-based and -free simulation. The network-based approach requires that the full network of reactions be established at the start, while the network-free approach is based on reaction rules that encode classes of reactions, and by applying rule transformations, it generates reaction events as they are needed without ever having to derive the entire network. In this study, we compare the efficiency and limitations of several available implementations of these two approaches. The results allow for an informed selection of the implementation and methodology for specific biochemical modeling applications.
Collapse
|
22
|
Timescale Separation of Positive and Negative Signaling Creates History-Dependent Responses to IgE Receptor Stimulation. Sci Rep 2017; 7:15586. [PMID: 29138425 PMCID: PMC5686181 DOI: 10.1038/s41598-017-15568-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023] Open
Abstract
The high-affinity receptor for IgE expressed on the surface of mast cells and basophils interacts with antigens, via bound IgE antibody, and triggers secretion of inflammatory mediators that contribute to allergic reactions. To understand how past inputs (memory) influence future inflammatory responses in mast cells, a microfluidic device was used to precisely control exposure of cells to alternating stimulatory and non-stimulatory inputs. We determined that the response to subsequent stimulation depends on the interval of signaling quiescence. For shorter intervals of signaling quiescence, the second response is blunted relative to the first response, whereas longer intervals of quiescence induce an enhanced second response. Through an iterative process of computational modeling and experimental tests, we found that these memory-like phenomena arise from a confluence of rapid, short-lived positive signals driven by the protein tyrosine kinase Syk; slow, long-lived negative signals driven by the lipid phosphatase Ship1; and slower degradation of Ship1 co-factors. This work advances our understanding of mast cell signaling and represents a generalizable approach for investigating the dynamics of signaling systems.
Collapse
|
23
|
Sekar JAP, Tapia JJ, Faeder JR. Automated visualization of rule-based models. PLoS Comput Biol 2017; 13:e1005857. [PMID: 29131816 PMCID: PMC5703574 DOI: 10.1371/journal.pcbi.1005857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/27/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022] Open
Abstract
Frameworks such as BioNetGen, Kappa and Simmune use "reaction rules" to specify biochemical interactions compactly, where each rule specifies a mechanism such as binding or phosphorylation and its structural requirements. Current rule-based models of signaling pathways have tens to hundreds of rules, and these numbers are expected to increase as more molecule types and pathways are added. Visual representations are critical for conveying rule-based models, but current approaches to show rules and interactions between rules scale poorly with model size. Also, inferring design motifs that emerge from biochemical interactions is an open problem, so current approaches to visualize model architecture rely on manual interpretation of the model. Here, we present three new visualization tools that constitute an automated visualization framework for rule-based models: (i) a compact rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys regulatory interactions in the model as a bipartite network, and (iii) a tunable compression pipeline that incorporates expert knowledge and produces compact diagrams of model architecture when applied to the atom-rule graph. The compressed graphs convey network motifs and architectural features useful for understanding both small and large rule-based models, as we show by application to specific examples. Our tools also produce more readable diagrams than current approaches, as we show by comparing visualizations of 27 published models using standard graph metrics. We provide an implementation in the open source and freely available BioNetGen framework, but the underlying methods are general and can be applied to rule-based models from the Kappa and Simmune frameworks also. We expect that these tools will promote communication and analysis of rule-based models and their eventual integration into comprehensive whole-cell models.
Collapse
Affiliation(s)
- John Arul Prakash Sekar
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jose-Juan Tapia
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James R. Faeder
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
24
|
Kim DK, Beaven MA, Metcalfe DD, Olivera A. Interaction of DJ-1 with Lyn is essential for IgE-mediated stimulation of human mast cells. J Allergy Clin Immunol 2017; 142:195-206.e8. [PMID: 29031599 DOI: 10.1016/j.jaci.2017.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/28/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND DJ-1 is a redox-sensitive protein with multiple roles in cell homeostasis, levels of which are altered in patients with mast cell (MC)-related disorders. However, whether DJ-1 can regulate human MC function is unknown. OBJECTIVE We sought to investigate the potential role of DJ-1 in the responses of human MCs to antigen stimulation. METHODS DJ-1 was silenced in human CD34+-derived MCs and in the LAD2 MC line by using lentiviral short hairpin RNA constructs. Release of β-hexosaminidase, prostaglandin D2, and GM-CSF and changes in reactive oxygen species levels were measured after FcεRI engagement. Enzymatic assays, sucrose density gradient centrifugation, immunoprecipitation, dot and Western blotting, and confocal imaging were performed for signaling, cellular localization, and coassociation studies. RESULTS DJ-1 knockdown substantially reduced mediator release, as well as Lyn kinase and spleen tyrosine kinase activation and signaling through mechanisms that appeared largely unrelated to DJ-1 antioxidant activity. Following FcεRI activation, nonoxidized rather than oxidized DJ-1 translocated to lipid rafts, where it associated with Lyn, an interaction that appeared critical for maximal Lyn activation and initiation of signaling. Using purified recombinant proteins, we demonstrated that DJ-1 directly bound to Lyn but not to other Src kinases, and this interaction was specific for human but not mouse proteins. In addition, DJ-1 reduced Src homology 2 domain-containing phosphatase 2 phosphatase activity by scavenging reactive oxygen species, thus preventing spleen tyrosine kinase dephosphorylation and perpetuating MC signaling. CONCLUSION We demonstrate a novel role for DJ-1 in the early activation of Lyn by FcεRI, which is essential for human MC responses and provides the basis for an alternative target in allergic disease therapy.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| |
Collapse
|
25
|
Cardelli L, Tribastone M, Tschaikowski M, Vandin A. Maximal aggregation of polynomial dynamical systems. Proc Natl Acad Sci U S A 2017; 114:10029-10034. [PMID: 28878023 PMCID: PMC5617256 DOI: 10.1073/pnas.1702697114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ordinary differential equations (ODEs) with polynomial derivatives are a fundamental tool for understanding the dynamics of systems across many branches of science, but our ability to gain mechanistic insight and effectively conduct numerical evaluations is critically hindered when dealing with large models. Here we propose an aggregation technique that rests on two notions of equivalence relating ODE variables whenever they have the same solution (backward criterion) or if a self-consistent system can be written for describing the evolution of sums of variables in the same equivalence class (forward criterion). A key feature of our proposal is to encode a polynomial ODE system into a finitary structure akin to a formal chemical reaction network. This enables the development of a discrete algorithm to efficiently compute the largest equivalence, building on approaches rooted in computer science to minimize basic models of computation through iterative partition refinements. The physical interpretability of the aggregation is shown on polynomial ODE systems for biochemical reaction networks, gene regulatory networks, and evolutionary game theory.
Collapse
Affiliation(s)
- Luca Cardelli
- Microsoft Research, Cambridge CB1 2FB, United Kingdom
- Department of Computing, University of Oxford, Oxford OX1 3QD, United Kingdom
| | | | | | | |
Collapse
|
26
|
Thanh VH. Stochastic simulation of biochemical reactions with partial-propensity and rejection-based approaches. Math Biosci 2017; 292:67-75. [PMID: 28782515 DOI: 10.1016/j.mbs.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/04/2017] [Accepted: 08/03/2017] [Indexed: 02/08/2023]
Abstract
We present in this paper a new exact algorithm for improving performance of exact stochastic simulation algorithm. The algorithm is developed on concepts of the partial-propensity and the rejection-based approaches. It factorizes the propensity bounds of reactions and groups factors by common reactant species for selecting next reaction firings. Our algorithm provides favorable computational advantages for simulating of biochemical reaction networks by reducing the cost for selecting the next reaction firing to scale with the number of chemical species and avoiding expensive propensity updates during the simulation. We present the details of our new algorithm and benchmark it on concrete biological models to demonstrate its applicability and efficiency.
Collapse
Affiliation(s)
- Vo Hong Thanh
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068, Italy.
| |
Collapse
|
27
|
Singh V, Nemenman I. Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor. PLoS Comput Biol 2017; 13:e1005490. [PMID: 28410433 PMCID: PMC5409536 DOI: 10.1371/journal.pcbi.1005490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/28/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022] Open
Abstract
Cells use surface receptors to estimate concentrations of external ligands. Limits on the accuracy of such estimations have been well studied for pairs of ligand and receptor species. However, the environment typically contains many ligands, which can bind to the same receptors with different affinities, resulting in cross-talk. In traditional rate models, such cross-talk prevents accurate inference of concentrations of individual ligands. In contrast, here we show that knowing the precise timing sequence of stochastic binding and unbinding events allows one receptor to provide information about multiple ligands simultaneously and with a high accuracy. We show that such high-accuracy estimation of multiple concentrations can be realized with simple structural modifications of the familiar kinetic proofreading biochemical network diagram. We give two specific examples of such modifications. We argue that structural and functional features of real cellular biochemical sensory networks in immune cells, such as feedforward and feedback loops or ligand antagonism, sometimes can be understood as solutions to the accurate multi-ligand estimation problem. Cells live in chemically complex environments with many different chemical ligands around them. Can cells estimate concentrations of more ligands than they have receptor types? In this paper, we show that, surprisingly, the answer is “yes”, and the estimation can be implemented with simple biochemical components already present in many cells. Therefore, cells may “know” a lot more about their environment and thus may be able to implement more complex and accurate response strategies than was previously thought.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
|
29
|
Foo M, Kim J, Sawlekar R, Bates DG. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes. Comput Chem Eng 2017; 99:145-157. [PMID: 28392606 PMCID: PMC5362158 DOI: 10.1016/j.compchemeng.2017.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.
Collapse
Affiliation(s)
- Mathias Foo
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Jongrae Kim
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Rucha Sawlekar
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Declan G Bates
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
30
|
Morel PA, Lee REC, Faeder JR. Demystifying the cytokine network: Mathematical models point the way. Cytokine 2016; 98:115-123. [PMID: 27919524 DOI: 10.1016/j.cyto.2016.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Cytokines provide the means by which immune cells communicate with each other and with parenchymal cells. There are over one hundred cytokines and many exist in families that share receptor components and signal transduction pathways, creating complex networks. Reductionist approaches to understanding the role of specific cytokines, through the use of gene-targeted mice, have revealed further complexity in the form of redundancy and pleiotropy in cytokine function. Creating an understanding of the complex interactions between cytokines and their target cells is challenging experimentally. Mathematical and computational modeling provides a robust set of tools by which complex interactions between cytokines can be studied and analyzed, in the process creating novel insights that can be further tested experimentally. This review will discuss and provide examples of the different modeling approaches that have been used to increase our understanding of cytokine networks. This includes discussion of knowledge-based and data-driven modeling approaches and the recent advance in single-cell analysis. The use of modeling to optimize cytokine-based therapies will also be discussed.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, USA.
| | - Robin E C Lee
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
| | - James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
31
|
Thanh VH, Priami C, Zunino R. Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability. J Chem Phys 2016; 144:224108. [DOI: 10.1063/1.4953559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Thanh VH, Zunino R, Priami C. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks. J Chem Phys 2016; 142:244106. [PMID: 26133409 DOI: 10.1063/1.4922923] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.
Collapse
Affiliation(s)
- Vo Hong Thanh
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068, Italy
| | - Roberto Zunino
- Department of Mathematics, University of Trento, Trento, Italy
| | - Corrado Priami
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068, Italy
| |
Collapse
|
33
|
Cardelli L, Tribastone M, Tschaikowski M, Vandin A. Symbolic computation of differential equivalences. ACTA ACUST UNITED AC 2016. [DOI: 10.1145/2914770.2837649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ordinary differential equations (ODEs) are widespread in many natural sciences including chemistry, ecology, and systems biology, and in disciplines such as control theory and electrical engineering. Building on the celebrated molecules-as-processes paradigm, they have become increasingly popular in computer science, with high-level languages and formal methods such as Petri nets, process algebra, and rule-based systems that are interpreted as ODEs. We consider the problem of comparing and minimizing ODEs automatically. Influenced by traditional approaches in the theory of programming, we propose differential equivalence relations. We study them for a basic intermediate language, for which we have decidability results, that can be targeted by a class of high-level specifications. An ODE implicitly represents an uncountable state space, hence reasoning techniques cannot be borrowed from established domains such as probabilistic programs with finite-state Markov chain semantics. We provide novel symbolic procedures to check an equivalence and compute the largest one via partition refinement algorithms that use satisfiability modulo theories. We illustrate the generality of our framework by showing that differential equivalences include (i) well-known notions for the minimization of continuous-time Markov chains (lumpability), (ii)~bisimulations for chemical reaction networks recently proposed by Cardelli et al., and (iii) behavioral relations for process algebra with ODE semantics. With a prototype implementation we are able to detect equivalences in biochemical models from the literature that cannot be reduced using competing automatic techniques.
Collapse
|
34
|
Cardelli L, Tribastone M, Tschaikowski M, Vandin A. Efficient Syntax-Driven Lumping of Differential Equations. TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS 2016. [DOI: 10.1007/978-3-662-49674-9_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Abstract
Our long-term efforts to elucidate receptor-mediated signalling in immune cells, particularly transmembrane signalling initiated by FcɛRI, the receptor for IgE in mast cells, led us unavoidably to contemplate the role of the heterogeneous plasma membrane. Our early investigations with fluorescence microscopy revealed co-redistribution of certain lipids and signalling components with antigen-cross-linked IgE-FcɛRI and pointed to participation of ordered membrane domains in the signalling process. With a focus on this function, we have worked along with others to develop diverse and increasingly sophisticated tools to analyse the complexity of membrane structure that facilitates regulation and targeting of signalling events. The present chapter describes how initial membrane interactions of clustered IgE-FcɛRI lead to downstream cellular responses and how biochemical information integrated with nanoscale resolution spectroscopy and imaging is providing mechanistic insights at the level of molecular complexes.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
36
|
Morel PA, Faeder JR, Hawse WF, Miskov-Zivanov N. Modeling the T cell immune response: a fascinating challenge. J Pharmacokinet Pharmacodyn 2014; 41:401-13. [PMID: 25155903 PMCID: PMC4210366 DOI: 10.1007/s10928-014-9376-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
The immune system is designed to protect the organism from infection and to repair damaged tissue. An effective response requires recognition of the threat, the appropriate effector mechanism to clear the pathogen and a return to homeostasis with minimal damage to self-tissues. T cells play a central role in orchestrating the immune response at all stages of the response and have been the subject of intense study by both experimental immunologists and modelers. This review examines some of the more critical questions in T cell biology and describes the latest attempts to address those questions using approaches that combine mathematical modeling and experiments.
Collapse
Affiliation(s)
- Penelope A Morel
- Departments of Immunology, University of Pittsburgh, 200 Lothrop Street, BST E1055, Pittsburgh, PA, 15261, USA,
| | | | | | | |
Collapse
|
37
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
38
|
Chylek LA, Holowka DA, Baird BA, Hlavacek WS. An Interaction Library for the FcεRI Signaling Network. Front Immunol 2014; 5:172. [PMID: 24782869 PMCID: PMC3995055 DOI: 10.3389/fimmu.2014.00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/31/2014] [Indexed: 12/20/2022] Open
Abstract
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions. This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP3 at the plasma membrane and the soluble second messenger IP3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA ; Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, NY , USA
| | - William S Hlavacek
- Los Alamos National Laboratory, Theoretical Division, Center for Non-linear Studies , Los Alamos, NM , USA
| |
Collapse
|
39
|
Hogg JS, Harris LA, Stover LJ, Nair NS, Faeder JR. Exact hybrid particle/population simulation of rule-based models of biochemical systems. PLoS Comput Biol 2014; 10:e1003544. [PMID: 24699269 PMCID: PMC3974646 DOI: 10.1371/journal.pcbi.1003544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. Rule-based modeling is a modeling paradigm that addresses the problem of combinatorial complexity in biochemical systems. The key idea is to specify only those components of a biological macromolecule that are directly involved in a biochemical transformation. Until recently, this “pattern-based” approach greatly simplified the process of model building but did nothing to improve the performance of model simulation. This changed with the introduction of “network-free” simulation methods, which operate directly on the compressed rule set of a rule-based model rather than on a fully-enumerated set of reactions and species. However, these methods represent every molecule in a system as a particle, limiting their use to systems containing less than a few million molecules. Here, we describe an extension to the network-free approach that treats rare, complex species as particles and plentiful, simple species as population variables, while retaining the exact dynamics of the model system. By making more efficient use of computational resources for species that do not require the level of detail of a particle representation, this hybrid particle/population approach can simulate systems much larger than is possible using network-free methods and is an important step towards realizing the practical simulation of detailed, mechanistic models of whole cells.
Collapse
Affiliation(s)
- Justin S. Hogg
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Leonard A. Harris
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lori J. Stover
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Niketh S. Nair
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies. Methods 2014; 65:95-104. [DOI: 10.1016/j.ymeth.2013.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 01/09/2023] Open
|
41
|
Miskov-Zivanov N, Turner MS, Kane LP, Morel PA, Faeder JR. The duration of T cell stimulation is a critical determinant of cell fate and plasticity. Sci Signal 2013; 6:ra97. [PMID: 24194584 DOI: 10.1126/scisignal.2004217] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Variations in T cell receptor (TCR) signal strength, as indicated by differential activation of downstream signaling pathways, determine the fate of naïve T cells after encounter with antigen. Low-strength signals favor differentiation into regulatory T (T(reg)) cells containing the transcription factor Foxp3, whereas high-strength signals favor generation of interleukin-2-producing T helper (T(H)) cells. We constructed a logic circuit model of TCR signaling pathways, a major feature of which is an incoherent feed-forward loop involving both TCR-dependent activation of Foxp3 and its inhibition by mammalian target of rapamycin (mTOR), leading to the transient appearance of Foxp3(+) cells under T(H) cell-generating conditions. Experiments confirmed this behavior and the prediction that the immunosuppressive cytokine TGF-β (transforming growth factor-β) could generate T(reg) cells even during continued Akt-mTOR signaling. We predicted that sustained mTOR activity could suppress FOXP3 expression upon TGF-β removal, suggesting a possible mechanism for the experimentally observed instability of Foxp3(+) cells. Our model predicted, and experiments confirmed, that transient stimulation of cells with high-dose antigen generated T(H), T(reg), and nonactivated cells in proportions depending on the duration of TCR stimulation. Experimental analysis of cells after antigen removal identified three populations that correlated with these T cell fates. Further analysis of simulations implicated a negative feedback loop involving Foxp3, the phosphatase PTEN, and Akt-mTOR in determining fate. These results suggest that there is a critical time after TCR stimulation during which heterogeneity in the differentiating population of cells leads to increased plasticity of cell fate.
Collapse
Affiliation(s)
- Natasa Miskov-Zivanov
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
42
|
Donovan RM, Sedgewick AJ, Faeder JR, Zuckerman DM. Efficient stochastic simulation of chemical kinetics networks using a weighted ensemble of trajectories. J Chem Phys 2013; 139:115105. [PMID: 24070313 PMCID: PMC3790806 DOI: 10.1063/1.4821167] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/29/2013] [Indexed: 12/17/2022] Open
Abstract
We apply the "weighted ensemble" (WE) simulation strategy, previously employed in the context of molecular dynamics simulations, to a series of systems-biology models that range in complexity from a one-dimensional system to a system with 354 species and 3680 reactions. WE is relatively easy to implement, does not require extensive hand-tuning of parameters, does not depend on the details of the simulation algorithm, and can facilitate the simulation of extremely rare events. For the coupled stochastic reaction systems we study, WE is able to produce accurate and efficient approximations of the joint probability distribution for all chemical species for all time t. WE is also able to efficiently extract mean first passage times for the systems, via the construction of a steady-state condition with feedback. In all cases studied here, WE results agree with independent "brute-force" calculations, but significantly enhance the precision with which rare or slow processes can be characterized. Speedups over "brute-force" in sampling rare events via the Gillespie direct Stochastic Simulation Algorithm range from ~10(12) to ~10(18) for characterizing rare states in a distribution, and ~10(2) to ~10(4) for finding mean first passage times.
Collapse
Affiliation(s)
- Rory M Donovan
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
43
|
Kochanczyk M, Jaruszewicz J, Lipniacki T. Stochastic transitions in a bistable reaction system on the membrane. J R Soc Interface 2013; 10:20130151. [PMID: 23635492 DOI: 10.1098/rsif.2013.0151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transitions between steady states of a multi-stable stochastic system in the perfectly mixed chemical reactor are possible only because of stochastic switching. In realistic cellular conditions, where diffusion is limited, transitions between steady states can also follow from the propagation of travelling waves. Here, we study the interplay between the two modes of transition for a prototype bistable system of kinase-phosphatase interactions on the plasma membrane. Within microscopic kinetic Monte Carlo simulations on the hexagonal lattice, we observed that for finite diffusion the behaviour of the spatially extended system differs qualitatively from the behaviour of the same system in the well-mixed regime. Even when a small isolated subcompartment remains mostly inactive, the chemical travelling wave may propagate, leading to the activation of a larger compartment. The activating wave can be induced after a small subdomain is activated as a result of a stochastic fluctuation. Such a spontaneous onset of activity is radically more probable in subdomains characterized by slower diffusion. Our results show that a local immobilization of substrates can lead to the global activation of membrane proteins by the mechanism that involves stochastic fluctuations followed by the propagation of a semi-deterministic travelling wave.
Collapse
Affiliation(s)
- Marek Kochanczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
44
|
Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol 2013; 9:e1003004. [PMID: 23555234 PMCID: PMC3610635 DOI: 10.1371/journal.pcbi.1003004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023] Open
Abstract
Receptor phosphorylation is thought to be tightly regulated because phosphorylated receptors initiate signaling cascades leading to cellular activation. The T cell antigen receptor (TCR) on the surface of T cells is phosphorylated by the kinase Lck and dephosphorylated by the phosphatase CD45 on multiple immunoreceptor tyrosine-based activation motifs (ITAMs). Intriguingly, Lck sequentially phosphorylates ITAMs and ZAP-70, a cytosolic kinase, binds to phosphorylated ITAMs with differential affinities. The purpose of multiple ITAMs, their sequential phosphorylation, and the differential ZAP-70 affinities are unknown. Here, we use a systems model to show that this signaling architecture produces emergent ultrasensitivity resulting in switch-like responses at the scale of individual TCRs. Importantly, this switch-like response is an emergent property, so that removal of multiple ITAMs, sequential phosphorylation, or differential affinities abolishes the switch. We propose that highly regulated TCR phosphorylation is achieved by an emergent switch-like response and use the systems model to design novel chimeric antigen receptors for therapy. Recognition of antigen by the T cell antigen receptor (TCR) is a central event in the initiation of adaptive immune responses and for this reason the TCR has been extensively studied. Multiple studies performed over the past 20 years have revealed intriguing findings that include the observation that the TCR has multiple phosphorylation sites that are sequentially phosphorylated by the kinase Lck and that ZAP-70, a cytosolic kinase, binds to these sites with different affinities. The purpose of multiple sites, their sequential phosphorylation by Lck, and the differential binding affinities of ZAP-70 are unknown. Using a novel mechanistic model that incorporates a high level of molecular detail, we find, unexpectedly, that all factors are critical for producing ultrasensitivity (switch-like response) and therefore this signaling architecture exhibits systems-level emergent ultrasensitivity. We use the model to study existing therapeutic chimeric antigen receptors and in the design of novel ones. The work also has direct implications to the study of many other immune receptors.
Collapse
|
45
|
Liu Y, Barua D, Liu P, Wilson BS, Oliver JM, Hlavacek WS, Singh AK. Single-cell measurements of IgE-mediated FcεRI signaling using an integrated microfluidic platform. PLoS One 2013; 8:e60159. [PMID: 23544131 PMCID: PMC3609784 DOI: 10.1371/journal.pone.0060159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. Here, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI) signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn.
Collapse
Affiliation(s)
- Yanli Liu
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Peng Liu
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Bridget S. Wilson
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Janet M. Oliver
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Anup K. Singh
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Blinov ML, Moraru II. Leveraging modeling approaches: reaction networks and rules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 736:517-30. [PMID: 22161349 DOI: 10.1007/978-1-4419-7210-1_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.
Collapse
Affiliation(s)
- Michael L Blinov
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA.
| | | |
Collapse
|
47
|
Chylek LA, Stites EC, Posner RG, Hlavacek WS. Innovations of the Rule-Based Modeling Approach. SYSTEMS BIOLOGY 2013:273-300. [DOI: 10.1007/978-94-007-6803-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Ravichandran S, Rao KVS, Jain S. Bistability in a model of early B cell receptor activation and its role in tonic signaling and system tunability. MOLECULAR BIOSYSTEMS 2013; 9:2498-511. [DOI: 10.1039/c3mb70099b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Mukherjee S, Zhu J, Zikherman J, Parameswaran R, Kadlecek TA, Wang Q, Au-Yeung B, Ploegh H, Kuriyan J, Das J, Weiss A. Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci Signal 2013; 6:ra1. [PMID: 23281368 DOI: 10.1126/scisignal.2003220] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Src and Syk families of kinases are two distinct sets of kinases that play critical roles in initiating membrane-proximal B cell receptor (BCR) signaling. However, unlike in other lymphocytes, such as T cells, the "division of labor" between Src family kinases (SFKs) and Syk in B cells is not well separated because both Syk and SFKs can phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs) present in proteins comprising the BCR. To understand why B cells require both SFKs and Syk for activation, we investigated the roles of both families of kinases in BCR signaling with computational modeling and in vitro experiments. Our computational model suggested that positive feedback enabled Syk to substantially compensate for the absence of SFKs when spatial clustering of BCRs was induced by multimeric ligands. We confirmed this prediction experimentally. In contrast, when B cells were stimulated by monomeric ligands that failed to produce BCR clustering, both Syk and SFKs were required for complete and rapid BCR activation. Our data suggest that SFKs could play a pivotal role in increasing BCR sensitivity to monomeric antigens of pathogens and in mediating a rapid response to soluble multimeric antigens of pathogens that can induce spatial BCR clustering.
Collapse
Affiliation(s)
- Sayak Mukherjee
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Barua D, Goldstein B. A mechanistic model of early FcεRI signaling: lipid rafts and the question of protection from dephosphorylation. PLoS One 2012; 7:e51669. [PMID: 23284735 PMCID: PMC3524258 DOI: 10.1371/journal.pone.0051669] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
We present a model of the early events in mast cell signaling mediated by FcεRI where the plasma membrane is composed of many small ordered lipid domains (rafts), surrounded by a non-order region of lipids consisting of the remaining plasma membrane. The model treats the rafts as transient structures that constantly form and breakup, but that maintain a fixed average number per cell. The rafts have a high propensity for harboring Lyn kinase, aggregated, but not unaggregated receptors, and the linker for the activation of T cells (LAT). Phosphatase activity in the rafts is substantially reduced compared to the nonraft region. We use the model to analyze published experiments on the rat basophilic leukemia (RBL)-2H3 cell line that seem to contradict the notion that rafts offer protection. In these experiments IgE was cross-linked with a multivalent antigen and then excess monovalent hapten was added to break-up cross-links. The dephosphorylation of the unaggregated receptor (nonraft associated) and of LAT (raft associated) were then monitored in time and found to decay at similar rates, leading to the conclusion that rafts offer no protection from dephosphorylation. In the model, because the rafts are transient, a protein that is protected while in a raft will be subject to dephosphorylation when the raft breaks up and the protein finds itself in the nonraft region of the membrane. We show that the model is consistent with the receptor and LAT dephosphorylation experiments while still allowing rafts to enhance signaling by providing substantial protection from phosphatases.
Collapse
Affiliation(s)
- Dipak Barua
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|